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Abstract

GWAS and eQTL studies identified thousands of genetic variants associated with complex traits
and gene expression. Despite the important role of environmental exposures in complex traits, only
a limited number of environmental factors are measured in these studies. Measuring molecular phe-
notypes in tightly controlled cellular environments provides a more tractable setting to study gene-
environment interactions in the absence of other confounding variables.

We performed RNA-seq and ATAC-seq in endothelial cells exposed to retinoic acid, dexamethasone,
caffeine, and selenium to model genetic and environmental effects on gene regulation in the vascular
endothelium, a common site of pathology in cardiovascular disease. We found that genes near regions
of differentially accessible chromatin were more likely to be differentially expressed (OR = [3.41,
6.52], p < 10−16). Furthermore, we confirmed that environment-specific changes in transcription
factor binding are a key mechanism for cellular response to environmental stimuli. SNPs in these
transcription response factor footprints for dexamethasone, caffeine, and retinoic acid were enriched
in GTEx eQTLs from artery tissues indicating that these environmental conditions are latently present
in GTEx samples. Additionally, SNPs in footprints for response factors in caffeine are enriched in
colocalized eQTLs for coronary artery disease (CAD), suggesting a role for caffeine in CAD risk.
Interestingly, each treatment may amplify or buffer genetic risk for CAD, depending on the particular
SNP considered.

Introduction

The vascular endothelium refers to the single layer of cells lining blood vessels which form an interface
between the blood and the rest of the body. The endothelium plays an important role in coagulation,
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thrombosis, leukocyte extravasation, regulation of vascular tone, and angiogenesis [42]. Endothelial dys-
function has been implicated in many pathological processes, including atherosclerosis, hypertension, tumor
angiogenesis, wound healing, and preeclampsia [21]. For many of these conditions, genome-wide associa-
tion studies (GWAS) have been instrumental in identifying a large number of genetic variants associated
with disease (e.g. [37]). However, the molecular mechanisms linking each variant to the disease phenotype
are largely unknown. This is because risk variants tend to fall in non-coding regions and affect regulatory
mechanisms that are not yet well characterized.

DNase-seq and ATAC-seq [5, 6] are experimental approaches developed to profile the chromatin land-
scape and can be used to identify active regulatory elements. Transcription factors bound to chromatin
leave characteristic “footprints”, allowing for the identification of many bound transcription factors in a
single experiment [41]. ATAC-seq offers the advantage of requiring a much smaller number of cells, allowing
for increased multiplexing of experiments in small volumes. This enables study of cell lines with differ-
ing genetic backgrounds across environmental perturbations, such as the addition of a drug or hormone.
Current existing annotations for genetic variants only capture regulatory mechanisms in one arbitrary
environment and thus it is necessary to annotate regulatory regions across multiple conditions. Combining
chromatin accessibility data with measures of gene expression, such as RNA-seq, provides insights into the
regulatory code governing gene expression. By comparing RNA- and ATAC-seq in the presence/absence
of perturbations, it becomes possible to comprehensively study the cellular response and link changes in
chromatin accessibility and transcription factor binding to changes in gene expression [2, 19, 36, 39].
The molecular basis of cellular response can be identified by leveraging genetic differences within and
across individuals to pinpoint underlying regulatory elements. One such approach using genetic variation
is quantitative trait loci (QTL) mapping, whereby genetic variants can be linked to differences in gene
expression (eQTL) (e.g. [1, 49] or chromatin accessibility (caQTL) [9], among others). Results from these
methods, which can be used individually or as complements to one another, have been integrated with
GWAS findings to suggest a model in which genetic variants disrupt the chromatin architecture, leading
to differences in gene expression which affect complex traits[18, 22, 25, 54].

However, the effect of a genetic variant on a molecular pathway, and ultimately on the disease condition,
may be modulated by environmental factors [27, 28, 35]. Known environmental risk factors for endothelial
dysfunction include diabetes, smoking, obesity, high cholesterol, and hypertension [23]. Dexamethasone,
retinoic acid, caffeine, and selenium are four treatments that have been associated with CVD and/or
endothelial dysfunction[17, 40, 50, 52] and that produce strong transcriptional responses in endothelial
cells[35]. Dexamethasone is a potent glucocorticoid that serves as a proxy for stress [46] and excess may
promote calcification within arteriosclerotic lesions [56]. Retinoic acid plays a crucial role in the devel-
opment of the cardiovascular system, and vascular endothelial cells are exposed to high concentrations of
retinoic acid and express retinoid receptors [45]. Caffeine, the most widely consumed stimulant worldwide,
promotes vasodilation in the endothelium and has been the subject of numerous studies regarding its as-
sociation with CVD with conflicting results [12, 51]. Selenium is a component of selenoproteins which act
as antioxidants, and selenium has been used as a supplement to increase HDL cholesterol [43].

Recently, the heterogeneity of the contexts represented in complex datasets has been used as proxy
for varying environmental conditions [28, 55] to identify GxE effects. The advantage of these approaches
resides in the possibility of exploiting pre-existing large-scale eQTL studies that profile gene expression in
tissues from a heterogeneous sample of individuals; however the differences in environmental conditions
between individuals is not explicitly ascertained. To characterize genetic and environmental risk factors for
cardiovascular disease, it is critical to investigate gene regulation in a relevant cell type under controlled
treatment conditions. Here we developed annotations of genetic variants in key regulatory elements for
gene expression response to inform the role of gene-environment interactions (GxE) in coronary artery
disease.
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Table 1: Number of differentially expressed genes and differentially accessible regions

.

Treatment DE Genes DARs

Retinoic Acid 4,874 222
Dexamethasone 2,879 133

Caffeine 5,790 1,038
Selenium 10,329 196

Results

Exposure of endothelial cells to environmental perturbations leads to changes
in gene expression and chromatin accessibility

To determine the impact of genetic variation on endothelial cell response to environmental perturbations,
we treated human umbilical vein endothelial cells (HUVECs) from 17 unrelated, healthy donors with 4
compounds (dexamethasone, retinoic acid, caffeine, and selenium) and 2 vehicle controls. These treatments
have been associated with cardiovascular disease and/or endothelial dysfunction [17, 40, 50, 52] and have
been shown in a previous study [35] to produce strong transcriptional responses in HUVECs. We then
assessed changes in gene expression with RNA-seq in all samples and chromatin accessibility with ATAC-
seq in four samples at six hours following treatment (Figure 1A).

We used DESeq2 [30] to identify differentially expressed genes (DE genes) and differentially accessible
regions (DARs) in chromatin following the environmental perturbations. Each treatment caused signifi-
cant transcriptional responses, with greater than 2500 differentially expressed genes in each environment
(Benjamini-Hochberg (BH) FDR < 10%, | log2 FC| > 0.25) (Table 1). By gene ontology analysis, we
identified an enrichment of differentially expressed genes implicated in biological processes relevant for
endothelial function. For example, response to wounding is enriched in genes downregulated in response
to dexamethasone, and regulation of blood vessel diameter is enriched in genes downregulated in response
to retinoic acid (Supplementary Table S1).

Across the four samples for which ATAC-seq was obtained, we identified between 133 and 1038 DARs
in a given treatment condition (Table 1). The smaller number of DARs, compared to DE genes, could
be due to the timescale at which we measured response, the increased stochasticity of chromatin opening
and closing relative to gene expression, and/or insufficient statistical power. We used chromHMM [16]
chromatin states derived from ENCODE HUVECs histone marks [15] to annotate DARs. We found an
enrichment of DARs in strong enhancer regions in dexamethasone, retinoic acid, and selenium (OR = 5.31,
3.89, and 3.51, respectively. p < 2.2 × 10−16 for all). However, caffeine DARs are only slightly enriched
in strong enhancers (OR = 1.15, p = 0.018). Instead, DARs in caffeine are most enriched for active
promoters (OR = 2.5, p < 2.2 × 10−16). This difference between treatments could indicate that different
type of factors are involved in each response.

To investigate the relationship between differential chromatin accessibility and transcriptional response,
we calculated the enrichment of DE genes within 50kb of a DAR. DE genes in all treatments were sig-
nificantly enriched near DARs identified in the same treatment. The greatest enrichments were found
for dexamethasone and retinoic acid with odds ratios of 3.35 and 3.99, respectively (Figure 1B,C and
Supplementary Figure S1; Fisher’s exact test; p < 5.6 × 10−8). The significant enrichment for DE genes
among DARs in dexamethasone and retinoic acid could be due to their mechanism of action, specifically
that both treatments are known to work largely through specific nuclear receptors that bind the DNA and
influence gene expression directly. Overall these results suggest that changes in chromatin accessibility
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are an important mechanism through which cells regulate gene expression in response to environmental
perturbation.

Figure 1: Changes in gene expression and chromatin accessibility in HUVECs treated with dexamethasone,
retinoic acid, caffeine, and selenium. A Diagram of artery layers and study design. HUVECs were treated separately
with 4 compounds and vehicle controls prior to RNA- and ATAC-seq (Methods). B QQ-plot of p-values from DESeq2
analysis of gene expression in response to retinoic acid. The purple dots represent genes within 50kb of a DAR, while the
gray dots represent genes not within 50kb of a DAR. C Enrichment of DE genes within 50kb of a DAR. Odds ratio was
estimated using Fisher‘s exact test, and for all treatments p < 2.2× 10−16.

Specific transcription factors regulate response to treatment

In addition to informing on open chromatin, ATAC-seq data can be analyzed to characterize the tran-
scription factor landscape governing response to treatment. This is particularly important given that the
vast majority of genetic variants found to influence complex traits act through gene regulatory regions. In
order to identify transcription factors controlling response to each treatment, we used CENTIPEDE [41]
to perform footprinting analysis on the ATAC-seq data. Across all conditions, we identified a total of
882 active transcription factors, defined as those with motifs that have CENTIPEDE footprints and are
associated with open chromatin (Methods, Supplementary Table S6, see examples in Figure 2A). We hy-
pothesized that transcription factors which are important in the regulation of a particular treatment will
be more likely to be found in DARs. The factors with the greatest enrichments in DARs are shown in
Figure 2B. We refer to these enriched factors as response factors. We identified 724 factors with footprints
in regions that become more accessible after treatment and 259 factors in regions that are less accessible
after treatment (Table 2). For well-studied treatments, like retinoic acid and dexamethasone, our ap-
proach identified transcription factors known to be central to the regulation of gene expression in response
to those treatments. For example, the top retinoic acid response factors were the retinoic acid receptor
along with two interferon regulatory factors (IRF), all of which has previously been shown to be influenced
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by retinoic acid[4, 8, 31] (Figure 2A). For dexamethasone, the androgen receptor (AR), glucocorticoid
receptor (GR), and progesterone receptor (PR) have similar binding sites and likely all represent sites of
GR binding[47, 48]. While for these treatments we have prior information on the major mechanisms that
regulate the cellular response, for caffeine and selenium less is known, and our data can be used to identify
the relevant factors (Supplementary Table S3). In response to selenium treatment the top enriched factors
are in regions that become less accessible after treatment. Caffeine has been shown to induce apoptosis
in HUVECs [29, 32], and one of the top caffeine response factors is Sp1, which has been implicated in
apoptotic pathways [10, 24].
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Figure 2: Identification of response factors. A Footprints of IRF-1 and Sp1 from ATAC-seq data in retinoic acid and
caffeine treated cells, respectively. B Response factors, top most enriched transcription factor footprints in DARs in each
condition. For selenium, the top factors are enriched in regions of closing chromatin. For all other treatments, the top factors
are enriched in regions of opening chromatin.
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Table 2: Number of response factors enriched in opening and closing chromatin and SNPs in
response factors footprints

.

Treatment Opening Chromatin Closing Chromatin Annotated SNPs

Retinoic Acid 159 1 956,277
Dexamethasone 77 2 662,391

Caffeine 488 131 2,376,297
Selenium 0 125 924,329

Identifying latent environmental factors in large scale eQTL datasets from
vascular tissues

Large-scale efforts to identify expression quantitative trait loci (eQTLs), such as GTEx [1], have discovered
genetic regulators of gene expression in many different tissues, including three types of artery. However,
GTEx samples likely represent a composite of different environmental exposures. Here we propose that
latent, unobserved environmental factors contribute to eQTL effects detected in GTEx and that some of
these eQTLs may represent cases of significant interaction effects in specific environmental contexts. To
indirectly test this hypothesis, we considered that interactions with latent environments represented by
our four in vitro treatments (retinoic acid, caffeine, selenium and dexamethasone) would be enriched in
response factor binding sites. We used centiSNPs [35], an extension of the CENTIPEDE framework, to
annotate SNPs in response factor footprints, as these SNPs are most likely to disrupt transcription factor
binding and modify the transcriptional response. We found that out of 4,422,115 SNPs in footprints for
active factors, 76% are in footprints for response factors for at least one of the treatments. We then
estimated enrichments for our treatment-specific annotations in eQTLs from the artery samples in GTEx.
Using the EM-DAP1 algorithm implemented in the software package TORUS [53], we found enrichment of
eQTLs in footprints for dexamethasone, retinoic acid, and caffeine response factors, but not for selenium
(Figure 3A). These results suggest that exposure to retinoic acid, caffeine, and dexamethasone (or a closely
related factor; e.g. cortisol elevated by stress) are represented as latent environments in the GTEx samples
and can modulate eQTL effects.

Latent environments in Coronary Artery Disease

To identify which conditions may be enriched for putative latent GxE in coronary artery disease (CAD) we
performed an enrichment analysis for SNPs in footprints for response factors using CAD GWAS data [37]
(Figure 3B). Among the treatment conditions we explored, we found a strikingly high enrichment of 8.17-
fold for CAD associated variants that are found in caffeine response factor footprints. This enrichment is
also significantly higher than the one found for footprints that are identified in the control condition (2.86-
fold increase), which represent regulatory variants that do not interact with the treatments considered
here. This suggests a large number of latent GxE effects in cardiovascular disease risk.

To further dissect the molecular mechanism for GxE in CAD risk, we integrated GTEx artery eQTLs
with the GWAS summary statistics and GxE effects in gene expression in our data. We first performed
colocalization of GTEx eQTLs with CAD GWAS hits using enloc [54] (Methods) and identified 168 SNP-
gene pairs. Forty GTEx tissues had at least 1 colocalized eQTL. The most represented tissues for colocalized
SNPs were the aorta and tibial artery with 56 and 28 colocalized SNPs, respectively (Supplementary Table
S4). Of the colocalized genes, 14 can be tested for reQTL in our data and six have a reQTL in at least one
of the treatment conditions considered (permutation p<0.05, see Supplementary TableS5). Although with
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Figure 3: Latent environments in GTEx. A Enrichment of GTEx eQTLs in SNPs within response factor footprints
for each treatment. B Enrichment of coronary artery disease risk loci in SNPs within response factor footprints for each
treatment. C reQTL for SWAP70 in caffeine. D Comparison of CAD zvalue with the direction adjusted to the allele that
increases gene expression vs. reQTL interaction effect with the direction adjusted to the allele that increases disease risk. A
positive CAD z-value indicates that the risk allele is associated with increased gene expression in GTEx, while a negative
CAD z-value indicates the risk allele is associated with decreased gene expression in GTEx. A positive reQTL effect size
indicates the treatment amplifies the genetic effect on disease risk, while a negative reQTL effect size indicates the treatment
reduces the genetic effect on disease risk.

our sample size we do not have the power to detect genome-wide significant signals, we provide an example
of one of the top reQTL in SWAP70 for caffeine (Figure 3C). SWAP70 is implicated in endothelial
sprouting in vivo [13] and the gene is significantly downregulated (BH FDR < 10%) in response to caffeine
in HUVECs. The reQTL, rs10840293, is in a footprint for the caffeine response factor AFT2. These
reQTLs suggest specific mechanisms through which environmental exposures can increase or decrease the
genetic risk for for coronary artery disease.

We further investigated whether the environmental interaction with the risk genotype results in am-
plification or buffering of the disease risk. Figure 3D shows the risk z-score from the CAD GWAS study,
with a positive sign if the risk allele is associated with higher gene expression in GTEx (horizontal axis)
plotted against the interaction effect in endothelial cells from our reQTL mapping. For four colocalized
reQTLs, the treatment amplifies the genetic effect (positive value on the y-axis) on gene expression and in
all these cases, higher expression is associated with increased risk (positive value on the x axis). For six
colocalized signals, the treatment reduces the genetic effect on disease risk (negative values on the y-axis)
and in most cases (4 out of 6) lower expression of the gene is associated with increased risk. For example,
lower expression of SWAP70 is associated with increased risk, however, in the presence of caffeine, the
effect of the risk variant is significantly reduced (negative sign for the reQTL), thus caffeine buffers the
genetic effect on disease risk. These results show that environmental effects on disease risk are contingent
on the individual’s genotype, with certain exposures amplifying a specific genetic risk but buffering others.
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Discussion

Vascular endothelial dysfunction has been implicated in a variety of cardiovascular and non-cardiovascular
diseases. Here we have characterized the transcriptional and chromatin landscape in endothelial cells
exposed to dexamethasone, retinoic acid, caffeine, and selenium.

While all of these treatments cause significant changes in gene expression and chromatin accessibility,
they act through varied pathways. Dexamethasone and retinoic acid are steroid hormones whose action
at the molecular and transcriptional level has been well-studied[11, 38]. Caffeine and selenium have been
investigated at the molecular level, particularly with regard to caffeine’s role in inhibiting the breakdown
of cAMP and selenium‘s role as a cofactor[14, 44]. However, the regulators of gene expression response
to these compounds are less characterized, especially in endothelial cells. We were able to confirm with
retinoic acid and dexamethasone that our approach in analyzing ATAC-seq data identifies biologically
relevant response factors, as we found enrichment of known intracellular steroid receptors like the retinoic
acid receptor and glucocorticoid receptor. Upon extension of this framework to caffeine and selenium, we
identified key response factors for these treatments that were previously unknown (e.g. Sp1 and Sp3 for
caffeine).

Combining the ATAC-seq data with known genetic variation in human populations, we have generated
a set of annotations for genetic variants in the footprints of treatment response factors (1300 motifs
genome-wide) which may affect binding and therefore gene expression response in the different conditions
considered. Using this annotation in combination with large scale genetic studies of gene expression (GTEx)
and CAD risk (Cardiogram), we detected potential latent environmental effects and assigned a putative
mechanism of action for variants associated with these molecular and organismal traits, through disruption
of transcription factor binding. We found that dexamethasone, retinoic acid, and caffeine were enriched in
GTEx eQTLs from three different arteries in our response factor annotations. This is not surprising given
the widespread use of caffeine in the general population and the expression of the glucocorticoid receptor
and retinoic acid receptor in most GTEx tissues [1]. Interestingly, we did not find an enrichment for the
selenium annotation, which is expected considering that we are only exposed to limited amounts of selenium
on a daily basis. Our observation that that genetic loci associated with risk of coronary artery disease are
highly enriched in the binding sites of transcription factors that regulate response to caffeine, suggests that
caffeine modulates coronary artery disease risk. This is an intriguing finding given the extensive number
of studies that have explored the link between caffeine, coffee consumption, and heart disease [12, 51].

Here, we developed a novel conceptual framework that combines information on specific environmental
perturbations collected in vitro with large scale heterogeneous datasets interrogating genetic effects on
both molecular and organismal phenotypes. While our study demonstrates that there is a significant
enrichment for genetic associations in context specific regulatory annotations, our small sample size had
limited power to directly validate these latent GxE effects. Nevertheless, this approach can be used to
guide the design of future studies to directly test for GxE. In our proof of principle, we show that we
can leverage molecular phenotyping data in response to tightly controlled treatments to characterize the
complex interplay between genotypes and environment and their role in complex traits, highlighting the
importance of latent environmental exposures in large-scale datasets.

Methods

Cell Culture

14 primary HUVECs were isolated from human umbilical cord tissue collected shortly following birth.
Umbilical cord tissue specimens were obtained from healthy full-term pregnant women, admitted to DMC
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Hutzel Women’s Hospital (Detroit, Michigan). All specimens for this study were collected following guide-
lines approved by the institutional review board (#013213MP4E) of Wayne State University. Cord spec-
imens, between 10 and 30 cm in length, were first rinsed with warm PBS and a blunt-ended needle was
inserted into the umbilical vein at one end of the cord, and subsequently clamped in place. The cord
was then purged to remove any excess blood from the vein. The other end of the cord was then sealed,
in a manner identical to the first end, and pre-warmed 0.25% trypsin-EDTA (Gibco) was then injected
into the vein. Following a 20 minute incubation, at 37◦C, detached HUVECs were rinsed from the vein,
collected by centrifugation, counted, and seeded into an appropriate vessel at 10,000 cells/cm2, in EGM-2
growth medium (Lonza). Expanded cultures were cryopreserved prior to be used in the experiments. For
additional 3 HUVEC lines from a previous study [35] we collected ATAC-seq data and used previously
published RNA-seq data (dbGaP accession number phs001176.v1.p1).

Treatments

Treatment concentrations were the same as used in [35] and were derived from the Clinical Guidelines Mayo
Clinic Reference Levels (http://www.mayomedicallaboratories.com) and the CDC National Biomoni-
toring Report Reference Levels (http://www.cdc.gov/biomonitoring/). Concentrations were 1 × 10−6

M for dexamethasone, 1×10−8 M for retinoic acid, 1.16×10−3 M for caffeine, and 1×10−5 M for selenium.
Vehicle controls were included to represent the solvent used to prepare the different treatments, either
ethanol (1µl of EtOH per 10,000µl of culturing media) or water.

Each individual cell line was treated on a separate day. Culturing conditions were the same as those
found in [35]. Specifically, three days before treatment, cells were plated (to passage 7) in 8 wells in 6-
well plates at 5,000/cm2 in EGM-2. Following a 24 hour recovery period, the medium was changed to a
”starvation medium”, composed of phenol-red free EGM-2, without Hydrocortisone and Vitamin C and
supplemented with 2% CS-FBS. Cell starvation was continued for 48 hour prior to treatment. For each
individual cell line, control treatments were performed in duplicate. Cells were treated for 6 hours and
then were collected by scraping the plate on ice. For four cell lines, each well was counted in order to
remove 50,000 cells to be used for ATAC-seq while the rest were used for RNA sequencing.

RNA Library Preparation

Treated cells were collected by centrifugation at 2000 rpm and washed 2x using ice cold PBS. Collected
pellets were lysed on the plate, using Lysis/Binding Buffer (Ambion), and frozen at -80◦. Poly-adenylated
mRNAs were subsequently isolated from thawed lysates using the Dynabeads mRNA Direct Kit (Ambion)
and following the manufacturer instructions. RNA-seq libraries were prepared using a protocol modified
from the NEBNext Ultradirectional (NEB) library preparation protocol to use 96 Barcodes from BIOO-
Scientific added by ligation, as described in [33]. The individual libraries were quantified using the KAPA
real-time PCR system, following the manufacturer instructions and using a custom-made series of stan-
dards obtained from serial dilutions of the phi-X DNA (Illumina). Libraries were pooled and sequenced in
multiple sequencing runs for an average of 50M 300bp PE reads.

ATAC-seq Library Preparation

We followed the protocol by [7] to lyse 50,000 cells and prepare ATAC-seq libraries, with the exception
that we used the Illumina Nextera Index Kit (Cat #15055290) in the PCR enrichment step. For 3 of the
4 individual cell lines (LP-001, LP-002 and H288-L), the cells were not lysed with 0.1% IGEPAL CA-630
before adding the transposase to begin the ATAC-seq protocol. Individual library fragment distributions
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were assessed on the Agilent Bioanalyzer and pooling proportions were determined using the qPCR Kapa
library quantification kit (KAPA Biosystems). Library pools were run on the Illumina NextSeq 500 Desktop
sequencer in the Luca/Pique-Regi laboratory. Barcoded libraries of ATAC-seq samples were pooled and
sequenced in multiple sequencing runs for an average coverage of 130M reads.

Alignment of RNA and ATAC-seq

Reads were aligned to the GRCh37 human reference genome using HISAT2 [26] (https://ccb.jhu.edu/
software/hisat2/index.shtml, version hisat2-2.0.4), and the human reference genome(GRCh37) with
the following options:

HISAT2 -x <genome> -1 <fastq_R1.gz> -2 <fastq_R2.gz>

where <genome> represents the location of the genome file (genome snp for ATAC-seq alignment, genome snp tran

for RNA-seq alignment), and <fastqs R1.gz> and <fastqs R2.gz> represent that sample’s fastq files.
The multiple sequencing runs were merged for each samples using samtools (version 2.25.0). We removed

PCR duplicates and further removed reads with a quality score of < 10 (equating to reads mapped to
multiple locations) for the RNA-sequencing analysis, only.

Differential Gene Expression Analysis

To identify differentially expressed (DE) genes, we used DESeq2 [30] (R version 3.2.1, DESeq2 version
1.8.1). Gene annotations from Ensembl version 75 were used and transcripts with fewer than 20 reads
total were discarded. coverageBed was utilized to count reads with -s to account for strandedness and
-split for BED12 input. The counts were then utilized in DESeq2 to determine changes in gene expression
under the different treatment conditions. Multiple test correction was performed using the Benjamini-
Hochberg procedure [3] with a significance threshold of 10%. A gene was considered DE if at least one of
its transcripts was DE and had an absolute log2 fold change > 0.25. The model corrected for the library
preparation batch and the sample of origin.

Gene ontology analysis

For each treatment, we tested upregulated and downregulated genes separately for enrichment of bio-
logical processes gene ontology terms using the Fisher’s test on the AmiGO 2 web browser (http://
amigo.geneontology.org/amigo). Multiple test correction was performed using the Benjamini-Hochberg
procedure with a significance threshold of 5% (BH-FDR).

Identification of Differentially Accessible Regions Following Treatment

To identify differentially accessible regions, we used DESeq2 [30] (R version 3.2.1, DESeq2 version 1.8.1).
We separated the genome into 300bp regions and coverageBed was used to count reads in these regions.
A total of 508,140 regions with > 0.25 reads per million (high accessibility regions) were then utilized in
DESeq2 using the following model:

Gene expression ∼ treatment

Yjn =
∑
t

βM
jt Mtn

(1)
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where Yjn represents the internal DESeq2 mean accessibility parameter for region j and experiment n,
Mn is the treatment indicator, and βM

jt parameter is the treatment effect. Differentially accessible regions
(DAR) following exposure to dexamethasone, retinoic acid, caffeine, and selenium, were determined at BH
FDR < 10%. We annotated the genomic context of these DARs using chromHMM [16], which characterizes
chromatin states on the basis of histone marks. We downloaded the precomputed HUVEC annotations
from ENCODE [15]. Enrichments were performed with the Fisher’s Exact test. DARs were then compared
to gene annotations from Ensembl version 75 to identify those that were within 50kb of a transcription
start site, and a Fisher’s exact test was used to test for enrichment of DARs near DE genes.

Transcription factor binding footprints

To detect which transcription factors have footprints in each condition we adapted CENTIPEDE [41] to
use the fragment length information contained in the ATAC-seq in the footprint model, and to jointly use
in parallel the treatment and control conditions in order to ensure that the same footprint shape is used
for the same motif in both conditions.

As in CENTIPEDE, we need to start from candidate binding sites for a given motif model. For each
transcription factor we scan the entire human genome (hg19) for matches to its DNA recognition motif
using position weight matrix (PWM) models from TRANSFAC and JASPAR as previously described[41].
Then for each candidate location l we collect all the ATAC-seq fragments which are partitioned into four
binds depending on the fragment length: 1) [39-99], 2) [100-139], 3) [140-179], 4) [180-250]. For each
fragment, the two Tn5 insertion sites were calculated as the position 4bp after the 5’-end in the 5’ to 3’
direction. Then for each candidate motif, a matrix X was constructed to count Tn5 insertion events: each
row represented a sequence match to motif in the genome (motif instance), and each column a specific
cleavage site at a relative bp and orientation with respect to the motif instance. We built a matrix {Xl}4l=1

for each fragment length bin, each using a window half-size S=150bp resulting in (2×S+W )×2 columns,
where W is the length of the motif in bp.

Finally, we fit the CENTIPEDE model in a subset of approximately 5,000 instances to learn footprint
shapes for each factor as in [34]. Then we used CENTIPEDE to analyze the remaining motif instances in
the genome and kept those with a CENTIPEDE posterior probability higher than 0.99 to denote locations
where the transcription factors are bound also referred as “footprints”. We further subset these bound
transcription factor sites in each condition by including only transcription factors which were active genome-
wide, as indicated by an enrichment of binding sites in high accessibility regions (see above) compared to
a randomly selected set of 500,000 chromatin regions genome-wide (not high accessible regions).

Identification of response factors and genetic variants in their binding sites

In order to identify transcription factors which are important for response to treatments, we calculated
enrichment scores for each active motif in regions of differentially accessible chromatin using a Fisher’s
exact test. We defined motifs that were significantly enriched or depleted in opening or closing chromatin
(nominal p-value < 0.05, Table S3). For each tissue and in each treatment, we then annotated each SNP
from the 1000 Genomes project[20] as 1) not in a footprint for a treatment response factor; 2) in a footprint
for a treatment response factor (Supplementary Table S2). SNPs in footprints are generally enriched in
eQTLs [53]. Thus, to account for this treatment-independent effect, we also generated an annotation
for SNPs in active footprints from the control condition, which should represent a baseline annotation of
candidate regulatory variants.
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Enrichment of GTEx eQTL and CAD variants in footprints for response fac-
tors

To identify treatments for which GTEx eQTLs[1] are enriched in footprints for response factors, we focused
on the three artery tissues present in GTEx: tibial, coronary, and aorta. GTEx identified 11,945, 4,378,
and 9,203 genes with an eQTL (eGenes) in the tibial artery, coronary artery, and aorta tissues, respectively.
We then used the Torus package [53] with the “-est” option to calculate the enrichment of eQTLs in
response factors for each treatment. Torus quantitatively assesses the enrichment of molecular annotations
(e.g. SNPs in response factors) in GWAS or eQTL datasets. Here we used the annotations generated above
for SNPs in footprints for response factors and control. As additional annotation, we included distance of
the SNP to the transcriptional start site of the gene. We meta-analyzed the enrichments for each treatment
across tissues using a fixed effects model with inverse variance weights. For the CAD enrichment, we used
the same annotations as above on the summary statistics of the CAD GWAS, minus the distance of the
SNP to the transcriptional start site of a gene. GWAS SNPs were partitioned into blocks based on LD
pattern.

Colocalization

We performed colocalization as previously described using enloc[54]. Briefly, enloc integrates QTL anno-
tations into GWAS analysis by calculating the enrichment of QTLs in complex trait-associated genetic
variants, which is then used to identify colocalized SNPs between the two annotations. We performed the
colocalization between the CARDIoGRAM CAD summary statistics and eQTLs from all GTEx tissues
independently. We considered the lead SNP from a locus with a cumulative posterior inclusion probability
(PIP) of greater than 0.5 to be colocalized. 168 SNPs colocalize, corresponding to 139 genes.

DNA was isolated from umbilical cords and sent to be genotyped using ultra-low sequencing performed
by Gencove. In our dataset, 21 of the colocalized SNPs (corresponding to 14 eGenes) are polymorphic and
therefore can be tested for reQTL.

reQTL mapping

For reQTL mapping of the colocalized GTEx and CAD GWAS SNPs, we tested all 21 SNPs for reQTLs,
corresponding to 33 gene-SNP pairs. We used a linear model to identify reQTLs, testing for the effect of
genotype dosage on quantile-normalized gene expression fold change between treatment and control. We
generated an empirical null distribution by permuting sample labels, and corrected the treatment p-values
based on the ranks observed in the permutation. We performed 2,820 permutations, corresponding to 3x
the number of tests in the treated samples.

Accession numbers for sequencing data

Data upload to dbGaP ID phs001176.v1.p1 is pending.

Additional Files

See supplementary tables and figures for additional results.
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Supplementary Materials

Supplementary Tables

Table S1: Gene ontology results. Gene ontology output for up- and down-regulated genes. Note that retinoic
acid and selenium had no significantly enriched gene ontology terms for upregulated genes.

A) http://genome.grid.wayne.edu/FUNGEI/data_tables/Caffeine_Down.txt
B) http://genome.grid.wayne.edu/FUNGEI/data_tables/Caffeine_Up.txt
C) http://genome.grid.wayne.edu/FUNGEI/data_tables/Dexamethasone_Down.txt
D) http://genome.grid.wayne.edu/FUNGEI/data_tables/Dexamethasone_Up.txt
E) http://genome.grid.wayne.edu/FUNGEI/data_tables/Retinoic_Acid_Down.txt
F) http://genome.grid.wayne.edu/FUNGEI/data_tables/Selenium_Down.txt

Table S2: 1000 Genomes SNP annotations. We have annotated 1000 Genomes SNPs on the basis of whether
they are within (1) or not within (0) a response factor footprint for each treatment. Column 1 is the SNP ID
including chromosome and position, column 2 - 6 are annotations for dexamethasone, caffeine, selenium, retinoic
acid, and control, respectively.

http://genome.grid.wayne.edu/FUNGEI/data_tables/FUNGEI_anno.v2.combined_1_2.active.gz

Table S3: Enrichment of footprints in DARs. For retinoic acid (A), dexamethasone (B), caffeine (C), and
selenium (D), we have included the motif enrichment in DARs in both opening and closing chromatin. Columns
1-18 are: 1) Motif ID, 2) Transcription factor name, 3) Odds ratio from Fisher’s exact test for opening DARs, 4)
Lower bound of 95% confidence interval of odds ratio for opening DARs, 5) Upper bound of 95% confidence interval
of odds ratio for opening DARs, 6) P-value from Fisher’s exact test for opening DARs, 7) Number of footprints
in opening DARs, 8) Number of footprints in regions tested for differential accessibility that are not opening
DARs, 9) Number of opening DARs without footprint, 10) Number of regions tested for differential accessibility
without opening DARs and without footprint, 11) Odds ratio from Fisher’s exact test for closing DARs, 12) Lower
bound of 95% confidence interval of odds ratio for closing DARs, 13) Upper bound of 95% confidence interval of
odds ratio for closing DARs, 14) P-value from Fisher’s exact test for closing DARs, 15) Number of footprints in
closing DARs, 16) Number of footprints in regions tested for differential accessibility that are not closing DARs,
17) Number of closing DARs without footprint, 18) Number of regions tested for differential accessibility without
closing DARs and without footprint

A) http://genome.grid.wayne.edu/FUNGEI/data_tables/Retinoic_Acid_all_Fisher.tab
B) http://genome.grid.wayne.edu/FUNGEI/data_tables/Dexamethasone_all_Fisher.tab
C) http://genome.grid.wayne.edu/FUNGEI/data_tables/Caffeine_all_Fisher.tab
D) http://genome.grid.wayne.edu/FUNGEI/data_tables/Selenium_all_Fisher.tab

Table S4: Colocalization results.This file includes the output from the colocalization with enloc. Columns 1-9
are: 1) eQTL signal ID 2) eQTL posterior inclusion probability (PIP) 3) GWAS PIP 4) number of SNPs in the
group 5) original enloc regional colocalization probability (RCP) 6) experimental enloc PIP 7) lead SNP in the
signal group 8) SNP-level colocalization probability for the lead SNP 9) tissue.

http://genome.grid.wayne.edu/FUNGEI/data_tables/Torus_output_tissues.txt
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Table S5: Colocalization reQTLs.This file includes reQTLs with permutation p<0.05. Columns 1-6 are: 1)
rsID of reQTL, 2) gene ID, 3) treatment (sel = selenium, dex = dexamethasone, ret = retinoic acid, caf = caffeine),
4) reQTL effect size, 5) permutation p-value, 6) zvalue from coronary artery disease (CAD) GWAS.

http://genome.grid.wayne.edu/FUNGEI/data_tables/CAD_reQTLs.txt

Table S6: Active factor enrichment.This file includes the enrichment of footprints of each motif in each
condition in highly active chromatin. Columns 1-17 are: 1) Motif ID, 2) Transcription factor name, 3) Odds ratio
of enrichment of footprints in dexamethasone in highly accessible regions, 4) P-value of enrichment of footprints in
dexamethasone in highly accessible regions, 5) Benjamini-Hochberg adjusted p-value of enrichment of footprints
in dexamethasone in highly accessible regions, 6) Odds ratio of enrichment of footprints in caffeine in highly
accessible regions, 7) P-value of enrichment of footprints in caffeine in highly accessible regions, 8) Benjamini-
Hochberg adjusted p-value of enrichment of footprints in caffeine in highly accessible regions, 9) Odds ratio of
enrichment of footprints in selenium in highly accessible regions, 10) P-value of enrichment of footprints in selenium
in highly accessible regions, 11) Benjamini-Hochberg adjusted p-value of enrichment of footprints in selenium in
highly accessible regions, 12) Odds ratio of enrichment of footprints in retinoic acid in highly accessible regions, 13)
P-value of enrichment of footprints in retinoic acid in highly accessible regions, 14) Benjamini-Hochberg adjusted
p-value of enrichment of footprints in retinoic acid in highly accessible regions, 15) Odds ratio of enrichment
of footprints in control condition in highly accessible regions, 16) P-value of enrichment of footprints in control
condition in highly accessible regions, 17) Benjamini-Hochberg adjusted p-value of enrichment of footprints in
control condition in highly accessible regions.

http://genome.grid.wayne.edu/FUNGEI/data_tables/all.active_factor_enrichment.txt
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Supplementary Figures

A B C

Figure S1: Differential gene expression near DARs QQ-plot of p-values from DESeq2 analysis of gene expression for

dexamethasone (A), caffeine (B), and selenium (C). The colored dots represent genes within 50kb of a DAR, while the gray

dots represent genes not within 50kb of a DAR..
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A

Figure S2: Torus enrichment of response factor SNPs in GTEx Tibial Artery eQTLs Enrichment of GTEx

eQTLs in SNPs within response factor footprints in each treatment. This is identical to Figure 3A, but includes the

enrichment in the control condition.
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