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Abstract

The primary factor limiting the success of chemotherapy in cancer treatment is the
phenomenon of drug resistance. We have recently introduced a framework for quantify-
ing the effects of induced and non-induced resistance to cancer chemotherapy [11, 10].
In this work, we expound on the details relating to an optimal control problem outlined
in [10]. The control structure is precisely characterized as a concatenation of bang-bang
and path-constrained arcs via the Pontryagin Maximum Principle and differential Lie alge-
bra techniques. A structural identifiability analysis is also presented, demonstrating that
patient-specific parameters may be measured and thus utilized in the design of optimal
therapies prior to the commencement of therapy. For completeness, a detailed analysis of
existence results is also included.
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1 Introduction

The ability of cancer chemotherapies to successfully eradicate cancer populations is limited by
the presence of drug resistance. Cells may become resistant through a variety of cellular and
micro-environmental mechanisms [9]. These mechanisms are exceedingly complex and diverse,
and remain to be completely understood. Equally complex is the manner in which cancer cells
obtain the resistant phenotype. Classically resistance was understood to be conferred by random
genetic mutations; more recently, the role of epigenetic phenotype switching was discovered as a
mediator of resistance as well [17]. Importantly, both of these phenomena are drug-independent,
so that the generation of resistance is functionally separate from the selection mechanism (e.g.
the drug). However, experimental studies from the past ten years suggest that drug resistance
in cancer may actually be induced by the application of the chemotherapy [17, 21, 22, 8, 4].

In view of the multitude of ways by which a cancer cell may become chemoresistant, we have
previously introduced a mathematical framework to differentiate both drug-independent and
drug-dependent resistance [11]. In this work, we demonstrated that induced resistance may play
a crucial role in therapy outcome, and also discussed methods by which a treatment’s mutagenic
potential may be identified via biological assays. An extension of the work was presented in [10],
where a formal optimal control problem was introduced, and an initial mathematical analysis
was performed. The aim of this work is to both formalize the identifiability properties of our
theoretical framework, establish the existence of the optimal control introduced in [10], and
to precisely classify the optimal control structure utilizing the Pontryagin Maximum Principle
and differential-geometric techniques. A numerical investigation of both the control structure
and corresponding objective is also undertaken as a function of patient-specific parameters, and
clinical conclusions are emphasized.

The work is organized as follows. In Section 2, we briefly review the mathematical model
together with the underlying assumptions. Section 3 formalizes the structural identifability
of model parameters. Section 4 restates the optimal control problem. Existence results are
presented in Section 5. The Maximum Principle is analyzed in Section 6. A precise theoretical
characterization of the optimal control structure is summarized in Section 7. In Section 8§,
we compare theoretical results with numerical computations, and investigate the variation in
control structure and objective as a function of parameters. Lastly, conclusions are presented
in Section 9.

2 Mathematical Modeling of Induced Drug Resistance

We briefly review the model presented in [11] and analyzed in [10]. In that work, we have
constructed a simple dynamical model which describes the evolution of drug resistance through
both drug-independent (e.g. random point mutations, gene amplification) and drug-dependent
(e.g. mutagenicity, epigenetic modifications) mechanisms. To our knowledge, this is the first
theoretical study of the phenomena of drug-induced resistance, which although experimentally
observed remains poorly understood. It is our hope that a mathematical analysis will provide
mechanistic insight and produce a more complete understanding of this process by which cancer
cells inhibit treatment efficacy.

Specifically, we assume that the cancer population is composed of two types of cells: sen-
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sitive (S) and resistant (R). For simplicity, the drug is taken as completely ineffective against
the resistant population, while the log-kill hypothesis [31] is assumed for the sensitive cells.
Complete resistance is of course unrealistic, but can serve as a reasonable approximation, espe-
cially when toxicity constraints are considered, and hence limit the total amount of drug that
may be administered. Furthermore, this assumption permits a natural metric on treatment
efficacy that may not exist otherwise (see Section 4). The effect of treatment is considered as a
control agent u(t), which we assume is a locally bounded Lebesgue measurable function taking
values in R,. Here u(t) is directly related to the applied drug dosage D(t), and in the present
work we assume that we have explicit control over u(t). Later, during the formulation of the
optimal control problem (Section 4), we will make precise specifications on the control set U.
Obviously, a general measurable function may be unrealistic as a treatment strategy due to
limitations in current clinical technologies. However our objective in this work is to understand
the fundamental mathematical questions associated to drug-induced resistance. Furthermore,
our results in Section 7 suggest that the applied optimal treatment should take a relatively
simple form, which may be approximated with sufficient accuracy in a clinical setting.

Sensitive and resistant cells are assumed to compete for resources in the tumor microenviron-
ment; this is modeled via a joint carrying capacity, which we have scaled to one. Furthermore,
cells are allowed to transition between the two phenotypes in both a drug-independent and drug-
dependent manner. All random transitions to the resistant phenotype are modeled utilizing a
common term, €S, which accounts for both genetic mutations and epigenetic events occurring
independently of the application of treatment. Drug-induced transitions are assumed of the
form awu(t)S, which implies that the per-capita drug-induced transition rate is directly propor-
tional to the dosage (as we assume full control on u(t), i.e. pharmacokinetics are ignored). Of
course, other functional relationships may exist, but since the problem is not well-studied, we
consider it reasonable to begin our analysis in this simple framework. The above assumptions
then yield the following system of ordinary differential equations (ODEs):

‘jl_f — (1= (S+R))S — (e + au(t))S — du(t)S

(1)
% =p: (1= (S+ R)) R+ (e + au(t))S.

All parameters are taken as non-negative, and 0 < p, < 1. The restriction on p, emerges
due to (1) already being non-dimensionalized, as p, represents the relative growth rate of the
resistant population with respect to that of the sensitive cells. The condition p, < 1 thus
assumes that the resistant cells divide more slowly than their sensitive counterparts, which
is both observed experimentally [14, 20, 3|, and necessary for our mathematical framework.
Indeed, the condition p, > 1 would imply that u(¢) = 0 is optimal under any clinically realistic
objective.

As mentioned previously, many simplifying assumptions are made in system (1). Specifically,
both types of resistance (random genetic and epigenetic) are modeled as dynamically equivalent;
both possess the same division rate p, and spontaneous (i.e. drug-independent) transition rate
€. Thus, the resistant compartment R denotes the total resistant subpopulation, both genetic
and epigenetic.

The region 2 = {(S,R) |0 < S+ R < 1} in the first quadrant is forward invariant for any lo-
cally bounded Lebesgue measurable treatment function u(t¢) taking values in R, . Furthermore,
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if € > 0, the population of (1) becomes asymptotically resistant:

() == (1) @

For a proof, see Theorem 2 in SI A in [11]. Thus, in our model, the phenomenon of drug resis-
tance is inevitable. However, we may still implement control strategies which, for example, may
increase patient survival time. Such aspects will inform the objective introduced in Section 4.
For more details on the formulation and dynamics of system (1), we refer the reader to [11].

3 Structural Identifiability

Before beginning a discussion of the optimal control problem, we discuss the identifiability
of system (1). Our focus in the remainder of the work is on control structures based on the
presence of drug-induced resistance, and thus relies on the ability to determine whether, and
to what degree, the specific chemotherapeutic treatment is generating resistance. Ideally, we
envision a clinical scenario in which cancer cells from a patient are cultured in an ex vivo assay
(for example, see [23]) prior to treatment. Parameter values are then calculated from treatment
response dynamics in the assay, and an optimal therapy regime is implemented based on the
theoretical work described below. Thus, identifying patient-specific model parameters, specially
the induced-resistance rate «, is a necessary step in determining the control structures to apply.
In this section, we address this issue, and prove that all parameters are structurally identifiable,
as well as demonstrate a specific set of controls that may be utilized to determine . A self-
contained discussion is presented; for more details on theoretical aspects, see [25] and the
references therein. Other recent works related to identifiability in the biological sciences (as
well as practical identifiability) can be found in [5, 32].

We first formulate our dynamical system, and specify the input and output variables. To
mimic a cancer patient (and not, for instance, an in vivo experiment), the treatment u(t) is
the sole input. Furthermore, we assume that the only clinically observable output is the entire
tumor volume V' ():

V(t) == S(t) + R(t). (3)

That is, we do not assume real-time measurements of the individual sensitive and resistant
sub-populations. We note that in some instances, such measurements may be possible; however
for a general chemotherapy, the precise resistance mechanism may be unknown a priori, and
hence no biomarker with the ability to differentiate cell types may be available.

Treatment is initiated at time ¢ = 0, at which we assume an entirely sensitive population:

S(0) = So, R(0) = 0. (4)

Here 0 < Sy < 1, so that (S(t), R(t)) € Q for all ¢ > 0. We note that R(0) = 0 is not
restrictive, and similar results may derived under the more general assumption 0 < Ry < 1.
The condition R(0) = 0 is utilized both for computational simplicity and since R(0) is generally
small (assuming a non-zero detection time, and small random mutation parameter €; see [11]
for a discussion).
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The above then allows us to formulate our system (1) in input/output form, where the input
u(t) appears affinely:

(5)

where f and g are

pr(1 — (21 + x2))xe + €11

oo = (7D ) 7)

(0%

f(x):( (1= (21 + 22))21 — exy ) ©

and z(t) = (S(t), R(t)). As is standard in control theory, the output is denoted by the variable
y, which in this work corresponds to the total tumor volume:

y(t) == h(z(t))

= .Tl(t) + Qfg(t)

(8)

A system in form (5) is said to be uniquely structurally identifiable if the map p — (u(t), z(t,p))
is injective almost everywhere [5, 16], where p is the vector of parameters to be identified. In
this work,

b= (SOad704767p1”)' (9)

Local identifiability and non-identifiability correspond to the map being finite-to-one and infinite-
to-one, respectively. Our objective is then to demonstrate unique structural identifiability for
model system (5) (or equivalently (1)), and hence recover all parameter values p from only
measurements of the tumor volume y. We also note that the notion of identifiability is closely
related to that of observability; for details [1, 24] are a good reference.

To analyze identifiability, we utilize results appearing in [12, 33, 26], and hence frame the
issue from a differential-geometric perspective. Our hypothesis is that perfect (hence noise-free)
input-output data is available in the form of y and its derivatives on any interval of time. We
thus, for example, make measurements of

d (10)

and relate their values to the unknown parameter values p. If there exist inputs w(t) such that
the above system of equations may be solved for p, the system is identifiable. The right-hand
sides of (10) may be computed in terms of the Lie derivatives of the vector fields f and ¢ in
system (5). We recall that Lie differentiation Lx H of a C* function H by a C* vector field X:

LxH(x):=VH(x)  X(x). (11)

Here the domain of both X and H is the first-quadrant triangular region €2, seen as a subset
of the plane, and the vector fields and output function are C* on an open set containing €2 (in

5


https://doi.org/10.1101/475533

bioRxiv preprint doi: https://doi.org/10.1101/475533; this version posted August 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

fact, they are given by polynomials, so they extend as analytic functions to the entire plane).
Recall that set C* consists of all analytic functions. Iterated Lie derivatives are well-defined,
and should be interpreted as function composition, so that for example Ly LxH = Ly (LxH),
and L3 H = Lx(LxH).

More formally, defining observable quantities as the zero-time derivatives of the output
y = h(x),

VieoU) = G| e (12)

where U € R* is the value of the control u(t) and its derivatives evaluated at t = 0: U =
(w(0),u(0), ...,u*=D(0)). Here k > 0, indicating that the k*h-order derivative Y may expressed
as a polynomial in the components of U [26]. The initial conditions xy appear due to evaluation
at t = 0. The observation space is then defined as the span of the Y (zg, U) elements:

Fy = spang {Y (20,U)|U € R*,k > 0} . (13)

Conversely, we also define span of iterated Lie derivatives with respect to the output h and
vector fields f(z) and g(x):

Fy == spang {L;, ... Ly,h(zo) | (i1, .. .ix) € {g, Yk > 0}. (14)

Wang and Sontag [33] proved that F} = F5, so that the set of “elementary observables” may be
considered as the set of all iterated Lie derivatives Fy. Hence, identifiability may be formulated
in terms of the reconstruction of parameters p from elements in F,. Parameters p are then
identifiable if the map

pr> (Liy ... Liyh(xo) | (i1, ... ix) € {g, f}*, k > 0) (15)

is one-to-one. For the remainder of this section, we investigate the mapping defined in (15).
Computing the Lie derivatives and recalling that zo = (Sy,0) we can recursively determine
the parameters p:

So = h(z),
L.h
0=t (16)
€= —Lf[;go(xﬂ) +1— 5o,

So LgLyh(xo) d So
= — |14+ — 1— .
br 1—SO+OZSO(1—50) +Oé 1—50

Since Fy = F;, all of the above Lie derivatives are observable via appropriate treatment pro-
tocols. For an explicit set of controls and corresponding relations to measurable quantities
(elements of the form (12)), see [11]. Thus, we conclude that all parameters in system (1) are
identifiable, which allows us to investigate optimal therapies dependent upon a priori knowledge
of the drug-induced resistance rate a.
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4 Optimal Control Formulation

As discussed in Section 2, all treatment strategies u(t) result in an entirely resistant tumor:
(Si, R.) = (0,1) is globally asymptotically stable for all initial conditions in region 2. Thus,
any chemotherapeutic protocol will eventually fail, and a new drug must be introduced (not
modeled in this work, but the subject of future study). Therefore, selecting an objective which
minimizes tumor volume (S+ R) or resistant fraction (R/(S+ R)) at a fixed time horizon would
be specious for our modeling framework. However, one can still combine therapeutic efficacy
and clonal competition to influence transient dynamics and possibly prolong patient life, as has
been shown clinically utilizing real-time patient data [7]. Motivated by this observation, we
define an objective based on maximizing time until treatment failure, as described below.
Let

V.e (0,1—¢) (17)

be a critical tumor volume at which treatment, by definition, has failed. The upper bound is
a technical constraint that will be needed in Section 7; note that this is not prohibitive, as the
genetic mutation rate € is generally small [15], and our interest is on the impact of induced
resistance. Recall that all cellular populations have been normalized to remain in [0,1]. Our
interpretation is that a tumor volume larger than V, interferes with normal biological function,
while S 4+ R < V_ indicates a clinically acceptable state. Different diseases will have different
V. values. Define t. as the time at which the tumor increases above size V. for the first time.
To be precise, t. is the maximal time for which S+ R < V.. Since all treatments approach the
state (0,1), t. is well defined for each treatment u(t) : t. = t.(u). Time t. is then a measure of
treatment efficacy, and our goal is then to determine u, which maximizes ¢.(u).

Toxicity as well as pharmacokinetic constraints limit the amount of drug to be applied at
any given instant. Thus, we assume that there exists M > 0 such that u(t) < M for all ¢t > 0.
Any other Lebesgue measurable treatment regime u(t) is then considered, so that the control
set U = [0, M] and the set of admissible controls U is

U= {u:[0,00) = [0, M]|u is Lebesgue measurable}.

We are thus seeking a control w,(t) € U which mazimizes t., i.e. solves the time-optimal
minimization problem

IJIGILI}{J(U)} :IJIGILI{I{ —/0 1dt}, (18)

restricted to the dynamic state equations given by the system described previously in (5). Note
that the above is formulated as a minimization problem to be consistent with previous literature
and results related to the Pontryagin Maximum Principle (PMP) [13]. Note that maximization
is still utilized in Sections 5 and 6.1, and we believe that the objective will be clear from context.

The time ¢, must satisfy the terminal condition (t., z(t.)) € N, where N is the line S+R = V.
in Q, i.e.

N =9"10)NQ, (19)
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where
Y(S,R):=S+R-V,. (20)
Furthermore, the path-constraint
b(S(t), R(t)) <0 (21)

must also hold for 0 < ¢ < ¢.. Equation (21) ensures that the tumor remains below critical
volume V, for the duration of treatment. Equivalently, the dynamics are restricted to lie in the
set 2. C (), where

Qo={(S,R)|0< S+ R <V} (22)
for times ¢ such that t € [0,t.]. The initial state
Tog = (S(), RQ) (23)

is also assumed to lie in .. For the remainder of the work, we no longer restrict to the case
Ry = 0 as was assumed for simplicity in Section 3.

5 Existence Results

Before characterizing the structure of the desired optimal control for the problem presented in
Section 4, we must first verify that the supremum of times t.(u) for u € U is obtained by some
u, € U, i.e. that the optimal control exists. This involves two distinct steps: proving that
the supremum is both finite and that it is obtained by at least one admissible control. The
following two subsections verify these claims.

5.1 Finiteness of the Supremum

We prove that

sup t.(u) < oo (24)
ueU
for a more general control system. The result depends crucially on (2), and the fact that asymp-
totically stable state (0, 1) is disjoint from the dynamic constraint x € €. (see equation (21)).
That is, V. < 1 is necessary for the following subsequent result to hold, and generally an optimal
control will not exist if V. = 1 or if the path constraint (21) is removed.
Consider a control system of the form

T = f(t,z,u), (25)

where z € Q,u € U := {u : Ry — U |u measurable}, and f : R x Q x U — €, where Q is an
open subset of R”, U C R. Fix the initial conditions

2(0) = o, (26)
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with zg € 2, and assume that all solutions of (25) and (26) approach a fixed point z € 2. That
is, for all u € U,

t—oo  _

T, (t) — T (27)

Note that we explicitly denote the dependence of the trajectory on the control u, and the above
point Z is independent of the control .

Fix a closed subset L of € such that xq € L,z ¢ L. Associate to each control (and hence
corresponding trajectory) a time ¢.(u) such that

te(uw) = min{T" | z,(t) ¢ L for all t > T'}. (28)

Note that the above is well-defined (as a minimum) for each control u, since by assumption
xo € L and each trajectory asymptotically approaches & ¢ L.

Theorem 1. Define

T, = supt.(u). (29)

ueU

With the above construction, T, is finite.

Proof. Fix an open set K of Q containing Z such that K N L = (). Note that this is possible, as
L is closed and Z ¢ L. Suppose, by contradiction, that T, = co. We construct a trajectory that
remains in L for all time ¢, thus contradicting the fact that every trajectory must eventually
enter K. By definition of the supremum, there exists a sequence of controls u, € U such that
z,, € L for t € [0,t,], with ¢, =% oo. By taking a subsequence, we assume that t, is
increasing. Note that each wu,, is defined on [0, 00), and the initial condition (26) is fixed for all
pairs (zy,,, Un)-

We construct a new control u, inductively as follows. Define a sequence of controls on [0, ¢1]:

Un,1 = {Un|0,t1) e - (30)

Since the time interval [0, ¢1] is compact, there exists a convergence subsequence {u,, 1}

u,1 in the weak topology. As a subsequence, the corresponding trajectory x, ; remains in L for
t € [0,¢,]. Similarly, define subsequence u, 5 on [t1,ts] as

Un2 = {unmll[tl,tz]}? (31)

where we begin the sequence at the maximum of n; and 2, to ensure that all controls in the
sequence correspond to trajectories entirely inside of L. Again, since the interval is compact,
there exists a convergence subsequence (again in the weak topology) of w, 2, say u. o, with, by
continuity of the state with respect to the control, the corresponding trajectory lies entirely in
L. Continue in this manner, constructing a sequence of controls w,;,7 = 1,2, ..., where u,; is
defined on [t;_1,t;], with to = 0. Define u, on [0, 00) as the concatenation of the u, ;:

Uy = Uy ¥ Ugs ¥ 0 (32)

As the pointwise limit of measurable functions, u, is measurable. Clearly, u € U by construc-
tion, so that u € U. The corresponding trajectory z,, thus lies entirely in L for ¢ € [0, 00), and
hence never enters K. This the desired contradiction, so that T, must be finite, as desired. [
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Proof option 2 for Theorem 1: Consider the sets K,V C R2?, with V being an open
neighborhood of the steady state (0,1) and K a compact set in R? such that

(0,1) eV C K.

Suppose, by contradiction, that 7} is not finite, so we can find a sequence of controls {vy}72,
in U satistying
d(z(t, o), K) > € for all ¢ < tg, with t; — oc. (33)

where d_, denotes the supremum metric and, for each k& € N, x(¢, vy) is the solution of the IVP:

@ = f(x)+ ve(t)g(z),

z(0) = xo, (34)

Our aim is to find a control u € U such that z(t, u), solution of system (34), does not enter K
for any ¢ > 0. In order to do so, we make us of the Banach-Alaoglu’s theorem that guarantees
that the ball

B(L>(0,00))) = {u € L([0,50)) : [ullo« < M} (35)

is a compact set on the weak* topology and metrizable. Thus, the sequence {vy}72; must have
a weak*—convergent subsequence {u;}52; which converges to a control u € L*([0,00)). In
other words, for every ¢ € L! ([0, oo))

Jj—00

lim Yu;dp = / Yudp, (36)
[0,00) [0,00)

where p is the usual Lebesgue measure. This means that the sequence {u; }‘;‘;1 converges to u
with respect to the weak* topology on L>([0,00)) as the dual of L' ([0, 00)).

We next prove that lim;_, ||z(t,u) — (¢, u;j)||cc = 0 for all ¢ € [t;_1,t;] and all k € N. In
order to do so define

T = w0+ / () + uls)g(x(s)lds

for any ¢, € [0,00), where x solves the IVP

= f(z) + ve(t)g(z),

z(ty_1) = Tp_1. (37)

Notice that the fact that the equilibrium (0, 1) is globally asymptotically stable implies that
xk—1 is well defined for any k € N.
The integral form of (37) is given by

F(t,z,vx) = 1 + / [f(z) + vr(s)g(x)]ds. (38)

th—1
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With the help of the t;’s from (33) and assuming t; 1 oo as k goes to infinity we write the set
[0,00) as the countable union of finite closed intervals:

[0,00) = U [tr_1, k] where ty = 0.
keN
For each £ € N, denote by 4, and @ to the restricted functions of u; and u to the interval

[th—1, ti].

lim [|lz(t, @) — 2(t, @) |lo = lim [[F(t, 2, 0) = F(t, 2, ;)| (39)
j—o0 j—o00
t t
—lim | [ als)gods ~ [ as(s)glalds (40)
Jree tk—1 lk—1 IS
=0 for all ¢t € [tk—htk]' (41)
Since this result is independent of k, this implies that, for all ¢ € [tx_1, ] and all K € N
lim [lz(t, @) — (t, @)l = 0.
j—o0
Thus,
d(z(t,u),K) = lim d_ (z(t,u;), K) > € forall ¢t € [ty_1,%], independently of k € N. (42)
j—o00
Therefore, the supremum of ¢, must be finite. n

For the system and control problem defined in Sections 2 and 4, the above theorem implies that
SUD,ey te(w) is finite by taking L = Q..

5.2 Supremum as a Maximum

Here we provide a general proof for the existence of optimal controls for systems of the form (5),
assuming the set of maximal times is bounded above, which we have proven for our system in
Section 5.1. For convenience, we make the proof as self-contained as possible (one well-known
result of Filippov will be cited), and state the results in generality which we later apply to the
model of induced resistance. Arguments are adapted primarily from the textbook of Bressan
and Piccoli [2].

Consider again general control systems as in Section 5.1. Solutions (or trajectories) of (25)
will be defined as absolutely continuous functions for which a control u € U exists such that
(x(t),u(t)) satisfy (25) a.e. in their (common) domain [a, b].

It is easier and classical to formulate existence with respect to differential inclusions. That
is, define the multi-function

F(t,2) = {f(t,2,w) |w € U}. (43)
Thus, the control system (25) is clearly related to the inclusion
e F(t ). (44)

The following theorem (see [6] for a proof) makes this relationship precise.
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Theorem 2. An absolutely continuous function x : [a,b] — R™ is a solution of (25) if and only
if it satisfies (44) almost everywhere.

We first prove a lemma demonstrating that the set of trajectories is closed with respect to
the sup-norm || - || if the set of velocities F'(t,z) are all convex.

Lemma 3. Let x be a sequence of solutions of (25) converging to x uniformly on [0,T]. If
the graph of (t,x(t)) is entirely contained in ), and the F(t,z) are all convez, then x is also a
solution of (25).

Proof. By the assumptions on f, the sets F (t,z) are uniformly bounded as (t,z) range in a
compact domain, so that z; are uniformly Lipschitz, and hence z is Lipschitz as the uniform
limit. Thus z is differentiable a.e., and by Theorem 2, it is enough to show that

#(t) € F(t, z(t)) (45)

for all ¢ such that the derivative exists.

Assume not, i.e. that the derivative exists at some 7, but @(7) ¢ F(7,2(7)). Since F(7,z(T))
is compact and convex, and #(7) is closed, the Hyperplane Separation Theorem implies that
there exists a hyperplane separating F'(7,z(7)) and &(7). That is, there exists an ¢ > 0 and a
(WLOG) unit-vector p € R™ such that

(p.y) < (p,3(7)) — 3¢, (46)
for all y € F(r,z(7)). By continuity, there exists § > 0 such that for [t — /| < 4, |2' —z(7)| < I
(p.y) < (p,3(7)) — 2, (47)

for all y € F'(1,2'). Since z is differentiable at 7, we can choose 7" € (7,7 + ] such that

(') — (1)

T —T

— (1)

(48)
|z (t) — =(7)| <0,

for all t € [r,7']. Equation (48) and uniform convergence then implies that

(n 2=l o, (, A2 20 o iy - e (49)

T —T T — T

On the other hand, since & € F(t,2’) for t € [1,7'], equation (47) implies that for k& sufficiently
large,

/

<p7 k(1) = xk(7>> - 1_ - / " p i (0) dE < (p, (7)) — 2. (50)

T —T

Clearly, (49) and (50) contradict one another, so that (45) must be true, as desired. O

12
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An optimal control problem associated to (25) may now be formulated. Suppose zg € €. is
an initial condition for the corresponding system, so that

2(0) = . (51)

Let S denote the set of admissible terminal conditions, S C R x R", and ¢ : R x R" — R a
cost function. We would like to maximize ¢(7', 2(T")) over admissible controls with initial and
terminal constraints:

JJax o(T,2(T,u)), 52)
z(0) =z, (T,2(T)) € S.
We now state sufficient conditions for such an optimal control to exist.

Theorem 4. Consider the control system (25) and corresponding optimal control problem (52).
Assume the following:

1.  The objective ¢ is continuous.

The sets of velocities F(t,x) are conver.

The trajectories x remain uniformly bounded.
The target set S 1is closed.

A trajectory satisfying the constraints in (52) exists.

S @A o e

S is contained in some strip [0,T] x R", i.e. the set of final times (for free-endpoint
problems) can be uniformly bounded.

If the above items are all satisfied, an optimal control exists.

Proof. By assumption, there is at least one admissible trajectory reaching the target set S.
Thus, we can construct a sequence of controls uy, : [0, Ty] — U whose corresponding trajectories
xy, satisfy

z,(0) = xo,
(Tx, 7% (1)) € (53)
ST, 2(T},)) =% ESMU%OMTax(Ta u)).

Since S C [0,7T] x R", we know that T), < T for all k. Each function z; can then be extended
to the entire interval [0, T by setting zx(t) = x4 (1)) for t € [T}, T).

The sequence xj is uniformly Lipschitz continuous, as f is uniformly bounded on bounded
sets. This then implies equicontinuity of {x}72,. By the Arzela-Ascoli Theorem, there exists
a subsequence xz,, such that T, — T, T, <T, and z,, — z, uniformly on [0, 7].

Lemma 3 implies that z, is admissible, so that there exists a control u, : [0, 7] — U such
that

. (t) = [t 2(t), ua(t)) (54)

13


https://doi.org/10.1101/475533

bioRxiv preprint doi: https://doi.org/10.1101/475533; this version posted August 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

for almost all ¢ € [0,7,]. Equations (53) imply that

2.(0) = xg
(T (1) = lim ¢(T,, 20, (o)) € S. (55)

Note that the second of (55) relies on S being closed. Continuity of ¢ and (53) implies that

(T 2o(T2)) = lim (T, 0ny(Tny)) = sup  O(T, (T, w)). (56)

M —00 weld,T,.>0
Thus, u, is optimal, as desired. O

For the model of drug-induced resistance, the right-hand side f takes the form (5) where f
and g are smooth on the domain 2. Here the control set U is the compact set U = [0, M], and
for such control-affine systems, convexity of F'(¢,z) is implied by the convexity of U. Existence
of a trajectory satisfying the constraints is clear; for example, take u(t) = 0. Our objective is
to maximize the time to not escape the set N. Note that N is a closed subset of R?, and that

H(T,x(T,u)) =T. (57)

is continuous. Lastly, we have seen that all solutions remain in the closure €2, so that |z(¢)| < 1
for all w € U and hence solutions are uniformly bounded. Existence is then reduced to Item 6
in the previous theorem. Since the supremum was shown to be finite, Theorem 4 together with
Theorem 1 imply that the optimal control for the problem presented in Section 4 exists.

6 Maximum Principle

The results of Section 5 imply that the optimal control problem introduced in Section 4 has at
least one solution u, € U. We now characterize this control utilizing the Pontryagin Maximum
Principle (PMP). We envision a clinical scenario in which cancer cells from a patient are cultured
in an ex wvivo assay (for example, see [23]) prior to treatment. Parameter values are then
calculated from treatment response dynamics in the assay, and an optimal therapy regime is
implemented based on the theoretical work of this section. Thus, identifying patient-specific
model parameters, specially the induced-resistance rate «, is a necessary step in determining
control structures to apply. This issue was addressed partially in Section 3; for further in vitro
results, see [11]. Hence, for the remainder of this work, we assume that prior to the onset of
treatment, all patient-specific parameters are known. We now analyze behavior and response
of system (1) to applied treatment strategies u(t) utilizing geometric methods. The subsequent
analysis is strongly influenced by the Lie-derivative techniques introduced by Sussmann [27, 29,
28, 30]. For an excellent source on both the general theory and applications to cancer biology,
see the textbooks by Schéttler and Ledzewicz [13, 19].

6.1 Elimination of Path Constraints

We begin our analysis by separating interior controls from those determined by the path-
constraint (21) (equivalently, x € N). The following theorem implies that outside of the mani-
fold N, the optimal pair (z.,u,) solves the same local optimization problem without the path

14
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and terminal constraints. More precisely, the necessary conditions of the PMP (see Section 6.2)
at states not on N are exactly the conditions of the corresponding maximization problem with
no path or terminal constraints.

Theorem 5. Suppose that x, is an optimal trajectory. Let t; be the first time such that x(t) €
N. Fix e > 0 such that ty —e > 0, and

E=ux(t; —e). (58)

Define z(t) := x.(t)|tco,t,—q- Then the trajectory z is a local solution of the corresponding time
mazimization problem t. with boundary conditions x(0) = xq, x(t.) = £, and no additional path
constraints. Hence at all times t, z (together with the corresponding control and adjoint) must
satisfy the corresponding unconstrained Pontryagin Maximum Principle.

Proof. We first claim that z satisfies the path-constrained maximization problem with boundary
conditions z(0) = xg, z(t.) = £. Otherwise, if there exists a trajectory z such that z(7) = &,
T > t;—e€, concatenate zZ with z, at ¢ = 7 to obtain a feasible trajectory satisfying all constraints.
This trajectory then has total time 7 4 € + t. — t; > t., contradicting the global optimality of
Ty

Recall that ¢; was the first time that z,(t) € N. Since z is compact, we can find a neigh-
borhood of z that lies entirely in {z |z ¢ N}. As the Maximum Principle is a local condition
with respect to the state, this completes the proof. O

Theorem 5 then tells us that for states x = (S, R) such that S + R < V,, the corresponding
unconstrained PMP must be satisfied by any extremal lift of the original problem. Furthemore,
the constraint (21) has generic order one. In other words,

Lyp = Vb g #0. (59)

Therefore, the feedback control (also known as the constrained control) can be found by differ-
entiating function (20) for trajectories to remain on the line N:

1(1—(S+R)(S+p-R)
d S ’

Its existence however, does not imply its feasibility, which is discussed below. Specifically, u, can
be shown to a decreasing function of S which is feasible on the portion of N satisfying 7 < S <
V., where x7 is given in (61), and infeasible elsewhere. This is proven in Proposition 7, and the
geometric structure is depicted in Figure 1. Propositions 8 and 9 provide characterizations on
the volume dynamics in certain regions of phase space, and are included here for completeness.

uy(S, R) = (60)

Proposition 6. Consider the volume function V(x) = S+ R, and the point v* = (S*, R*) € N
with coordinates

* pr(l_‘/c)‘/c o * pr<1_‘/c) _ *
7 R (AT R %—Vc(l‘Md_u_vc)u—pT)):R' o

Denote by Y the vector field corresponding to the maximal allowed dosage M. The Lie derivative
LyV(z) of V(x) with respect to Y is

15
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(a) positive if S < x7,

(b) zero at (z7,%), and

(c) mnegative if S > x7.

where x5 is well defined (and positive) if

s U210 =0)

Proof. We verify the above claims with a direct calculation. For =z € NV,

LyV(z) =VV(z)-Y(x)

1 1—V.—e— M(a+d)|S
(1)‘ [

e+ Ma—p.(1=V)|S+p(1 =V)V,
:[1_‘/0_6_M<05+d)]s+[€+M&_pr(1_‘/c)}s+pr(1_‘/c)‘/c

=[(1 - Vo)L —p,) — Md]S +p.(1 = V)Ve

Assuming M > w, the sign of Ly V(z) is given as in the statement of the proposition.

[]

Proposition 7. Let x be a point on the line N. The feedback control u, is unfeasible if S €
(0,2%) and, it is feasible if S € (x3,V,)

Proof. For x € N we compute

_ (1 B %)(1 B pr) (1 - ‘/;)pr‘/c
uple) = d TS

> 0.

it is east to check that w, > M if S < z]. In addition, the feedback control, when restricted

to points in N, is a decreasing function with respect to S. Thus, it is feasible for x € N if
S € (z1,VL). O

Proposition 8. For x = (S, R) € Q. with

Md— (1-V,)

R >
pr(l - ‘/c)

S, (62)

the Lie derivative LyV (x) is positive.
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Vector Fields

09 le
08
LyV(x)>0 0
o7 | V&) P

0.6

205

0.4

_|_
—Y = f(z) + Mg(z)

02 o LyV(a},z3) =0
_ Md-~(i-V,)

(V) 1

0.1

Figure 1: Region in Q. where Ly V (z) is guaranteed to be positive. That is, applying the maximal allowed
dosage M causes the cancer population to increase in size for points in the yellow region. The figure is provided
for visual clarity of the result in Proposition 8.

Proof. Again, we compute Ly V (x):
LyV(z) = (1 — (S + R))(S +p.R) — MdS

> (1= Vo)(S+p-R) — MdS
=[(1 = Vo) = Md]S +p.(1 = Vo)R

Md—(1-V)
>[(1—=V.)— Md]S +p.(1-V. S
(1= V) = M+ (1= V) 20 B
where the first inequality utilizes V' < V., and the second relies on (62) O

Proposition 9. For
- 1—e€
a+d’

trajectories corresponding to the maximal dosage M have a decreasing sensitive cellular popu-
lation.
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Proof. for u(t) = M, the corresponding sensitive trajectory is given by

S=1-(S+R))S—eS—M(a+d)S
<(1-=(S+R)S—eS—(1—¢)S
=—(S+RR<O

Note that we are assuming here that the maximal dosage M satisfies M > ;;Z O]

We have now demonstrated that the optimal control consists of concatenations of controls
obtained from the unconstrained necessary conditions and controls of the form (60). In the
next section, we analyze the Maximum Principle in the region S + R < V..

6.2 Maximum Principle and Necessary Conditions at Interior Points

Necessary conditions for the optimization problem discussed in Section 4 without path or termi-
nal constraints are derived from the Pontryagin Maximum Principle [18, 13]. The corresponding
Hamiltonian function H is defined as

H(Mo, N\, z,u) = =X+ (N, f(z)) + ud(z), (63)

where \g > 0 and A € R?. Here (-,-) denotes the standard inner product on R? and, since the
dynamics are affine in the control u, ®(z, \) is the switching function:

®(z,A) = (A, g(x)). (64)
The Maximum Principle then yields the following theorem:

Theorem 10. If the extremal (x4, u.) is optimal, there exists A\g > 0 and a covector (adjoint)
A:[0,t] = (R?)*, such that the following hold:

1. (Mo, A(t)) #0 for all t € ]0,t.].
2. AMt) = (Xs(t), A\r(t)) satisfies the second-order differential equation

254+ R+e—1 prR—€
( S m@R+S—U)A®

+mw(a§d‘§>xw

3. u.(t) minimizes H pointwise over the control set U:

H<)\07 )‘a ZL'*(t), u*(t)) = mlg]lH(A07 Av 1}*(1})7 U)'
ve

A(t) =

Thus, the control u.(t) must satisfy
0 @) >0
u*(t):{ (t) >0, (66)

where

B(t) i= D(a.(t), \(1)). (67)
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4. The Hamiltonian H is identically zero along the extremal lift (x.(t), u.(t), A(t)):
H(/\07 /\(t)7 :L'*(t>, u*<t>> =0. (68)

Proof. Most statements of Theorem 10 follow directly from the Maximum Principle, so proofs
are omitted. In particular, items (1), (2) and the first part of (3) are immediate conse-
quences [13]. Equation (66) follows directly since we minimize the function H, which is affine in
u (see equation (63)). The Hamiltonian vanishes along (z.(t), u.(t), A(¢)) since it is independent
of an explicit time ¢ dependence and the final time t. is free, the latter being a consequence of
the transversality condition. O]

For completeness, we state the following proposition.

Proposition 11. Forallt € [0,t.], the adjoint A(t) corresponding to the extremal lift (z.(t), u.(t), A(t))
18 MONZETO.

Proof. This is a general result relating to free end time problems. We include a proof here
for completeness. Suppose that there exists a time ¢ € [0,¢.] such that A(f) = 0. By (63),
the corresponding value of the Hamiltonian is H (g, A(t), 2. (), u.(t)) = —Xg. By item (4) in
Theorem 10, H = 0, which implies that \y = 0. This contradicts item (1) in Theorem 10.
Hence, A(t) # 0 on [0, t.]. O

6.3 Geometric Properties and Existence of Singular Arcs

We now undertake a geometric analysis of the optimal control problem utilizing the affine
structure of system (5) for interior states (i.e. controls which satisfy Theorem 10). We call such
controls interior extremals, and all extremals in this section are assumed to be interior. The
following results depend on the independence of the vector fields f and g, which we use to both
classify the control structure for abnormal extremal lifts (extremal lifts with Ay = 0), as well
as characterize the switching function dynamics via the Lie bracket.

Proposition 12. For all S € Q,S > 0, the vector fields f(x) and g(x) are linearly independent.

Proof. Define A(x) = A(S, R) to be the matrix

A(S,R) = ( f(x) g(x))
_ ( (1-(S+R)—€e)S —(a+d)s ) (69)
S\ p(1—=(S+R)R+e€S asS '

The determinant of A can calculated as

det A(z) = aS?k(z) + pr(a + d)RSk(z) + €dS? (70)

where
k(z) :=1—(S+ R). (71)
As S(t) + R(t) < 1 forall t > 0, k(z(t)) > 0, and we see that det A(z) = 0 in 2 if and only if
S = 0, completing the proof. O
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The line S = 0 is invariant in €2, and furthermore the dynamics in the set are independent
of the control u(t). Conversely, Sy > 0 implies that S(¢) > 0 for all ¢ > 0. We concern our
analysis only in this latter case, and so without loss of generality, f(x) and g(x) are linearly
independent in the region of interest (2.

We begin by showing that abnormal extremal lifts are easily characterized. We recall that
an extremal lift is abnormal if Ay = 0, i.e. if the Hamiltonian is independent of the objective.

Theorem 13. Abnormal extremal lifts at interior points, i.e. extremal lifts corresponding to
Ao = 0, are constant and given by the mazimal (M ) or minimal (0) dosage.

Proof. Assume that u, switches values at some time ¢. From (66), we must have that ®(¢) = 0.
Since A\g = 0 and ®(t) = (A(t), g(z.(t))), equation (63) reduces to

H(t) = (M#), f(2.(2))) = 0. (72)

Thus, A(t) is orthogonal to both f(z.(t)) and g(z.(¢)). Since f and g are linearly independent
(Proposition 12), this implies that A(¢) = 0. But this contradicts Proposition 11. Hence, no
such time ¢ exists, and wu,(t) is constant. The constant sign of ® thus corresponds to u = 0 or
u= M (see equation (66)). O

The control structure for abnormal extremal lifts is then completely understood via The-
orem 13. To analyze the corresponding behavior for normal extremal lifts, without loss of
generality we assume that Ao = 1. Indeed, A(t) may be rescaled by A\g > 0 to yield an equiv-
alent version of Theorem 10. We thus assume that the Hamiltonian H(t) evaluated along
(A(t), x4 (), u(t)) is of the form

H(t) = =1+ (A1), f(2.(1))) + u()®(2) = 0. (73)

We recall the Lie bracket as the first-order differential operator between two vector fields
Xl and XQI

X1, X,)(2) = DX(2)X,(2) — DX1(2) X (2), (74)

where, for example, D X5(z) denotes the Jacobian of X5 evaluated at z. As f and g are linearly
independent in €2, there exist v, 5 € C*(£2) such that

[f, 9l(z) = 7(z) f(z) + B(x)g(z), (75)

for all x € €. In fact, we can compute v and S explicitly:
v(z) = —% (aS+ bR — ¢), (76)
B(z) = (jletS—A(:c) (a(1 — p)R()(K(x) — €) + €d(S + p R + (x) — e)), (77)

where

e=af-p+ ), (78)
b=a(l—p,)+dp, (79)
¢c=o(l —p,)+ed (80)
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Clearly, for parameter values of interest (recall 0 < p, < 1), a,b,¢ > 0. The assumption (17)
guarantees that (z) >0on0< S+ R < V..

From (66), the sign of the switching function ® determines the value of the control w,. As
A and x, are solutions of differential equations, ® is differentiable. The dynamics of ® can be
understood in terms of the Lie bracket [f, g]:

b(t) = SN0, gl (1) (51)
= A ) (AW, £ (0)) + Bl (1) (). (52)

The last lines of the above follow from (75) as well as the linearity of the inner product. We
are then able to derive an ODE system for x, and ®. Equation (73) allows us to solve for

(A1), f (. (2))):
(M), (1)) = 1T = ua ()R (2). (83)

Substituting the above into (82) then yields the following ODE for ®(t¢), which we view as
coupled to system (5) via (66):

B(t) = (1)) + (Bl2a(6)) — ua()y(w.(8)) ) (). (84)

The structure of the optimal control at interior points may now be characterized as a com-
bination of bang-bang and singular arcs. We recall that the control (or, more precisely, the
extremal lift) u, is singular on an open interval I C [0,t.] if the switching function ®(¢) and all
its derivatives are identically zero on I. On such intervals, equation (66) does not determine
the value of u,, and a more thorough analysis of the zero set of ®(t) is necessary. Indeed, for a
problem such as ours, aside from controls determined by the path constraint (S (¢), R(t)) < 0,
singular arcs are the only candidates for optimal controls that may take values outside of the
set {0, M}. Conversely, times ¢ where ®(t) = 0 but ®™(¢) # 0 for some n > 1 denote candi-
date bang-bang junctions, where the control may switch between the vertices 0 and M of the
control set U. Note that the parity of the smallest such n determines whether a switch actually
occurs: n odd implies a switch, while for n even u, remains constant. Equation (84) allows us
to completely characterize the regions in the (S, R) plane where singular arcs are attainable, as
demonstrated in the following proposition.

Proposition 14. Singular arcs are only possible in regions of the (S, R) plane where v(x) = 0.
Furthermore, as S(t) > 0 for all t > 0, the region {x € R?|y(z) = 0} N Q is the line

aS + bR — ¢ = 0, (85)
where a,b, c are defined in (78)-(80).

Proof. As discussed prior to the statement of Proposition 14, a singular arc must occur on a
region where both ®(¢) and ®(t) are identically zero (as well as all higher-order derivatives).
Denoting by z,(t) the corresponding trajectory in the (S, R) phase plane, we may calculate
®(t) from equation (84):

D(t) = v(2.(t)). (86)
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Note we have substituted the assumption ®(¢) = 0. Clearly we must also have that v(x.(t)) = 0,
thus implying that z,(t) € 7 *(0), as desired. The last statement of the proposition follows
immediately from equation (76). O

Proposition 14 implies that singular solutions can only occur along the line a.S+bR —c¢ = 0.
Thus, define regions in the first quadrant as follows:

QF = {x € Q|v(x) > 0}, (87)
Q. ={r e Q|y(z) <0}, (88)
L={xeQ|y(x)=0}. (89)

Recall that €. is simply the region in 2 prior to treatment failure, i.e. 0 <V < V.. From (76),
Q. is partitioned as in Figure 2(a). From (76) and (78)-(80), £ is a line with negative slope
—b/a. Furthermore, necessary and sufficient conditions for £ to lie interior to € are £, < V,.
From (78)-(80), this occurs if and only if

« 1-V.

ad 1-V.
< 1 — _ — — .
€ < min {& d g (a(l pr) + o d) s Dr 7 (a(l pr) + dpr> } (90)

As € is generally assumed small (recall that it represents the drug-independent mutation rate)
and V. ~ 1, this inequality is not restrictive, and we assume it is satisfied for the remainder
of the work. We note an important exception below: when a = 0 the inequality is never
satisfied with € > 0; for such parameter values, line £ is horizontal. We note that this does
not change the qualitative results presented below. Of course, other configurations of the line
aS + bR = c¢ and hence precise optimal syntheses may exist, but we believe the situation
illustrated in Figure 2(a) is sufficiently generic for present purposes.

R R
A

Figure 2: Domain in (S, R) plane. (a) Region where v changes sign. We see that inside the triangular region
S+ R <1 of the first quadrant, v changes sign only along the line a.S+bR —c¢ = 0. For this line to be interior to
Q. as depicted, we must be in the parameter regime indicated in (90). (b) X and Y vector fields corresponding
to vertices of control set U. For singular controls to lie in U, X and Y must point to opposite sides along L.

With the existence of singular arcs restricted to the line v = 0 by Proposition 85, we now

investigate the feasibility of such solutions. Recall that the treatment wu(t) must lie in the
control set U = [0, M], for some M > 0 corresponding to the maximally tolerated applied
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dosage. Defining the vector field X (z) and Y (x) as the vector fields corresponding to the
vertices of U,

X(x) = f(2),

Y () = f(x) + Mg(a) &)

a singular control takes values in U at x € £ if and only if X (z) and Y (y) point in different
directions along £. More precisely, the corresponding Lie derivatives Lx~y(z) and Lyy(x) must
have opposite signs; see Figure 2(b). The following proposition determines parameter values
where this occurs.

Proposition 15. Suppose that o > 0, so that drug has the potential to induce drug resistance.
Also, let the mazimally tolerated dosage M satisfy

a+d o
M > a(a+d)+ad<d<a+d—€)—i—ed(pT—oz)—Qozd(l—pr)). (92)

Then the following hold along L:

1. Lxv <0,

2. Lyy<0as(S,R)— (0,%) in Q,

3. Lyy>0at(S,R)= (5,0), and

4. Ly~ is monotonically decreasing as a function of S.

Thus, L contains a segment L C L which is a singular arc. Note that L is precisely the region
in L where Ly is negative.

Proof. The proof is purely computational. O

The geometry of Proposition 15 is illustrated in Figure 3. Thus, assuming o > 0 and M as
in (92), singular arcs exist along the segment £ C £. Furthermore, the corresponding control
has a unique solution ug, which may be computed explicitly. Indeed, as the solution must
remain on the line £, or equivalently, a.S + bR = ¢, taking the time derivative of this equation
yields aS + bR = 0, and substituting the expressions (1) we compute u; as

e (z(1)) (aS(t) + p,.bR(t)) +e(b—a)S(t)
2a(1 — p,)dS(t) ’

us(t) = (93)

where a, b, ¢ are given by (78)-(80) and R and S satisfy aS 4+ bR = c¢. As discussed previously,
S(t) > 0 for Sy > 0, so this formula is well-defined. Proposition 15 implies that it is possible
to simplify equation (93) as a function of S (i.e. as a feedback law) for S € (S, <), for some
S > 0, but since its value will not be needed, we do not provide its explicit form. Note that
the maximal dose M is achieved precisely at S = S where vector field Y is parallel to £. Thus,
at this S, the trajectory must leave the singular arc, and enter the region QF. As R > 0,
trajectories must follow £ in the direction of decreasing S; see Figure 3. We summarize these
results in the following theorem.

23


https://doi.org/10.1101/475533

bioRxiv preprint doi: https://doi.org/10.1101/475533; this version posted August 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

R=x,

A

Figure 3: Geometry of vector fields X and Y with o > 0 and M satisfying (92). As in Proposition 15, this
can be understood via the corresponding Lie derivatives of 7. Note that near R = 0, X and Y point to opposite
sides of £, while at (S, R) = (O, %), both X and Y point away from v > 0. The line £ is the unique singular
arc in Q..

Theorem 16. If a > 0, and M satisfies (92), a singular arc exists in the (S, R) plane as a
segment of the line L. Along this singular arc, the control is given by equation (93), where
aS + bR = c. Therefore, in this case the necessary minimum conditions on u, from (66) can
be updated as follows:

0 d(t) > 0,
u, () =4 M ®(t) <0, (94)
us(t), ®t)=0 fortel,

where I 1s an open interval. Recall again that this is the optimal control at points interior to

Q..
Proof. See the discussion immediately preceding Theorem 16. [

In the case o = 0, the line £ is horizontal, and as R is increasing, no segment £ C L is
admissible in phase space. Thus, the interior controls in this case are bang-bang.

Theorem 17. If a = 0, there are no singular arcs for the optimal time problem presented in
Section 4. Thus, the interior control structure is bang-bang.

Outside of the singular arc £, the control structure is completely determined by (66)
and (84). The precise result, utilized later for optimal synthesis presented in Section 7, is
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stated in the following theorem. We first introduce a convenient (and standard) notation. Let
finite words on X and Y denote the concatenation of controls corresponding to vector fields X
(u=0)and Y (u = M), respectively. The order of application is read left-to-right, and an arc
appearing in a word may not actually be applied (e.g. XY denotes an X arc followed by a Y
arc or a Y arc alone).

Theorem 18. Consider an extremal lift I' = ((z,u), \). Trajectories x remaining entirely in
QF or Q. can have at most one switch point. Furthermore, if x € QF, then the corresponding
control is of the form Y X. Similarly, x € Q implies that w = XY . Hence multiple switch
points must occur across the singular arc L.

Proof. If 7 is a switching time, so that ®(7) = 0, equation (84) allows us to calculate ®(7) as
() = y(x(r)). (95)

Thus, in F where v > 0, @(7’) > 0, and hence ® must increase through 7. The expression for
the control (66) then implies that a transition from a Y-arc to an X-arc occurs at 7 (i.e. a Y.X
arc). Furthermore, another switching time cannot occur unless z leaves €, since otherwise

there would exist a 7 > 7 such that ®(7) = 0, ®(7) < 0 which is impossible in Q. Similarly,
only XY-arcs are possible in {27 . O

The structure implies by Theorem 18 is illustrated in Figure 3. Note that inside the sets
QF, Q7, and L, extremal lifts are precisely characterized. Furthermore, the results of Section 6.1
(and particularly equation (60)) yield the characterization only the boundary N. What remains
is then to determine the synthesis of these controls to the entire domain €., as well as to
determine the order local optimality of the singular arc £. The latter is addressed in the
following section.

6.4 Optimality of Singular Arcs

We begin by proving that the singular arc is extremal, i.e. that it satisfies the necessary
conditions presented in Section 6.2 (note that it is interior by assu_mption). This is intuitively
clear from Figure 3, since X and Y point to opposite sides along £ by the defintion L.

Theorem 19. The line segment L C L is a singular arc.

Proof. We find an expression for u = u(x) such that the vector f(z) + u(z)g(z) is tangent to
L at z, i.e. we find the unique solution to

Lytug(7) =0 (96)
Note that we can invert (91):
fx) = X(x)
1 (97)
9(z) = 77 V(2) = X(2))
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so that f+ug = (1 — %) X + Y. Thus,

u u
Lyiug(y) = (1 - M) Lx~y+ MLY7

Setting the above equal to zero, and solving for u = u(z) yields

. LX’V(x)
) = M — Iy @)

As Lxy < 0 and Lyvy > 0 on £ by Proposition 15, we see that 0 < u(z) < M. We must also
verify that the associated controlled trajectory (98) is extremal by constructing a corresponding
lift. Suppose that x(t) solves

(98)

&= f(x) +u(z)g(z),
z(0) =g,

for ¢ € L. Let ¢ € (R?)* such that

Let A(t) solve the corresponding adjoint equation (65) with initial condition A(0) = ¢. Then
the extremal lift I' = ((x,u), A) is singular if ®(t) = (A(t), g(z(t))) = 0. By construction of
u(z), the trajectory remains on £ on some interval containing zero, and we can compute ® as

(using (75))
(1) = (A1), [f, g)(x(t)))

= (@) A®), f(x(t) + Bx(t)(A®), g(z(t)))

= Bla(t) (1),
Note that we have used (84) and the fact that v = 0 by our choice of u. Since ®(0) = 0 by
hypothesis, this implies that ®(¢) = 0, as desired. O

The above then verifies that £ is a singular arc. Note that an explicit expression for u = u(z)
was given in (93), which can be shown to be equivalent to (98).

Having shown that the singular arc £ is extremal, we now investigate whether it is locally
optimal for our time-optimization problem. The singular arc is of intrinsic order k if the first
2k — 1 derivatives of the switching function are independent of u and vanish identically on an
interval I, while the 2k'" derivative has a linear factor of u. We can compute (this is standard
for control-affine systems (5)) that

O*(t) = (A(t), ad}" (9)(x(1))) + u(t) (A1), [9.adF ™ (9)](2 (1)), (99)
where ady is the adjoint endomorphism for a fixed vector field Z:
adz (V) =1[Z,V], (100)

and powers of this operator are defined as composition. Fix an extremal lift I' = ((x, u), A) of a
singular arc of order k. The Generalized Legendre-Clebsch condition (also known as the Kelley
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condition) [13] states that a necessary condition for I" to satisfy a minimization problem with
corresponding Hamiltonian H is that

o0 d** oH

(1) o (o, A(B) (), u() 2 0 (101)

along the arc. Note that %—IZ = &, so that the above is simply the u coefficient of the 2kth time
derivative of the switching function (multiplied by (—1)*). The order of the arc, as well as the
Legendre-Clebsch condition, are addressed in Theorem 20.

Theorem 20. The singular control is of order one. Furthermore, for all times t such that
x(t) € L, (M), ]9, [f, gll(x(t)) > 0. Thus, the Legendre-Clebsch condition is violated, and the
singular arc L is not optimal.

Proof. Along singular arcs we must have ®(t), ®(t), ®(¢) = 0, and we can compute these deriva-
tives using iterated Lie brackets as follows:

(1) = (AD), 9(x(t))).

O(t) = (A1), [f, 9 (z(1))), (102)
O(t) = (A1), [f + ug, [f, gll(x(1)))-
The final of the above in (102) can be simplified as
b(t) = (A0), 17,1, 1)) + ()N, [ 11, g1} (a(0)) =0, (103

which is precisely (99) for £ = 1. Order one is then equivalent to being able to solve this
equation for u(t). Thus, (A(%),[g, [f,g]](z(t))) > 0 will imply that the arc is singular of order

one. We directly compute (\(¢), g, [f, g]](z(%))) = (A(t), g9, ad;(g)](x(t))). Using equation (75)
and recalling properties of the singular arc (7 = 0 and the remaining relations in (102), as well

as basic “product rule” properties of the Lie bracket), we can show that

l9,[f. 91l = (Lgv) f = ~[f 9] + (Lygf)g. (104)

Recall that for an extremal lift along the arc £,
0,

( ())) =0 (105)
1.

The first two of the above follow from ®,® = 0, and the third is a consequence of H = 0
(see (63)). Equations (104) and (105) together imply that

@), L9, [£; 9ll(2x(@))) = Lgy(A(1), [ (1)) = vAW), [f, 9](x(8))) + LgBA(L), g((1)))

= Lyy(x(t)) (106)
— % (Lyy(x(t)) — Lxy(x(t))) .
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The last equality follows from the representation in (97). As Lyvy > 0 and Lyy < 0 along £
(Proposition 15), (A(t), [g, [f, g]](x(t))) > 0, as desired. Furthermore,

(@), [9, [, ) (5(5) < 0, or equivalently (107)
0 d* 0H
Y ) 1
(=1) Ou dt? du <5, (108)
showing that (101) is violated (substituting & = 1). Thus, £ is not optimal. O

Theorem 20 then implies that the singular arc is suboptimal, i.e. that £ is “fast” with respect
to the dynamics. In fact, comparing time along the trajectories can be computed explicitly using
the “clock form,” a one-form on 2. As one-forms correspond to linear functionals on the tangent
space, and f and g are linearly independent, there exists a unique w € (T'Q?)" such that

wa(f(x))

In fact, we compute it explicitly:

1, we(g(x)) = 0. (109)

go(x)dzt — gy (x)da?

det(f(x), g(x))

Then, along any controlled trajectory (z,u) defined on [ty,t1], the integral of w computes the

time tl — toi
t1
/(,d = / wx(t) (:L“(t)) dt
x to
t1

_ / Wt (f(2()) + u(t)g(a(1))) dt

to

(110)

Wy =

= [ o+ [ ult o) d ()
_ / "
- tlo— to.

We can then use w and Stokes’ Theorem to compare bang-bang trajectories with those on
the singular arc. See Figure 4 below for a visualization of a singular trajectory connecting
q1,q2 € L and the corresponding unique XY trajectory connecting these points in Q7 (note
that uniqueness is guaranteed as long as ¢; and ¢y are sufficiently close).

Let ts denote the time spent along the singular arc, tx the time spent along the X arc,
and ty the time spent along the Y arc. Denote by A the curve traversing the X and Y arcs
positively, and the singular arc negatively, and R its interior. As X and Y are positively
oriented (they have the same orientation as f and g), Stokes” Theorem yields

tx+ty—t5:/w:/dw (112)
A R
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R=x,
A
—_ o X=f
XY —_—> & Y =f+Mg
y<o0 — [
S~ —_— S U

» S=x

Figure 4: Both XY and singular trajectories taking q; to gs.

Taking the exterior derivative yields the two-form dw (see Chapter 2 of [13]):

___ T
dw = L (113)

As the determinant is everywhere positive (see the proof of Proposition 12), and R lies entirely
in v < 0, the integral on the right-hand side of (112) is positive, so that we have

tg <itx +1ty (114)

Thus, time taken along the singular arc is shorter than that along the XY trajectory, implying
that the singular arc is locally suboptimal for our problem (recall that we want to maximize
time). Since local optimality is necessary for global optimality, trajectories should never remain
on the singular arc for a measurable set of time points. This reaffirms the results of Theorem 20.
A completely analogous statement holds for Y X trajectories in the region v > 0. We can also
demonstrate, utilizing the same techniques, that increasing the number of switchings at the
singular arc speeds up the trajectory; see Figure 5. This again reinforces Theorem 20, and
implies that trajectories should avoid the singular arc to maximize the time spent in €2..

7 Characterization of Optimal Control
The results of Section 6.1, 6.2, 6.3, and 6.4 may now be combined to synthesize the optimal

control introduced in Section 4. First we provide a lemma which shows that arcs of the form
Y u, are not possible.

29


https://doi.org/10.1101/475533

bioRxiv preprint doi: https://doi.org/10.1101/475533; this version posted August 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

R=x
A
—_— o X=f
XY —> o Y=f+Mg
y <o — e [
No — S U

Figure 5: XY (solid) and XY XY (dashed) trajectories taking ¢; to go in the region v > 0. The time difference
between the two trajectories can again be related to the surface integral in the region R, where v < 0. The XY
trajectory can then be seen to be slower in comparison.

Lemma 21. If the optimal control has a switch point in Q_\N, then the optimal control does
not slide (i. e. there is not t1,ty with 0 < t; < ty < t. such that u = u, on the open interval

(t1,t2)).

Proof. This result follows from the fact that in Q_\ N the optimal control can switch one time,
and only from u = 0 to u = M. Once u = M, the only way the optimal trajectory would reach
N, so it may be able to slide, is if Ly V(x) > 0 for S > z7.

Given 0 > 0 small enough, suppouse there is a trajectory z(t) = (S(t), R(t)) and a time ¢, such
that

V.-6<S+R<V, for t > t; (115)
and Ly V(z) > 0. From equation (115) and the definition of Ly V(z) it satisfies
LyV(x) 2 pr(1 = Vo) (Ve = 6) + [(1 = Vo) (1 = p,) — Md]S,

(116)
LyV(z) <p,(1 =V, + Ve +[(1 = V. +9)(1 — p,) — Md]S.
Notice that the second inequality on equation (116) implies that
T 11— ‘/c d V;: ~
N +9) = 71. (117)

Md— 1=V, +6)(1—p,)

On the other hand, the continuity of the state variables and the assumption that LyV(z) > 0
for all 6 > 0 small enough implies that

lim LyV(z) >0  with S< lim ; = a]. (118)
=0+

6—0t

Thus, on the Y arc, the z(t) trajectory will reach N only if S < z}. According to Proposition 7,
u, is unfeasible on this region. Therefore, the trajectory does not slide on [0, z.]. [
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Theorem 22. For any a > 0, the optimal control to maximize the time to reach a critical
time 1s a concatenation of bang-bang and path-constraint controls. In fact, the general control
structure takes the form

(YX)"u,Y (119)

where (YX)" := (YX)" 'YX forn € N, and the order should be interpreted as left to right.
Here uy, is defined in (60).

Proof. Formula (119) is simply a combination of the results presented previously. Note that
singular arcs are never (locally) optimal, and hence do not appear in the equation. We also
observe that X arcs are not admissible once the boundary N has been obtained, as an X arc
always increases V. A Y arc may bring the trajectory back into int(€2.), but a Y X trajectory
is no longer admissible, as the switching structure in _ is XY (Theorem 18). Note that
Lemma 21 implies that a Y arc is not necessary after the n interior switches (Y X)".

The only aspect that remains is to show that once N is reached, the only possible trajectories
are either u, given by (60) or Y, with at most one switching occurring between the two. That
is, a local arc of the form w,Yu, is either sub-optimal or non-feasible (equivalently, outside of
the control set U). Suppose that such an arc is feasible, i.e. that for all such points in phase
space, 0 < u, < M (recall that u, is defined via feedback in (60)). Denote by 7 and 7 the
times at which the switch onto and off of Y occurs, respectively. Since w, decreases with S,
feasibility implies that u,(71), u,(72) < M and furthermore that u,(t) < M for all t € [, 7).
Thus, we can consider the alternate feasible trajectory which remains on N between the points
(S(m1), R(m)) and (S(m2), R(72)); see Figure 6 for an illustration. Call 7 the time for such a
trajectory. Then, using the clock-form w and the positively-oriented curve A which follows N
first and Y (in the reverse direction) second, we obtain similarly to (112),

v
T—(n—T7)=— [ —/—F—, 120

=) /Rdet<f, 9) (20
where R := int(A). Recalling that v < 0 in R (see Figure 3), the previous equation implies
that

T > T — To, (121)

i.e. alonger amount of time is achieved by remaining on the boundary /N. Hence the arc u,Y u,
is sub-optimal if it is feasible, as desired.

The previous argument has one subtle aspect, as we used results from the Maximum Prin-
ciple on the boundary set N, where technically it does not apply. However, the above still
remains true, since we may approximate the boundary line V' = V, with a curve interior to
Q). which remains feasible. By continuity, the time along such a curve can be made arbitrarily
close to 7, and hence is still greater than 7 — 71, implying that u,Yu, is sub-optimal. O

Proof option 2 to Theorem 22: Formula (119) is simply a combination of the results pre-
sented previously. Note that singular arcs are never (locally) optimal, and hence does not
appear in the equation. We also observe that X arcs are not admissible once the boundary N
has been obtained, as an X arc always increases V. A Y arc may bring the trajectory back
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Figure 6: Comparison of u,Yu, arc and an arc that remains on N (hence u = u,) between the
points (S(71), R(71)) and (S(m2), R(72)), assuming that u, remains feasible (that is, u, € [0, M]).
Note that v < 0 in the area of interest, and that a switching of a ¥ to an X arc is prohibited
via the Maximum Principle. Thus, the only possibility is the curve illustrated, which leaves the
boundary N for a Y arc before u, becomes infeasible.

into int(€2.), but a Y X trajectory is no longer admissible, as the switching structure in )_ is
XY (Theorem 18). Thus, once N is reached, the only possible trajectories are either u, given
by (60) or Y. Observe that no more than one switch point exists, otherwise, a local arc will
have the form: w,Yw, or Yu,Y, which implies the existence of a switch point from Y to w,,
contradicting results shown on the proof of Lemma 21. O]

Note that in Theorem 22, the switchings must occur across the singular arc £, if it exists
(recall that it is not admissible if @ = 0). The control u, is determined along the boundary of
., and provides the synthesis between exterior and boundary controls.

8 Numerical Results

In this section, we provide numerical examples of the analytical results obtained in previous

sections. All figures in this section were obtained using the GPOPS-II Matlab software. Recall

the label x; and x5 for the sensitive and resistant cells, respectively. In all experiments we

utilize the parameters and initial values given in Table 1 below, unless stated otherwise.
Theorem 22 characterizes the qualitative form of the optimal control:

us = (YX)"u,Y, (122)
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Parameters Interpretation Value
So Initial sensitive population 0.01

Ry Initial resistant population 0
Mutation rate due to the presence of the drug 0.01

d Death rate of sensitive cells caused by the toxicity of the drug 1

€ Background mutation rate le-6

Dr Resistant growth fraction 0.2

to Initial time 0

UM ax Maximum permitted treatment dose of the drug 5

V. Tumor volume defining treatment failure 0.9

Table 1: Parameter values and initial conditions used in most of the figures of section 8 unless otherwise stated
in the caption of the figure.

where n is the number of interior switches, wu, the sliding control (60), and X and Y denote the
boundary controls u = 0 and u = M, respectively. We begin by computing sample controls; see
Figures 7 and 9. Note that the optimal control in Figure 7(b) takes the form Y Xu,Y, while
that of Figure 9(b) is an upper corner control Y. The phase plane dynamics corresponding
to Figure 7 is also provided in Figure 8. In both cases the cytotoxic parameter was fixed
at d = 0.05, while the induced rate of resistance a varies between o = 0.005 in Figure 7 and
a = 0.1 in Figure 9. Note that for the smaller value of a (Figure 7), a longer period of treatment
success is observed, as the time to treatment failure is approximately 70 time units; compare
this with ¢, = 24.2 in Figure 9. This result may be expected, as the less mutagenic drug is able
to be more effective treatment when optimally applied.

(b)

10 20 30 40 50 60 70 10 20 30 40 50 60 70 10 20 30 40 50 60 70
t t t

Figure 7: Numerical solution of optimal control problem with d = 0.05, o = 0.005, and the remainder of
parameters as in Table 1. (a) Sensitive (z1) and resistant (z2) temporal dynamics. (b) Control structure of
form Y Xu,Y. (c) Volume dynamics. Note that the trajectory remains on the line V' = V, for most times, with
corresponding control u = u,,.

The generality of the previous statement is investigated in Table 2 and Figures 10 and 11.
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Figure 8: Phase plane corresponding to Figure 7. Trajectory which optimal control is of the form Y Xu,Y
with parameter values as in table 1 except for « = 0.005 and d = 0.05. The yellow dot in the figure represents
the (27, x3) point at which Y (z) is tangent to the sliding surface. Here, (27, 25) = (0.1059,0.7941). As proved in

theorem 6, for points on the line N the volume will decrease when it moves on the Y (x) direction if z; > 0.1059
and will increase for 1 < 0.1059.
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Figure 9: Numerical solution of optimal control problem with d = 0.05, @ = 0.1, and the remainder of
parameters as in Table 1. (a) Sensitive (z1), resistant (x2), and volume (7 + z2) temporal dynamics. (b)

Control structure of form Y, i.e. an entirely upper corner control. (c¢) Phase plane dynamics, plotted with
relevant vector fields.

The computed optimal times ¢, suggest that when the cytotoxicity of the drug (d) is small,
higher induction rates («) actually increase treatment efficacy. For example, for d = 0.001
success is maximized when « takes larger values (Figure 11(a)). However, the situation appears
to be reversed when we consider larger values of d; see for example the row d = 0.5 in Table 2,
and the corresponding purple curve in Figure 11(b). Figure 11(b) actually provides the critical
time as a function of « for multiple cytotoxicities d, and we observe the qualitative differences
as d increases. Examining Figure 10 and Table 2 also suggests that as d increases, the feedback
control u, becomes optimal on an interval [¢1, %] with 0 < t; <ty < t..

We similarly investigated the control structure and treatment outcome as a function of d
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d  [a=0001 a=001 a=0.1
0.001 | 691 728 15.83
0.01 7.87 834  17.66
0.1 162.53 7214 30.09
0.5 246.56  140.93  61.81
1 281.25 17226  82.13

Table 2: Optimal maximal end time ¢, for each of the computed controls appearing in Figure 10.

for a fixed «; these results are presented in Figures 12 and 13. Here a = 0.005 is fixed and
d is varied on the interval [0.001,0.1]. Figure 12 presents three of these controls; although
none of the controls is of the form Y XY, the figure suggests that there may exist a d* €
(0.02062,0.0207959) where the solution trajectory may intersect the boundary line N only
at one point and subsequently switch into a Y arc, thus providing the existence of a Y XY
control. Figure 13 suggests that increasing d for a fixed « increases the overall effectiveness
of the treatment for all values of «, and that decreasing the induction rate «a allows for longer
tumor control. However, for small values of d, increasing o may provide a better treatment
regime (see, for example, the yellow and purple curves in Figure 13).

Lastly, to verify the performance of the numerical software, we regularize the control problem
to include a quadratic cost with respect to the control. More precisely, we consider the perturbed
performance index

T[u] = — /Otc {1 - @um)} dt  fornelo,1]. (123)

Notice that equation (123) represents a family of performance indexes parameterized by 7.
Furthermore, the original performance index corresponds to n = 1. We investigate the corre-
sponding control structure in the limit  — 1. For n # 1, the optimal control problem is regular
and solvers such as GPOPS-II, SNOPT or a single shooting method should provide accurate
solutions. We begin with the solution of the regular problem (say n = 0) and let n — 1 to attain
the solution of the original problem formulated in Section 4. Figure 14 provides the computed
controls as perturbation constant 7 takes the values 0,0.5,0.7,0.9,0.95,0.999,0.99999 and 1.
For each case we obtained different relative errors with 4.0338 x 10~7 the largest relative error
(on case n = 0), the remaining values of n have smaller relative errors. It is clear, from Fig-
ures 14(case n = 0.95), 14(case n = 0.999) and 14(case n = 0.99999) that as n — 1 the control
approaches the solution to the original problem (compare to Figure 7).
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Figure 10: Optimal control structures for different o and d values. The blue curve is the optmimal control,
the red curve is the feedback control that may or may not be optimal or even feasible.

9 Conclusions

In this work, we have provided the mathematical details presented in [10]. That is, we have
formally applied optimal control theory technig%ues to understand treatment strategies related
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Figure 11: Variation in t. as a function of a. (a) Treatment success time ¢, for d = 0.001 with varying a
values. (b) Functional dependence of ¢. on « for different d parameters. Note that for small d, . increases as a
function of «, but that this trend is reversed if d is further increased.
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Figure 12: Computed optimal controls for a = 0.005 and (a) d = 0.0206, (b) d = 0.020624489795918 and (c)
d = 0.207959. Note that the control in (a) takes the form Y, while that in (b) and (c) is of the form Y Xu,.

to a model of induced drug resistance in cancer chemotherapy introduced in [11]. We have
shown that a drug’s level of resistance induction is identifiable, thus allowing for the possibility
of designing therapies based on individual patient-drug interactions. An optimal control prob-
lem is then presented which maximizes a specific treatments therapy window. Existence results
are established, and a formal analysis of the optimal control structure is performed utilizing
the Pontryagin Maximum Principle and differential-geometric techniques. Optimal treatment
strategies are realized as a combination of bang-bang and path-constrained arcs, and singu-
lar controls are proved to be sub-optimal. Numerical results are presented which verify our
theoretical results, and demonstrate interesting and non-intuitive treatment strategies.

The numerical results of Section 8 provide interesting behavior of the optimal control as
a function of parameter values. For example, the behavior of the objective t. depends on the
value of the drug-kill rate d: for large d, t. increases with induction-rate a, while this behavior
is reversed for small d (Figure 11). Also, our simulations suggest that it is optimal to apply
the maximal dosage M subsequent to sliding along the boundary V' = V, (e.g. Figure 8),
prior to treatment failure. Further analysis is required to understand this phenomenon, and its
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Figure 14: Different perturbed controls for o = 0.005 and d = 0.05 . Here, from Figures (a) to (h), the value
of nis 0, 0.5, 0.7, 0.9, 0.95, 0.999, 0.99999 and 1, respectively. The maximum relative error is of 4.0338 x 10~7
for figure n = 0, the remaining figures have a maximum relative error of 5.5727 x 10~7 or smaller.

implications for clinical scenarios.
Other questions remain open for future work:

¢ For controls where the trajectory remains on the boundary V = V. (u,), the feedback
control is optimal during a time interval [t1, ;] with 0 < ¢; < ty < t.. It remains to
understand the point of entry (xy(t1), z2(t1)) and exit (x1(t2), z2(t2)) (Figure 15, case a).
What is the significance of the times ¢; and ¢, with respect to parameter values?

¢ Do there exist conditions, once the trajectory reaches V., under which the optimal tra-
jectory no longer slides? Is it possible that at the time ¢, the point (z1(t,), z2(t,)) is a
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contact point (figure 15(b))? Some numerical results suggest that such contact point may
exist and give rise to a Y XY control structure (Figure 12).

¢ We have shown that an optimal control can switch at most once in each of the regions
QF and Q.. Numerically we did not observe any bang-bang controls of the form Y XY,
although its existence was strongly suggested. On the other hand, Lemma 21 implies that
if the optimal control has a switch point when the trajectory lands on region €27 then the
optimal trajectory does not slide along V.. The existence of a bang-bang junction in {2
is therefore of interest.

¢ For all examples plotted in Figures 10 with d > 0.1, the entry time occurs approximately
at the same value t; = 20.03. Is this a coincidence? We would like to understand the
dependence of the entry time ¢; and on parameters «, d, p,, M and/or e.

¢ We would like to extend models to include multiple, possibly non-cross resistant, killing
agents. Indeed, clinical practice generally includes multiple agents applied concurrently
and sequentially, and we plan on investigating strategies when different types of drugs
may be applied. For example, what control strategies arise when a targeted therapy exists
which targets the resistant sub-population? What order should the agents be applied, and
for how long? Are intermediate doses now optimal? These are all interesting mathematical
questions which may be clinically relevant.

Xy Xy
+ 3
" x X x
.+
. R N
N (xy(tp) ¥dt2)) . L
“. C‘b ..“? ((t )
Ay N 10l ),
)(y (Xl(tl )’XZ(tl )) /\/y ‘.\‘ / X2(t* ))
N . Nk
. X, . “ X,
Case a Case b

Figure 15: (a) Example of an arc with feedback control where (x1(t1),x2(t1)) is called the entry point and
(x1(t2), 2(t2)) the exit point (b) Example of an arc that does not slides but reaches the boundary V =V, at
the contact point (x1(t.), z2(tx)).

Drug resistance is one of the main barriers to the success of chemotherapy, and treatment
strategies must be designed with this phenomenon in mind. Furthermore, the ability of cancer
cells to adapt and express resistance mechanisms in direct response to therapy further compli-
cates the manner in which we administer chemotherapies. In this work, we have attempted to
precisely quantify the implications of induced resistance on optimal chemotherapy protocols in
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an idealized clinical environment where resistance is unavoidable. Induced resistance has been
shown to dramatically alter therapy outcome, hence implying that it is vitally important to
understand its role in both dynamics and designing chemotherapy regimes.

10 Materials and Methods

Numerical solutions were obtained with the use of GPOPS-II software, Invoice number: 0000001256.
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