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Abstract: For diseases such as influenza, where the majority of infected persons experience mild
(if any) symptoms, surveillance systems are sensitive to changes in healthcare-seeking and clinical
decision-making behaviours. This presents a challenge when trying to interpret surveillance data
in near-real-time (e.g., in order to provide public health decision-support). Australia experienced a
particularly large and severe influenza season in 2017, perhaps in part due to (a) mild cases being
more likely to seek healthcare; and (b) clinicians being more likely to collect specimens for RT-PCR
influenza tests. In this study we used weekly Flutracking surveillance data to estimate the probability
that a person with influenza-like illness (ILI) would seek healthcare and have a specimen collected.
We then used this estimated probability to calibrate near-real-time seasonal influenza forecasts at
each week of the 2017 season, to see whether predictive skill could be improved. While the number
of self-reported influenza tests in the weekly surveys are typically very low, we were able to detect a
substantial change in healthcare seeking behaviour and clinician testing behaviour prior to the high
epidemic peak. Adjusting for these changes in behaviour in the forecasting framework improved
predictive skill. Our analysis demonstrates a unique value of community-level surveillance systems,
such as Flutracking, when interpreting traditional surveillance data.
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1. Introduction

Public health surveillance systems provide valuable insights into disease incidence, which can
inform preparedness and response activities [1]. The data obtained from these systems must be
interpreted appropriately, which requires an understanding of the characteristics of each system.
For example, there is a well-established need to “understand the processes that determine how
persons are identified by surveillance systems in order to appropriately adjust for the biases that
may be present” [1]. The importance of understanding how people are identified by a surveillance
system is particularly problematic in the context of near-real-time influenza forecasting [2–10], because
healthcare-seeking behaviours and clinical decision-making are dynamic [11,12] and are subject to
acute influences (e.g., media coverage [13]). The challenge that this poses is further compounded by
delays in data collection and reporting, which reduce forecast performance [9,14,15]. And in the event
of a pandemic, changes in patient and clinician behaviours are likely to be even more pronounced,
with ramifications not only for interpreting surveillance data [3], but also for delivering effective
and proportionate public health responses [16]. For influenza and influenza-like illnesses (ILI), the
Flutracking online community surveillance system offers unique perspectives on disease incidence and
severity in Australia, but also on healthcare-seeking behaviours and clinical decision-making [17–20].
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The 2017 influenza season was particularly severe in most of Australia, with an unprecedented
number of laboratory-confirmed influenza cases, and high consultation, hospitalisation, and mortality
rates [21]. The 2017 season presented a very real challenge to public health staff in Australia for a
number of reasons, among which were the unprecedented scale of the surveillance data and the delays
in reporting that this entailed. In the subsequent 2017/18 northern hemisphere influenza season, the
dominant strain was frequently referred to as the “Australian flu” [22].

We have previously adapted epidemic forecasting methods to the Australian context [23]. Notable
features of this context include: more than half of the population reside in the five largest cities
(Sydney, Melbourne, Brisbane, Perth, Adelaide), which are sparsely distributed across a landmass
approximately the same size as continental USA; ILI data are available from sentinel surveillance
systems and public health services, but on a much smaller scale than, e.g, the ILINet system in the USA;
and laboratory-confirmed influenza infections data are available, but testing denominators are typically
only provided by public laboratories (which comprise only a small proportion of all laboratory testing).
In previous work we have applied these forecasting methods to individual Australian cities, and
have used them to compare multiple surveillance systems [3], developed model-selection methods
to measure the benefit of incorporating climatic effects [24], and have deployed these forecasts in
real-time in collaboration with public health staff [9,10]. Most recently, we have used these methods to
quantify the impact of delays in reporting and to highlight challenges in accounting for population
and clinician behaviour changes in response to a severe season [10].

In 2017 we produced weekly near-real-time influenza forecasts for the capital cities of three
Australian states: Sydney (New South Wales), Brisbane (Queensland), and Melbourne (Victoria). As
described previously, we performed a one-off re-calibration of our real-time influenza forecasts (2–5
weeks prior to the observed peaks), which improved the forecast performance [10]. This was a manual
process and was informed by qualitative expert opinion rather than by quantitative methods. In the
2018 influenza season we also began producing weekly near-real-time influenza forecasts for Perth,
the capital city of Western Australia.

Here, we investigate how the use of community-level ILI surveillance data, as captured by the
Flutracking surveillance system [17–20], may allow us to re-calibrate our forecasts in real-time based
on quantitative measures, and potentially improve forecast performance. We use the 2014–16 seasons
in these four cities for calibration, and the 2017 season in these four cities as a case study.

2. Results

Retrospective analysis revealed that in the 2017 influenza season there was a marked increase
in the probability that Flutracking participants with ILI symptoms (defined in Methods section 4.1)
would seek healthcare and have a specimen collected for testing, relative to previous influenza seasons,
in all states except Western Australia (Figure 1). In the other influenza seasons (2014–2016) there was
no such increase; this probability remained very similar to the average of the 2014 season (horizontal
dashed lines in Figure 1). Queensland was the one exception, where this probability did increase in
2015 and 2016, but not by the same scale as observed in 2017.

Consistent with the Flutracking analysis shown in Figure 1, the 2017 influenza season was
substantially larger than previous influenza seasons in all cities except Perth (Figure 2).

2.1. Relating Flutracking trends to the general population in 2014–16

We hypothesised that these trends in influenza testing would also be reflected in the general
population, but that there may be a difference in scale between the behaviour changes reported
in the Flutracking surveys and those of the general population. We introduced a scaling factor
κ to characterise the relationship between the testing probability obtained from the Flutracking
surveys and the testing probability of the general population (Figure 3). When κ = 1 the change
in the population testing probability pid(w) — relative to its initial value pid(0) — is the same as
the change in the Flutracking testing probability P (Test|ILI, week = w) relative to its initial value
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Figure 1. The probability of being swabbed for an influenza test, given ILI symptoms, as estimated
from the weekly Flutracking survey data in each of the 2014–2017 seasons for participants in New South
Wales (top-left), Queensland (top-right), Victoria (bottom-left), and Western Australia (bottom-right).
The horizontal dashed lines indicate the prior expectation for each state, the solid lines indicate the
posterior expectation, after applying our statistical model, and the shaded regions indicate the 95%
median-centred credible interval. In all states except Western Australia, this probability was much
higher in 2017 than in previous years. Queensland also exhibited a moderate increase in 2015.
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Figure 2. The weekly influenza surveillance data in each of the 2014–2017 seasons for the cities
of: Sydney, New South Wales (top-left); Brisbane, Queensland (top-right); Melbourne, Victoria
(bottom-left); and Perth, Western Australia (bottom-right). In all states except Western Australia,
the 2017 season was much larger than the 2014–2016 seasons. Queensland also experienced quite a
large season in 2015.
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Figure 3. The testing probability pid(w) for the general population is a smooth function of the testing
probability P (Test|ILI, week = w) obtained from the Flutracking data (left panel). Note that this
relationship is non-linear as the Flutracking testing probability approaches zero, in order to ensure that
the population testing probability remains non-negative, and that the Flutracking testing probability is
defined in terms of its initial value µ0 = P (Test|ILI, week = 0). As the Flutracking testing probability
changes (right panel, top), the population testing probability will also change (right panel, bottom).

µ0 = P (Test|ILI, week = 0). When κ > 1, the population testing probability is more sensitive to
changes in the Flutracking testing probability. And when κ = 0 we recover the non-calibrated forecasts
— i.e., the forecasts obtained without accounting for any behaviour changes. We used retrospective
forecasts to identify an optimal value for this scaling parameter.

We produced retrospective weekly influenza forecasts for the 2014, 2015, and 2016 influenza
seasons for the capital cities of four Australian states: Sydney (New South Wales), Brisbane
(Queensland), Melbourne (Victoria), and Perth (Western Australia). At each week, the forecasts
were calibrated based on the Flutracking survey data, by adjusting the testing probability pid(w) at
each week w. This testing probability was used to relate disease incidence in epidemic simulations
to reported surveillance data (see Methods section 4.4). We evaluated how this calibration affected
forecast performance, according to four different forecasting targets:

• “Now-casts”: how well forecasts predicted the observation for the forecasting date itself.
• “Next 2 weeks”: how well forecasts predicted observations 1–2 weeks after the forecasting date.
• “Next 4 weeks”: how well forecasts predicted observations 1–4 weeks after the forecasting date.
• “Next 6 weeks”: how well forecasts predicted observations 1–6 weeks after the forecasting date.

Forecast performance was evaluated using Bayes factors, which are the ratio of the likelihood
that the available data support two competing hypotheses [24,25]. In this study we used the ratio of
the calibrated forecast likelihood (where κ = k) to the non-calibrated forecast likelihood, averaged
over all of the forecasting weeks, and reported the logarithm b̃k of this average, which we denote the
“mean performance” (see Methods section 4.5 for details). Where b̃k > 1 the calibrated forecasts are
considered to be more strongly supported by the data, and where b̃k < −1 the non-calibrated forecasts
are considered to be more strongly supported. To measure forecast performance over multiple years,
we normalised the mean performance b̃k in each year and reported the mean b̂k of these annual values,
which we denote the “mean normalised performance”.

There were consistent trends across these four targets in each city, and substantial differences
in performance between the cities, as summarised in Figure 4. For values of κ between 1 and 5,
the calibrated forecasts strongly out-performed the non-calibrated forecasts in both Brisbane and
Melbourne. Over a similar range, the calibrated forecasts showed no improvement in Sydney, and
performed much worse in Perth than the non-calibrated forecasts. Note that in Sydney, for 0 < κ ≤ 2
the forecast performance was not meaningfully better or worse than the non-calibrated forecasts (κ = 0).
For larger values of κ, the calibrated forecasts were out-performed by the non-calibrated forecasts in
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Figure 4. Mean forecast performance b̃k over the 2014–16 influenza seasons, relative to the
non-calibrated forecasts (the horizontal dashed line); b̃k > 1 indicates substantial performance
improvement, and b̃k < −1 indicates substantial performance reduction. Performance was measured
against four different targets (see text for details), over a range of values for the scaling parameter κ.
For small values of κ, forecast calibration significantly increased skill in Brisbane and Melbourne, had
little effect in Sydney, and decreased skill in Perth.

all cities and for all targets. Based on the mean normalised performance in all cities except Perth, we
identified an optimal value κ = 1.75 (Figure 5). Note that this value is greater than 1, which suggests
that the behaviour of the general population exhibits larger changes than that of the Flutracking cohort.

2.2. Incorporating Flutracking trends into 2017 forecasts

The next question was whether the optimal value of κ, as chosen based on the results for 2014–16,
would have led to improved forecast performance in 2017. In other words, are these findings of value
in a real-time context?

In a retrospective analysis, we measured the forecast performance for the 2017 influenza season
over the same range of values for κ, in order to evaluate how well the chosen value of κ = 1.75 would
have performed. Note that this represents what would have been possible in real-time in the 2017
season. The calibrated testing probabilities pid(w) are shown in Figure 6, and the resulting performance
according to each of the forecasting targets is shown in Figure 7.

When we set κ = 1.75 (the optimal value according to the 2014–16 forecasts) forecast performance
in 2017 was near-optimal according to all forecasting targets in all cities except Perth (Figure 7). This
was even true of Sydney, where similar values of κ in the 2014–16 seasons had minimal impact on
forecast performance. Note that the relative magnitudes of the performance according to each target
is to be expected, since each target considers a different number of observations, and so a ten-fold
improvement in predicting a single observation causes a hundred-fold improvement in predicting two
observations.

For illustration, a subset of the Brisbane 2017 forecasts are shown in Figure 8, which shows how
well the forecast predictions match the reported data over a range of values for κ, and at different times
during the 2017 season.
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Figure 5. The trends in mean annually-normalised performance b̂k for each city over the 2014–16
influenza seasons, relative to the non-calibrated forecasts (the horizontal dashed line). Each set of
coloured lines depicts the performance b̂k for a city against the four chosen forecasting targets (see text
for details). The solid black line is the overall trend for all cities except Perth; the optimal value of κ

according to this trend is indicated by the black circle on this line (κ = 1.75).
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Figure 6. The testing probabilities pid(w) for each value of κ in each city during the 2017 season. When
κ = 1 the (relative) change in pid(w) is the same as the (relative) change in the Flutracking testing
probability; when κ > 1 pid(w) is more sensitive to changes in the Flutracking testing probability; and
when κ = 0 we recover the non-calibrated forecasts (which do not account for any behaviour changes).
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Figure 7. The trends in mean forecast performance b̃k over the 2017 influenza season for each city,
relative to the non-calibrated forecasts (the horizontal dashed line); b̃k > 1 indicates substantial
performance improvement, and b̃k < −1 indicates substantial performance reduction. The black
vertical line indicates κ = 1.75, the value chosen as optimal based on the 2014–16 seasons.
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Figure 8. Example 2017 forecasts for Brisbane, Queensland, for various values of κ. Each column show
forecasts generated for the same date, and each row shows forecasts generated using the same value of
κ. The optimal values of κ for the Brisbane forecasting targets were 2–3 (shown with grey backgrounds),
and this is supported by a visual inspection of the forecasts for each of the forecasting dates.
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3. Discussion

3.1. Principal findings

Incorporating the behavioural trends estimated from the Flutracking self-reported influenza tests
into the 2014–16 forecasts greatly improved influenza forecast performance in both Brisbane and
Melbourne, but had negligible effect on performance in Sydney and substantially reduced performance
in Perth (this was not unexpected, see the next section). We explored the relationship between the
Flutracking survey data and the testing probability in the general population, identifying an optimal
scaling value of κ = 1.75. This should be interpreted as meaning that behaviour changes in the general
population were 75% larger than the behaviour changes characterised in the Flutracking survey data
(where “behaviour changes” refers to healthcare-seeking behaviours and to clinician testing practices).

Using this same value for the scaling parameter in the 2017 forecasts greatly improved
performance in both Brisbane and Melbourne, and also in Sydney. When we explored a wide range
of values for the scaling parameter, these performance improvements were found to be near-optimal.
Performance in Perth was reduced, but not as substantially as in the 2014–16 forecasts.

Similar performance improvements would have been obtained in the 2014–16 seasons, and in the
2017 season, if we had instead assumed that there was no difference between Flutracking participants
and the general population (i.e., had we set κ = 1). This provides evidence that, with the possible
exception of Perth, the behaviour changes characterised by the Flutracking data are not strongly biased.

These findings demonstrate that the insights into healthcare behaviours that are provided by
community-level surveillance systems such as Flutracking can greatly improve the performance of
influenza forecasting systems. This is particularly true in the event of an unusual epidemic, such
as those observed in the 2017 Australian influenza season, where these behaviours may change
substantially relative to previous seasons, and also over the course of the epidemic. Improvements in
forecast performance are also likely in the event of a pandemic, where the perception of risk is likely to
differ markedly from seasonal epidemics [26,27]. Incorporating these kinds of behavioural insights
may also improve the performance of other infectious disease forecasting systems.

3.2. Study strengths and weaknesses

It is intrinsically difficult to incorporate the dynamics of human behaviour into an infectious
disease modelling framework, as we have attempted here, because it involves many complexities and
sources of uncertainty [11,28]. Retrospective analyses of data from multiple surveillance systems have
previously been used to estimate disease severity in, e.g., the 2009 H1N1 pandemic in England [29],
and evidence synthesis in a modelling framework is an active area of research [30]. However, the use
of one surveillance system to calibrate the interpretation of another in real-time is, to our knowledge, a
novel and significant contribution of this study.

The methods outlined here are also applicable beyond the Australian context. Surveillance
systems similar to Flutracking operate around the world, including Influenzanet in many European
countries [31] and Flu Near You in North America [32].

We have used data from multiple cities that routinely experience seasonal influenza epidemics,
but which are geographically and climatically diverse. As the results for Perth show, incorporating
behaviour changes into the forecasts is not guaranteed to improve forecast performance. But it does
appear that the impact is reasonably consistent within a specific context, such as the same city from one
year to the next. This was not an issue of sample size, since there are a similar number of participants
from Western Australia as there are for other Australian states (see Appendix A). Instead, it is likely
due to differences in the surveillance data (detailed in section 4.3). The Perth data were obtained from
the public pathology laboratory (PathWest) and did not include serologic test results or data from
private laboratories. Furthermore, these data contained a much higher proportion of hospitalised cases
(40–60%) than did the data for the other cities in this study. Since people with severe disease will most
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likely seek healthcare, regardless of behavioural influences, we would expect these data to be less
sensitive to behaviour changes in the general community.

It may also reflect, in part, that Western Australia typically experiences an influenza season that
is markedly different from the rest of the country [21]. The testing probability for Western Australia
was near-constant and differed little across the 2014–17 seasons (Figure 1), and so it is possible that the
“signal” in the Flutracking data for Western Australia was, in fact, noise. In contrast, for Sydney there
was no clear signal in the Flutracking data for the 2014–16 seasons (Figure 1) and no improvement in
forecast performance in these years (Figure 4). However, there was a marked change in the testing
probability for Sydney in the 2017 season (Figure 1) and accounting for this yielded a substantial
increase in forecast performance (Figure 7).

3.3. Meaning and implications

Infectious diseases that primarily cause mild (if any) symptoms are difficult to observe, especially
in a consistent manner. The visibility of such cases to a surveillance system is sensitive to human
behaviours that are primarily based on the perception of risk, which is subject to many influencing
factors and can change rapidly [26,27]. Seasonal influenza is an archetypal example, which routinely
presents a substantial challenge to healthcare systems in temperate climates, and whose clinical severity
profile can differ substantially from one year to the next, and from setting to setting (e.g., city to city).
Infectious disease forecasting is now beginning to establish itself as a useful decision-support tool for
public health preparedness and response activities, particularly for seasonal influenza [2–10,14,15].
One of the many challenges for this field is to account for how behaviour changes affect surveillance
data, and how these data should be interpreted [7–10]. Many sources of “non-traditional” data have
been explored for their potential to improve infectious disease forecast performance, such as internet
search engine queries and social media trends [33,34]. While these non-traditional data may indeed
provide useful and valid insights, it is unclear how representative they are of disease burden [12,35],
especially since those populations that experience the greatest burden of disease are also likely to be the
most under-represented in these data [36]. Here, we have used a community-level surveillance system
that is explicitly designed to capture influenza-like illness activity outside of healthcare systems, and
associated healthcare-seeking behaviour. We argue that the Flutracking survey data provide a much
more direct and meaningful quantification of how visible cases are to routine surveillance systems,
and have shown here that incorporation of these data yield substantial improvements in forecast
performance in what was an unprecedented influenza season.

During the early months of the 2017 Australian influenza season (up to the end of July), at which
time we were not using Flutracking data to calibrate our forecasts [10], our near-real-time influenza
forecasts were predicting the epidemic peaks to be similar in size to previous years, and to occur in
early August. These would have been relatively early peaks — although not unusually so — and these
predictions were consistent with expert opinion at that time. Had we been in a position to incorporate
the Flutracking survey data into our forecasts at that time using the methods introduced in this study,
we would have had advance warning that, contrary to our original predictions and expert opinion,
we should have expected later (and, therefore, also larger) epidemic peaks. An early warning of this
kind, which indicates that the current situation appears to be unusual and is inconsistent with “usual”
expectations, is in itself a valuable decision-support tool, even in the absence of an accurate prediction
of what will eventuate.

Seasonal influenza epidemics, and the threat of pandemic influenza, continue to present
substantial challenges for public health preparedness and response in temperate climates, some
100 years after the 1918–19 influenza pandemic. Further complicating these activities are human
behaviour changes, which confound the interpretation of surveillance data. However, as we have
shown here, community-level surveillance is able to provide key insights into behaviour changes that
can substantially improve near-real-time epidemic prediction and assessment. These advantages are
of very real value to public health preparedness and response activities in the 21st century.
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4. Materials and Methods

Access to the influenza surveillance data and the Flutracking survey data was approved by the
Health Sciences Human Ethics Sub-Committee, Office for Research Ethics and Integrity, The University
of Melbourne (Application ID 1646516.3).

4.1. Flutracking survey data

Flutracking weekly surveys were completed online voluntarily by community members in
Australia and New Zealand. Participants responded to the weekly survey from April to October
each year, and submitted surveys for themselves, and/or on behalf of other household members. The
cohort of participants was maintained from year to year, unless participants unsubscribed. Participants
were recruited online through workplace campaigns, current participants, the Flutracking website,
traditional media and social media promotion.

Weekly counts of completed Flutracking surveys, self-reported ILI, and self-reported influenza
tests were obtained from 2014 to 2017 for participants who had a usual postcode of residence in New
South Wales, Victoria, Queensland, and Western Australia (see Appendix A for descriptive statistics of
Flutracking data).

A participant with ILI was defined as having both self-reported fever and cough in the past week
(ending Sunday). Any responses of “don’t know” to “fever”, “cough”, or “time off work or normal
duties” variables were removed from Flutracking data prior to data provision. This removed 0.9% of
all surveys. Only new ILI symptoms were counted in the analysis. New symptoms were defined as the
first week of a participant reporting ILI symptoms (where there were consecutive weeks of reporting
ILI symptoms). If a participant reported ILI symptoms in one week, and then reported at least one
week of no symptoms, followed by another report of symptoms, then this second symptom report was
considered a new incident of ILI.

Participants with ILI who reported seeking health advice for their symptoms were asked whether
they had been tested for influenza. Any self-reported influenza tests during an ILI incident were
recorded in the same week of the new ILI symptoms (even if the test result was reported during the
second, third or fourth week of illness). We acknowledge that Flutracking participant health seeking
and testing behaviours may not be representative of the general Australian population. Flutracking has
disproportionately high numbers of participants who are female, of working age, health care workers,
have higher educational achievement, and have received influenza vaccination. Flutracking has a
disproportionately lower number of participants who are Aboriginal or Torres Strait Islander [20].

4.2. Estimating the probability of an influenza test, given ILI symptoms

We used a Beta distribution to estimate the probability that a Flutracking participant with ILI
symptoms sought healthcare and had a specimen collected for testing, because it is a suitable model
for the distribution of a probability value. If we treat each participant with ILI symptoms as an
independent binomial trial, where success is defined as that participant reporting they had a specimen
collected for testing, then we obtain a Beta posterior distribution from a Beta prior distribution by
conditioning on the results of each weekly Flutracking survey.

We specified separate prior means (µ0) for each state, based on the 2014 Flutracking data for that
state, and used a common prior variance (σ2), in order to determine the initial shape parameters (α0

and β0):
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σ2 = 10−4 (1)

α0 = µ0 ·
[

µ0 · (1− µ0)

σ2 − 1
]

(2)

β0 = (1− µ0) ·
[

µ0 · (1− µ0)

σ2 − 1
]

(3)

P(Test|ILI, week = 0) ∼ Beta(α0, β0) (4)

E [Test|ILI, week = 0] = µ0 (5)

With Nw ILI cases and Tw self-reported tests in the Flutracking survey data for week w, we obtain
the Beta posterior distribution for the probability that a Flutracking participant with ILI symptoms
would seek healthcare and have a specimen collected for testing:

P(Test|ILI, week = w) ∼ Beta(αw, βw) (6)

E [Test|ILI, week = w] =
αw−1 + Tw

αw−1 + βw−1 + Nw
=

αw

αw + βw
(7)

αw = αw−1 + Tw (8)

βw = βw−1 + Nw − Tw (9)

Note that as the total number of reported ILI cases increases, the expected value of the posterior
approaches the observed proportion of ILI cases who reported having a specimen collected:

lim
w→∞

E [Test|ILI] = lim
w→∞

α0 + ∑w
i=1 Tw

α0 + β0 + ∑w
i=i Nw

=
T
N

(10)

4.3. Influenza surveillance data

For three of the cities for which we generated forecasts — Brisbane, Melbourne, and Sydney —
we obtained influenza case notifications data for the 2014–2017 calendar years from the relevant data
custodian. These data include only those cases which meet the Communicable Diseases Network
Australia (CDNA) case definition for laboratory-confirmed influenza [37], and represent only a small
proportion of the actual cases in the community [38].

For Perth, we obtained PCR-confirmed diagnoses from PathWest Laboratory Medicine WA (the
Western Australia public pathology laboratory) for the 2014–2017 calendar years. In comparison to
the notifications data obtained for the other cities in this study, these data do not include serologic
diagnoses. They also contain a much higher proportion of hospitalised cases (40–60%), which is
further magnified because the bulk of PathWest community specimens come from regional and remote
areas. People whose symptoms are sufficiently severe to result in hospitalisation will most likely seek
healthcare, regardless of any other behavioural influences, and so these data are likely to exhibit little
sensitivity to behaviour changes characterised in the Flutracking survey data.

Many specimen do not include a symptom onset date, in which case we used the specimen
collection date as a proxy. The difference between the time of symptom onset and the collection date is
assumed to be less than one week for the majority of cases, and since we aggregate the case counts by
week, we assume that this does not substantially impact the resulting time-series data.

Note that in this study we used the weekly case counts as reported after the 2017 influenza season
had finished and all tests had been processed.
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4.4. Forecasting methods

We generated near-real-time forecasts by combining an SEIR compartment model of infection
with influenza case counts through the use of a bootstrap particle filter [3,9,23].

First, we constructed a multivariate normal distribution for the peak timing and size in years
prior to 2017, to characterise our prior expectation for the 2017 season. Parameter values for the SEIR
model were then sampled from uniform distributions, and each sample was accepted in proportion to
the simulated epidemic’s probability density. See Appendix B for details.

We modelled the relationship between disease incidence in the SEIR model and the influenza
case counts using a negative binomial distribution with dispersion parameter k, since the data are
non-negative integer counts and are over-dispersed when compared to a Poisson distribution [3].

The probability of being observed (i.e., of being reported as a notifiable case) was the product of
two probabilities: that of becoming infectious (pinf), and that of being identified (pid(w), the probability
of being symptomatic, presenting to a doctor, and having a specimen collected). The probability of
becoming infectious was defined as the fraction of the model population that became infectious (i.e.,
transitioned from E to I), and subsumed symptomatic and asymptomatic infections:

pinf(w) = S(w− 1) + E(w− 1)− S(w)− E(w) (11)

pili(w) = pinf(w) · pid(w) + [1− pinf(w)] · pbg (12)

Values for pid(0) and k were informed by retrospective forecasts using surveillance data from
previous seasons [3], while the background rate pbg was estimated from out-of-season levels (March to
May, 2017). The climatic modulation signals F(w) were characterised by smoothed absolute humidity
data for each city in previous years, as previously described [24].

To calibrate the forecasts at each week w, we scaled the reference testing probability pid(0) in
proportion to the change in the expected testing probability (relative to the prior expectation), using a
scaling coefficient κ. When the change was negative (i.e., the expected testing probability was less than
the prior expectation) we instead raised the change to the power κ, to ensure that the calibrated value
pid(w) was strictly positive:

pid(w) = pid(0)×
[

1 + fκ

(
E [Test|ILI, week = w]− µ0

µ0

)]
(13)

fκ(x) =

{
κ · x if x ≥ 0

(x + 1)κ − 1 otherwise
(14)

As required, this is a smooth function of the change in the expected testing probability. We recover
the non-calibrated forecasts by setting κ = 0, in which case pid(w) = pid(0), as shown in Figure 3.

4.5. Forecast performance

Forecast performance for each value of κ was measured via Bayes factors [24,25], relative to the
non-calibrated forecasts. This is defined as the ratio B̃k(w), for each week w, of (a) the likelihood of the
future case counts yw+1:N according to the calibrated forecasts (κ = k); and (b) the likelihood of the
future case counts according to the non-calibrated forecasts (κ = 0):

B̃k(w) =
P(yw+1:N |y0:w, κ = k)
P(yw+1:N |y0:w, κ = 0)

(15)

More generally, we can measure forecast performance relative to any value K for κ:
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B̃k,K(w) =
P(yw+1:N |y0:w, κ = k)
P(yw+1:N |y0:w, κ = K)

(16)

Our interest is in the average performance over the set of all forecasting weeks W:

B̃k =
1
|W| ∑

w∈W
B̃k(w) (17)

B̃k,K =
1
|W| ∑

w∈W
B̃k,K(w) (18)

Note that the forecasting weeks W are only a subset of those weeks for which we have Flutracking
survey data and influenza surveillance data.

Values in excess of 10 are considered as positive or strong evidence that the chosen model is more
strongly supported by the data, and values in excess of 100 are considered as very strong (“decisive”)
evidence [25,39]. Likewise, values less than −10 and less than −100 indicate strong and very strong
evidence that the non-calibrated forecasts are more strongly supported by the data.

Here we consider the logarithms to base 10 of B̃k and B̃k,K, which we respectively denote b̃k and
b̃k,K. The evidence thresholds for b̃k (and also b̃k,K) are therefore:

|b̃k| ≥ 1 =⇒ strong evidence (19)

|b̃k| ≥ 2 =⇒ very strong evidence (20)

where the sign indicates whether the data support the calibrated forecasts (positive values) or the
non-calibrated forecasts (negative values).

To measure the relative performance of different values for κ, we also define the normalised
logarithms b̂k and b̂k,K, expressed as percentages of the maximum absolute value obtained over the
chosen set of values V for κ:

b̂k = 100× b̃k

|b̃M|
M = arg maxv∈V |b̃v| (21)

b̂k,K = 100×
b̃k,K

|b̃N,K|
N = arg maxv∈V |b̃v,K| (22)

4.6. Availability of materials and methods

The data and source code used to perform all of the forecast simulations and generate the results
presented in this manuscript are published online at doi:10.26188/5bf3d60c4ffae, under the terms of
permissive licenses.
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Appendix A. Flutracking statistics

Table A1. Flutracking mean weekly count of completed surveys, participants with ILI and participants
with ILI who sought health advice and reported being tested for influenza, 2014-2017, NSW, Vic., Qld,
and WA.

State Year Completed surveys Participants with ILI Reported tests

NSW 2014 6311 146 3
2015 7242 155 4
2016 8439 178 5
2017 9405 218 14

Vic 2014 2815 64 1
2015 3348 68 2
2016 3894 75 1
2017 4712 104 5

Qld 2014 1736 36 1
2015 2180 46 2
2016 2481 50 2
2017 2822 68 4

WA 2014 1039 24 1
2015 3804 88 1
2016 3511 90 2
2017 3541 72 2

Appendix B. Forecasting methods

We applied the forecasting method used in our previous forecasting studies [3,9,10,23,24], which
combines an SEIR compartment model of infection with influenza case counts through the use of a
bootstrap particle filter.

In brief, we randomly selected parameter values (Table A2) for the SEIR model (Eqs A1–A6) to
generate a suite of candidate epidemics, and defined a relationship between disease incidence in the

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 23, 2018. ; https://doi.org/10.1101/475756doi: bioRxiv preprint 

https://doi.org/10.1101/475756
http://creativecommons.org/licenses/by/4.0/


15 of 19

SEIR model and the influenza case counts (an “observation model”, Eqs A7–A11). This allowed us
to calculate the likelihood of “observing” the case counts from each of the model simulations. The
particle filter (Eqs A12–A16) was used to update these likelihoods (“weights” wi) as data (yt) were
reported, and to discard extremely unlikely simulations in favour of more likely ones (“resampling”).

For each city, we constructed a multivariate normal distribution from the observed peak timing
and size in each of the 2012–16 influenza seasons (Table A3). For each set of sampled parameter values,
we simulated the epidemic that those values described and accepted the sample in proportion to the
simulated epidemic’s probability density according to this multivariate distribution [10].

dS
dt

= −βSI − θseed (A1)

dE
dt

= βSI + θseed − σE (A2)

dI
dt

= σE− γI (A3)

dR
dt

= γI (A4)

β = R0 · γ · [1 + α · F(t)] (A5)

θseed =

{
1
N if S(t) = 1 and t = τ

0 otherwise
(A6)

P(yt | xt; k) =
Γ(yt + k)
Γ(k) · yt!

· (pk)
k · (1− pk)

yt (A7)

pk =
k

k + N · pili
(A8)

pili(t) = pinf(t) · pid(t) + [1− pinf(t)] · pbg (A9)

pbg = bg · N−1 (A10)

pinf(t) = S(t− ∆) + E(t− ∆)− S(t)− E(t) (A11)

xt = [S(t), E(t), I(t), R(t), R0, α, σ, γ, τ]T (A12)

wi(0) =
(

Npx
)−1 (A13)

w′i(t | yt) = wi(t− 1) · P(yt | xi
t; k) (A14)

wi(t | yt) = w′i(t) ·
(Npx

∑
j=1

w′j(t)

)−1

(A15)

Neff(t) =

(Npx

∑
j=1

[
w′j(t)

]2
)−1

(A16)

As in our previous studies, we assumed the relationship between disease incidence in the SEIR
model and the weekly case counts was defined by a negative binomial distribution with dispersion
parameter k (Eqs A7–A8), since the data are non-negative integer counts and are over-dispersed when
compared to a Poisson distribution. The probability of being observed (i.e., of being reported as a
notifiable case, Eq A9) was the product of two probabilities: that of becoming infectious (pinf), and
that of being identified (pid, the likelihood of being symptomatic, presenting to a doctor, and having a
specimen collected). The probability of becoming infectious was defined as the fraction of the model
population that became infectious (i.e., transitioned from E to I), and subsumed symptomatic and
asymptomatic infections (Eq A11).

Values for pid(0) and k were informed by retrospective forecasts using surveillance data from
previous seasons [3], while the background rate pbg was estimated from out-of-season levels (March
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to May) in each year. The climatic modulation signals F(t) were characterised by smoothed absolute
humidity data for each city in previous years, as previously described [24].

Forecasts were generated using the pypfilt and epifx packages for Python, which were
developed as part of this project and are distributed under permissive free software licenses.
Installation instructions and tutorial documentation are available at https://epifx.readthedocs.io/.

Table A2. Parameter values for (i) the transmission model; (ii) the bootstrap particle filter; and (iii) the
observation model. Here, U (x, y) denotes the continuous uniform distribution and U{x, y} denotes
the discrete uniform distribution, where x and y are the minimum and maximum values, respectively.

Meaning Value

β Force of infection Eq A5
R0 Basic reproduction number ∼ U (1.0, 1.6)
σ Inverse of the incubation period (days−1) ∼ [U (0.33, 2.0)]−1

γ Inverse of the infectious period (days−1) ∼ [U (0.33, 1.0)]−1

α Seasonal modulation of R0 ∼ U (−0.2, 0.0)
τ Time of the first infection (days) ∼ U{0, 50}

Npx Number of particles (simulations) 15, 000
Nmin Minimum number of effective particles 0.25 · Npx

∆ Observation period (days) 7
k Dispersion parameter 100
pbg Background observation probability Eq A10
bg Estimated background observation rate see Table A3
pid Observation probability see Table A3
N Population size see Table A3
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Table A3. The forecast parameter values, and the observed peak timing and size, for each of the capital
cities. The observed peaks for 2012–16 were used to construct a multivariate normal distribution for
the peak timing and size in each city, in order to characterise the model priors for the 2017 season.

City Year Peak size Peak timing bg pid(0) N

Brisbane 2012 510 Aug 12
2013 140 Sep 1
2014 509 Aug 24 28 0.003 2,308,700
2015 986 Aug 23 48 0.003 2,308,700
2016 544 Sep 4 46 0.003 2,308,700
2017 1346 Aug 27 40 0.003 2,308,700

Melbourne 2012 360 Jul 15
2013 417 Aug 25
2014 691 Aug 24 36 0.00275 4,108,541
2015 1329 Aug 30 73 0.00275 4,108,541
2016 975 Sep 4 62 0.00275 4,108,541
2017 3962 Sep 10 79 0.00275 4,108,541

Perth 2012 351 Jul 15
2013 106 Sep 15
2014 199 Aug 24 10 0.002 1,900,000
2015 170 Aug 23 20 0.002 1,900,000
2016 221 Aug 14 14 0.002 1,900,000
2017 94 Sep 10 5 0.002 1,900,000

Sydney 2012 535 Jul 1
2013 855 Sep 1
2014 1989 Aug 17 38 0.0076 4,921,000
2015 2933 Aug 23 75 0.0076 4,921,000
2016 2884 Sep 4 138 0.0076 4,921,000
2017 8798 Aug 20 139 0.0076 4,921,000
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