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Abstract  1 

Spontaneous fluctuations underlying the brain activity can reflect the intrinsic organization 2 

of the system, such as the functional brain networks. In large scale, a network perspective 3 

has emerged as a new avenue to explore the functional properties of human brain. Here, we 4 

studied functional diversity in healthy subjects based on the network perspective. We 5 

hypothesized that the patterns of participation of different functional networks were related 6 

with the functional diversity of particular brain regions. Independent component analysis 7 

(ICA) was adopted to detect the intrinsic connectivity networks (ICNs) based on the data of 8 

resting-state functional MRI. An index of functional diversity (FD index) was proposed to 9 

quantitatively describe the degree of anisotropic distribution related with participation of 10 

various ICNs. We found that FD index continuously varied across the brain, for example, 11 

the primary motor cortex with low FD value and the precuneus with significantly high FD 12 

value. The FD values indicated the different functional roles of the corresponding brain 13 

regions, which were reflected by the various patterns of participation of ICNs. The FD 14 

index can be used as a new approach to quantitatively characterize the functional diversity 15 

of human brain, even for the changed functional properties caused by the psychiatric 16 

disorders. 17 

Keywords: functional diversity, ICA, intrinsic connectivity networks. 18 
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Introduction 1 

The functional organization of human brain involves the coordination of brain regions that 2 

exhibit various functional properties (Bressler 1995; Bressler and Menon 2010; Felleman 3 

and Van Essen 1991; Goldmanrakic 1988; Pessoa 2014; Power et al. 2011; Sporns 2013, 4 

2014). Functional diversity of individual brain area is an important kind of property to 5 

systematically understand the large-scale functional organization of human brain. As we 6 

know, some brain regions, such as the primary sensory-motor cortices, are observed to 7 

participate in specialized functions, such as basic sensory and motor functions (Kanwisher 8 

2010). In particular, visual system has been deep studied to find several separate regions 9 

exhibiting highly specialized function such as motion, color and object processing 10 

(Anderson et al. 2013; Kanwisher 2010; Zeki 1993). Meanwhile, there are also brain 11 

regions required by performing multiple cognitive functions. For example, supramarginal 12 

gyrus and middle temporal gyrus are found to be activated across different types of tasks 13 

involved with attention and language production (Braga et al. 2013). The various level of 14 

functional diversity manifested in human brain reveals the different functional role of brain 15 

region. It has become an increasing concern about how to characterize the functional 16 

diversity involved with different brain regions.  17 

Thanks to the advances in neuroimaging techniques, especially the functional MRI (fMRI), 18 

our understanding about functional diversity of human brain has been advanced. Based on 19 

the fast accumulation of task-based fMRI studies, there are some available database with 20 

well-collected details, such as BrainMap and Neurosynth (Fox et al. 2005; Fox and 21 

Lancaster 2002; Laird et al. 2005; Yarkoni et al. 2011). Through mining these databases, the 22 

reverse inferences can be drawn to deduce the engagement of particular functions given the 23 

activation in special brain regions (Poldrack 2006, 2011). Further, the functional diversity or 24 

flexibility across cerebral cortex was estimated based on BrainMap database (Anderson et al. 25 

2013; Yeo et al. 2014). The main idea behind these two studies is to map the voxel-wise 26 

pattern of participating in various task domains or cognitive components. However, the 27 

functional diversity estimated from these databases should be considered as a summary 28 
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based on various task-based studies. As the experimental conditions, including the number 1 

of subjects, the experimental paradigm and the detail about collecting / analyzing data, are 2 

not exactly the same, it is hard to generalize the results to a particular group of subjects or 3 

even to a subject. Based on resting-state fMRI, the overlap of functional networks has been 4 

used as an approach to describe the potential functional heterogeneity of cortical regions 5 

(Xu et al. 2015; Yeo et al. 2013). However, the number of overlapped functional networks 6 

in brain regions is correlated with the statistical threshold as described by Xu et al. (2015). 7 

Obviously, a strict threshold will lead to little overlap between functional networks. In 8 

addition, the functional diversity reflecting the underlying organization of human brain 9 

should be a considered as a continuous property across the whole brain. It might be 10 

inappropriate to describe the functional diversity using discrete number, such as the number 11 

of functional networks. Further, if we intend to find the change of functional diversity, 12 

supposing the existence of the change, between the healthy subjects and the subjects with 13 

psychiatric disorder, a quantitative characterization of functional diversity is required. 14 

Nevertheless, it is still an open question about how to quantitatively characterize the 15 

functional diversity across the whole brain.  16 

In the present study, we sought to provide a frame to characterize the functional diversity 17 

via a quantitative approach. As described by Bressler and Menon (2010), the human brain is 18 

intrinsically organized as functional networks. More remarkable, ICNs detected in 19 

resting-state are generally considered to reflect the networks of brain function, even related 20 

with the task-based co-activation networks (Sadaghiani and Kleinschmidt 2013; Smith et al. 21 

2009; Spreng et al. 2010). Using the functional networks as the object of study has opened a 22 

new avenue to studies the functional diversity across the cerebral cortex. Based on the 23 

viewpoint of network, we hypothesized that a brain region would present a high level of 24 

functional diversity if the region significantly involved in various ICNs. Therefore, we 25 

proposed the FD index to quantitatively characterize the pattern of participation of various 26 

functional networks across the brain. Through the FD index, we estimated the continuous 27 

distribution of functional diversity from the primary cortex to the high-level association 28 

cortex. The primary cortex was found to significantly participate in some particular ICN. 29 
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The high-level association cortex was found to involve in multiple ICNs. The FD index 1 

could provide a data-driven estimation about the level of functional diversity, which could 2 

be used to detect the change of functional diversity caused by the psychiatric disorders. 3 

Materials and Methods 4 

In this study, the ICA model was applied to 100 high spatiotemporal resolution rfMRI data 5 

from the Human Connectome Project (HCP) (Van Essen et al. 2013). We proposed to 6 

estimate the functional diversity both in group-level and in subject-level. Here, we focused 7 

on the group-level. More details about the analysis in subject-level would be shown in the 8 

supplementary part. There were four steps in the analysis. First, we adopted 9 

temporal-concatenated spatial ICA to detect the ICNs based on the preprocessed rfMRI data. 10 

Second, we proposed to calculate the index of components homogeneity (CoHo) which 11 

reflected the voxel-wise local consistency that a brain region involved with various ICNs. In 12 

theory, the voxels around the boundary of two functional networks or the boundary of gray / 13 

white matter would show inconsistent patterns of participating in various components, 14 

compared with their neighbors. Third, we used the Gaussian Mixture Model (GMM) to 15 

estimate the distribution of CoHo values across the brain in order to find the brain regions 16 

with high CoHo values. Considering the potential noise and the boundary between 17 

functional networks, we restricted the next-step calculation in these brain regions. Finally, 18 

we proposed the index of functional diversity (FD index) to further describe the pattern of 19 

participation of various ICNs. Fig. 1 gave an overview of the analytic steps. 20 

Data acquisition  21 

HCP Q3 data were part of the HCP 500 subjects data released at June 2014 22 

(http://www.humanconnectome.org/data/). There were 100 unrelated subjects in this release. 23 

The 100 HCP subjects were between ages 22–35 (mean age was 27.5-31.3; 54 female). As 24 

HCP only provided 5-year age range of each participant, the mean age was also estimated as 25 

a range. During the resting-state scan, subjects underwent two runs of passive fixation (FIX) 26 

in each of two separate sessions. In each session, the phase encoding was in a right to left 27 
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direction in one run and in a left to right direction in the other run. In this study, we chose 1 

the data in session 1 with the left to right phase encoding. Data were acquired on a Siemens 2 

Skyra 3 Tesla scanner using a customized SC72 gradient insert and a customized body 3 

transmitter coil with 56 cm bore size. Functional data consisted of gradient-echo EPI 4 

sensitive to BOLD contrast. Parameters for the resting data were: TR = 720 ms, TE = 33.1 5 

ms, FA = 52°, 2 × 2 × 2 mm voxels, FOV = 208 × 180 mm, and 72 oblique axial slices 6 

(Feinberg et al. 2010; Moeller et al. 2010; Setsompop et al. 2012; Van Essen et al. 2012; 7 

Yeo et al. 2013). Each functional data contained 1200 time points, i.e. 14.55 minutes.  8 

MRI image preprocessing 9 

To calculate the functional diversity map, we adopted the preprocessed HCP rfMRI data 10 

which were gradient distortion corrected, motion corrected, resampled from the original EPI 11 

frames to MNI space and intensity normalized to mean of 10000. More details about the 12 

preprocessing step could be found in (Smith et al. 2013). Further, ICA-based artifacts 13 

removed data were provided by HCP. In detail, ICA was run in the high-pass filtered 14 

preprocessed rfMRI data using FSL’s MELODIC (Beckmann et al. 2005; Beckmann and 15 

Smith 2004; Jenkinson et al. 2012; Smith et al. 2004). Then, the decomposed components 16 

were fed into FIX (FMRIB's ICA-based X-noisifier) which had been trained on HCP data as 17 

an automated component classifier (Griffanti et al. 2014; Salimi-Khorshidi et al. 2014). The 18 

components would be classified as good and bad components. Bad components were then 19 

removed from the rfMRI data. For the HCP provided rfMRI data, the cleanup was done in a 20 

non-aggressive manner, i.e., only the unique variance associated with the bad components 21 

was removed from the data. The 24 motion parameters derived from the motion estimation 22 

were also regressed out of the data (Satterthwaite et al. 2013). After these steps, the 23 

ICA-FIX denoised rfMRI volumetric time-series were provided.  24 

To determine the functional connectivity pattern of brain regions with different level of 25 

functional diversity, we further processed the ICA-FIX denoised rfMRI data using FMRIB 26 

Software Library (FSL: version 5.0) and Analysis of Functional NeuroImages (AFNI). A 27 
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series of preprocessing steps were performed: (1) band-pass filtering the time-series (0.01 1 

Hz < f < 0.1 Hz); (2) regressing the nuisance signals including white matter mean signal, 2 

cerebrospinal fluid mean signal and global mean signal; (3) spatial smoothing the residuals 3 

using 4-mm full-width at half-maximum (FWHM) Gaussian kernel. Here, the resting-state 4 

functional connectivity was based on the Pearson correlation calculated on the processed 5 

rfMRI data. For each subject, the correlation coefficients between the mean time series of 6 

specified brain region and that of each voxel of the whole brain were calculated. These 7 

coefficients were converted to Z-values using Fisher’s Z transformation. A one-sample t-test 8 

was adopted to determine the brain regions significantly correlating with the specified brain 9 

region in a voxel-wise manner. Type I errors in multiple comparisons were controlled by the 10 

false discovery rate (FDR). 11 

Temporal concatenation group ICA 12 

In the group level, Probabilistic Independent Component Analysis (PICA) was adopted to 13 

decompose the temporally concatenated data of individual subject into different spatial 14 

components (Fig. 1: Stage 1) (Beckmann et al. 2005; Beckmann and Smith 2004). PICA 15 

decomposed the rfMRI dataset into a linear mixture of spatially independent components 16 

plus Gaussian noise. Probabilistic principal component analysis (PPCA) was used to infer a 17 

set of spatially whitened observations. Then, the noise covariance structure could be 18 

estimated from the residuals after PPCA. The noise was used for transforming the raw ICs 19 

to Z-statistic maps that represented the amount of variability explained by the entire 20 

decomposition at each voxel location relative to the noise (Beckmann et al. 2005). The high 21 

Z-statistic value illustrated the low probability that the signal in this voxel was generated by 22 

noise. That is, any independent information would have to reveal itself via its derivation 23 

from Gaussianity (Beckmann et al. 2005). In addition, the ICA decomposition was obtained 24 

using FastICA scheme to optimize for non-Gaussianity source estimates (Hyvarinen 1999).  25 

In the current study, we applied the temporally concatenated PICA via Melodic (Melodic 26 

3.13). The number of independent components was set as 20. The 20-components were 27 
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considered as the lower order that represented large-scale ICNs (Smith et al. 2009). We also 1 

tried different number of components (30, 40, 50, 60 and 70) to evaluate the functional 2 

diversity map across various orders of ICA. In addition, it was considered as high model 3 

order to set the number of component as 70 that could result in more sub-networks (Allen et 4 

al. 2011; Kiviniemi et al. 2009). 5 

ICN selection  6 

Before the next step analysis, the components from ICA decomposition should be classified 7 

as corresponding ICNs and artificial non-ICNs. The up-threshold Z-score maps (|Z-score|>5) 8 

of components were used as input for the classification. The components classified as ICNs 9 

had the characteristics: 1) focused on cortical structures; 2) clustered voxel groups. 10 

Meanwhile, the components considered as artificial non-ICNs had the features: 1) located at 11 

the borders of the brain; 2) located in cerebrospinal fluid; 3) located at the proximity of 12 

ventricle; 4) located at white matter; 5) dispersedly distributed around the brain without 13 

large clustered voxel. Two viewers (Congying & Lingzhong) selected the components 14 

following the described criteria separately. Only components confidently classified as ICNs 15 

were preserved for the next-step analysis. 16 

Component Homogeneity (CoHo) 17 

Before considering the functional diversity across the brain, we firstly defined the CoHo 18 

index to measure the local consistency, i.e., the consistent level of brain regions to participate 19 

across various ICNs. We thought that the functional diversity would reflect underlying 20 

functional organization only in brain regions with high CoHo values. Brain regions with low 21 

CoHo values might reflect the instability of the corresponding signals, such as the effect of 22 

noise. In detail, the CoHo index was defined as: 23 

CoHo� � ∑ corr�P�, P����
���

K  

where CoHo� was the component homogeneity at voxel i (Fig. 1: Stage 2). K was the 24 

neighbor voxels around voxel i. K could be set as 6, 18 and 26 corresponding to different 25 

definition of neighbor. Here, K was set as 26 for the nearest neighbor in three-dimensional 26 
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space. P� was the vector composed of Z-scores across the selected ICNs at voxel i. P�� had 1 

the same definition of P�, which was jth neighbor of voxel i. corr�
,
� was the Pearson 2 

correlation coefficient between two vectors. Then, CoHo�  was transformed as Z_CoHo�  3 

using Fisher’s z-transform, which is: 4 

Z_COHO� � 1
2 ln 1 � CoHo�

1 � CoHo�

 

where ln(*) was the natural logarithm. Here, the transformation was used to extend the scale 5 

of CoHo� for clearly showing the various level of local consistency around the cortex.  6 

Gaussian Mixture Model (GMM)  7 

Inspired by Melodic in which GMM was firstly adopted to inference the activation part in 8 

each component (Beckmann and Smith 2004), we also modeled the distribution of CoHo 9 

values across the brain via GMM. To be noticed, as an alternative to GMM, Melodic had been 10 

changed to use one Gaussian distribution and two Gama distribution to model the Z-scores in 11 

each component referring to (Hartvig and Jensen 2000). Here, we focused on GMM which 12 

had the form as: 13 

p�Z_COHO�� � � π�N
�

���

�µ�, σ�
�� 

where π� was the mixture coefficient for the lth Gaussian distribution. N �µ�, σ�
�� was a 14 

Gaussian distribution with mean of µ� and variance of σ�
�. N was the number of Gaussian 15 

distribution. p�Z_COHO�� was the probability density at the value Z_COHO� which had the 16 

same mean as described above. Using a sufficient number of Gaussian distribution, GMM 17 

could model the probability density function of any input signal (Bishop 2006). Therefore, an 18 

analytical expression of the distribution of CoHo value could be deduced. The estimation of 19 

the parameters for the model was based on the expectation-maximization (EM) algorithm 20 

(Bishop 2006). The number of mixed Gaussian distribution was decided by the Bayesian 21 

information criterion (Schwarz 1978). We thought that the deduced function of mixture 22 

distribution would have peaks and valleys that reflected the underling structure of ICNs. 23 

Some peak could be used as a threshold to generate the brain regions with high values.  24 

Functional diversity (FD)  25 

After calculating the CoHo values across the brain, we defined the index of functional 26 

diversity as: 27 
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FD� � 1 �
 N�∑ �!Z�

	! � E�|Z�|����
	��

 �N � 1� ∑ �Z�
	���

	��

 

where Z�
	 was the Z-scores at the voxel i within component c. N was the number of the 1 

selected components. FD� $ %0, 1' was the index of functional diversity at voxel i. More 2 

specially, FD was an index that measured the level of anisotropic distribution related with 3 

participation of various components. If a voxel equably participated in each separate ICN, 4 

FD value at this voxel would be calculated as 1. Conversely, if the voxel specifically 5 

participated in only one ICN, FD value would be 0. To be notice, FD value would be high at 6 

some voxel with random Z-scores, such as the voxels located in white matter. Therefore, we 7 

emphasized to calculate FD at brain regions with high CoHo values. These regions were 8 

related with significant signal expression of some ICNs, which were impossible to be mainly 9 

generated by noise or uncertainties in calculating PICA model. In addition, we adopted the 10 

absolute Z-scores for calculating FD inspired by the inference process in Melodic. By using 11 

Gaussian and Gama distribution, the inference of significant activation or deactivation was 12 

simultaneously modeled as probability in Melodic. The significant activation or deactivation 13 

in some component was related with the derivation from the Gaussian noise. The further the 14 

derivation, the more possible the activation/deactivation obtained information. Therefore, we 15 

used the absolute Z-score to model the extent that a voxel was involved with a particular 16 

component. In other words, we only considered the extent about participation of ICN without 17 

consideration of the positive or negative pattern. After masking the derived functional 18 

diversity map, we spatially smoothed the masked map using 4-mm FWHM Gaussian kernel. 19 

To be notice, the mask adopted here only included the cortical structure. The subcortical 20 

tissues were excluded by using the max-probability atlases with 0.25 probability included in 21 

FSL software (Harvard-Oxford subcortical structural atlases kindly provided by the Harvard 22 

Center for Morphometric Analysis). The cerebellum was excluded based on the probabilistic 23 

MR atlas of the human cerebellum with 0.25 probability (Diedrichsen et al. 2009). 24 

Results 25 

We here focused on the group-level results based on the group ICA decomposition of 20 26 

components. The results based on subject-level or more model orders were shown in the 27 

supplementary part. In addition, there were some abbreviations for the names of brain 28 

regions used in the following part: temporoparietal junction (TPJ), 29 

parietal-temporal-occipital junction (PTOJ), temporal-occipital junction (TOJ), anterior 30 
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cingulate cortex (ACC), middle cingulate cortex (MCC), posterior cingulate cortex (PCC), 1 

middle frontal gyrus (MFG), superior frontal gyrus (SFG), inferior parietal lobule (IPL), 2 

superior parietal lobule (SPL), middle temporal gyrus (MTG), dorsolateral frontal cortex 3 

(DLPFC), middle occipital gyrus (MOG), inferior frontal gyrus (IFG). 4 

CoHo map and the GMM estimation 5 

Two viewers (Congying & Lingzhong) selected 19 components from 20 decomposed 6 

components as the reflection of underlying ICNs. The non-selected component was related 7 

with signal from white matter. The selected components were shown in Supplemental Fig. 1. 8 

Figure 2 presented the distribution of group-level CoHo and the deduced brain regions with 9 

high CoHo values. The group-level CoHo map without threshold was shown in Fig. 2A 10 

&2B as surface view and slices separately. Illustratively, regions with evidently high CoHo 11 

value from Fig. 2A mainly included visual cortex (significantly distributed in visual area V1 12 

& V2) and primary sensory-motor cortices. As the related signal had been selected out, the 13 

CoHo values of white matter were significantly low (Fig. 2B). There still were some brain 14 

regions with relatively high CoHo values comparing with ones of white matter. These 15 

regions mainly distributed in association cortex of TPJ and PTOJ, PCC, precuneus and 16 

MFG.  17 

The estimation of GMM on the calculated CoHo map was shown in Fig. 2C. According to 18 

the Bayesian information criterion, the number of mixed Gaussian distributions was chosen 19 

as 8. The mixture of these eight Gaussian distributions was shown in Fig. 2C. There were 20 

obvious two peaks and one valley in the estimated density function. We found that the 21 

existence of valley was resulted from the different CoHo values between white matter and 22 

grey matter (Fig. 2A & 2C). In order to define the next-step brain mask with more 23 

confidence, we chose a relatively high threshold that was the CoHo value corresponding to 24 

the last peak location (the red line in Fig. 2C). The location was detected based on the 25 

derivative of the estimated probability density function. The brain regions passing through 26 
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the threshold were shown in Fig. 2D as slices. We found that the white matter was 1 

significantly excluded. 2 

Functional diversity (FD) 3 

We calculated the defined FD index. The results were shown in Fig. 3. As an overview, the 4 

FD index within the derived mask was shown in Fig. 3A. We found that the primary cortex 5 

mainly including visual cortex and primary sensory and motor cortices had low FD values. 6 

The association cortices and higher order association cortices presented high FD values, for 7 

example, precuneus, IPL and TOJ. In order to find the illustrative brain regions with 8 

sufficient low or high FD values, we checked the histogram of the FD values within the 9 

mask (Fig. 3B). We separately chose the brain regions with FD values of top or bottom 5%. 10 

We further adopted a cluster-size correction for the derived brain regions, i.e., only the brain 11 

regions with cluster-size greater than 100 voxels were reserved. The corrected results were 12 

shown in Fig. 3C. The brain regions with significant low FD values were distributed in 13 

visual area V1 & V2 and bilateral postcentral gyrus (left side in Fig. 3C). Meanwhile, there 14 

were brain regions with significant high FD values, which included precuneus, PCC, SFG, 15 

left supramarginal gyrus, left IPL, left MTG and left TOJ (right side in Fig. 3C). 16 

Participation of ICNs and functional connectivity 17 

In order to illustrate the underling structures resulting in different FD values, we analyzed 18 

the patterns of participation of ICNs in the brain regions with significant low or high FD 19 

values (just as described above). We adopted probability map of each components 20 

generated by fitting the model of one Gaussian and two Gama distributions. Then, the 21 

participation of ICNs with each brain region was defined as the mean probability of this 22 

region participating in the corresponding component.  23 

There were five derived regions with low FD values, which were named as ROI1 to ROI5 24 

(surface view saw in Fig. 4). We showed the fingerprints that were the mean probabilities 25 

participating in different ICNs. We noticed the common feature in these ROIs, which was 26 
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the significant participation (mean probability > 0.5, the light grey circle in Fig.4 1 

corresponding to the probability of 0.5) only involved with some particular ICN. More 2 

specially, ROI1 & ROI2 which were mainly distributed in left /right visual area V1 and V2 3 

were significant participated in independent component 3 (IC3; the red and yellow ROIs in 4 

Fig. 4). All these independent components could be seen in Supplemental Fig. 1. From the 5 

distribution of IC3, we found that up-threshold part of IC3 was mainly shown up in the 6 

central-field representation of left /right visual areas V1 and V2. ROI3 located in primary 7 

visual cortex (V1), which specially showed in IC2 (the green ROI in Fig. 4). IC2 mainly 8 

occupied peripheral V1 and V2. ROI4 & ROI5 were mainly shown up in bilateral 9 

postcentral gyrus, which were significantly related with IC14 (the blue and purple ROIs in 10 

Fig. 4). The up-threshold part of IC14 was mainly located in bilateral postcentral gyrus. We 11 

found that the ICs related with these ROIs almost distributed in special and localized brain 12 

areas. 13 

We further calculated the resting-state functional connectivity for these five ROIs to provide 14 

more insights for the properties of these ROIs (Fig. 5). The threshold used for testing the 15 

significance of functional connectivity was set as p < 0.001 (FDR corrected) and 16 

cluster-size > 200 voxels. ROI1 & ROI2 showed positive correlation with each other, and 17 

negative correlation with somatosensory and somatomotor cortex. ROI3 was positively 18 

correlated with bilateral V1, and negatively correlated with the bilateral supramarginal 19 

cortex. ROI4 & ROI5 positively correlated with each other. Some parts of DLPFC were 20 

found to negatively correlate with ROI4 & ROI5. 21 

There still were five derived brain regions with high FD values. We used ROI 6 to ROI 10 22 

to name these brain regions. We gave the surface view and the finger-prints of the 23 

ICNs-participation of these ROIs (Fig. 6). We found that the brain regions with high FD 24 

values presented complex patterns of participation of ICNs. These regions significantly 25 

participated in various ICNs. In detail, ROI6, which mainly located in precuneus and PCC, 26 

participated in IC1, 4, 7, 8, 10, 11 and 13 (the yellow ROI in Fig. 6). ROI7 was mainly 27 

shown up in left IPL, which participated in IC5, 6, 7, 8, 10, 13, 18 and 19 (the green ROI in 28 
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Fig. 6). ROI8 was found in SFG, which had the participation in IC1, 5, 7, 9, 13, 18 and 19 1 

(the blue ROI in Fig. 6). ROI9 was shown up in left MTG, which participated in IC5, 6, 7, 8, 2 

9, 10 and 19 (the red ROI in Fig. 6). ROI10 located in left TOJ, which participated in IC1, 4, 3 

6, 10, 12, 15, 18 and 19 (the orange ROI in Fig. 6). The related ICs were shown in 4 

Supplemental Fig. 1. We found that the ICNs related with these ROIs were pervasively 5 

distributed, rather focused on some localized regions. 6 

The pattern of functional connectivity was recognized for these five ROIs with high FD 7 

value. The maps of functional connectivity were shown in Fig. 7, which were corrected on 8 

FDR (p < 0.001) and cluster-size (> 200 voxels). More specially, ROI6 presented positive 9 

functional connectivity with its contralateral part, bilateral angular gyrus and MFG. The 10 

negative correlation was shown up in somatosensory and somatomotor cortex and insular. 11 

ROI7 positively correlated with its contralateral part, some part of DLPFC, insular, MTG 12 

and SFG, and, negatively correlated with precuneus, PCC, MFG and bilateral MOG. ROI8 13 

showed positive correlation with SFG, MFG, angular gyrus and some part of DLPFC, and, 14 

negative correlation with precuneus and MOG. ROI9 had positive functional connectivity 15 

with its contralateral region, bilateral IPL and left IFG. The negative functional connectivity 16 

was found in primary visual area, PCC, and MFG. ROI10 showed positive correlation with 17 

its contralateral part, visual cortex, SPL, and precuneus, and, negative correlation with MFG, 18 

ACC, MCC and bilateral angular gyrus. 19 

Discussion 20 

In the present study, we utilized the voxel-wise participation of ICNs detected by sICA to 21 

estimate the functional diversity across brain. The CoHo index was firstly defined to decide 22 

the brain regions with homogeneous pattern of participating in various ICNs. Then, the FD 23 

index was calculated within the brain regions decided by CoHo index in a voxel-wise 24 

manner. We further illustrated the detailed fingerprints of participant patterns found in brain 25 

regions with high or low FD values to explore the cause of different FD values. 26 
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The hypothesis that the organization of human brain function depends on the network 1 

structure among different brain regions is supported by a substantial body of evidence 2 

(Bressler 1995; Bressler and Menon 2010; M. Mesulam 2009; M. M. Mesulam 1990; 3 

Rubinov and Sporns 2010; Sporns 2013, 2014). The segregation and integration between 4 

brain regions, such as the modular structure and the rich-club organization, have been 5 

estimated by using network model (Power et al. 2011; Sporns 2013; van den Heuvel and 6 

Sporns 2011; Yeo et al. 2011). Based on the hypothesis of network, the functional 7 

properties of brain regions, such as functional connectivity and functional co-activation 8 

pattern, within a special network should be more similar than the brain regions located in 9 

different networks. In the perspective of clustering, brain regions attributed to a special 10 

network could be clustered as one cluster using the functional or structural features (Fan et 11 

al. 2014; Yeo et al. 2011). The functions related with the specialized network have been 12 

estimated by recent studies (Laird et al. 2011; Smith et al. 2009). Especially, the 13 

resting-state networks are similar with ‘intrinsic’ functional network architecture presenting 14 

across many tasks (Braga et al. 2013; Cole et al. 2014). The full repertoire of functional 15 

networks utilized in action of the brain is found to continuously show up at resting-state 16 

(Smith et al. 2009). So, the function-specialized networks could be found in resting-state. 17 

Based on network perspective, new properties, especially in large scale, have been found in 18 

the functional organization of human brain. For example, Power et al. has proposed to 19 

define the hubs in human brain using the network as object of study, which are different 20 

with the voxel-wise defined hubs (Power et al. 2013). Braga et al. has estimated the echoes 21 

of brain by using a searchlight approach over the whole brain to find the particular 22 

searchlights involved with multiple functional networks (Braga et al. 2013). These found 23 

searchlights were believed to contain the echoes of the neural signals from multiple 24 

functional networks. It was supposed that these found searchlights played important roles in 25 

connecting various functional networks. The network perspective maybe opens a new 26 

avenue to further understand the function properties of human brain, especially in large 27 

scale (Pessoa 2014). We also adopted the network perspective in our study to describe the 28 

large-scale functional diversity of brain regions to some extent.  29 
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The backbone of our study was the detection of the network structures in human brain. As 1 

we focused on the data from rfMRI, seed-based functional connectivity and ICA-based 2 

decomposition had emerged as two dominant approaches commonly used to detect ICNs 3 

(Biswal et al. 1997; De Luca et al. 2006). The ICA-based identification of ICNs had been 4 

characterized with high robustness and test-retest reliability (Damoiseaux et al. 2006; Zuo 5 

et al. 2010). The estimation of ICNs under a resting condition had been described as a 6 

‘killer application’ of ICA (Beckmann 2012). More specially, we adopted the PICA to 7 

estimate the ICNs. The statistically independent source signal was hypothesized to compose 8 

of non-Gaussian signal plus Gaussian noise. Using the process of normalization of 9 

voxel-wise residual noise, the variances of Gaussian noises in different source signals were 10 

normalized as unit variance. The Gaussian/Gamma mixture approach modeled the 11 

normalized Gaussian distribution for the background noise and two Gamma distributions 12 

for the activations and de-activations. So, the voxel-wise Z-statistics in normalized 13 

independent component maps illustrated the extent that the activation in corresponding 14 

voxel was affected by normalized Gaussian noise. For instance, a high Z-statistic value at a 15 

voxel illustrated that the activation at the voxel was barely generated by the Gaussian noise. 16 

It had been proposed that the voxel-wise Z-statistics could be used to illustrate the extent 17 

that the voxel was significantly modulated by the time courses of independent component 18 

(Beckmann 2012). Therefore, we proposed to use the voxel-wise Z-statistic to measure the 19 

extent that a voxel participated in particular ICN.  20 

CoHo index here was proposed to detect the brain regions which consistently participated 21 

in various ICNs. The index was defined in voxel level, which concerned the consistency 22 

between a voxel and its neighboring voxels. The voxel with low regional consistency was 23 

suspected to be affected by the noise of the data or boundary effects, i.e., located in the 24 

boundary of various ICNs. For example, we had observed that the voxels in temporal lobe 25 

and in orbitofrontal cortex had low CoHo values (Fig. 2A). Large bold signal loss in these 26 

regions had been found in other study (Wig et al. 2014). So, we suspected that the low 27 

CoHo value here was caused by the signal loss. The brain regions with high CoHo values 28 

would attract more interests for the next-step calculation of functional diversity, as these 29 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 24, 2018. ; https://doi.org/10.1101/475855doi: bioRxiv preprint 

https://doi.org/10.1101/475855


 

regions reflected the functional properties with more confidence in the current dataset. 1 

Attempting to detect the brain regions with high CoHo values, we adopted the GMM model 2 

to calculate the probability density distribution of the CoHo value. We observed a bimodal 3 

pattern in the distribution (Fig. 2C). The first peak was corresponding to the distribution of 4 

CoHo value in white matter. The second peak was related with the CoHo value in gray 5 

matter. Through CoHo index, we could observe the different properties between white 6 

matter and gray matter. We used the CoHo value corresponding to the second peak as the 7 

threshold to define the brain regions with high CoHo values. In fact, the approach based on 8 

threshold was somewhat arbitrary. We considered this threshold as a strict one, as some part 9 

of gray matter was excluded according to the threshold. We tended to adopt a conservative 10 

threshold to detect the brain regions with consistent participant pattern of ICNs. 11 

The functional diversity was described by FD index that was defined as the extent of the 12 

isotropic participation of ICNs. If a brain region participated in various ICNs evenly, this 13 

region would have a high FD value. The brain regions with non-significant participation of 14 

ICNs, such as part of white matter, would have a high FD value, as the Z-statistics in these 15 

regions were mainly affected by Gaussian noise. Therefore, the mask from CoHo map was 16 

adopted to preserve that the FD value was not mainly caused by noise. We observed that the 17 

primary cortex showed lower FD values, such as the sensory and motor cortices. Some part 18 

of association cortex showed much higher FD values. From the selected brain regions that 19 

had significantly low or high FD values, the primary cortex with low FD values only 20 

significantly participated in one ICNs (Fig. 4). The association cortex with high FD values 21 

represented a more complex pattern of participation, which significantly participated in 22 

various ICNs. ICNs detected in resting-state had correspondence with the co-activation 23 

structures found in task state (Smith et al. 2009). These ICNs are supposed to obtain 24 

functional specialization. In large scale, the brain region with low FD value, i.e., the 25 

participation of unique ICN, might illustrate that the region was related with unique 26 

function. On the other hand, the region involved in various brain functions might participate 27 

in several ICNs. The functional connectivity of these selected regions further validated the 28 

difference function properties between brain regions with low / high FD values. We found 29 
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that the regions with low FD values mainly had significant functional connectivity with 1 

their contralateral parts. The brain regions with high FD values showed a more distributed 2 

pattern of functional connectivity. It was corresponding with other findings that the 3 

higher-order brain systems obtained long-range functional connectivity (Sepulcre et al. 4 

2012; Tomasi and Volkow 2010, 2011). 5 

In summary, we adopted the perspective of networks to study the functional properties of 6 

human brain in large scale. Our approach allowed us to quantitatively characterize the 7 

degree of the participation of ICNs across the brain by FD index. FD index could be 8 

considered as a potential index to characterize the functional diversity. It was noticed that 9 

the functional diversity changed from primary cortex to high-order association regions 10 

revealed by a quantitative index. In future, a particular interesting application of the FD 11 

index was involved with the application to the psychiatric disorders, such as schizophrenia 12 

which was suspected to be related with disabled integration of various functions. 13 
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Figure legends 1 

 2 

Fig 1. Schematic representation of the analytic steps for calculating the FD index. GMM 3 

was the abbreviation of Gaussian Mixture modeling. 4 

 5 

Fig 2. The group-level CoHo map and the GMM estimation. (A) The group-level CoHo map 6 

projected on surface. (B) The transverse slices of group-level CoHo map. (C) The estimation of 7 

GMM. The blue curve was the Gaussian mixture function to model the underlying probability 8 
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density function. The chromatic histogram was derived from the CoHo map. The color here was 1 

corresponding to the color on Fig.2A. The red line was the chosen threshold. (D) The transverse 2 

slices of the brain regions with CoHo values greater than the threshold. 3 

 4 

 5 

Fig 3. The distribution of FD index. (A) The derived FD index within mask. (B) The 6 

histogram of FD index. The color in the histogram was corresponding to the color on Fig.3A. 7 

(C) The significant brain regions with low or high FD values. The blue regions in left side 8 

were corresponding to low FD values. The red regions in right side were corresponding to 9 

high FD values. 10 
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 1 

Fig 4. The pattern of ICNs-participation for the derived brain regions with low FD values. 2 

The color of the brain region on the surface was corresponding with the color in the 3 

fingerprint. We named the brain regions as ROI1 (red), ROI2 (yellow), ROI3 (green), ROI4 4 

(purple) and ROI5 (blue). The grey circle in the fingerprint represented the probability of 0.5. 5 

The black circle represented the probability of 1. 6 

 7 

 8 

Fig 5. The pattern of functional connectivity for the five ROIs with low FD value. One 9 

sample t-test was adopted to test the significance of the functional connectivity with 10 

FDR-correction at p < 0.001 and cluster-size > 200 voxels. 11 

 12 
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 1 

Fig 6. The pattern of ICNs-participation for the derived brain regions with high FD values. 2 

The color of the brain region on the surface was corresponding with the color in the 3 

fingerprint. We named the brain regions as ROI6 (yellow), ROI7 (green), ROI8 (blue), ROI9 4 

(red) and ROI10 (orange). The grey circle in the fingerprint represented the probability of 0.5. 5 

The black circle represented the probability of 1. 6 

 7 

 8 

Fig 7. The pattern of functional connectivity for the five ROIs with high FD values. One 9 

sample t-test was adopted to test the significance of the functional connectivity with 10 

FDR-correction at p < 0.001 and cluster-size > 200 voxels. 11 
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