
1 
 

MR-TRYX: Exploiting horizontal pleiotropy to infer novel causal pathways 

 

Yoonsu Cho1, Philip C Haycock1, Tom R Gaunt1, Jie Zheng1, Andrew P Morris2, George 

Davey Smith1, Gibran Hemani1  

 

1 MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, 

University of Bristol, Bristol, UK 

2 Department of Biostatistics, University of Liverpool, Liverpool, UK. 

 

 

*Correspondence and request for reprints: Gibran Hemani, MRC Integrative Epidemiology 

Unit, Bristol Medical School, University of Bristol, Oakfield House, Bristol, BS8 2BN, UK. 

E-mail: g.hamani@bristol.ac.uk. 

 

 

 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2018. ; https://doi.org/10.1101/476085doi: bioRxiv preprint 

https://doi.org/10.1101/476085
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 
 

Abstract 

Background: In Mendelian randomization (MR) analysis, variants that exert horizontal 

pleiotropy, influencing the outcome through a pathway excluding the hypothesised exposure, 

are typically treated as a nuisance. However, they could provide valuable information for 

identifying novel pathways to the traits under investigation. 

Methods: Following the advice of William Bateson to “TReasure Your eXceptions”, we 

developed the MR-TRYX framework. Here, we begin by detecting outliers in a single 

exposure-outcome MR analysis. Outliers are hypothesised to arise due to horizontal 

pleiotropy, so we search through the MR-Base database of GWAS summary statistics to 

systematically identify other (“candidate”) traits that associate with the outliers. We 

developed a LASSO-based multivariable MR approach to model the heterogeneity in the 

exposure-outcome analysis due to pathways through candidate traits.  

Results: Through simulations we showed that commonly used outlier removal methods can 

increase type 1 error rates, but adjustment for detected pleiotropic pathways can improve 

power without the increase in type 1 error rates. We illustrate the use of MR-TRYX through 

investigation of several causal relationships: i) systolic blood pressure on coronary heart 

disease (CHD); ii) urate on CHD; iii) sleep duration on schizophrenia; and iv) education level 

on body mass index.  Many pleiotropic pathways were uncovered with already established 

causal effects, validating the approach. Novel putative causal pathways, such as pain related 

phenotypes influencing CHD, were also identified. Adjustment for these pleiotropic pathways 

substantially reduced the heterogeneity across the analyses. 

Conclusion: Incorporating GWAS on thousands of traits in MR-Base to model horizontal 

pleiotropy in MR analysis can improve power through reducing heterogeneity, whilst 

enabling the identification of novel causal relationships. 
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Introduction 

Mendelian randomization (MR) is now widely used to infer the causal influence of one trait 

(the exposure) on another (the outcome) 1,2. It is generally performed by obtaining genetic 

instruments for an exposure through genome-wide association studies (GWAS). If the 

instruments are valid, in that they are unconfounded and influence the outcome only through 

the exposure (vertical pleiotropy), then they will each provide an independent, unbiased 

estimate of the causal effect of the exposure on the outcome 3. Meta-analysing these estimates 

can provide a more precise estimate of the causal relationship between the exposure and the 

outcome 4,5. If, however, some of the instruments are invalid, particularly because they 

additionally influence the outcome through pathways that bypass the exposure (horizontal 

pleiotropy) 3, then the causal effect estimate is liable to be biased. To date, MR method 

development has viewed horizontal pleiotropy as a nuisance that needs to be factored out of 

the analysis 6-9. Departing from this viewpoint, here we exploit horizontal pleiotropy as an 

opportunity to identify new traits that putatively influence the outcome. We then use this 

knowledge to improve the original exposure-outcome estimates. 

A crucial feature of MR is that it can be performed using only GWAS summary data, where 

the causal effect estimate can be obtained solely from the association results of the 

instrumental single nucleotide polymorphisms (SNPs) on the exposure and on the outcome 5. 

This means that causal inference between two traits can be made even if they have never been 

measured together in the same sample of individuals. Complete GWAS summary results have 

now been collected from thousands of complex trait and common diseases 10, meaning that 

one can search the database for candidate traits that might be influenced by the outliers. In 

turn, the causal influence of each of those candidate traits on the outcome can be estimated 

using MR by identifying their instruments (and excluding the original outlier). Should any of 

these candidate traits putatively associate with the outcome then this goes some way towards 
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explaining the horizontal pleiotropic effect that was exhibited by the outlier SNP in the initial 

exposure-outcome hypothesis. 

Several methods exist for identifying outliers in MR, each likely to be sensitive to different 

patterns of horizontal pleiotropy. Cook’s distance can be used to measure the influence of a 

particular SNP on the combined estimate from all SNPs 11, identifying SNPs with large 

influences as outliers. Steiger filtering removes those SNPs that do not explain substantially 

more of the variance in the exposure trait than in the outcome, attempting to guard against 

using SNPs as instruments that are likely to be associated with the outcome through a 

pathway other than the exposure 12. Finally, meta-analysis tools can be used to evaluate if a 

particular SNP contributes disproportionately to the heterogeneity between the estimates 

obtained from the set of instruments, and this has been adapted recently to detect outliers in 

MR analysis 13-15. A potential limitation of heterogeneity-based outlier removal is that this 

practice is a form of cherry picking 9,16. While outlier removal can certainly improve power 

by reducing noise in estimation, it could also potentially induce higher type 1 error rates, 

which we go on to explore through simulations. 

Recent large-scale MR scans have indicated that horizontal pleiotropy is widespread based on 

systematic analysis of heterogeneity 15,17. This suggests that many SNPs used as instruments 

are likely to associate with other traits, which in turn might associate with the original 

outcome of interest – hence giving rise to heterogeneity. As such we have an opportunity to 

identify novel pathways through exploiting outliers. Equipped with automated MR analysis 

software, outlier detection methods and a database of complete GWAS summary datasets, we 

developed MR-TRYX (from the phrase coined by William Bateson, “Treasure your 

exceptions18”), a framework for identifying novel putative causal factors when performing a 

simple exposure-outcome analysis. In this paper we present simulations to show how 

knowledge of horizontal pathways can be used to discover novel putative causal factors for 
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an outcome of interest, and to also improve the power and reliability of the original exposure-

outcome association analysis. We apply MR-TRYX to several exemplar analyses to 

demonstrate its potential utility. 

 

Methods 

Overview of MR-TRYX 

Figure 1 shows an overview of the approach. MR-TRYX is applied to an exposure-outcome 

analysis and it has two objectives. The first is to use outliers in the original exposure-outcome 

analysis to identify novel putative factors that influence the outcome independently of the 

exposure. The second is to re-estimate the original exposure-outcome association by 

adjusting outlier SNPs for the horizontal pleiotropic pathways that might arise through the 

novel putative associations. 

 

Outlier detection 

Several outlier detection methods now exist that are based on the contribution of each SNP to 

overall heterogeneity in an inverse-variance weighted (IVW) meta-analysis 19. We used the 

approach implemented in the RadialMR R package (https://github.com/WSpiller/RadialMR) 

to detect outliers. Full details are provided elsewhere 20, but briefly, we used the so-called 

‘modified 2nd order weighting’ approach to estimate total Cochran’s Q statistic as a measure 

of heterogeneity, as well as the individual contributions of each SNP, qi 
20. This has been 

shown to be comparable to the simulation-based approach in MR-PRESSO 15,21. The 

probability of a SNP being an outlier is calculated based on qi being chi-square distributed 

with 1 degree of freedom. For demonstration purposes we adopted a conservative p-value 
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threshold for identifying outliers, dividing 0.05 by the number of SNPs as a correction for 

multiple testing. We are not, however, suggesting that this arbitrary threshold will be optimal 

for identifying outliers, and users can apply other approaches or thresholds through the MR-

TRYX software. We employed modified 2nd order weights throughout this paper to avoid 

problems arising due to the no measurement error in the exposure (NOME) assumption 20, 

assuming a multiplicative random effects model if any residual heterogeneity was detected.   

Candidate trait detection 

Traits associated with the detected outliers could causally influence the outcome. MR-TRYX 

searches the MR-Base database to identify the traits that have associations with the detected 

outliers. By default, we limit the search to traits for which the GWAS results registered at 

MR-Base have more than 500,000 SNPs and sample sizes exceeding 5,000. Traits that have 

an association with outlier SNPs at genome-wide p-value threshold (p < 5 x 10-8; in keeping 

with traditional GWAS thresholds used for instrument selection) are regarded as potential 

risk factors for the outcome and defined as “candidate traits”. Each candidate trait is tested 

for its influence on the original exposure and outcome traits (Figure 1) using the IVW 

random effects model. We take forward putative associations based on FDR < 0.05 but we 

note that the use of arbitrary thresholds is problematic 22,23, and we use them here to make 

high dimensional investigations more manageable. 

Assessing causal estimates of the association of candidate trait with the outcome 

Suppose we have  instruments for the exposure  where  is an outlier in the 

x-y MR analysis due to an association with candidate trait , where E indicates the number of 

genetic variants. Also,  has  genetic instruments, where M is the number of 

genetic variants for . To obtain the estimate of  uncontaminated by shared genetic 

effects between  and  (Figure 1A), we perform multivariable MR analysis 24. We obtain a 
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unique list of  clumped instruments for both  and , and then obtain the genetic effects of 

each of these SNPs on the exposure , candidate trait , and outcome . Finally, we 

estimate the causal influence of  on  conditioning on  by regressing  

weighted by the inverse of the variance of the  estimates. The whole process is automated 

within the TwoSampleMR R package which connects to the MR-Base database. 

In the case of an outlier SNP associating with many candidate traits we first apply a LASSO 

regression of  and use cross validation to obtain the 

shrinkage parameter that minimises the mean squared error. We retain only the candidate 

traits that are putatively associated with the outcome and have non-zero effects after 

shrinkage. Then we apply remaining traits in a multivariable model with  against the 

outcome, as described above 24. We perform the LASSO step because many traits in the MR-

Base database have considerable overlap and redundancy, and the statistical power of 

multivariable analysis depends on the heterogeneity between the genetic effects on the 

exposure variables 24. Using LASSO therefore automates the removal of redundant traits. 

With the remaining traits we then obtain estimates of  that are conditionally independent 

of x and amongst all P traits by combining them in a multivariable analysis on the outcome . 

Adjusting exposure-outcome associations for known candidate-trait associations 

An illustration of how outliers arise in MR analyses is shown in Figure 2. If a SNP  has 

some influence on exposure , and  has some influence on outcome , the SNP effect on  is 

expected to be , where  is the SNP effect on  and  is the causal 

effect of  on . Any substantive difference between  and  could be due to an 

additional influence on  arising from the SNP’s effect through an alternative pathway.  

If a SNP influences a ‘candidate trait’, , which in turn influences the outcome (or the 

exposure and the outcome), then the SNP’s influence on the exposure and the outcome will 
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be a combination of its direct effects through  and indirect effects through  24. If we have 

estimates of how the candidate trait influences the outcome, then we can adjust the original 

SNP-outcome estimate to the effect that it would have exhibited had it not been influencing 

the candidate trait. In other words, we can obtain an adjusted SNP-outcome effect conditional 

on the ‘candidate-trait – exposure’ and ‘candidate-trait – outcome’ effects. If the SNP 

influences  independent candidate traits (as selected from the LASSO step), then the 

expected effect of the SNP on  is  

 

 

Hence, the effect of the SNP on the outcome adjusted for alternative pathways  is  

 

 

We use parametric bootstraps to estimate the standard error of the  estimate, where 1000 

resamples of ,  and  are obtained based on their respective standard errors and 

the standard deviation of the resultant  estimate, represents its standard error. Finally, 

an adjusted effect estimate of  due to SNP  is obtained through the Wald ratio. 

 

Simulations 

IVW effect estimates are liable to be biased when at least some of the instrumenting SNPs 

exhibit horizontal pleiotropy, and those SNPs tend to contribute disproportionately towards 
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the heterogeneity in the effect estimate. We assess the performance of MR-TRYX against 

outlier removal methods with respect to the ability to address problems that arise due to 

horizontal pleiotropy (bias, low power and inflated false discovery rates). In these simulations 

we ask: if we can identify the pathway through which an outlier SNP has a horizontal 

pleiotropic effect, can adjustment for that pathway improve the original exposure-outcome 

analysis? Two scenarios of simulations are performed, the first using a null causal effect 

(���� � 0), and the second a positive causal effect (���� � 0.2). In each set, four methods 

are considered for handling outliers: 

1) Raw, where all SNPs are used in a standard IVW analysis. 

2) Outliers adjusted, where the outlier SNPs are adjusted for the effect of the candidate 

trait on the outcome using MR-TRYX. 

3) All outliers removed, where all detected outliers are removed. 

4) Candidate outliers removed, where only outliers that are found to influence a 

candidate trait are removed.  

We run the latter three methods by detecting outliers empirically, but also run the 

hypothetical case in which we know the pleiotropic variants a priori as a “gold-standard” for 

comparison. Individual level data are generated in a two-sample MR setting, where data on 

the SNP-exposure association and SNP-outcome are estimated in non-overlapping sets of 

individuals (n=5000). The relevant association summary statistics for two sample MR are 

obtained from a regression of genotype on trait under an additive genetic model. We set the 

range of the number of pleiotropic SNPs from 0 (no pleiotropic SNPs) to 30 out of 30. The 

IVW estimator was used as the comparator as this approach is the standard to MR. The 

results for each case represent the mean values for 1000 simulated datasets. The detailed 

information and the script used for the simulations can be found elsewhere 

(https://github.com/explodecomputer/tryx-analysis) 
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Empirical analyses 

As applied examples, we chose two robust findings and two controversial findings that are 

potentially biased due to pleiotropy: i) systolic blood pressure (SBP) and coronary heart 

disease (CHD); ii) urate and CHD; iii) sleep duration and schizophrenia; and iv) education 

level (years of schooling) and body mass index (BMI). Those examples were chosen based 

on previous findings 25-28 to illustrate how pleiotropic variants can be used to identify other 

pathways and adjusted to estimate the causal effect of the original exposure on the outcome 

independent of pleiotropic bias.  

Summary statistics (beta coefficients and SEs) for the associations of the SNPs with each 

exposure were obtained from the publicly available GWAS database (Supplementary Table 

S1). Selected SNPs were harmonised for the analysis, excluding palindromic SNPs and 

pruning for linkage disequilibrium (r2 <0.001). We primarily used the two-sample MR IVW 

method to obtain causal estimates between exposures and outcomes allowing each SNP to 

have different mean effect (random effects model). A number of sensitivity analyses were 

applied to evaluate the consistency of causal effect estimates under different models of 

pleiotropy amongst the SNPs, including the MR-Egger6, weighted median and weighted 

mode approaches 7,8.  

Outliers were detected among the instruments for each exposure (P < 0.05 / the number of 

SNPs). We searched the MR-Base database to identify the candidate traits that are associated 

with outliers (p < 5 x 10-8). We then performed multivariable MR analysis to test which 

candidate trait can explain the heterogeneity in the original exposure-outcome association.  

To perform multivariable MR, more SNPs were introduced into the analysis that instrument 

the candidate traits. 
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Subsequently we re-estimated the association of the original exposure and the original 

outcome using different sets of instruments: a) all SNPs (corresponding to the raw method in 

our simulation), b) outliers adjusted c) all outlier removed, c) candidate outliers removed. 

All analyses were conducted with the TwoSampleMR package of MR-Base 

(https://github.com/MRCIEU/TwoSampleMR) and the MR-TRYX package 

(https://github.com/explodecomputer/tryx) in R statistical software (ver 3.4.1).  

 

Results 

Simulations 

Our simulations show that as the proportion of SNPs exhibiting (balanced) horizontal 

pleiotropy increases, type 1 error rates for the outlier removal approaches also increases 

(Figure 2A). Type 1 error rates are maintained at expected levels when adjusting for outliers. 

A similar pattern of results among the three methods (the raw, outlier removal and outlier 

adjustment) is seen for the likelihood of estimates being biased (Figure 2B), where outlier 

removal and raw estimates also performed worse than outlier adjustment.  

 

For simulations in which there was a true causal effect, we observed that outlier removal 

methods had higher power, consistent with them having higher false discovery rates in the 

null simulations (Figure 2). However, outlier adjustment improved power over the ‘raw’ IVW 

approach. This is likely because balanced heterogeneity increases the standard error and 

adjusting away the pleiotropic effects reduces this noise term. Bias was elevated substantially 

in the outlier removal methods as the proportion of SNPs with pleiotropic effects increased, 
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whereas bias was lowest for the adjustment-based method, and independent of the level of 

pleiotropy across the SNPs. 

 

Outlier removal and outlier adjustment performance are limited by the efficacy and power of 

outlier detection methods: we note that when we assume all outliers are detected correctly in 

our simulation scenarios the performance of outlier removal and outlier adjustment both 

improve in terms of FDR, power and bias. Outlier adjustment is also dependent on 

availability of GWAS summary data for the candidate trait(s), and on the power to detect a 

variant’s association with the candidate trait(s). 

Empirical MR-TRYX analyses using four exposure-outcome hypotheses 

To examine the performance of MR-TRYX analysis, we tested four independent exposure-

outcome hypotheses. For each analysis we: a) obtain MR estimates of the exposure-outcome 

causal relationship and detect outlier instruments; b) identify putative novel influences 

(candidate traits) on the outcome trait based on their associations with outlier variants (Table 

1; Supplementary Table S2); c) adjust the original SNP-outcome estimates for the putative 

influences operating through the candidate traits (Table 2); and d) compare the changes in 

heterogeneity in the MR estimates of the adjusted SNP-outcome effects to standard outlier 

removal methods (Figure 4). 

Example 1: Systolic blood pressure and coronary heart disease 

Blood pressure is a well-established risk factor for CHD. Random effects IVW estimates 

indicated that higher SBP is causally associated with higher risk of CHD (Odds ratio [OR] 

per 1SD: 1.76; 95% CI: 1.47, 2.10). While there was substantial heterogeneity in this estimate 

(Q=682.7 on 157 SNPs, p=5.74 x 10-67), the estimates from MR Egger, weighted median and 

weighted mode methods were consistent (Table 2). Seven of the 157 SNPs were detected as 
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strong outliers based on Q statistics. We identified 69 candidate traits that were associated 

with these outliers (p < 5 x 10-8). We manually removed redundant traits and traits that are 

similar to the exposure and the outcome (e.g. high blood pressure). Among the candidate 

traits, 15 were putatively causally associated with the risk of CHD (Figure 3A). After we 

applied LASSO regression, 6 traits remained (Table 1): Anthropometric measures (e.g. 

height), lipid levels (e.g. cholesterol level), and self-reported ibuprofen use were amongst the 

candidate traits that associated with CHD, which were uncovered due to two outliers 

(rs3184504 near SH2B3 and rs9349279 near PHACTR).  

 

We next adjusted the exposure-outcome association for the detected pleiotropic pathways and 

obtained an adjusted IVW estimate. The total heterogeneity, based on adjusting only these 

two of 157 SNP effects, was reduced by 17% (Q=567.6). The effect estimate remained 

consistent with the original estimate, as did the IVW estimates when removing all outliers, or 

just outliers known to associate with candidate traits that associated with the outcome. 

However, the width of the confidence interval was substantially larger (including the null) 

after removing outliers known to associate with candidate traits (1 OR per SD: 1.80; 95% CI: 

0.56, 5.79).  

Example 2: Urate and coronary heart disease 

Here we show an example with mixed findings from previous studies. The influence of 

circulating urate levels on risk of coronary heart disease has been under debate.  Several MR 

studies have investigated the inflated effect of urate on CHD, which appeared to be 

influenced by pleiotropy 26 29. We re-estimated the associations here using a range of MR 

methods. As has been previously reported the estimate from IVW suggested a weak 

association between urate and the risk of CHD using all variants (OR per 1 SD: 1.08; 95% CI: 

1.00, 1.17), while there was a large intercept in the MR-Egger analysis (intercept = 1.02; 95% 
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CI: 1.00, 1.03) with a much-attenuated causal effect estimate (Table 2). The median and 

mode-based estimates were also consistent with the MR-Egger estimate, indicating weak 

support for urate having a causal influence on CHD. Three variants were detected as outliers, 

which associated with 61 candidate traits (p < 5 x 10-8). Among those outliers, rs653178, and 

rs642803 were associated with 14 traits that had conditionally independent influences on the 

outcome (Figure 3B), including anthropometric measures (e.g. hip circumference), 

cholesterol levels, diagnosis of thyroid disease, and smoking status. 

 

Removing the outliers in the IVW analysis led to a more precise (though slightly attenuated) 

estimate of the influence of higher urate levels on CHD risk (OR per 1 SD: 1.05; 95% CI: 

1.01, 1.10 and OR per 1 SD: 1.06, 95% CIs: 1.06, 1.12, respectively, Table 2). The 

adjustment model also indicated an attenuated IVW estimate in comparison to the ‘raw’ 

approach, with confidence intervals spanning the null (OR per 1 SD: 1.07, 95% CI: 0.99, 1.16) 

whilst the degree of heterogeneity was reduced by half by accounting for the pleiotropic 

pathways through two outlier SNPs. The adjusted scatter plot showed that outliers moved 

towards the fitted line after controlling for the SNP effect on the candidate traits (Figure 4B). 

The results in this analysis suggest that it is unlikely that urate has a strong causal influence 

on CHD. Here, outlier removal appears to strengthen evidence that may lead to wrong 

conclusion. 

 

Example 3: Sleep duration and schizophrenia 

Previous studies have shown that sleep disorder is associated with schizophrenia 28. However, 

none of them confirmed the causality between sleep disorder and schizophrenia.  

We observed weak evidence for any association between sleep duration and schizophrenia 

(OR per 1 SD: 1.18; 95% CIs: 0.57, 2.45), but there was substantial heterogeneity when all 
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SNPs were used (Q= 204.8, p=6.9 x 10-26). Six outlier instruments were detected, which 

associated with 46 candidate traits (p < 5 x 10-8). Among those outliers, the SNPs rs7764984 

(near HIST1H2BJ) and rs13107325 (near SLC39A8) were associated with three traits that 

putatively influenced the outcome: self-reported coeliac disease, body composition 

(impedance of leg) and memory function (Figure 4C). 

 

We re-estimated the original association accounting for the detected outliers. The degree of 

heterogeneity was reduced by 74% (Q=54.1) when removing all 6 outliers and by 46% 

(Q=147.7) when adjusting for the two SNP effects that had putative pleiotropic pathways. 

Both methods of outlier removal and adjustment provide similar estimates in terms of 

direction, whilst the magnitude of estimates differed. After removing outliers, MR Egger 

causal estimates were substantially larger (OR per 1 SD= 2.43; 95% CI: 0.49, 12.16 and 

Beta= 0.20; 95% CI: -0.40, 0.79, respectively) than those from the method using all variants. 

IVW causal estimates from the adjustment method were virtually identical with the original 

estimates, with narrower CIs (OR per 1 SD= 2.36; 95% CI: 0.25, 21.96). While all methods 

indicate that sleep duration is unlikely to be a major causal risk factor for schizophrenia, 

pursuing outliers in the analysis provided putative indications that coeliac disease and 

memory function may be risk factors for schizophrenia (Figure 4D).  

 

Example 4: Years of schooling and body mass index 

The association of education and health outcome is well established in social science 30. 

Higher socioeconomic position is generally thought to lead to a lower risk of obesity in high-

income countries31,32.  We used 59 independent genetic instruments 33 to estimate the 

influence of years of schooling on BMI 34 (Table 2). All MR methods indicated that years of 

schooling has a causal beneficial effect on BMI (e.g. IVW Beta: -0.27; 95% CI: -0.39, -0.16), 
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except the estimate from MR Egger which had a very imprecise estimate (beta: 0.01; 95% CI: 

-0.67, 0.70), but the degree of heterogeneity was large (Q = 211.9 on 59 SNPs; p=2.20 x 10-8). 

Three outliers (rs6882046 near LINC00461, rs4800490 near NPC1, rs8049439 near ATXN2L) 

were identified as contributors to heterogeneity, and they showed associations (p < 5 x 10-8) 

with 48 candidate traits. Among those candidate traits, two were associated with BMI (Figure 

3B): alcohol intake frequency (which associated with all three outliers) and usual walking 

pace.  

 

We next re-estimated the influence of years of schooling on BMI by accounting for outliers. 

Adjusting the outliers for candidate trait pathways such as alcohol intake and usual walking 

pace reduced heterogeneity by 15% and had a small reduction in the confidence intervals 

while the point estimate remained consistent (Table 1). By contrast, there was a 48% 

reduction in heterogeneity when removing outliers. Point estimates remained largely 

consistent across all outlier removal methods. However, we note that Figure 4B shows that 

one of the outliers (rs4800490, near gene NPC1) on the scatter plot moved away from the 

fitted line after adjusting for the pleiotropic pathway, indicating that if this outlier is due to a 

pleiotropic pathway we have estimated its indirect effect inaccurately or partially (e.g. where 

GWAS summary statistics are not available to identify other effective pleiotropic pathways). 

Discussion 

The problem of instrumental variables being invalid due to horizontal pleiotropy has received 

much attention in MR analysis. Detecting and excluding such invalid instruments, based on 

whether they appear to be outliers in the analysis, is now a common strategy that exists in 

various forms 7,8,14,15,35. We have shown here that outlier removal could, in some 

circumstances, compound rather than reduce bias, and misses an opportunity to better 
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understand the traits under study. We developed the MR-TRYX framework, which utilises 

the MR-Base database 10 of GWAS summary data to identify potential explanations for 

outlying SNP instruments, and to improve estimates by accounting for the pleiotropic 

pathways that give rise to them. We have also demonstrated the use and interpretation of MR-

TRYX in four sets of empirical analyses. 

For accurate performance, MR-TRYX depends upon the performance of three 

methodological components: (i) detecting instruments that exhibit horizontal pleiotropy; (ii) 

identifying the candidate traits on the alternative pathways from the variant to the outcome; 

and (iii) correctly estimating the effects of the candidate traits on the outcome. Each of these 

components is a difficult problem, but they are all modular and build upon existing methods 

and resources, and the MR-TRYX framework will naturally improve as those methods and 

resources themselves improve. We will now discuss the consequences of underperformance 

of each of these components on the TRYX analysis. 

The classification of an outlier in MR analysis can be based on the statistical estimates of 

how a SNP being included as an instrument due to being reverse causal (Steiger filtering) 12,17, 

the extent to which a single SNP disproportionately influences the overall result (e.g. Cook’s 

distance) 36, or most commonly the extent to which a SNP contributes to heterogeneity (e.g. 

Cochran’s Q statistic, MR-PRESSO, and implicitly in median- and mode-based estimators) 

7,8,14,15. The philosophy of the latter two approaches is that proving horizontal pleiotropy is 

impossible, but that it should lead to outliers 9. While a useful approximation, these 

approaches have two main limitations. First, determining whether a SNP is an outlier depends 

on the use of arbitrary thresholds, and this entails a trade-off between specificity and 

sensitivity. Second, if most variants are pleiotropic, then it is possible that the outlier SNPs 

are the only valid instruments. Such a scenario can arise for complex traits such as gene 

expression or protein levels that have a few large effects and many small effects. For example, 
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for C-reactive protein (CRP) levels, the SNP in the CRP gene region is likely the only valid 

instrument in some analyses 37. In this context, bias due to horizontal pleiotropy cannot be 

avoided by selection of instruments since this approach may generate more bias 38. This is 

supported by our simulation which demonstrates that in the presence of extensive pleiotropy 

removing outliers increased FDR and bias.  

MR-TRYX should, in principle, avoid the problem of outlier removal because instead of 

removing outliers in their entirety, it attempts to eliminate the component of the SNP-

outcome effect that is due to horizontal pleiotropy. Hence, we avoid implicitly cherry picking 

from amongst the SNPs to be used in the analysis, and if we have low sensitivity (i.e. a more 

relaxed threshold for outlier detection) it doesn’t mean that there will be an unnecessary loss 

of power in the overall analysis. Previous work has adjusted for the effect of pleiotropic 

phenotypes, but they treated pleiotropic phenotypes as exogenous variables that are not 

associated with the causal pathways of interest 39. In MR-TRYX, candidate traits are treated 

as endogenous variables to account for the effect of the traits on the original association. 

Moreover, our method is applicable in the two-sample context, whereas the previous method 

requires individual level data. The problem of outlier detection which remains in MR-TRYX 

could be sidestepped by applying the adjustment approach to all SNPs irrespective of their 

contributions to heterogeneity. 

Upon identification of potentially pleiotropic SNPs, MR-TRYX can only account for these if 

the pathways through which pleiotropy is acting can be identified. Detecting the pathways 

depends on the density and coverage of the human phenome available for the analysis. We 

use the MR-Base database of GWAS summary results, which comprises several hundred 

independent traits. While a valuable resource, it is certainly not covering the whole human 

phenome, and therefore even if a pleiotropic variant is detected correctly, it may not be 

possible to adjust it away. In the empirical analyses, often fewer than half of the candidate 
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traits were inferred to be associated with the outcome. Yet, as we illustrated, MR-TRYX 

allows for an informative analysis that could routinely be applied in MR analyses. 

Broadening phenotype coverage is an on-going pursuit that will continually improve MR-

TRYX analysis 40.  

Finally, it is necessary for the effects through the identified pleiotropic pathways to be 

accurately estimated. This is a recursive problem – MR-TRYX adjusts the SNP-outcome 

effects based on the pleiotropic effect through the outlier SNP, but it does this by introducing 

more SNPs into the analysis that instrument the candidate traits. These new SNPs may 

themselves exhibit pleiotropic effects which could lead to bias in the estimates of the 

candidate traits on the outcome, requiring a second round of TRYX-style candidate trait 

searches; and so on. In the example of education level and BMI, adjustment for the 

pleiotropic pathway failed to substantially reduce the degree of heterogeneity. Further 

developments could involve recursively analysing alternative pathways. 

MR-TRYX is an expansive framework and there are several limitations in addition to those 

discussed already. First, our LASSO extension to multivariable MR is used to automate the 

selection of exposures that will be used for adjustment. A shrinkage step of LASSO may 

increase the SNP-exposure effect heterogeneity necessary for the power of multivariable MR 

24. Multivariable MR is adept at establishing conditionally independent exposures but the 

reason that some exposures have attenuated effects in comparison to their total effects could 

be because of a) their total effects were biased by pleiotropy or b) they are mediated by the 

exposures that are included in the model. Interpretations of a) and b) are very different, 

because in the case of mediation the exposure is a causal factor for the outcome. Second, we 

were primarily using the multivariable approach for practical purposes to avoid having 

multiple highly related exposures taken forward to the adjustment step (e.g. multiple different 

measures of body composition such as body weight and BMI). This approach worked 
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effectively, although a problem remains unsolved in automating the removal of traits that are 

“similar” to the outcome. For example, if a trait similar to the outcome CHD associates with 

an outlier and is included in the multivariable analysis of multiple exposures against coronary 

CHD, then all the putative exposures will be dropped from the model. In the analyses 

presented we manually removed traits that came up as candidate pleiotropic pathways but 

were, in fact, synonymous with or closely related to the outcome. Third, we note that 

heterogeneity does not necessarily arise only because of pleiotropy, for example the non-

collapsibility of odds ratios will introduce heterogeneity automatically which cannot be 

adjusted away through the TRYX approach. Many other mechanisms exist that can lead to 

bias in MR, as has been described in detail elsewhere. Fourth, SNPs can appear to be outliers 

not through being pleiotropic, but through other mechanisms, such as population stratification 

(association of alleles with phenotypes being confounded by ancestral population), 

canalization (developmental compensation to a genetic change) 2,41, or the influence on 

phenotype being changeable across the life course 42. Finally, in the case of a binary outcome, 

there may be parametric restrictions on the conditional causal odds ratio in our multivariable 

MR model where the exposure effect is linear in the exposure on the log odds ratio scale 43. 

However, the two-stage estimator with a logistic second-stage model still yields a valid test 

of the causal null hypothesis 43.   

In this study, we demonstrated the use of MR-TRYX through four examples of identifying 

putative pathways. In the first empirical example (SBP on CHD), we illustrated the validity 

of MR-TRYX to detect the traits that possibly influence the disease outcome. Apart from 

SBP, MR-TRYX also detected well established risk factors for CHD including adiposity, 

cholesterol levels and standing height. An interesting finding of this example is that headache 

related traits (e.g. experience of pain due to headache and self-reported status of ibuprofen 

intake) were identified as candidate traits, which may influence the original association. In 
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support of the putative finding for self-reported ibuprofen use associating with CHD, we also 

found that pain experienced in the last month (headache) and self-reported migraine were 

associated with lower risk of CHD (OR per 1 SD: 0.33; 95% CI: 0.12, 0.89 and Beta= 0.02; 

95% CI: 0.0004, 0.65, respectively). A previous study reported shared genetic risk between 

headache (migraine) and CHD, suggesting a potential role of migraine in vascular 

mechanisms 44. An alternative mechanism that could give rise to this association is that the 

effect of pain on lower CHD risk is entirely mediated through the use of medications such as 

aspirin that have known protective effects on CHD.  

 

The example of urate and CHD demonstrated the benefit of the adjustment method showing 

that the noise due to pleiotropy was substantially reduced after correcting for the effect of 

candidate traits. The presence of hypothyroidism and self-reported levothyroxine sodium 

intake status were identified as putative risk factors for risk of CHD, which is consistent with 

previous clinical trial studies: thyroid dysfunction is associated with the overall coronary risk 

45, which can be reversed by levothyroxine therapy 46.  In the education – BMI example, we 

showed that increased alcohol intake and slower usual walking pace may influence the 

obesity of individuals. These identified traits have been reported as possible risk factors for 

higher BMI and obesity 47,48. Additionally, the example of sleep duration and risk of 

schizophrenia suggested coeliac disease and body composition as putative risk factors for 

schizophrenia. A number of observational studies suggested that schizophrenia is linked with 

body composition 49 and coeliac disease 50. MR of binary exposures is often difficult to 

interpret because the instrument effects are on liability to disease, not the presence or absence 

of the disease. Hence, the association between coeliac disease and schizophrenia may be 

better interpreted as an indication of shared disease aetiology. Nevertheless, this is a valuable 

finding since the causal effect of those putative risk factors on risk of schizophrenia has not 
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been investigated using an MR approach. Therefore, our example illustrates how outliers can 

be used to identify alternative pathways, opening the door for hypothesis-free MR approaches 

and a network-based approach to disease. 

 

In conclusion, we have shown a new method to deal with the bias from horizontal pleiotropy, 

and to identify putative risk factors for outcomes in a more directed manner than typical 

hypothesis-free analyses, by exploiting outliers. Heterogeneity is widespread across MR 

analyses and so we are tapping into a potential new reservoir of information for 

understanding the aetiology of disease. The strategy is a departure from previous ones dealing 

with pleiotropy – we have shown that enlarging the problem by searching across all traits for 

a better understanding of a specific exposure-outcome hypothesis can be fruitful. 
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Figure legends 

 

Figure 1.  Conceptual framework of the study:  Illustration of identifying novel factors that influence 

the original association. (a) Where (gy) is the total effect of the SNP on the outcome, (gx) is the SNP-

exposure effect, (xy) is the exposure-outcome effect as estimated through MR analysis from the non-outlier 

SNPs, (gp) is the SNP-candidate trait effect and (py) is the causal effect of the candidate trait on the outcome. 

(b) The open circles represent valid instruments and the slope of the dotted line represents the causal effect 

estimate of the exposure on the outcome. The closed circle represents an outlier SNP which influences the 

outcome, through two independent pathways (py). (c) One way in which the red SNP can exhibit a larger 

influence on the outcome than expected given its effect on the exposure is if it influences the outcome 

additionally through another pathway (horizontal pleiotropy). (d) Using the MR-Base database of GWAS 

summary data for hundreds of traits we can search for ‘candidate traits’ with which the outlier SNP has an 

association. (e) The causal inference of each of those candidate traits on the outcome can be estimated using 

MR by identifying their instruments (excluding the original outlier SNP). This allows us to identify new 

traits that putatively influence the outcome.  

 

Figure 2. Result from simulations. (A) Power (first panel where the simulated causal effect is 0.2; causal 

model) and false discovery rate (second panel where the simulated causal effect is 0; null model) to detect an 

association between simulated exposure and outcome traits. The x-axis depicts the number of instruments 

(out of 30) that exhibit a horizontal pleiotropic effect. There are four methods for handling outliers, and we 

posit two scenarios for detecting outliers. The methods are ‘raw’, where all SNPs are used in a standard 

IVW analysis regardless of outlier status; ‘outliers adjusted’ where the outlier SNPs are adjusted for detected 

alternative pathways; ‘outliers removed (all)’ where all detected outliers are removed; and ‘outliers removed 

(candidate)’ where only outliers that are found to influence a candidate trait are removed. We run the latter 

three methods by detecting outliers empirically, but also show, for comparison, the hypothetical case in 

which we know the pleiotropic variants a priori. (B) As in (A), except comparing the bias of different 
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methods, assessed as the proportion of estimates that are substantially different from the simulated effect (y-

axis). 

 

Figure 3. Manhattan plot to visualise the causal associations between candidate exposures and 

hypothesised outcome. This represents the number of traits associated with outliers. The plot is stratified by 

phenotype category and, within each group, we present the results related to the candidate traits identified. 

Along the X axis, different phenotype groups are shown in different colours. The Y axis presents log 

transformed P value for each trait. Filled circles in each category indicate the evidence of association 

between candidate traits and exposure or outcome (p < 0.05). (A) Empirical analysis 1:  Systolic blood 

pressure (mmHg) and coronary heart disease (log odds). (B) Empirical analysis 2:  Urate (mg/dl) and 

coronary heart disease (log odds). (C) Empirical analysis 3: Sleep duration (hour/night) and schizophrenia 

(log odds). (D) Empirical analysis 4:  Years of schooling (years) and body mass index (kg/m2). 

 

Figure 4. Scatter plot for the exposure-outcome association adjusting the SNP effects on the candidate 

traits. The arrow indicates changes in the SNP effect after conditioning on the effect of candidate traits on 

the outcome. The candidate traits that influence the association of the original exposure and the original 

outcome were listed in the box. (A) Empirical analysis 1:  Systolic blood pressure (mmHg) and coronary 

heart disease (log odds). (B) Empirical analysis 2:  Urate (mg/dl) and coronary heart disease (log odds). (C) 

Empirical analysis 3: Sleep duration (hour/night) and schizophrenia (log odds). (D) Empirical analysis 4:  

Years of schooling (years) and body mass index (kg/m2). 
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Figure 2.  
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Table 1. Candidate traits associated with both exposure and outcome. 
 

Outlier 
SNPs 

Nearest 
gene 

Category Phenotypes 1 
N 

SNPs 2 Beta (95% CI) 3 

Empirical analysis 1.  Systolic blood pressure (mmHg) and coronary heart disease (log odds) 

rs3184504 SH2B3 

Early 
development 

Birth weight of first child 40 -0.312 (-0.498, -0.126) 

Anthropometric 
measures Standing height 577 -0.208 (-0.264, -0.152) 

Lipid 
LDL cholesterol 
HDL cholesterol 
Total cholesterol 

78 
86 
86 

0.393 (0.290, 0.497) 
-0.172 (-0.288, -0.055) 

0.378 (0.271, 0.484) 

rs9349379 PHACTR Medications Self-reported status of ibuprofen intake 2 -16.726 (-37.262, 3.811) 

Empirical analysis 2.  Urate (mg/dl) and coronary heart disease (log odds) 

rs653178 ATXN2 

Early 
development 

Birth weight of first child 
Birth weight 

31 
40 

0.347 (0.065, 0.628) 
-0.312 (-0.498, -0.126) 

Anthropometric 
measures 

Comparative height size at age 10 
Hip circumference 
Impedance of arm (left) 
Standing height 

357 
275 
305 
577 

-0.248 (-0.342, -0.154) 
0.131 (0.030, 0.231) 
-0.263 (-0.38, -0.145) 

-0.208 (-0.264, -0.152) 

Lipid 
HDL cholesterol 
LDL cholesterol 
Total cholesterol 

78 
86 
86 

0.393 (0.290, 0.497) 
-0.172 (-0.288, -0.055) 

0.378 (0.271, 0.484) 

Disease hypothyroidism/myxoedema (Self-reported) 77 0.847 (0.211, 1.483) 

Smoking Past tobacco smoking 41 -0.265 (-0.5, -0.029) 

Medications 
Treatment/medication: levothyroxine 
sodium 

51 1.231 (0.27, 2.191) 

rs642803 OVOL1 
Anthropometric 

measures Waist circumference 218 0.458 (0.352, 0.563) 

Empirical analysis 3.  Sleep duration (hour/night) and schizophrenia (log odds) 

rs7764984 HIST1H2BJ Disease Malabsorption/coeliac disease (self-reported) 11 -8.401 (-12.842, -3.961) 

rs13107325 SLC39A8 

Anthropometric 
measures 

Impedance of leg (left) 282 0.179 (0.047, 0.311) 

Memory Prospective memory result 2 4.493 (1.851, 7.135) 

Empirical analysis 4.  Years of schooling (years) and body mass index (kg/m2) 

rs6882046 LINC00461 Drinking Alcohol intake frequency 31 0.347 (0.065, 0.628) 

rs4800490 NPC1 
Drinking Alcohol intake frequency 31 0.347 (0.065, 0.628) 

Exercise Usual walking pace 22 -1.595 (-2.364, -0.825) 

rs8049439 ATXN2L Drinking Alcohol intake frequency 31 0.347 (0.065, 0.628) 

 
SNP, single nucleotide polymorphism; VLDL, very low-density lipoprotein; HDLC, high density lipoprotein 
cholesterol; LDLC, low density lipoprotein cholesterol; N SNPs, number of SNPs; CI, confidence interval. 
1 Candidate traits that are associated with outliers (p < 5 x 10-8) and both exposure and outcome are listed. The listed 
traits were used in the adjusted model to investigate whether they are associated with CHD. 2 The number of SNPs 
used for two sample MR analysis of candidate traits on the outcome. 3 The results were presented as IVW beta 
coefficient (95% CI), derived from two sample MR analyses.  
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Table 2. The results of empirical analyses with different IV estimators derived from different methods. 
 

 Estimates (95% CIs) 

Methods All variants  Removing outliers  
Removing candidate 

outliers  
Adjustment for candidate 

outliers 

Empirical analysis 1.  Systolic blood pressure (mmHg) and coronary heart disease (log odds) 

 Heterogeneity (Q)1 
682.7  

(N SNPs = 157) 
312.1 

(N SNPs = 150) 
448.7 

(N SNPs = 155) 
567.6 

(N SNPs = 157) 
 IVW random effects 1.761 (1.474, 2.104) 1.876 (1.655, 2.125) 1.797 (0.558, 5.789) 1.706 (1.449, 2.008) 
 Egger random effects 2.641 (1.490, 4.679) 2.951 (1.970, 4.419) 2.206 (0.314, 15.472) - 
     Intercept 0.980 (0.969, 0.992) 0.990 (0.982, 0.998) 0.996 (0.988, 1.004) - 
 Weighted median 1.770 (1.528, 2.050) 1.782 (1.539, 2.065) 1.765 (0.576, 5.403) - 
 Weighted mode 1.770 (1.264, 2.479) 1.726 (1.218, 2.447) 1.740 (0.600, 5.043) - 
Empirical analysis 2.  Urate (mg/dl) and coronary heart disease (log odds) 

 Heterogeneity (Q) 
81.6 

(N SNPs = 24) 
20.7 

(N SNPs = 21) 
33.4 

(N SNPs = 22) 
44.1 

(N SNPs =24) 
 IVW random effects 1.081 (0.996, 1.174) 1.054 (1.008, 1.103) 1.062 (1.057, 1.122) 1.070 (0.992, 1.155) 
 Egger random effects 0.952 (0.846, 1.071) 1.008 (0.937, 1.084) 0.990 (0.910, 1.077) - 
     Intercept 1.015 (1.003, 1.027) 1.006 (0.998, 1.014) 0.992 (0.984, 1.000) - 
 Weighted median 1.019 (0.961, 1.081) 1.016 (0.958, 1.078) 1.017 (0.961, 1.077) - 
 Weighted mode 1.028 (0.975, 1.084) 1.022 (0.966, 1.082) 1.025 (0.970, 1.083) - 
Empirical analysis 3.  Sleep duration (hour/night) and schizophrenia (log odds) 

 Heterogeneity (Q) 
204.8 

(N SNPs = 36) 
54.1 

(N SNPs = 30) 
121.4 

(N SNPs = 34) 
147.7 

(N SNPs =36) 
 IVW random effects 1.184 (0.573, 2.445) 1.289 (0.828, 2.008) 1.215 (0.674, 2.192) 1.181 (0.634, 2.197) 
 Egger random effects 0.866 (0.056, 13.383) 2.428 (0.485, 12.158) 2.363 (0.254, 21.955) - 
     Intercept 1.004 (0.968, 1.042) 0.991 (0.969, 1.013) 0.991 (0.963, 1.020) - 
 Weighted median 1.276 (0.774, 2.104) 1.249 (0.746, 2.090) 1.250 (0.761, 2.052) - 
 Weighted mode 1.327 (0.679, 2.593) 1.504 (0.728, 3.105) 1.428 (0.702, 2.904) - 
Empirical analysis 4.  Years of schooling (years) and body mass index (kg/m2) 

 Heterogeneity (Q) 
211.9 

(N SNPs = 59) 
101.9 

(N SNPs = 56) 
101.9 

(N SNPs = 56) 
197.8 

(N SNPs =59) 
 IVW random effects -0.272 (-0.386, -0.158) -0.232 (-0.314, -0.150) -0.232 (-0.314, -0.150) -0.265 (-0.377, -0.153) 
 Egger random effects 0.013 (-0.677, 0.703) -0.404 (-0.910, 0.102) -0.404 (-0.910, 0.102) - 
     Intercept -0.005 (-0.017, 0.007) 0.003 (-0.005, 0.011) 0.003 (-0.005, 0.011) - 
 Weighted median -0.209 (-0.307, -0.111) -0.217 (-0.315, -0.119) -0.217 (-0.315, -0.119) - 
 Weighted mode -0.141 (-0.413, 0.131) -0.127 (-0.405, 0.151) -0.127 (-0.405, 0.151) - 
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N SNPs, number of single nucleotide polymorphisms; 95% CIs, 95% confidence intervals; IVW, Inverse variance weighted. 1 Heterogeneity amongst the estimates were 
assessed based on contribution of individual variant to Cochran’s statistic. 
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