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Summary  

Background 

Deep vein thrombosis (DVT) is the formation of a blood clot in a deep vein. DVT can lead to a venous 

thromboembolism (VTE), the combined term for DVT and pulmonary embolism, a leading cause of 

death and disability worldwide. Despite the prevalence and associated morbidity of DVT, the 

underlying causes are not well understood. 

Objective 

To leverage publicly available genetic summary association statistics to identify causal risk factors for 

DVT. 

Methods & Results 

We conducted a Mendelian randomization phenome-wide association study (MR-PheWAS) using 

genetic summary association statistics for 973 exposures and DVT (6,767 cases and 330,392 controls 

in UK Biobank). There was evidence for a causal effect of 57 exposures on DVT risk, including 

previously reported risk factors (e.g. body mass index - BMI and height) and novel risk factors (e.g. 

hyperthyroidism, chronic obstructive pulmonary disease (COPD) and varicose veins). As the majority 

of identified risk factors were adiposity-related, we explored the molecular link with DVT by 

undertaking a two-sample MR mediation analysis of BMI-associated circulating proteins on DVT risk. 
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Our results indicate that circulating neurogenic locus notch homolog protein 1 (NOTCH1), inhibin beta 

C chain (INHBC) and plasminogen activator inhibitor 1 (PAI-1) influence DVT risk, with PAI-1 

mediating the BMI-DVT relationship. 

Conclusion 

Using a phenome-wide approach, we provide putative causal evidence that hyperthyroidism, varicose 

veins, COPD and BMI enhance the risk of DVT. The circulating protein PAI-1 has furthermore a causal 

role in DVT aetiology and is involved in mediating the BMI-DVT relationship.  

Keywords 

Mendelian randomization, Deep vein thrombosis, ALSPAC, pQTL, GWAS 

 

Introduction 

Under normal physiological conditions, platelets and fibrin form clots to prevent blood loss at 

the site of vessel injury [1]. However, when clots (or thromboses) form abnormally they can disrupt 

blood flow [2,3] and when this occurs in the deep veins of the limbs or pelvis this is known as deep 

vein thrombosis (DVT). A complication of DVT is pulmonary embolism (PE), where a clot breaks 

away from a deep vein wall and becomes lodged in a pulmonary blood vessel, obstructing blood flow 

to the lungs and causing respiratory dysfunction. In 2021, there were approximately one million incident 

cases of venous thromboembolism (VTE) in the United states alone [4]. DVT accounts for 

approximately two-thirds of VTE events and PE is the primary contributor to mortality. While VTE 

was a primary cause for 10,511 deaths in the UK in 2020 [5], the actual contribution of VTE to annual 

deaths is estimated to be 2-3 fold higher [6]. 

To prevent acute and chronic complications it is essential to establish an accurate diagnosis of 

DVT. The symptoms of DVT alone are often not specific or sufficient to make a diagnosis, and about 

half of those suffering DVT will have no symptoms [7]. Symptoms are considered in conjunction with 

known risk factors to help estimate the likelihood of DVT and determine whether thromboprophylaxis 
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is required [3]. Pharmacological thromboprophylaxis includes the use of anticoagulants, such as 

intravenous heparin and oral warfarin (a vitamin K antagonist), which have been used in combination 

to treat DVT for over 50 years, but require constant maintenance and monitoring [3]. More recently 

direct oral anticoagulants (DOAC), such as dabigatran (which inhibits thrombin) or rivaroxaban (which 

inhibits factor Xa), have been employed with reduced economic costs relative to traditional treatments 

[8]. 

Risk factors for DVT include genetic factors, such as deficiencies in the anticoagulation 

proteins antithrombin, protein C, and protein S, or acquired factors, such as age, obesity and smoking 

[2,9,10]. However, the mechanisms through which these risk factors act have not been clearly 

established. The identification of novel causal risk factors and potential drug targets is required for 

improved DVT prophylaxis [3]. 

Mendelian randomization (MR) allows us to infer causality while addressing limitations of 

observational epidemiology such as confounding and reverse causation [11–14]. The design of a MR 

analysis is analogous to that of a randomised control trial (RCT), the “gold standard” method for 

evaluating the effectiveness of an intervention (Supplementary Figure 1) [15]. It is an instrumental 

variable-based method that uses genetic variants as proxies (or instruments) for exposures to permit 

causal inference when interpreting relationships between these exposures and disease outcomes [16]. 

Here, we have used 2-sample MR, which uses data from separate genome-wide association studies 

(GWAS) for exposures and outcomes of interest [17] to consider the effect of multiple exposures 

(phenotypes) on DVT risk.  

 Our MR phenome-wide association study (MR-PheWAS) identified novel risk factors for DVT 

(e.g. hyperthyroidism and varicose veins) and provided evidence of causality for several previously 

identified traits (e.g. BMI and height). Of 57 exposures yielding estimates of causal effect on DVT risk, 

24 were adiposity-related. While adiposity is an established risk factor for DVT, the biological 

mechanisms underlying the effect of adiposity and DVT are not well understood. To investigate this 

mechanistic relationship, we explored whether levels of circulating proteins, known to be altered by 
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adiposity, were in part responsible for this association. A two-sample MR mediation analysis revealed 

plasminogen activator inhibitor 1 (PAI-1) as a mediator for this relationship.  

 

Methods 

Study design 

With the aim to identify novel risk factors for DVT, we performed an MR-PheWAS to estimate 

the effects of 973 exposures on DVT risk. As 24 of the 57 exposures that we found causal evidence for 

an association with DVT were adiposity-related traits (see Table 1), we next decided to investigate 

potential mediators of this mechanistic relationship further. As previous MR studies have found that 

levels of circulating proteins are altered by adiposity [18,19], we performed a two-sample mediation 

MR to estimate the effect of BMI on DVT with BMI-associated proteins as mediators. An overview of 

the study design is shown in Figure 1. 

 

Data preparation 

GWAS data for exposures: All analyses were conducted using R version 3.6.1. The MR-PheWAS 

was conducted using the TwoSampleMR R package [14]. Genetic data for exposures were obtained 

from the MR-Base platform of harmonised GWAS summary data [14]. The MR-Base platform permits 

the hypothesis-free analysis of all catalogued exposures to DVT. The exposures encompassed lifestyle 

(e.g. BMI and education), disease (e.g. ulcerative colitis and squamous cell carcinoma) and biological 

(e.g. bone density and oestrogen levels) traits from resources such as UK Biobank [20]. A list of studies 

with available GWAS summary statistics was obtained through the MR-Base API in R Studio. Non-

European (N=88) and duplicate (N=138) studies were excluded. In the case of duplicate studies, those 

with the highest sample size were retained. VTE (DVT and PE) and VTE-related (e.g. phlebitis and 

thrombophlebitis) traits were removed (N=9). The genetic instruments used for the analysis were single-

nucleotide polymorphisms (SNPs) associated with each of the exposures at a genome-wide level of 
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significance (P<5e-8). As genetic confounding may bias MR estimates if SNPs are correlated [21], 

linkage disequilibrium (LD) clumping in PLINK [22] was conducted to ensure the SNPs used to 

instrument exposures were independent (radius = 10,000kb; r2 = 0.001) using the 1000 Genomes 

European reference panel [23]. We also used the 1000 Genomes European dataset [23] to identify 

potential SNP proxies (with which the initial SNP is in LD with, r2>0.8) for those SNPs not present in 

the DVT data. Depending on the nature of the exposure, the reported effect size for a given SNP was 

expressed along with the standard error (SE) as a one standard deviation (SD) increase in the level of 

the risk factor for a continuous exposure, or as a unit change in the exposure on the log-odds scale for 

a binary trait. Although the number of traits in MR-Base is large and continues to grow, we were limited 

by the traits available at the time of the analysis. Moreover, some of our exposures did not have a SNP 

or proxy present in the outcome (DVT) dataset, making it not feasible to perform MR analysis. 

Deep vein thrombosis GWAS data: Our outcome of interest (DVT) was presented in MR-Base as 

“Non-cancer illness code self-reported: deep venous thrombosis (dvt)”; these summary results describe 

a GWAS of 6,767 cases and 330,392 controls done in Europeans. These data describe results of the 

Neale Lab analysis of UK Biobank data [20] using the PHEnome Scan ANalysis Tool (PHESANT), 

followed by genotypic data selected through SNP quality control (QC) [24] 

(https://github.com/Nealelab/UK_Biobank_GWAS). 

Protein quantitative trait locus data: We aimed to determine whether BMI-associated proteins were 

mediating the relationship between adiposity and DVT. Our list of BMI-associated proteins was 

obtained from two previous MR studies investigating the effect of BMI on the circulating proteome 

[18,19]. We used pQTL data to identify SNPs associated with circulating protein levels at a genome 

wide level of significance (P ≤ 5e-08). Protein detection platforms for the pQTL data included the 

SOMAScan® by SomaLogic and Olink (ProSeek CVD array I) [25–28]. Twenty-five proteins were 

identified using these criteria (Supplementary Table 1). PLINK clumping (radius = 10,000kb; r2 = 

0.001) was performed to ensure the genetic variants used to instrument protein levels were independent. 

Proxy SNPs for those SNPs that were not present in the DVT data were identified through the 1000 

Genomes European dataset [23]. 
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Data harmonisation: The majority of GWAS present the effects of a SNP on a trait in relation to the 

allele on the forward strand. However, the allele present on the forward strand can change over time as 

reference panels get updated. This requires correction (harmonisation) so that both exposure and 

outcome data reference the same strand [29]. For exposure and outcome data harmonisation, incorrect 

but unambiguous alleles were corrected, while ambiguous alleles were removed. In the case of 

palindromic SNPs (A/T or C/G), allele frequencies were used to solve ambiguities. Harmonisation was 

not possible for 483 exposures (variants were not present in the DVT GWAS), resulting in a final list 

of 973 exposures to include in the MR-PheWAS (Supplementary Table 2). For our pQTL analysis, 

15 of 25 proteins had genetic variants (including proxies) available in the DVT GWAS 

(Supplementary Table 3). 

  

Mendelian Randomization Analyses 

MR-PheWAS: A hypothesis-free MR-PheWAS was conducted using the TwoSampleMR R package 

[30]. The effect of a given exposure on DVT was estimated using the inverse-variance weighted (IVW) 

method for exposures with more than one SNP [31]. Wald ratios (WRs) were derived for exposures 

with a single SNP [32]. Horizontal pleiotropy occurs when a SNP influences the outcome via a pathway 

other than the exposure of interest, this can bias estimation of the causal effect of an exposure and 

subsequently leads to type I statistical errors, thus violating a key assumption of MR (see 

Supplementary Figure 1 [33]). MR methods which make differing assumptions regarding pleiotropy 

were performed as sensitivity analyses where genetic instruments were comprised of more than 3 SNPs: 

MR-Egger regression (each SNP is associated with the exposure independently of its pleiotropic effect), 

simple mode (across all SNPs effect estimates, the mode is 0), weighted mode (similar to simple mode, 

where weights are given to ratio estimates), and weighted median (at least 50% of all SNPs are valid 

instruments and no SNP contributes more than 50% of the weight; weight given to ratio estimates) [34–

37].  
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While conventional MR methods assume effect homogeneity, large numbers of genetic instruments 

associated with an exposure can describe heterogenous effects, especially when there are multiple 

mechanisms through which the exposure might affect the outcome (e.g. variants associated with BMI 

may be associated with DVT via a number of alterations to the circulating proteome) [38]. To test for 

genetic heterogeneity, we used the maximum likelihood [39] estimator (fits a likelihood model to the 

summarized data, allowing for uncertainty in genetic associations with both the exposure and the 

outcome) and MR-Egger [35] for the exposures which were proxied by 2 or more variants. 

Two-sample MR mediation analysis: The effect of BMI-associated proteins on DVT was estimated 

using the TwoSampleMR R package [30]. An IVW MR analysis was performed for FABP4, for which 

3 SNPs were available to use as instruments. Wald ratios were derived for the remaining proteins. 

Where proteins were estimated to have a causal effect on DVT, a MR mediation analysis was performed 

to estimate the proportion mediated by a protein in the BMI-DVT link [40]. 

Multiple testing correction: As our MR-PheWAS estimated the causal relationship between a large 

number of exposures and DVT, we used PhenoSpD to estimate the number of independent traits in 

order to correct for multiple testing [41]. We used GWAS summary data describing the top 1000 

associated SNPs for each exposure to create a phenotypic correlation matrix by Pearson correlation. 

This correlation matrix was used as an input for PhenoSpD to assess the number of independent 

exposures through matrix spectral decomposition [42,43]. As PhenoSpD is not able to assess the 

correlation between traits which come from different studies (e.g. BMI from GWAS “A” can’t be 

correlated with BMI from GWAS “B”), the number of independent variables resulting from the 

PhenoSpD analysis was likely overestimated. This will have elevated the risk of type 2 error because 

of the applied multiple testing correction based on the PhenoSpD analysis. Another cause of false-

negative findings arises from the limited power of some instruments. This discrepancy in power leads 

to a variation in significance of traits which are most likely correlated. For example, although we found 

many traits related to adiposity to be associated with DVT (e.g. BMI, weight, body fat percentage), 

exposures such as “Body fat” were not. 
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Beta coefficient transformation: Linear mixed model (LMM) methodology has gained popularity in 

GWAS due to its ability to control for population structure and deal with large datasets [44]. Regression 

coefficients are usually converted to odds ratios (ORs) or risk ratios (RRs) to make results interpretable. 

However, these cannot be calculated directly from LMM estimates and thus must be approximated. 

Using previously described methodology [45], we approximated logRRs for our LMM-derived MR 

estimates. 

Bidirectional MR: Where there was evidence of an association with exposures tested in the MR-

PheWAS, we performed a bidirectional MR analysis to assess the direction causality between a given 

exposure and DVT. This was conducted to identify potential pathways of reverse causation, which 

would invalidate MR assumptions [15].  

 

Conditional and colocalization analyses 

Only one genetic instrument was available for some of the exposures investigated (N=10). As 

the Wald ratio estimator is susceptible to genetic confounding, we performed a conditional analysis for 

each single-SNP trait using the GCTA-COJO software [46] to identify any potential shared secondary 

signals in a 1MB region [47]. To perform these analyses, we downloaded summary statistics for these 

traits from OpenGWAS (https://gwas.mrcieu.ac.uk/) [48] and used genotypic data from the Avon 

Longitudinal Study of Parents and Children (ALSPAC) as a reference panel. Further details of the 

cohort are described elsewhere [49,50], in brief: 14,541 pregnant women with an expected delivery date 

of April 1, 1991, to December 31, 1992, were enrolled. We used the genotypic data of 8,890 mothers 

to perform our conditional analysis. Please note that the study website contains details of all the data 

that is available through a fully searchable data dictionary and variable search tool" and reference the 

following webpage (http://www.bristol.ac.uk/alspac/researchers/our-data/). Ethical approval for the 

study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 

Committee.  
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Colocalization analysis uses Bayesian statistics to estimate whether an exposure and outcome 

share a causal signal in a region of the genome [51]. We used the R package “coloc” (https://cran.r-

project.org/web/packages/coloc/) approximate Bayes factor (coloc.abf) function with default settings 

for prior probabilities to conduct a colocalization analysis with the following hypotheses: H0 (no causal 

variant), H1 (causal variant for trait 1 only), H2 (causal variant for trait 2 only), H3 (two distinct causal 

variants) and H4 (one common causal variant) [51]. We then used LocusZoom (https://locuszoom.org/) 

to provide visual evidence for the presence of a shared signal between our exposures and DVT. 

Results 

Associations of 973 exposures with DVT 

With the aim to identify novel risk factors for DVT, we undertook a hypothesis-free MR-

PheWAS to estimate the effect of 973 exposures with DVT. Of the 973 exposures investigated, 945 

were identified as independent using PhenoSpD, setting the P-value threshold for our MR analysis at 

5.43e-5. Fifty-seven exposures were estimated to influence DVT risk (Figure 2, Table 1). Sensitivity 

analyses results for all traits using additional MR methods are shown in Supplementary Table 4.  

We report several previously unidentified estimates, such as “Hyperthyroidism/thyrotoxicosis” 

(IVW Log RR: 2.39, 95% CI: 1.88 to 2.90; P = 8.69e-18), “Treatment/medication code: carbimazole” 

(IVW Log RR: 3.60, 95% CI: 2.70 to 4.50, P = 2.41e-12), “Chronic obstructive airways disease/chronic 

obstructive pulmonary disease (COPD)” (WR Log RR: 3.72, 95% CI: 1.39 to 4.37; P = 9.21e-07), 

“Varicose veins” (IVW Log RR: 1.90, 95% CI: 1.30 to 2.50; P = 2.36e-07), “Varicose veins of the 

lower extremities” (IVW Log RR: 3.40, 95% CI: 2.31 to 4.49; P = 5.13e-07) and “Mania/bipolar 

disorder/manic depression” (WR Log RR: 3.95, 95% CI: 2.60 to 5.30; P = 5.18e-06) (Figure 2, Table 

1). We also report evidence for an effect of circulating fatty acids on DVT risk: “Eicosapentaenoate 

(EPA; 20:5n3)” (WR Log RR: 1.1, 95% CI: 0.75 to 1.45; P = 3.14e-07), “Stearidonate (18:4n3)” (WR 

Log RR: 1.09, 95% CI: 0.73 to 1.45; P = 1.22e-06), “Arachidonate (20:4n6)” (WR Log RR: 0.913, 95% 

CI: 0.61 to 1.22; P = 2.08e-06), “Adrenate” (WR Log RR: 1.01, 95% CI: 0.55 to 1.32; P = 3.48e-07), 

“Docosapentaenoate  (n3 DPA; 22:5n3)” (WR Log RR: 1.08, 95% CI: 0.47 to 1.46; P = 2.01e-05) and 
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the amino-acid “Lysine” (WR Log RR: 1.50, 95% CI: 0.61 to 1.96; P = 1.25e-05) with DVT (Figure 

2, Table 1). 

Adiposity, an established risk factor for DVT [52], and its related traits (N=24, see Table 1 

note) were all positively associated with DVT. These include traits found in previous MR studies, such 

as “Body Mass Index” (IVW Log RR: 0.40, 95% CI: 0.32 to 0.47; P = 1.60e-22), fat mass e.g. “Whole 

body fat mass” (IVW Log RR: 0.44, 95% CI: 0.36 to 0.51; P = 4.65e-27), fat-free mass e.g. “Whole 

body fat-free mass” (IVW Log RR: 0.41, 95% CI: 0.31 to 0.50; P = 3.90e-14) and fat percentage e.g. 

“Body fat percentage” (IVW Log RR: 0.51, 95% CI: 0.41 to 0.61; P = 1.48e-20) [53] (Figure 2, Table 

1). A number of adiposity-related traits were found to be associated with DVT that have not been 

previously investigated in an MR framework, such as “Waist-hip ratio” (IVW Log RR: 0.50, 95% CI: 

0.40 to 0.59; P = 1.74e-22), “Hip circumference” (IVW Log RR: 0.36, 95% CI: 0.28 to 0.45; P = 2.22e-

13) and anatomically-specific measurements e.g. “Leg fat percentage (right)” (IVW Log RR: 0.59, 95% 

CI: 0.47 to 0.71; P = 3.32e-18) (Figure 2, Table 1). Another previously-associated trait is “Height” 

(IVW Log RR: 0.15, 95% CI: 0.08 to 0.21; P = 5.92e-06) [54]. Other associated height-related traits 

not previously investigated in an MR framework include “Standing height” (IVW Log RR: 0.17, 95% 

CI: 0.09 to 0.24; P = 4.61e-06) and “Comparative height size at age 10” (IVW Log RR: 0.30, 95% CI: 

0.20 to 0.40; P = 1.93e-06) (Figure 2, Table 1). 

Over 50% of the exposures (N=31) which passed our P-value threshold were found to have 

heterogenous effects between instruments using the maximum likelihood method. Of these, most 

(N=24) were traits related to body size (mass and adiposity). The remaining heterogenous traits were: 

basal metabolic rate (PHet: 3.71e-03); warfarin treatment (PHet: 5.66e-40); “Height” (PHet: 1.58e-03); 

“Standing height” (PHet = 4.61e-06); “Comparative height size at age 10” (PHet = 1.93e-06); 

“Impedance of leg (right)” (PHet: 4.23e-06) and “Impedance of leg (left)” (PHet: 9.96e-21). These 

findings were consistent with our IVW and MR-Egger heterogeneity analyses (Table 1). 

MR-Egger estimates indicated strong evidence of horizontal pleiotropy for “Qualifications: 

None of the above” (intercept = -5.69e-04, P = 3.35e-02), “Impedance of leg (right)” (intercept = 2.58e-

04, P = 3.22e-04) and “Impedance of leg (left)” (intercept = 2.22e-04, P = 7.24e-03) (Table 1). We 
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were unable to assess whether the “Prospective memory result” trait was pleiotropic, as this exposure 

was instrumented using only 2 SNPs. In bidirectional MR analyses, DVT was estimated to increase 

warfarin treatment (“Treatment/medication code: warfarin” (beta = 0.29; SE = 0.02; P = 1.79e-30)), 

implying reverse causation (Table 2). 

 

Estimates of BMI-driven proteins with DVT 

Of the 57 traits estimated to increase risk of DVT (Table 1, Figure 2), 24 were adiposity-related 

traits. While adiposity is an established risk factor for DVT, the biological mechanisms underlying the 

effect of adiposity and DVT are not well understood. To investigate the underlying mechanistic 

connection between adiposity and DVT we used a two-sample MR mediation analysis to test whether 

changes to levels of circulating blood proteins, driven by adiposity, were in part responsible for this 

association. Together, two recent MR studies have demonstrated that BMI causally affects the levels of 

15 circulating proteins [18,19]. Our analyses provide evidence of a causal effect for 3 of these proteins 

on DVT risk: Neurogenic locus notch homolog protein 1 (NOTCH1; WR Log RR: 0.57, 95% CI: 0.45 

to 0.68; P = 1.12e-23), Plasminogen activator inhibitor-1 (PAI-1; WR Log RR: 0.42, 95% CI: 0.30 to 

0.54; P = 4.27e-12) and Inhibin beta c chain (INHBC; WR Log RR: -1.18, 95% CI: -2.18 to -0.69; P = 

0.002). Mediation analysis was performed for PAI-1 (the only protein where BMI-protein and protein-

DVT effect estimates were consistent in directionality, as otherwise the proportion of the effect 

mediated would be a negative number): the proportion of the BMI-DVT effect mediated by PAI-1 was 

estimated to be 18.56% (Table 3, Figure 3, Supplementary Table 3). 

Several of the proteins considered in our MR analyses could be instrumented using only one 

genetic variant, and therefore required a conditional and colocalization analysis to provide additional 

evidence of causality. There were no secondary signals after conditioning on the top SNP for each 

exposure-DVT pair. There was evidence of a shared causal variant for PAI-1 (PP.S = 97.5%), 

strengthening the evidence that there is a true causal relationship between the levels of this protein and 

DVT (Table 4, Figure 4). 
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Discussion 

With the aim to identify novel causal risk factors for DVT, we performed a hypothesis-free 

MR-PheWAS of 973 exposures to DVT, of which 57 passed a conservative P-value threshold for 

evidence of causality. We confirmed causality for several previously established risk factors for DVT 

(such as BMI and height) and have identified several novel putative causal risk factors (such as 

hyperthyroidism and COPD). Of the 57 exposures estimated to influence DVT risk, 24 were adiposity-

related traits, therefore, we investigated whether the impact of adiposity on DVT is mediated by 

circulating proteins, known to be altered by BMI [18,19]. Here, we provide novel evidence that the 

circulating protein (PAI-1) has a causal role in DVT aetiology and is involved in mediating the BMI-

DVT relationship. 

Height has been previously associated with increased DVT risk [63] and our results align with 

this finding. With increased height, a greater volume of blood is required which can increase the stress 

on blood vessels, disrupting haemostasis [63]. Fat-free mass was also estimated to increase risk of DVT 

in our study. While counterintuitive, this effect could be mediated through height, as taller people 

usually have higher fat-free mass  [53,54]. As expected, many body size related traits showed evidence 

of heterogeneity, likely due to the large number of SNPs used to instrument these traits and the many 

underlying biological pathways explaining variation in adiposity.  

Interestingly, we found an effect of the genetic predicator for warfarin treatment on DVT risk. 

Warfarin is an anticoagulant used to treat DVT which reduces the production of vitamin K-dependent 

proteins involved in coagulation (FVIIa, FIXa, FXa, and thrombin) [3]. It has been reported that initial 

warfarin dosage may result in skin necrosis and a hypercoagulable state due to reductions in protein C 

and protein S levels, paradoxically increasing the risk of DVT [64]. At the same time, the underlying 

need for warfarin could be causing DVT (i.e. the SNP is increasing the vitamin K epoxide reductase 

complex 1 (VKORC1) activity, thereby increasing synthesis of clotting factors). Our bidirectional MR 
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provided evidence of reverse causality indicating individuals prescribed warfarin may already be 

suffering from a form of VTE. 

Venous blood stasis caused by immobility is also a known risk factor for DVT [3]. Here, we 

report evidence that long standing illness, disability, or infirmity increases DVT risk. A proposed 

mechanism is stasis of blood flow in the veins which can be either due to a particular neurological 

condition or due to the paralysis of the lower limbs [65]. Immobility may also arise due to 

hospitalisation and surgery, advanced age or a prolonged work-, air travel-, computer-related 

immobility, which have also been associated with an increased risk of DVT [66,67]. 

Our study also provides evidence for novel DVT risk factors. Hyperthyroidism has previously 

been proposed to contribute to DVT, as indicated by a recent systematic review and meta-analysis of 

cohort studies showing association with DVT (RR: 1.33, 95% CI: 1.28 to 1.39; I2 = 14%) [68]. In the 

present study, we for the first time provide novel evidence for a causal effect of 

hyperthyroidism/thyrotoxicosis on DVT risk (IVW RR: 10.91, 95% CI: 3.97 to 18.17; P = 3.14e-25). 

The underlying mechanism is not fully understood but may involve thyroid hormones (THs) promoting 

a hypercoagulable state and venous thrombi formation, by increasing plasma concentration of factor 

VIII, fibrinogen, plasminogen activator inhibitor 1 and vWF [69]. TH T4 may also directly enhance 

platelet function through integrin avb3 [70]. In addition, THs enhance basal metabolic rate (BMR) and 

thermogenesis, both of which affect body weight. Indeed, we found that an increase in basal metabolic 

rate is associated with DVT. While a higher BMR should lead to lower BMI and thus lower DVT risk, 

it is likely that our results may be explained by the hyperthyroidism-associated mechanisms outlined 

above. A genetic proxy for requiring a prescription of carbimazole was also associated with increased 

risk of DVT. Carbimazole is a thionamide drug which has been used to treat thyrotoxicosis for over 60 

years. It reduces the levels of circulating TH by binding to thyroid peroxidase, the enzyme required for 

TH production. As we found hyperthyroidism/thyrotoxicosis to be positively associated with DVT, we 

would expect carbimazole to protect against it. However, our MR estimate predicted a positive estimate. 

This novel finding is likely to be due to selection biases of the DVT GWAS, as those who are taking 
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medication against hyperthyroidism are more likely to suffer from DVT [71]. It does, however, 

strengthen the link between hyperthyroidism and DVT risk. 

Our MR estimates also support evidence of a causal association between varicose veins and 

increased risk of DVT. A common occurrence in varicose veins is the impaired action of leaflet valves, 

which prevent the blood from flowing backwards. This results in the inability of the blood to fully return 

to the heart, leading to the enlargement of the veins, and in time, potentially an increased risk of DVT 

due to stasis [72]. Varicose veins have been outlined as a possible risk factor in general practice patients 

in Germany[73], as well as in a Chinese retrospective study of over 100K people [72]. 

COPD was also associated with an increased risk of DVT. COPD is a severe chronic respiratory 

disease, having been studied extensively for its role in PE [74]. Indeed, both PE and DVT are more 

prevalent and underdiagnosed in people with COPD [75]. We were unable to perform a sensitivity 

analysis, as only one SNP was used to instrument this trait, and our colocalization analysis did not 

provide evidence that would support our MR estimates. With the observational evidence present, future 

studies with more genetic variants to instrument this trait would be worthwhile. 

Finally, as adiposity is an established risk factor for DVT, the estimates we observe between 

adiposity-related traits and DVT most likely reflect true causal relationships. The estimate we report 

here for BMI (RR: 1.49, 95% CI: 1.38 to 1.60; P = 3.14e-25) is consistent with a previous MR study 

conducted in individuals of Danish descent (OR: 1.57, 95% CI: 1.08 to 1.97; P = 3e-03) [10]. In 

addition, our results are in agreement with the estimated effect of BMI on VTE in the FinnGen 

consortium (MR RR: 1.58, 95% CI: 1.28 to 1.95; P = 2.00e-05) [53]. Higher adiposity is associated 

with dysregulated metabolism, which is one factor that can promote a hypercoagulable state and impair 

venous return, increasing the chance of thrombi formation [55]. Given that 42% of the traits we found 

to be associated with DVT were adiposity-related and we previously found that adiposity is associated 

with changes to the circulating proteome [18,19], we hypothesised that adiposity-driven changes to the 

circulating proteome may promote DVT. Our analysis revealed estimates for levels of 3 BMI-driven 

circulating proteins (NOTCH1, PAI-1 and INHBC) with DVT. However, only the estimates for PAI-1 

were directionally consistent for a potential mediator of the BMI-DVT relationship. Circulating levels 
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of PAI-1 were positively associated with BMI and with DVT. These results are consistent with the 

known role for PAI-1 in inhibiting fibrinolysis (breakdown of a clot) [56]. In addition, PAI-1 expression 

has been previously found to be associated with DVT formation in mice [56] and in humans after total 

hip arthroplasty [57].  

Although estimates were inconsistent with it being a potential mediator of the BMI-DVT 

relationship, we found that circulating INHBC levels were negatively associated with DVT, suggesting 

it may have a protective effect. Inhibins are part of the growth and differentiation superfamily of 

transforming growth factor beta (TGF-β) [58] and play a role in inhibiting the levels of follicle-

stimulating hormone (FSH) produced by the pituitary gland [59]. Although we did not find evidence of 

causality between FSH and DVT, a recent study showed that FSH can enhance thrombin generation 

[60]. This discrepancy could be due to INHBC acting through a different pathway compared to FSH.  

Finally, although again inconsistent with it being a potential mediator of the BMI-DVT 

relationship, we found that higher NOTCH1 expression was associated with an increased risk of DVT. 

NOTCH1 plays a role in responses to microenvironmental conditions, vascular development and is a 

shear stress and flow sensor in the vasculature [61]. However, a recent study conducted in mice 

suggested that NOTCH1 may be protective, as overexpression of miR-5189-3p in DVT led to increased 

expression of NOTCH1 and an improvement of venous thrombosis [62]. One explanation for this is 

that NOTCH is shed in the plasma and therefore expression levels within endothelial cells might be 

reduced. 

 In summary, we here confirmed estimates of previously identified traits on DVT (e.g. adiposity-

related, height), and identified novel estimates (e.g. hyperthyroidism, COPD and varicose veins) with 

the disease. We also provide evidence that the relationship between adiposity and DVT is mediated by 

dysregulated levels of circulating proteins (PAI-1). These findings improve the understanding of DVT 

aetiology and have notable clinical significance, particularly in regard to hyperthyroidism and PAI-1. 
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Figure 1. Overview of the study. First, a MR-PheWAS analysis to find risk factors for DVT was done 
using the MR-Base database and identified many of these to be associated with adiposity (N=24/57). 
This was followed by a two-sample mediation MR between BMI-associated pQTL data on DVT risk. 
MR = mendelian randomization; GWAS = genome-wide association study; VTE = venous 
thromboembolism; DVT = deep vein thrombosis; SNP = single-nucleotide polymorphism; pQTL = 
protein quantitative trait loci; PAI-1 = Plasminogen activator inhibitor-1; NOTCH1 = Neurogenic locus 
notch homolog protein 1; INHBC = Inhibin Subunit Beta C; S Table = Supplementary Table. 
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Figure 2. A many-to-one forest plot of the exposures which passed the P-value threshold following 
multiple testing correction (5.43e-5). Each trait is accompanied by two additional descriptive columns 
(No. SNPs and P-value), while log risk ratio (RR) is displayed to the right, alongside with the confidence 
intervals. MR methods: Inverse variance weighted (SNP > 1) and Wald ratio (SNP = 1). 
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Figure 3. A many-to-one forest plot of the three BMI-associated proteins which passed the multiple-
testing corrected P-value threshold (0.003) in the MR analysis. Each protein is accompanied by two 
additional descriptive columns (type of analysis conducted and P-value), while the effect is displayed 
to the right, alongside with the confidence intervals (Beta coefficient/Log RR ± 95% CI). Effect sizes 
of BMI on proteins taken from Goudswaard et al [18] and Zaghlool et al [19]. 
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Figure 4. LocusZoom plots in a 1Mb region of the SNP used to proxy each protein in both exposure 
(A,C,E) and outcome (DVT: B,D,F) data: PAI-1 (A,B), NOTCH1 (C,D), INHBC (E,F). The top signal 
in the region is labelled in each figure. The x-axis represents the position within the chromosome, while 
the y-axis is the -log10 of the P-value. Each dot is a SNP, and the colours indicate how much LD there 
is between the reference SNP and the other genetic variants.  
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Table 1. Traits passing the PhenoSpD significance threshold (5.43E-5) in the MR-PheWAS of all 
traits in UK Biobank on DVT risk.   
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Table 2. Reverse MR results of DVT on phenotypes from Table 1.   

 

Table 3. Mediation MR analysis results between BMI-associated proteins and DVT. The indirect 
effect was first calculated, followed by derivation of the proportion mediated. 

Table 3

Exposure Protein abbreviation Author Year PMID MR_method Log Risk Ratio* SE P-value No. SNP Beta coefficient - BMI 
to protein estimate*

Proportion (%) mediated by 
protein

Neurogenic locus notch homolog protein 1 NOTCH1 Sun BB 2018 29875488 Wald ratio 0.57 0.45 0.68 0.057 1.12E-23 1 -0.15 Effect not consistent

Plasminogen activator inhibitor 1 PAI-1 Sun BB 2018 29875488 Wald ratio 0.42 0.30 0.54 0.061 4.27E-12 1 0.17 18.56

Inhibin beta C chain INHBC Sun BB 2018 29875488 Wald ratio -1.18 -2.18 -0.69 0.380 1.96E-03 1 0.45 Effect not consistent

*LogRiskRatio is the logged value of the beta coefficient of the MR analysis into risk ratios. It can be read as an increase in the LogRisk of DVT per increase in cirulating protein levels.

*BMI-Protein MR effect estimates from Goudswaard et al (https://doi.org/10.1038/s41366-021-00896-1) and Zaghlool et al (https://doi.org/10.1038/s41467-021-21542-4)

CI (95%)

MR analysis of BMI-associated protein levels on DVT. Two-step MR of the indirect effect of BMI on DVT through protein levels.
Multiple-testing corrected P-value threshold: 0.0028

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 6, 2022. ; https://doi.org/10.1101/476135doi: bioRxiv preprint 

https://doi.org/10.1101/476135
http://creativecommons.org/licenses/by/4.0/


 31 

 

Table 4. Colocalization analysis results for exposures instrumented through only one SNP. 

Table 4

Trait 1 nr SNP PP.H0 PP.H1 PP.H1 PP.H3 PP.H4 PP.S*

Neurogenic locus notch homolog protein 1 3856 1.0694E-79 4.778E-73 2.2382E-07 0.99999972 6.0801E-08 0.00%

Inhibin beta C chain 4079 1.1109E-29 2.6137E-23 4.2502E-07 0.99999948 9.3591E-08 0.00%

Lysine 547 2.4588E-11 0.98338278 3.2772E-13 0.01310352 0.0035137 0.35%

Bipolar disorder / mania 3533 0.47264348 0.43702738 0.03965284 0.03665077 0.01402554 1.40%

Chronic obstructive pulmonary disorder 4229 0.0766326 0.83975957 0.00333097 0.03645779 0.04381907 4.38%

X-14473 655 6.292E-07 0.83967623 6.959E-08 0.09280245 0.06752062 6.75%

Docosapentaenoate 614 1.9077E-08 0.62830917 1.1181E-09 0.03649044 0.33520037 33.50%

Adrenate 626 1.8886E-18 0.5838098 1.1167E-19 0.03413747 0.38205274 38.20%

Stearidonate 674 5.34E-11 0.50441818 3.2335E-12 0.03007888 0.46550294 46.60%

Eicosapentanoate 633 2.8064E-17 0.22721212 1.6606E-18 0.01268473 0.76010315 76.00%

Arachidonate 626 4.9721E-77 0.17796851 2.9399E-78 0.00971061 0.81232088 81.20%

Plasminogen activator inhibitor 1 2604 3.0254E-13 1.9614E-06 3.9637E-09 0.02472248 0.97527556 97.50%

Fully Bayesian colocalisation results of prioritized traits on DVT.
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