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Abstract 1 

We rarely experience difficulty picking up objects, yet of all potential grasp points on an object’s 2 

surface, only a small proportion yield stable, comfortable grasps. Here, we present extensive 3 

behavioral data alongside a computational model that correctly predicts human precision 4 

grasping of unfamiliar 3D objects. We tracked participants’ forefinger and thumb as they picked 5 

up objects of 10 wood and brass cubes configured to tease apart effects of shape, weight, 6 

orientation, and mass distribution. Grasps were highly systematic and consistent across 7 

repetitions and participants. The model combines five cost functions related to force closure, 8 

torque, natural grasp axis, grasp aperture, and visibility. Even without free parameters, we find 9 

that the model predicts human grasps with striking fidelity: indeed, it predicts individual grasps 10 

almost as well as different individuals predict one another’s. Adding fittable weights to the model 11 

reveals the relative importance of the different constraints: the combination of force closure, 12 

hand posture, and grasp size explains most of human grasping behavior, while our participants 13 

cared surprisingly little about minimizing torque and optimizing object visibility. Together, these 14 

findings provide a unified account of how we derive effective grasps from objects’ 3D shape and 15 

material properties to interact with them successfully. 16 

 17 

Significance Statement 18 

Working out how we pick up and interact with objects effectively is one of the most important 19 

challenges in behavioral science. Of all the potential contact points on an object’s surface, only 20 

a small proportion yield effective grasps. Despite this, we rarely experience any difficulty 21 

choosing where and how to pick objects up. Here, we present a computational model that 22 

unifies the varied and fragmented literature on human grasp selection. We find that the model 23 

correctly predicts human grasps across a wide variety of conditions, taking into account the 24 

object’s 3D shape, material properties and orientation. 25 

  26 
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Introduction 27 

In everyday life, we effortlessly grasp and pick up objects without much thought. 28 

However, this ease belies its computational complexity. Even state of the art robotic AIs fail to 29 

grip objects nearly 20% of the time(1). To pick something up, our brains must work out which 30 

locations on the object will lead to stable, comfortable grasps, so we can perform desired 31 

actions (Figure 1a). Most potential grasps would actually be unsuccessful, e.g., requiring thumb 32 

and forefinger to cross, or failing to exert useful forces (Figure 1b). Even many possible grasps 33 

would be unstable, e.g., grasping an object too far from its center, so that it rotates once we try 34 

to lift it (Figure 1c). Somehow, the brain must infer which, of all potential grasps, would actually 35 

succeed. Despite this, we rarely drop objects or find ourselves unable to complete actions 36 

because we are holding them inappropriately. How does the brain select stable, comfortable 37 

grasps onto arbitrary 3D objects, particularly objects we have never seen before?  38 

 39 

Figure 1. The computational complexity of grasp selection. (a) Possible (b) Impossible (c) 40 

Possible but uncomfortable or unstable grasps.  41 

 42 

Despite the extensive literature describing human grasping patterns and movement 43 

kinematics(2–11), little is understood about the computational basis of human grasp selection. 44 
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Few authors have attempted to study and model how humans select grasps (e.g. (12, 13)), and 45 

even then, only for 2D shapes. This is because, even for two-digit precision grip, many factors 46 

influence how we grasp objects. Object shape must be considered, since the surface normals at 47 

thumb and index finger contact locations must be approximately aligned (a concept known as 48 

force closure(14)), otherwise the object will slip through our fingertips (Figure 1b, bottom). The 49 

object’s mass and mass distribution must be evaluated, since for grips with high torques (i.e. far 50 

from the object’s center of mass, or CoM(15–19)) the object will tend to rotate under gravity and 51 

potentially slip out of our grasp (Figure 1c, top). The orientation(16, 20–22) and size(23) of each 52 

grasp must be considered, since our arm and hand can move and apply forces only in specific 53 

ways, and grasps that do not conform to the natural configuration of our hand in 3D space might 54 

be impossible (Figure 1b, top), or uncomfortable (Figure 1c, bottom). The hand’s positioning 55 

may also determine an object’s visibility(9, 24–27).  56 

Most previous research on visually guided grasping did not assess the relative 57 

importance of these factors, nor how they interact. Here we sought to unify these varied and 58 

fragmented findings into a single theoretical and computational framework. We therefore 59 

constructed a rich dataset in which we could tease apart how an object’s 3D shape, mass, mass 60 

distribution, and orientation influence grasp selection. We devised a set of objects made of 61 

wood and brass cubes in various 3D configurations (Figure 2), and asked participants to pick 62 

them up with a precision grip, move them a short distance and place them at a target location, 63 

while we tracked their thumb and forefinger. By varying the spatial configurations of the cubes 64 

and orientation of the objects in Experiment 1 we could (1) determine how consistent 65 

participants are with themselves and other people, and (2) measure the interactions between 66 

allocentric 3D shape and egocentric perspective on those shapes. If actors take the properties 67 

of their own effectors into account (e.g., hand orientation, grasp size), we should expect the 68 

same 3D shape to be grasped at different locations depending on its orientation relative to the 69 

observer(16). In Experiment 2, we varied the mass and mass distribution of the objects (Figure 70 
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2c) to test the relative role of 3D shape and mass properties on grasp point selection. If 71 

participants take torques into account, identical shapes with different mass distributions should 72 

yield systematically different grasps(15, 17–19).  73 

Next, we employed this rich dataset to develop a computational model to predict human 74 

grasp patterns. We reasoned that grasps are selected to minimize costs associated with 75 

instability and discomfort. Accordingly, we implemented a model that combines five factors 76 

computed from the object’s shape, mass distribution, and orientation: (i) force closure(14), (ii) 77 

torque(15–19) (iii) natural grasp axis(16, 20–22), (iv) natural grasp aperture for precision 78 

grip(23) and (v) visibility(24, 25). We find that the model predicts human grasp patterns strikingly 79 

well. 80 

 81 

Results: 82 

Experiment 1: 3D shape and orientation  83 

Human grasps are tightly clustered and represent a highly constrained sample from the 84 

space of potential grasps. We asked 12 participants to grasp four objects made of beech 85 

wood presented at two orientations (Figure 2; see Methods). Figure 3a shows how grasp 86 

patterns tend to be highly clustered. In each condition, different grasps have similar size (finger-87 

to-thumb distance) and orientation, and also cover the same portions of the objects. Fitting 88 

multivariate Gaussian mixture models to the responses reveals that grasps cluster around only 89 

1, 2, or 3 modes. In Figure 3b we can observe these distinct modes for object U at orientation 2 90 

in a 2D representation of grasp space, where we can also note that human grasps cover only a 91 

minute portion of the space of potential grasps. Figure 3c also shows how, for one 92 

representative condition, different grasps from the same subjects are more clustered than 93 

grasps from different subjects, since individuals predominantly selected only one (70%) or two 94 

(27%) modes, and only rarely (3%) grasped objects in three separate locations. 95 

 96 
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 97 

Figure 2. Setup and stimuli. (a) Experimental setup. Seated participants performed grasping 98 

movements with their right hand. Following an auditory signal (coinciding with the shutter 99 

window turning transparent) they moved from one of the starting positions to the object and 100 

grasped it with a precision grip. They transported and released the object at the goal position 101 

and returned to the start position. (b) In Experiment 1 we employed four objects made of 102 

wooden cubes. Each object had a unique shape (that here we name L, U, S, V) and was 103 

presented at one of two different orientations with respect to the participant. (c) In Experiment 2 104 

the objects had the same shapes as in Experiment 1, but now were made of wood and brass 105 

cubes. The brass and wood cubes were organized either in an alternate pattern (middle), so 106 

that the CoM of the object would remain approximately the same as for the wooden object, or 107 

grouped so that the CoM would be shifted either closer to (right) or away from (left) the 108 

participant’s hand starting location.  109 

  110 
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 111 

Figure 3. Empirical Results. (a) Human grasps from Experiment 1. Grasps are represented as 112 

thumb (red triangles) and index finger (blue diamonds) contact positions, connected by dotted 113 

black lines. (b) Human grasps (blue blobs) for object U, orientation 2, when projected in a 2D 114 

representation of the space of potential grasps, cluster around three distinct modes. (c) 115 

Distribution of thumb contact points on object L, orientation 2. Different colors represent grasps 116 
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from different participants. (d) The level (%) of grasp similarity expected for grasps randomly 117 

distributed on the object surface and the observed level of between- and within-participant grasp 118 

similarity (e) Difference in grasp similarity across orientations when grasps were encoded in 119 

object-centered (allocentric) vs human-centered (egocentric) coordinates, as a function of 120 

magnitude of rotation across the two orientation conditions. (f) Average grasp trajectories 121 

viewed in the x-y plane (red curves) from start location towards the objects (always contained 122 

within the gray shaded region). The average human grasp (red dot) across conditions is biased 123 

toward shorter reaching movements compared to the object centroids (black dot). (g) Attraction 124 

towards the object CoM for grasps executed onto light (Experiment 1) and heavy (Experiment 2) 125 

objects compared to grasps uniformly distributed on the object surfaces (zero reference). (h) 126 

Human grasps from Experiment 2 onto object S presented at orientation 2. (i) Attraction towards 127 

the object CoM compared to Experiment 1 grasps (zero reference), for Experiment 2 grasps 128 

onto heavy objects whose CoM is closer, the same distance as, or farther than the light wooden 129 

objects from Experiment 1. In all panels, error bars/regions represent 95% bootstrapped 130 

confidence intervals. ** p<0.01, *** p<0.001 131 

 132 

To further quantify how clustered these grasping patterns are we designed a simple 133 

metric of similarity between grasps (see Methods). Figure 3d shows how both between- and 134 

within-subject grasp similarity are significantly higher than the similarity between random grasps 135 

due to object geometry (t(7)=9.76, p=2.5*10-5 and t(7)=25.11, p=4.1*10-8 respectively). 136 

Additionally, within-subject grasp similarity is significantly higher than between subjects 137 

(t(7)=3.89, p=0.0060). Nevertheless, the high level of similarity between grasps from different 138 

participants demonstrates that different humans tend to grasp objects in similar ways. The even 139 

higher level of within-subject grasp similarity further demonstrates that grasp patterns from 140 

individual participants are idiosyncratic, which may reflect differences in the strategies employed 141 

by individual participants.  142 
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Findings reproduce several known effects in grasp selection. First, previous research 143 

suggests haptic space is encoded in both egocentric and allocentric coordinates(28), and that 144 

grasps are at least partly encoded in egocentric coordinates to account for the biomechanical 145 

constraints of our arm and hand(16). Our findings reproduce and extend these observations. 146 

For each object we computed grasp similarity across the two orientations in both egocentric and 147 

allocentric coordinates. Figure 3e shows that, as the extent of the object rotation increases, 148 

grasp encoding shifts from allocentric to egocentric coordinates. Across small rotations (object 149 

S, 55 deg rotation), grasps are more similar if encoded in allocentric coordinates (t(11)=13.90, 150 

p=2.5*10-8), whereas for large rotations (object L, 180 degrees) grasps are more similar if 151 

encoded in egocentric coordinates (t(11)=4.59, p= 7.8*10-4). Therefore, both 3D shape as well 152 

as movement constraints influence grasps. 153 

Second, Figure 3f shows that participants selected grasps locations that were on 154 

average 26 mm closer to the starting location than the object centroid (t(11)=9.74, p=9.6*10-7), 155 

reproducing known spatial biases in human grasp selection (12, 25, 27, 29, 30). 156 

Third, consistent with Kleinholdermann et al (12) but contrary to previous claims(15–19), 157 

our findings suggest humans care little about torque when grasping light objects. If actors 158 

sought to minimize torque, the selected grasps should be as close as possible to the CoM. In 159 

contrast, Figure 3g shows that for the light weight objects in Experiment 1, grasps were on 160 

average 9 mm farther from the CoM than the average distance to the object’s CoM of grasps 161 

uniformly sampled onto the surface of the objects (t(11)=4.53, p=8.6*10-4).  162 

 163 

Experiment 2: Mass and Mass Distribution 164 

Humans grasp objects close their center of mass when high grip torques are possible. 165 

Due to the low density of beech wood, even the grasps farthest from the CoM in Experiment 1 166 

would produce relatively low torques. Therefore, in Experiment 2 we tested whether participants 167 

grasp objects closer to the CoM when higher torques are possible. We did this by using objects 168 
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of greater mass and asymmetric mass distributions. Specifically, for each of the shapes in 169 

Experiment 1, we made three new objects, each made of five brass and five wooden cubes: two 170 

‘bipartite’ objects, with brass clustered on one or the other half of the object, and one 171 

‘alternating’ object, with brass and wood alternating along the object’s length. These objects had 172 

the same 3D shapes as in Experiment 1, but were nearly tenfold heavier (Figure 2c, see 173 

Methods). 174 

Figure 3g shows how human grasps are indeed significantly attracted towards the CoM 175 

of heavy objects, presumably to counteract the larger torques associated with higher mass. In 176 

Experiment 2, grasps were on average 11 mm closer to the object CoM than grasps sampled 177 

uniformly from the objects’ surfaces (t(13)=4.94, p= 2.7*10-4), and on average 20 mm closer 178 

than the grasps from Experiment 1 (t(24)=6.63, p= 7.4*10-7). Importantly, participants shifted 179 

their grasps towards the CoM—not the geometrical centroid—of the objects (observe how the 180 

grasp patterns shift in Figure 3h). Figure 3i shows that when the object CoM was shifted 181 

towards the hand starting location, participants did not significantly adjust their grasping strategy 182 

compared to Experiment 1 (t(13)=0.81, p=0.43). Conversely, when the object CoM was in the 183 

same position as in Experiment 1, participants shifted their grasps on average by 8 mm towards 184 

the CoM (t(13)=3.92, p=0.0017). When the object CoM was shifted away from the hand starting 185 

position, participant grasps were on average 37 mm closer to the object CoM compared to 186 

Experiment 1 grasps (t(13)=8.49, p=1.2*10-6), a significantly greater shift than both the near and 187 

same CoM conditions (t(13)=8.66, p=9.2*10-7 and t(13)=7.58, p=4.0*10-6). These differential 188 

shifts indicate that participants explicitly estimated each object’s CoM from visual material cues. 189 

Even with the heavier objects, participants still systematically selected grasp locations 190 

that were closer to the starting location than the object centroid (t(13)=4.03, p=0.0014). 191 

However, now participants exhibited only a 9 mm bias, which was significantly smaller than the 192 

26 mm bias observed for the light wooden objects in Experiment 1 (t(24)=4.67, p= 9.6*10-5). 193 
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Together these findings suggest that participants combine multiple constraints to select 194 

grasp locations, taking into consideration the shape, weight, orientation, and mass distribution of 195 

objects, as well as properties of their own body to decide where to grasp objects. We next 196 

sought to develop a unifying model that could predict these diverse effects based on a few 197 

simple underlying principles. 198 

 199 

Computational model of human grasp selection. 200 

Based on the insights gained from our empirical findings, we developed a computational 201 

model to predict human grasp locations. The model takes as input 3D descriptions of the 202 

objects’ shape, mass distribution, orientation, and position relative to the participant, and 203 

computes as output a grasp cost function, describing the costs associated with every possible 204 

combination of finger and thumb position on accessible surface locations (i.e., those not in 205 

contact with table). We reasoned that humans would tend to grasp objects at or close to the 206 

minima of this cost function, as these would yield the most stable, comfortable grasps. Low cost 207 

grasps can then be projected back onto the object to compare against human grasps. It is 208 

important to note that this is not intended as a process model describing internal visual or motor 209 

representations (i.e., we do not suggest that the human brain explicitly evaluates grasp cost for 210 

all possible surface locations). Rather, the model is a way of combining a subset of the factors 211 

which are known to influence human grasp selection into a single, unifying framework (12). 212 

For each object, we create a triangulated mesh model in a 3D coordinate frame, from 213 

which we can sample (Figure 4a-b). For precision grip, we assume one contact point each for 214 

thumb and index finger. Thus, all possible precision grip grasps can be ordered on a 2D plane, 215 

with all possible thumb contact points along the x-axis, and on the y-axis, all possible index 216 

contacts in the same ordering as for the thumb. 217 

 218 
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 219 

Figure 4. A framework that unifies distinct aspects of grasp selection. (a) Mesh model of object 220 

in same 3D reference frame as participant poised to execute grasp. (b) Discrete sampling of the 221 

surface defines a 2D space containing all potential combinations of index and thumb contact 222 

points on the object. (c) Color-coded maps showing penalty values for each potential grasp for 223 

each penalty function. (d) Overall penalty function computed as the linear combination of maps 224 

in (c). (e) Human grasps projected into 2D penalty-function space neatly align with minimum of 225 

combined penalty map.  226 

 227 

To estimate the cost associated with each grasp, we take a (weighted) linear combination of five 228 

penalty functions, determined by the physical properties of the graspable object (surface shape, 229 

orientation, mass, mass distribution) as well by the physical constraints of the human actuator 230 

(i.e. the human arm/hand). Specifically, we consider optimality criteria based on: (i) optimum 231 

force closure(14), (ii) minimum torque(15–19), (iii) alignment with the natural grasp axis(16, 20–232 

22), (iv) optimal grasp aperture(23), and (v) optimal visibility(24, 25, 27). (see Methods for 233 

mathematical definitions). Figure 5(c) shows maps for each penalty function: white indicates low 234 
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penalty, dark blue high penalty. To compare and combine penalty, values are always 235 

normalized to [0,1]. 236 

Force closure: force closure is fulfilled when the two contact-point surface normals, along 237 

which gripping forces are applied, are directed towards each other(14). Thus, we penalize 238 

lateral offsets between the grasp point normals. 239 

Minimum torque: grasping an object far from its CoM results in high torque, which causes the 240 

object to rotate when picked up(15–19). Large gripping forces would be required to prevent the 241 

object from rotating. We therefore penalize torque magnitude. 242 

Natural grasp axis: when executing precision grip grasps, humans exhibit a preferred hand 243 

posture known as the natural grasp axis(16, 20–22). Grasps that are rotated away from this axis 244 

result in uncomfortable or restrictive hand/arm configurations. We therefore penalize angular 245 

misalignment between each candidate grasp and the natural grasp axis (taken from (21)). 246 

Unlike force closure and torque, this penalty map is asymmetric about the diagonal. 247 

Optimal grasp aperture: humans prefer the distance between finger and thumb at contact 248 

(‘grasp aperture’) to be below 2.5 cm(23). We therefore penalize grasp apertures above 2.5 cm.  249 

Optimal visibility: our behavioral data, and previous studies, suggest humans exhibit spatial 250 

biases when grasping. It has been proposed that these may arise from an attempt to minimize 251 

energy expenditures through shorter reach movements(24). However, Paulun et al (25) have 252 

shown that these biases may in fact arise from participants attempting to optimize object 253 

visibility. While our current dataset was not designed to untangle these competing hypotheses, 254 

re-analyzing published data (19, 27) confirms that object visibility—not reach length—is most 255 

likely responsible for the biases. We therefore penalized grasps that hindered object visibility. 256 

We also designed a penalty function for reach length and verified that, since reach length and 257 

object visibility are correlated in our dataset, employing one or the other penalty function yields 258 

very similar results.  259 

 260 
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We assume that participants select grasps with low overall costs across all penalty 261 

functions. Thus, to create the overall grasp penalty function, we take a (weighted) linear sum of 262 

the individual penalty maps. The minima of this full penalty map represent grasps that best 263 

satisfy all criteria simultaneously. The map in Figure 5d exhibits a clear minimum: the white 264 

region in its lower right quadrant.  265 

To assess the agreement between human and optimal grasps, we may visualize human 266 

grasps in the 2D representation of the grasp manifold. The red markers in Figure 5(e) are the 267 

human grasps from object L at orientation 2, projected in 2D and overlain onto the full penalty 268 

map. Human grasps neatly align with the minima of the penalty map. 269 

Model Fitting. The simple, equally-weighted combination of constraints considered thus far 270 

agrees with human grasping behavior surprisingly well. However, it is unlikely that actors treat 271 

all optimality criteria as equally important. Different persons likely weight the constraints 272 

differently (e.g., due to strength or hand size). Therefore, we developed a method for fitting full 273 

penalty maps to participants’ responses. We assigned variable weights to each optimality 274 

criterion, and fit these weights to the grasping data from each participant, to obtain a set of full 275 

penalty maps whose minima best align with each participant's grasps (see Methods). 276 
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 277 

Figure 5. Computational Results. (a) Grasping patterns predicted through the computational 278 

framework (right) closely resemble human grasps onto real objects varying in shape, 279 

orientation, and material (left). Simulated grasp patterns are generated with no knowledge of our 280 

human data (i.e. model not fit to human grasps). (b) Population level grasp similarity, i.e. 281 

similarity of human and unfitted model grasps to median human grasp across all participants. 282 

(c) Individual level grasp similarity, i.e. similarity of human, unfitted, and fitted model grasps to 283 

the median grasp of each participant. In panels (b,c), dashed line is estimated chance level of 284 
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grasp similarity due to object geometry, bounded by 95% bootstrapped confidence intervals. (d) 285 

Pattern of fitted weights across Experiments 1 and 2. (e) Relative weight of the minimum torque 286 

constraint in Experiments 1 and 2. (f) Relative weight of the visibility constraint in Experiments 1 287 

and 2. Data are means; error bars, 95% bootstrapped confidence intervals. ***p<0.001 288 

 289 

Model grasps are nearly indistinguishable from measured human grasps. To compare 290 

human and optimal grasps directly, we can sample predicted optimal grasps from around the 291 

minimum of the full penalty map (see Methods) and project back onto the objects. Figure 5a 292 

shows human grasps (left) and unfitted model predictions (right) on a few representative objects 293 

(see Supplementary Figure S1 for complete set). Human and predicted grasps have similar size 294 

and orientation, and also cover similar portions of the objects. 295 

Figure 5b depicts grasp similarity at the population level, i.e., across participants and 296 

between human and unfitted model grasps. Grasp similarity between participants was computed 297 

(for each object and condition), as the similarity between the median grasp of each participant 298 

and the median grasp across all others. Grasp similarity between human and model grasps was 299 

computed as the similarity between the median unfitted model grasp and the median grasp 300 

across all participants.  301 

Unfitted model grasps were significantly more similar to human grasps than chance 302 

(t(31)=10.79, p=5.0*10-12), and effectively indistinguishable from human-level grasps similarity 303 

(t(31)=0.31, p=0.76). Note that this does not mean our current approach perfectly describes 304 

human grasping patterns; it suggests instead that our framework is able to predict the median 305 

human grasping patterns nearly as well as the grasps of a random human on average 306 

approximate the median human grasp. 307 

Fitting the model can account for individual grasp patterns. In both Experiments, 308 

participants repeatedly grasped the same objects in randomized order. Figure 5c depicts how 309 

similar human and model grasps are to the median grasp of each individual participant in each 310 
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experimental condition. Individual subjects are highly consistent when grasping the same object 311 

on separate trials. Grasps predicted through our framework with no knowledge of the empirical 312 

data were significantly less similar to the median grasps of individual humans (t(31)=9.33, 313 

p=1.6*10-10). This is unsurprising, since the unfitted model predicts the average pattern across 314 

observers, but there is no mechanism for it to capture idiosyncrasies of individual humans. 315 

Fitting the model to the human data (see Methods) significantly improved grasp similarity 316 

(t(31)=5.00, p=2.1*10-5). Note however that model grasp patterns fit to a single participant are 317 

still distinguishable from random real grasps by the same individual (t(31)=4.85, p=3.3*10-5).  318 

Force closure, hand posture, and grasp size explain most of human grasp point 319 

selection. The pattern of fitted weights across both experiments (Figure 5d) reveals the relative 320 

importance of the different constraints. Specifically, we find that force closure is the most 321 

important constraint on human grasping, which makes sense because force closure is a 322 

physical requirement for a stable grasp. Next in importance are natural grasp axis and optimal 323 

grasp aperture, both constraints given by the posture and size of our actuator (our hand). In 324 

comparison, participants appear to care only marginally about minimizing torque, and almost 325 

negligibly about object visibility.  326 

Analyzing the patterns of fitted weights confirms our empirical findings. The model also 327 

replicates our main empirical findings in a single step. Figure 5e shows that the relative 328 

importance of torque was much greater for the heavy objects tested in Experiment 2 compared 329 

to the light objects from Experiment 1 (t(24)=4.40, p=1.9*10-4). Conversely, Figure 5f shows that 330 

the relative importance of object visibility instead decreased significantly from Experiment 1 to 331 

Experiment 2 (t(24)=3.07, p=0.0053). Additionally, by simulating grasps from the fitted model, 332 

we are able to recreate the qualitative patterns of all behavioral results presented in Figure 3 333 

(see Supplementary Figure S2).  334 

 335 

 336 
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Discussion: 337 

We investigated how an object’s 3D shape, orientation, mass, and mass distribution jointly 338 

influence how humans select grasps. Our empirical analyses showed that grasping patterns are 339 

highly systematic, both within and across participants, suggesting that a common set of rules 340 

governs human grasp selection of complex, novel 3D objects. Our findings reproduce, unify, 341 

and generalize many effects observed previously: (1) both 3D shape and orientation determine 342 

which portion of the object people grasp (8, 12, 15, 16, 31–34).; (2) humans exhibit spatial 343 

biases even with complex 3D objects varying in shape and mass(12, 25, 27, 29, 30); (3) object 344 

weight modulates how much humans take torque into account when selecting where to grasp 345 

objects(15–19). We then combined this diverse set of observations into a unified theoretical 346 

framework that predicts human grasping patterns strikingly well, even with no free parameters. 347 

By fitting the computational model to human behavioral data, we showed that force closure, 348 

hand posture, and grasp size are the primary determinants of human grasp selection, whereas 349 

torque and visibility modulate grasping behavior to a much lesser extent.  350 

3D Shape Behavioral research on the influence of shape on grasping is surprisingly scarce, 351 

primarily employs 2D or simple geometric 3D stimuli of uniform materials, and rarely 352 

investigates grasp selection (8, 15, 16, 31–34). For example, by using 3D stimuli that only 353 

varied in shape by a few centimeters, Schettino et al(33) concluded that object shape influences 354 

hand configuration only during later phases of a reaching movement during which subjects use 355 

visual feedback to optimize their grasp. Here, we show that distinct 3D shapes are grasped in 356 

systematically distinct object locations, and our behavioral and model analyses can predict 357 

these locations directly from the object 3D shape.  358 

Orientation When grasping spheres or simple geometrical shapes, humans exhibit a preferred 359 

grasp orientation (the NGA) (16, 20–22), and most previous work on how object orientation 360 

influences grasping has primarily focused on hand kinematics(15, 19, 32, 35). Conversely, with 361 

more complex 3D shapes we show that the same portion of an object is selected within a range 362 
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of orientations relative to the observer, whereas for more extreme rotations the grasp selection 363 

strategy shifts significantly. Therefore, object shape and orientation together determine which 364 

portion of an object will be grasped, and thus the final hand configuration.  365 

Spatial Biases The spatial biases we observe are consistent with participants attempting to 366 

increase object visibility(25, 27), and our data also replicate the finding that these biases are 367 

reduced when object weight increases(19, 25).  368 

Material/Weight/Torque Goodale at al(15) were among the first to show that participants tend 369 

to grasp objects through their CoM, presumably to minimize torque. Lederman and Wing(16) 370 

found similar results, yet in both studies low-torque grasps also correlated with grasps that 371 

satisfied force closure and aligned with the natural grasp axis. Kleinholdermann et al(12) found 372 

torque to be nearly irrelevant in grasp selection, yet Paulun et al(19) observed that grasp 373 

distance to CoM was modulated by object weight and material. Our findings resolve these 374 

conflicting findings. By using stimuli that decorrelate different aspects of grasp planning, we find 375 

that shape and hand configuration are considerably more important than torque for light weight 376 

objects, and that the importance of minimizing torque scales with mass. Additionally, shifting an 377 

object’s mass distribution significantly attracted grasp locations towards the object’s shifted 378 

CoM, demonstrating that participants could reliably combine global object shape and material 379 

composition to successfully infer the object’s CoM.  380 

Computational Modelling Previous models of grasping have mainly focused on hand 381 

kinematics and trajectory synthesis(2–6) whereas we attempt to predict which object locations 382 

will be selected during grasping. Our modelling approach takes inspiration from 383 

Kleinholdermann et al(12), which to the best of our knowledge is the only previous model of 384 

human two-digit contact point selection, but only for 2D shape silhouettes. In addition to dealing 385 

with 3D objects varying in mass, mass distribution, orientation, and position, our modeling 386 

addresses several limitations of previous approaches. The fitting procedure quantifies the 387 

relative importance of different constraints, and can be applied to any set of novel objects to test 388 
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how experimental manipulations affect this relative weighting. The modular nature of the model 389 

allows additional constraints to be included, excluded or given variable importance. For 390 

example, we know that end-state comfort of the hand plays a role in grip selection(36, 37), yet 391 

the tradeoff between initial and final comfort is unclear(38). By varying the participants’ task to 392 

include object rotations, and by including a penalty function penalizing final hand rotations away 393 

from the natural grasp axis, it would be possible to assess the relative importance of initial, final 394 

(or indeed intermediate) hand configurations on grasp planning. The modelling could also be 395 

extended to multi-digit grasping, by adding to each penalty function three dimensions for each 396 

additional finger considered (the x,y,z coordinates of the contact point). This approach is 397 

consistent with (and complementary to) the approach by Smeets and Brenner(2, 5), who posit 398 

that grasping is a combination of multiple pointing movements. Future models should also 399 

generalize from contact points to contact patches of nonzero area, as real human grasp 400 

locations are not only points but larger areas of contact between digit and object. To facilitate 401 

such developments, we provide all data and code (doi:xx.xxxx/zenodo.xxxxxxx upon 402 

publication). 403 

Neuroscience of Grasping While our model is not meant as a model of brain processes, there 404 

are several parallels with known neural circuitry underlying visual grasp selection (for reviews 405 

see(39–41)). Of particular relevance is the circuit formed between the Ventral Premotor Cortex 406 

(Area F5), Dorsal Premotor Cortex (Area F2), and the Anterior Intraparietal Sulcus (AIP). Area 407 

F5 exhibits 3D-shape-selectivity during grasping tasks and is thought to encode grip 408 

configuration given object shape(42–44), whereas area F2 encodes the grip-wrist orientation 409 

required to grasp objects under visual guidance(45). Both regions exhibit strong connections 410 

with AIP, which has been shown to represent the shape, size, and orientation of 3D objects, as 411 

well as the shape of the handgrip, grip size, and hand-orientation(46). Additionally, visual 412 

material properties, including object weight, are thought to be encoded in the ventral visual 413 

cortex(47–51), and it has been suggested that AIP might play a unique role in linking 414 
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components of the ventral visual stream involved in object recognition to hand motor 415 

system(52). Therefore, the neural circuit formed between F5, F2, and particularly AIP is a strong 416 

candidate for combining the multifaceted components of visually guided grasping identified in 417 

this work(53–57). Combining targeted investigations of brain activity with the behavioral and 418 

modelling framework presented here holds the potential to develop a unified theory of visually 419 

guided grasp selection.  420 

 421 

Materials and Methods: 422 

Participants 423 

Twelve naïve participants (5 males and 7 females between the ages of 20 – 31, mean age: 25.2 424 

years) participated in Experiment 1. Fourteen naïve participants (9 males and 5 females 425 

between the ages of 21 and 30, mean age: 24.4 years) participated in Experiment 2. 426 

Participants were students at the Justus-Liebig-University Giessen, Germany and received 427 

monetary compensation for participating. All participants reported having normal or corrected to 428 

normal vision and being right handed. All procedures were approved by the local ethics board 429 

and adhered to the declaration of Helsinki. All participants provided written informed consent 430 

prior to participating. 431 

Apparatus 432 

Experiments were programmed in Matlab version R2007a using the Optotrak Toolbox by V. H. 433 

Franz(58). Participants were seated at a table with their head positioned in a chinrest (Figure 434 

2a), in front of an electronically controlled pane of liquid crystal shutter glass(59), though which 435 

only part of the table was visible and which became transparent only for the duration of a trial. 436 

Objects were placed at a target location, 34 cm from the chinrest in the participant’s sagittal 437 

plane. Small plastic knobs placed on participants’ right side specified the hand starting 438 

positions. A plate (28.5 cm to the right of the goal location and with a 13 cm diameter at 26 cm 439 
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from start position 1 in the participant’s sagittal plane) specified the movement goal location. We 440 

tracked participants’ fingertip movements using an Optotrak 3020 infrared tracking system. The 441 

Optotrak cameras were located to the left of the participants. To record index finger and thumb 442 

movement, sets of three infrared markers (forming a rigid body) were attached to the base of 443 

the participants’ nails. The fingertip and tip of the thumb were calibrated in relation to the marker 444 

position, as participants grasped a wooden bar with a precision grip, placing their fingertips at 445 

two known locations on the bar.  446 

Stimuli 447 

Experiment 1: Light objects made of wood. Four differently shaped objects (defined as 448 

objects L, U, S and V; Figure 2b) each composed of 10 wooden (beech) cubes (2.53 cm³), 449 

served as stimuli. Objects were fairly light with a mass of 97 g. Two of the objects featured 450 

cubes stacked on top of each other, whereas the other two objects were composed exclusively 451 

of cubes lying flat on the ground. The objects were presented to the participants at one of two 452 

orientations. Across orientations, object L was rotated by 180 degrees, objects U and V were 453 

rotated by 90 degrees, and object S was rotated by 55 degrees. Figure 2b shows the objects 454 

positioned as if viewed by a participant.  455 

Experiment 2: Heavy composite objects made of wood and brass. For each of the 4 shapes 456 

from Experiment 1, we created 3 new objects (12 in total) to serve as stimuli for Experiment 2 457 

(Figure 2c). Individual cubes were made of either wood or brass. The objects were composed of 458 

5 cubes of each material, which made them fairly heavy with a mass of 716g. By reordering the 459 

sequence of wood and brass cubes, we shifted the location of each shape's CoM. For each 460 

shape we made one object in which brass and wooden cubes alternated with one another, and 461 

two bipartite objects, where the 5 brass cubes were connected to one another to make up one 462 

side of the object with the wooden cubes making up the other side. This configuration was also 463 

inverted, (i.e., wooden and brass cubes switched locations). All objects were presented at the 464 

same two orientations as Experiment 1. 465 
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Object meshes. Triangulated mesh replicas of all objects were created in Matlab; each cube 466 

face consisted of 128 triangles. To calibrate mesh orientation and position, we measured, using 467 

the Optotrack, four non planar points on each object at each orientation. We aligned the model 468 

to the same coordinate frame employed by the Optotrack using Procrustes analysis.  469 

Procedure 470 

Prior to each trial, participants placed thumb and index finger at a pre-specified starting location. 471 

In Experiment 1, two start locations were used (start 1 at 28 cm to the right of the chinrest in the 472 

participant’s coronal plane and 9.5 cm forward in the sagittal plane; start 2 9 cm further to the 473 

right and 3 cm further forward, 23 cm from the center of the goal plate). Given that we observed 474 

no effect of starting position in our data, in Experiment 2 only the first starting location was 475 

employed. When the subject was at the correct start position, the experimenter placed one of 476 

the stimulus objects at the target location behind the opaque shutter screen. Each object could 477 

be presented at one of two orientations with respect to the participant. The experimenter could 478 

very precisely position each object at the correct location and orientation by aligning two small 479 

groves under each object with two small pins on the table surface.  480 

Once both stimulus and participant were positioned correctly, a tone indicated the beginning of 481 

a trial, at which point the shutter window turned translucent. Participants were then required to 482 

pick up the object using only forefinger and thumb and place it at the goal location. Participants 483 

had 3 seconds to complete the task before the shutter window turned opaque. In Experiment 1, 484 

no instructions were given regarding how the objects had to be picked up. In Experiment 2, 485 

participants were instructed to keep the objects as level as possible. 486 

Experiment 1 had sixteen conditions: two starting locations, four wooden objects of different 487 

shapes, each object presented at two orientations. Each participant repeated each condition five 488 

times (eighty trials per participant).  489 

Experiment 2 had thirty-six conditions: twelve distinct objects (four shapes in three material 490 

configurations) presented at two orientations. Half of the participants handled only shapes L and 491 
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V, the other half handled shapes U and S. Each participant repeated each condition seven 492 

times (eighty-four trials per participant). In both experiments trial order was randomized.  493 

Following each trial, the experimenter visually inspected the movement traces to determine 494 

whether a grasp was successful or not. Grasps were deemed unsuccessful when the movement 495 

was too slow, when an object was dropped, or when tracking was lost. Unsuccessful grasps 496 

were marked as error trials, added to the randomization queue, and repeated. A total of 368 497 

error trials (13.8% of trials from Experiment 1 and 13.9% from Experiment 2) were not analyzed. 498 

Training 499 

Each participant completed six practice trials (using a Styrofoam cylinder in Experiment 1, and 500 

by lifting random objects from the shapes not used in that participant’s run in Experiment 2) prior 501 

to the experiment to give them a sense for how fast their movement should be in order to 502 

complete the entire movement within three seconds. Practice trial data were not used in 503 

analyses. Prior to Experiment 2, participants were familiarized with the relative weight of brass 504 

and wood using two rectangular cuboids of dimensions 12.5x2.5x2.5 cm, one of wood (50 g) 505 

and one of brass (670 g).  506 

Analyses  507 

All analyses were performed in Matlab version R2018a. Differences between group means were 508 

assessed via paired or unpaired t-tests, as appropriate. Values of p<0.05 were considered 509 

statistically significant.  510 

Contact points. Contact points of both fingers with the object were determined as the fingertip 511 

coordinates at the time of first contact, projected onto the surface of the triangulated mesh 512 

models of the object. The time of contact with the object was determined using the methods 513 

developed by Schot et al (60) and previously described in Paulun et al (19).  514 

Grasp similarity. We described each individual grasp 𝑮⃗⃗  as a 6D vector of the x,y,z coordinates 515 

of the thumb and index finger contact points: 516 
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𝑮⃗⃗ = [𝒙𝑻, 𝒚𝑻, 𝒛𝑻, 𝒙𝑰, 𝒚𝑰, 𝒛𝑰] 517 

To compute the similarity 𝑆 between two grasps  𝑮𝟏
⃗⃗ ⃗⃗    and  𝑮𝟐

⃗⃗ ⃗⃗  , we first computed the Euclidian 518 

distance between the two 6D grasp vectors. We then divided this distance by the largest 519 

possible distance between two points on the specific object 𝑫𝒎𝒂𝒙, determined from the mesh 520 

models of the objects. Finally, similarity was defined as 1 minus the normalized grasp distance, 521 

times 100: 522 

𝑆 = 100 ∗ (1 −
‖ 𝑮𝟏

⃗⃗ ⃗⃗  − 𝑮𝟐
⃗⃗ ⃗⃗  , ‖

𝑫𝒎𝒂𝒙
) 523 

In this formulation, two identical grasps, which occupy the same point in a 6D space, will be 524 

100% similar, whereas the two farthest possible grasps onto a specific object will be 0% similar. 525 

Within-subject grasp similarity was the average similarity between grasps from the same 526 

participant to the participant's own median grasp. Between-subject grasp similarity was the 527 

similarity between the median grasp of each participant and the median grasp across all other 528 

participants. 529 

Computational model 530 

The model takes as input 3D meshes of the stimuli and outputs a cost function describing the 531 

costs associated with every possible combination of finger and thumb position on the accessible 532 

surface locations of our objects (i.e., those not in contact with the table plane). First, we define 533 

the center of each triangle in the mesh as a potential contact point. Then, given all possible 534 

combinations of thumb and index finger contact points 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = [𝒙𝑻, 𝒚𝑻, 𝒛𝑻]; 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝒙𝑰, 𝒚𝑰, 𝒛𝑰], the 535 

surface normal at both contact points  𝒏𝑻⃗⃗ ⃗⃗  = [𝒙𝑻
𝒏, 𝒚𝑻

𝒏, 𝒛𝑻
𝒏]; 𝒏𝑰⃗⃗⃗⃗ = [𝒙𝑰

𝒏, 𝒚𝑰
𝒏, 𝒛𝑰

𝒏], and the CoM of the 536 

object 𝑪𝒐𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝒙𝑪𝒐𝑴, 𝒚𝑪𝒐𝑴, 𝒛𝑪𝒐𝑴], the five penalty functions we combined into a computational 537 

model of grasp selection were defined as follows: 538 

Force closure. For two-digit grasping, a grasp fulfills force closure when the grasp axis 539 

connecting thumb and index contact points lies within the friction cones resulting from the 540 
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friction coefficient between object and digits(14). A grasp perfectly fulfills force closure when the 541 

grasp axis is perfectly aligned with the vectors along which gripping forces are applied, which 542 

are the opposite of the contact-point surface normals. Therefore, we defined the force closure 543 

penalty function as the sum of the angular deviances (computed using the atan2 function) of the 544 

grasp axis from both force vectors 𝑭𝑻
⃗⃗ ⃗⃗  = −𝒏𝑻⃗⃗ ⃗⃗  ; 𝑭𝑰

⃗⃗⃗⃗ = −𝒏𝑰⃗⃗⃗⃗ : 545 

𝑷𝑭𝑪(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  𝒂𝒕𝒂𝒏𝟐(‖𝑭𝑻
⃗⃗ ⃗⃗  × (𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )‖, 𝑭𝑻

⃗⃗ ⃗⃗  ∙ (𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) )  546 

+ 𝒂𝒕𝒂𝒏𝟐(‖𝑭𝑰
⃗⃗⃗⃗ × (𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗)‖, 𝑭𝑰

⃗⃗⃗⃗ ∙ (𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) )  547 

Torque. If a force is applied at some position away from the CoM, the object will tend to rotate 548 

due to torque, given by the cross product of force vector and lever arm (the vector connecting 549 

CoM to the point of force application). Under the assumption that is possible to apply forces at 550 

the thumb and index contact points that counteract the force of gravity  𝑭𝒈
⃗⃗⃗⃗  ⃗ , we can compute the 551 

total torque of a grip as the sum of torques exerted by each contact point. Therefore, we defined 552 

the torque penalty function as the magnitude of the total torque exerted by a grip: 553 

𝑷𝑻(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  ‖(𝑪𝒐𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) × −𝑭𝒈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + (𝑪𝒐𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗) × −𝑭𝒈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 554 

Natural grasp axis. Schot, Brenner and Smeets(21) have carefully mapped out how human 555 

participants grasp spheres placed at different positions throughout the peripersonal space, and 556 

provide a regression model that determines the naturally preferred posture of the arm when 557 

grasping a sphere. We input the configuration of our current experimental setup into the 558 

regression model developed by these authors, and found the natural grasp axis for our 559 

participants to be 𝑵𝑮𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝟎. 𝟒𝟗 𝟎. 𝟖𝟕 𝟎]. We therefore defined the natural grasp axis penalty 560 

function as the angular deviance from this established natural grasp axis:  561 

𝑷𝑵𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  𝒂𝒕𝒂𝒏𝟐(‖𝑵𝑮𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ × (𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )‖,𝑵𝑮𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ (𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) ) 562 

Optimal grasp aperture for precision grip. Cesari and Newell(23) have shown that, when free 563 

to employ any multi-digit grasp, human participants selected precision grip grasps only for 564 

cubes smaller than 2.5 cm in length. As cube size increases, humans progressively increase the 565 
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number of digits employed in a grasps. Therefore, since our participants were instructed only to 566 

employ precision grip grasps, we defined the optimal grasp aperture penalty function as 0 for 567 

grasp sizes smaller than 2.5 cm, and as a linearly increasing penalty for grasp sizes larger than 568 

2.5 cm:  569 

𝑷𝑶𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = {
0,                                          𝑖𝑓 ‖𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ < 25𝑚𝑚

‖𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ − 25, 𝑖𝑓 ‖𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ > 25 𝑚𝑚
  570 

Object Visibility. Under the assumption that humans are attempting to minimize the portion of 571 

the objects hidden from view by their hand, we defined the optimal visibility penalty function as 572 

the proportion of object still visible during each possible grasp. We first defined the line on the 573 

XZ plane that passes through the thumb and index finger contact points. We made the 574 

simplifying assumption that, given all possible surface points on the object 𝑺𝑷𝑻𝑶𝑻, the surface 575 

points 𝑺𝑷𝑶𝑪𝑪(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) that fall to the side of the line where the hand is located will be 576 

occluded. Therefore, the object visibility penalty function was defined as:  577 

𝑷𝑶𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =
𝐿𝑒𝑛𝑔𝑡ℎ (𝑺𝑷𝑶𝑪𝑪(𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗))

𝐿𝑒𝑛𝑔𝑡ℎ(𝑺𝑷𝑻𝑶𝑻)
 578 

Overall grasp penalty function. To obtain the overall grasp penalty function, each grasp 579 

penalty function was first normalized to the [0 1] range (i.e., across all possible grasps for each 580 

given object, independently of the other objects). Then, we took a weighted linear sum of the 581 

individual penalty functions, with all weights equal to 1:  582 

𝑷𝑶(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 𝑷𝑭𝑪(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑷𝑻(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑷𝑵𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 583 

𝑷𝑶𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑷𝑹𝑻(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) 584 

For display purposes this final function was normalized to the [0 1] range. The minima of this 585 

overall grasp penalty function represent the set of grasps that best satisfy the largest number of 586 

constraints at the same time.  587 
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Model fitting. In both Experiments 1 and 2, human participants executed repeated grasps to 588 

the same objects at each orientation. To fit the overall grasp penalty function to these human 589 

data, for each participant in each condition we first defined a human grasp penalty function 590 

𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) in which all grasps selected by a participant onto an object were set to have 0 591 

penalty, and all grasps that had not been selected were set to have a penalty of 1. Then, we fit 592 

the function:  593 

𝑷𝑶,𝒇𝒊𝒕(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = ∑𝐶𝑖 ∗ 𝑷𝒊(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)

𝑖

 594 

to the human grasp penalty function. More specifically, we employed a nonlinear least-squares 595 

solver to search for the set of coefficients  𝐶𝑖 = [𝐶𝐹𝐶 ; 𝐶𝑇; 𝐶𝑁𝐺𝐴; 𝐶𝑂𝐺𝐴; 𝐶𝑅𝑇] that minimized the 596 

function: 597 

 𝑭(𝑪𝒊) = √𝑾(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) ∗ [(∑𝐶𝑖 ∗ 𝑷𝒊

𝑖

(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)) − 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)] 598 

i.e. we searched for the set of coefficients for which 𝑷𝑶,𝒇𝒊𝒕 best approximated the human grasp 599 

penalty function 𝑷𝑯. The solver employed the trust-region-reflective algorithm; we set the lower 600 

and upper bounds of the coefficients to be 0 and 1, and 0.2 as the starting value for all 601 

coefficients. Critically, 𝑾(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) was a weight function which served to give equal weight to 602 

high and low penalty grasps in the human grasp penalty function, since the number of non-603 

selected grasps with 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 1 vastly outnumbered the few selected grasps for which 604 

𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 0. Thus, for grasps where 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 0, 𝑾(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) was equal to the 605 

number of times the participant had selected that specific grasp. For grasps where 606 

𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 1 instead, 𝑾(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =
𝑁𝐺,𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑁𝐺,𝑛𝑜𝑛−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
; where 𝑁𝐺,𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 was the total number 607 

of grasps performed by the participant onto the object, and 𝑁𝐺,𝑛𝑜𝑛−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 was the total number 608 

of non-selected grasps within the grasp manifold. 609 
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Predicting Grasps. The minima of both the equally weighted (non-fitted) and the fitted overall 610 

grasp penalty functions represent the set of grasps predicted to be optimal under the weighted 611 

linear combination of the five penalty functions included in our computational model. To 612 

visualize these predicted optimal grasps, we sampled them from the minima of the penalty 613 

functions. First, we removed all grasps with penalty values greater than the lower 0.1th 614 

percentile. The remaining grasps were therefore all optimal or near-optimal. From this subset, 615 

we then randomly selected (with replacement) a number of grasps equal to the number of 616 

grasps executed by the human participants. The probability with which any one grasp was 617 

selected was set to be 1 minus the grasp penalty, thus grasps with zero penalty had the highest 618 

probability of being selected. These sampled grasps can then be projected back onto the 619 

objects for visualization purposes (Figure 5a), or they can be directly compared to human grasp 620 

using the grasp similarity metric described above (Figure 5b,c). 621 

 622 

Data availability. Data and analysis scripts will be made available from the Zenodo database 623 

(doi:xx.xxxx/zenodo.xxxxxxx upon publication). 624 
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 812 

Figure S1. Grasping patterns from human participants (left), unfitted model (middle), and fitted 813 
model (right). (a) Grasping patterns on wooden objects from Experiment 1. (b) Grasping 814 
patterns on mixed material objects from Experiment 2.  815 
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 817 

Figure S2. Pattern of empirical results recreated from simulating grasps from the fitted 818 
computational model. All panels are the same as in Figure 3 of the main manuscript, except that 819 
the data are simulated from the model. Only the grasp trajectories in panel (f) are from the 820 
human data, to highlight how the model correctly reproduces the biases in human grasping 821 
patterns.  822 
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