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Abstract 1 

We rarely experience difficulty picking up objects, yet of all potential contact points on the 2 

surface, only a small proportion yield effective grasps. Here, we present extensive behavioral 3 

data alongside a normative model that correctly predicts human precision grasping of unfamiliar 4 

3D objects. We tracked participants’ forefinger and thumb as they picked up objects of 10 wood 5 

and brass cubes configured to tease apart effects of shape, weight, orientation, and mass 6 

distribution. Grasps were highly systematic and consistent across repetitions and participants. 7 

We employed these data to construct a model which combines five cost functions related to 8 

force closure, torque, natural grasp axis, grasp aperture, and visibility. Even without free 9 

parameters, the model predicts individual grasps almost as well as different individuals predict 10 

one another’s, but fitting weights reveals the relative importance of the different constraints. The 11 

model also accurately predicts human grasps on novel 3D-printed objects with more naturalistic 12 

geometries and is robust to perturbations in its key parameters. Together, the findings provide a 13 

unified account of how we successfully grasp objects of different 3D shape, orientation, mass, 14 

and mass distribution. 15 

 16 

Author Summary 17 

A model based on extensive behavioral data unifies the varied and fragmented literature on 18 

human grasp selection by correctly predicting human grasps across a wide variety of conditions. 19 

  20 
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Introduction 21 

In everyday life, we effortlessly grasp and pick up objects without much thought. 22 

However, this ease belies the computational complexity of human grasping. Even state of the 23 

art robotic AIs fail to grip objects nearly 20% of the time(1). To pick something up, our brains 24 

must work out which surface locations will lead to stable, comfortable grasps, so we can 25 

perform desired actions (Figure 1a). Most potential grasps would actually be unsuccessful, e.g., 26 

requiring thumb and forefinger to cross, or failing to exert useful forces (Figure 1b). Even many 27 

possible grasps would be unstable, e.g., too far from the object’s center, so it rotates when lifted 28 

(Figure 1c). Somehow, the brain must infer which, of all potential grasps, would actually 29 

succeed. Despite this, we rarely drop objects or find ourselves unable to complete actions 30 

because we are holding them inappropriately. How does the brain select stable, comfortable 31 

grasps onto arbitrary 3D objects, particularly objects we have never seen before?  32 

 33 

 34 

Figure 1. The computational complexity of human grasp selection. (a) Possible (b) Impossible 35 

(c) Possible but uncomfortable or unstable grasps.  36 

 37 
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Despite the extensive literature describing human grasping patterns, movement 38 

kinematics, and grip force adjustments (2–14), little is understood about the computational basis 39 

of initial grasp selection. Few authors have attempted to study and model how humans select 40 

grasps (e.g. (15, 16)), and even then, only for 2D shapes. This is because, even for two-digit 41 

precision grip, many factors influence grasping. Object shape must be considered, since the 42 

surface normals at contact locations must be approximately aligned (a concept known as force 43 

closure(17)), otherwise the object will slip through our fingertips (Figure 1b, bottom). Object 44 

mass and mass distribution must be evaluated, since for grips with high torques (i.e. far from the 45 

center of mass, CoM(18–22)) the object will tend to rotate under gravity and potentially slip out 46 

of our grasp (Figure 1c, top). The orientation(19, 22–25) and size(26) of grasps on an object 47 

must be considered, since the arm and hand can move and apply forces only in specific ways. 48 

Grasps that do not conform to the natural configuration of our hand in 3D space might be 49 

impossible (Figure 1b, top), or uncomfortable (Figure 1c, bottom). The hand’s positioning may 50 

also determine an object’s visibility(9, 27–30).  51 

Most previous research did not assess the relative importance of these factors, nor how 52 

they interact. Here we sought to unify these varied and fragmented findings into a single 53 

normative framework. We therefore constructed a rich dataset in which we could tease apart 54 

how an object’s 3D shape, mass, mass distribution, and orientation influence grasp selection. 55 

We devised a set of objects made of wood and brass cubes in various configurations (Figure 2), 56 

and asked participants to pick them up with a precision grip, move them a short distance and 57 

place them at a target location, while we tracked their thumb and forefinger. We measured initial 58 

contact locations (i.e. not readjusted contact regions during movement execution). By varying 59 

the shapes and orientation of the objects in Experiment 1, we (i) determined how consistent at 60 

selecting grasp locations participants are with themselves and other people, and (ii) measured 61 

the interactions between allocentric 3D shape and egocentric perspective on those shapes. If 62 

actors take the properties of their own effectors into account (e.g., hand orientation, grasp size), 63 
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we should expect the same shape to be grasped at different locations depending on its 64 

orientation relative to the observer(19). In Experiment 2, we varied the mass and mass 65 

distribution of the objects (Figure 2c) to test the relative role of 3D shape and mass properties. If 66 

participants take torques into account, identical shapes with different mass distributions should 67 

yield systematically different grasps(18, 20–22).   68 

Next, we employed this rich dataset to develop a computational model to predict human 69 

grasp patterns. We reasoned that grasps are selected to minimize costs associated with 70 

instability and discomfort. Accordingly, we implemented a model that combines five factors 71 

computed from the object’s shape, mass distribution, and orientation: (i) force closure(17), (ii) 72 

torque(18–22) (iii) natural grasp axis(19, 23–25), (iv) natural grasp aperture for precision 73 

grip(26) and (v) visibility(27, 28). The model takes as input a near-veridical 3D mesh 74 

representation of on object to be grasped, performs free-body computations on the mesh, and 75 

outputs minimum-cost, optimal grasp locations on the object. We found that the optimal grasps 76 

predicted by the model matched human grasp patterns on the wooden and brass polycube 77 

objects from Experiments 1 and 2 strikingly well. We then employed the model to generate 78 

predictions regarding where humans should grasp novel shapes with curved surfaces. In a final 79 

Experiment 3, we had participants grasp these novel 3D-printed, curved, plastic objects. Human 80 

grasps well aligned with the model predictions. Finally, we employed these data to show that 81 

model predictions are robust to perturbations in the model input and key parameters. 82 

 83 

Results: 84 

Experiment 1: 3D shape and orientation 85 

Human grasps are tightly clustered and represent a highly constrained sample from the 86 

space of potential grasps. Twelve participants grasped four objects made of beech wood 87 

presented at two orientations (Figure 2a,b; see Methods). Figure 3a shows how grasp patterns 88 

tend to be highly clustered. In each condition, different grasps have similar sizes (finger-to-89 
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thumb distance) and orientations, and also cover the same portions of the objects. Fitting 90 

multivariate Gaussian mixture models to the responses reveals that grasps cluster around only 91 

1, 2, or 3 modes. Figure 3b shows three distinct modes for object U at orientation 2 in a unitless 92 

2D representation of grasp space. Human grasps cover only a minute portion of the space of 93 

potential grasps. Note that we define the space of potential grasps as the set of all combinations 94 

of thumb and index finger positioning attemptable on the accessible surfaces of an object (i.e., 95 

those not in contact with the table). Figure 3c also shows how, for one representative condition, 96 

different grasps from the same subjects are more clustered than grasps from different subjects, 97 

since individuals predominantly selected only one (70%) or two (27%) modes, and only rarely 98 

(3%) grasped objects in three separate locations. 99 

 100 

 101 

Figure 2. Setup and stimuli for Experiments 1 and 2. (a) Experimental setup. Seated 102 

participants performed grasping movements with their right hand. Following an auditory signal 103 

(coinciding with the shutter window turning transparent) they moved from one of the starting 104 

positions to the object and grasped it with a precision grip. They transported and released the 105 

object at the goal position and returned to the start position. (b) In Experiment 1 we employed 106 

four objects made of wooden cubes. Each object had a unique shape (that here we name L, U, 107 

S, V) and was presented at one of two different orientations with respect to the participant. (c) In 108 
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Experiment 2 the objects had the same shapes as in Experiment 1, but now were made of wood 109 

and brass cubes. The brass and wood cubes were organized either in an alternate pattern 110 

(middle), so that the CoM of the object would remain approximately the same as for the wooden 111 

object, or grouped so that the CoM would be shifted either closer to (right) or away from (left) 112 

the participant’s hand starting location. 113 

 114 

To further quantify how clustered these grasping patterns are we designed a simple 115 

metric of similarity between grasps (see Methods). Figure 3d shows how both between- and 116 

within-subject grasp similarity are significantly higher than the similarity between random grasps 117 

only constrained by accessible object geometry (t(7)=9.96, p=2.2*10-5 and t(7)=26.15, 118 

p=3.1*10-8 respectively). Additionally, within-subject grasp similarity is significantly higher than 119 

between subjects (t(7)=3.89, p=0.0060). Nevertheless, the high similarity between grasps from 120 

different participants demonstrates that different individuals tend to grasp objects in similar 121 

ways. The even higher level of within-subject grasp similarity further demonstrates that grasp 122 

patterns from individual participants are idiosyncratic, which may reflect differences in the 123 

strategies employed by individual participants, or may be related to physiological differences in 124 

hand size, strength, or skin slipperiness. We observe no obvious learning effects across trial 125 

repetitions: between-subject grasp similarity does not change from first to last repetition across 126 

objects and orientations (t(7)=0.62, p=0.56).  127 

 128 

 129 
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 130 

Figure 3. Human grasps are clustered. (a) Human grasps from Experiment 1. Grasps are 131 

represented as thumb (red triangles) and index finger (blue diamonds) contact positions, 132 

connected by dotted black lines. (b) Human grasps (blue blobs) for object U, orientation 2, when 133 

projected in a unitless 2D representation of the space of potential grasps, cluster around three 134 

distinct modes. (c) Distribution of thumb contact points on object L, orientation 2. Different 135 

colors represent grasps from different participants. (d) The level (%) of grasp similarity expected 136 

for grasps randomly distributed on the object surface (i.e. random combinations of thumb and 137 

index finger positioning attemptable on an object) and the observed level of between- and 138 

within-participant grasp similarity, averaged across objects and orientations. Error bars are 95% 139 

bootstrapped confidence intervals of the mean. ** p<0.01, *** p<0.001 140 

 141 

Findings reproduce several known effects in grasp selection. Previous research suggests 142 

haptic space is encoded in both egocentric and allocentric coordinates(31), and that grasps are 143 

at least partly encoded in egocentric coordinates to account for the biomechanical constraints of 144 

our arm and hand(19). Our findings reproduce and extend these observations. If humans 145 
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selected grasps in allocentric coordinates tied to an object’s 3D shape, then grasps onto the 146 

same object in different orientations should be located on the same portions of the object but in 147 

different 3D world coordinates. Conversely, if actors take their own effectors into account, they 148 

should grasp objects at different locations depending on the object’s orientation. For each object 149 

we computed grasp similarity across the two orientations in both egocentric (tied to the 150 

observer) and allocentric coordinates (tied to the object). Figure 4a shows that, as the extent of 151 

the object rotation increases, grasp encoding shifts from allocentric to egocentric coordinates. 152 

Across small rotations (object S, 55 degree rotation), grasps are more similar if encoded in 153 

allocentric coordinates (t(11)=13.90, p=2.5*10-8), whereas for large rotations (object L, 180 154 

degrees) grasps are more similar if encoded in egocentric coordinates (t(11)=4.59, p= 7.8*10-4). 155 

Therefore, both 3D shape as well as movement constraints influence grasps. 156 

 157 

 158 

Figure 4. Spatial encoding and bias. (a) Difference in grasp similarity across orientations when 159 

grasps were encoded in object-centered (allocentric) vs human-centered (egocentric) 160 

coordinates, as a function of magnitude of rotation across the two orientation conditions. (b) 161 

Average grasp trajectories viewed in the x-y plane (red curves) from start location towards the 162 

objects (always contained within the gray shaded region). The average human grasp (red dot) 163 
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across conditions is biased toward shorter reaching movements compared to the object 164 

centroids (black dot). In both panels data are means, error bars/regions represent 95% 165 

bootstrapped confidence intervals. *** p<0.001 166 

 167 

Figure 4b shows that participants also selected grasps that were on average 26 mm 168 

closer to the starting location than the object centroid (t(11)=9.74, p=9.6*10-7), reproducing 169 

known spatial biases in human grasp selection (15, 28, 30, 32, 33). 170 

Consistent with Kleinholdermann et al. (15) but contrary to previous claims(18–22), our 171 

findings suggest humans care little about torque when grasping lightweight objects (of ~100 g). 172 

If actors sought to minimize torque, the selected grasps should be as close as possible to the 173 

CoM. Conversely, if participants were to disregard torque, then grasps should be at least as 174 

distant from the CoM as grasps randomly selected on the surface of the object. Figure 5a plots 175 

the difference between the CoM distance of participant grasps and the average CoM distance of 176 

random grasps, which we name ‘CoM attraction compared to random grasps’. In Experiment 1, 177 

grasps were on average 9 mm farther from the CoM than the average distance to the object’s 178 

CoM of grasps uniformly sampled onto the surface of the objects (t(11)=4.53, p=8.6*10-4). This 179 

negative value means that participants grasped the objects towards their extremities, farther 180 

from the CoM than even random chance. 181 

 182 
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 183 

Figure 5. Mass and Mass Distribution. (a) Attraction towards the object CoM for grasps 184 

executed onto light (Experiment 1) and heavy (Experiment 2) objects compared to the average 185 

CoM distance of grasps uniformly distributed on the object surfaces (zero reference). (b) 186 

Attraction towards the object CoM in Experiment 2 as a function of trial repetition. Red line is the 187 

best-fitting regression line through the data (c) Human grasps from Experiment 2 onto object S 188 

presented at orientation 2. (d) Attraction towards the object CoM compared to Experiment 1 189 

grasps (zero reference), for Experiment 2 grasps onto heavy objects whose CoM is closer, the 190 

same distance as, or farther than the light wooden objects from Experiment 1. In panels a, b, 191 
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and d, data are means, error bars represent 95% bootstrapped confidence intervals. ** p<0.01, 192 

*** p<0.001 193 

 194 

Experiment 2: Mass and Mass Distribution 195 

Humans grasp objects close to their center of mass when high grip torques are possible 196 

and instructions demand the object does not rotate. Due to the low density of beech wood, 197 

even the grasps farthest from the CoM in Experiment 1 would produce relatively low torques. 198 

Therefore, in Experiment 2 we tested whether participants grasp objects closer to the CoM 199 

when higher torques are possible. We did this by using objects of greater mass and asymmetric 200 

mass distributions. Specifically, for each of the shapes in Experiment 1, we made three new 201 

objects, each made of five brass and five wooden cubes: two ‘bipartite’ objects, with brass 202 

clustered on one or the other half of the object, and one ‘alternating’ object, with brass and 203 

wood alternating along the object’s length. These objects had the same 3D shapes as in 204 

Experiment 1, but were nearly tenfold heavier (Figure 2c, see Methods). 205 

Figure 5a shows how human grasps are indeed significantly attracted towards the CoM 206 

of heavy objects, presumably to counteract the larger torques associated with higher mass. In 207 

Experiment 2, grasps were on average 11 mm closer to the object CoM than grasps sampled 208 

uniformly from the objects’ surfaces (t(13)=4.89, p= 2.9*10-4), and on average 20 mm closer 209 

than the grasps from Experiment 1 (t(24)=6.60, p= 8.0*10-7). Figure 5b shows how this behavior 210 

was evident already from the very first trial performed by participants, but also that grasps 211 

clustered more toward the object CoM in later trials, presumably as participants refined their 212 

estimates of CoM location (correlation between CoM attraction and trial repetition: r = 0.86, p = 213 

0.13). Importantly, participants shifted their grasps towards the CoM—not the geometrical 214 

centroid—of the objects (observe how the grasp patterns shift in Figure 5c). Figure 5d shows 215 

that when the object CoM was shifted towards the hand’s starting location, participants did not 216 

significantly adjust their grasping strategy compared to Experiment 1 (t(13)=0.81, p=0.43). 217 
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Conversely, when the object CoM was in the same position as in Experiment 1, grasps shifted 218 

on average by 8 mm towards the CoM (t(13)=3.92, p=0.0017). When the CoM was shifted away 219 

from the hand’s starting position, grasps were on average 37 mm closer to the CoM compared 220 

to Experiment 1 (t(13)=8.49, p=1.2*10-6), a significantly greater shift than both the near and 221 

same CoM conditions (t(13)=8.66, p=9.2*10-7 and t(13)=7.58, p=4.0*10-6). These differential 222 

shifts indicate that participants explicitly estimated each object’s CoM from visual material cues. 223 

Even with the heavier objects, participants still systematically selected grasps that were 224 

closer to the starting location than the object centroid (t(13)=4.03, p=0.0014). However, now 225 

participants exhibited only a 9 mm bias, which was significantly smaller than the 26 mm bias 226 

observed for the light wooden objects in Experiment 1 (t(24)=4.67, p= 9.6*10-5). 227 

Together these findings suggest that participants combine multiple constraints to select 228 

grasp locations, taking into consideration the shape, weight, orientation, and mass distribution of 229 

objects, as well as properties of their own body to decide where to grasp objects. We next 230 

sought to develop a unifying model that could predict these diverse effects based on a few 231 

simple underlying principles. 232 

 233 

Normative model of human grasp selection. 234 

Based on the insights gained from our empirical findings, we developed a model to 235 

predict human grasp locations. The model takes as input 3D descriptions of the objects’ shape, 236 

mass distribution, orientation, and position relative to the participant, and computes as output a 237 

grasp cost function, describing the costs associated with every possible combination of finger 238 

and thumb position on accessible surface locations (i.e., those not in contact with table). We 239 

reasoned that humans would tend to grasp objects at or close to the minima of this cost 240 

function, as these would yield the most stable, comfortable grasps. Low cost grasps can then be 241 

projected back onto the object to compare against human grasps. It is important to note that this 242 

is not intended as a process model describing internal visual or motor representations (i.e., we 243 
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do not suggest that the human brain explicitly evaluates grasp cost for all possible surface 244 

locations). Rather, it is a normative model for predicting which grasps are optimal under a set of 245 

pre-defined constraints. It provides a single, unifying framework based on a subset of the factors 246 

that are known to influence human grasp selection (15). 247 

For each object, we create a triangulated mesh model in a 3D coordinate frame, from 248 

which we can sample (Figure 6a-b). For precision grip, we assume one contact point each for 249 

thumb and index finger. Thus, all possible precision grip grasps can be ordered on a 2D plane, 250 

with all possible thumb contact points along the x-axis, and on the y-axis, all possible index 251 

contacts in the same ordering as for the thumb. 252 

 253 

 254 

Figure 6. A framework that unifies distinct aspects of grasp selection. (a) Mesh model of object 255 

in same 3D reference frame as participant poised to execute grasp. (b) Discrete sampling of the 256 

reachable surface defines a 2D space containing all potential combinations of index and thumb 257 

contact points on the object. (c) Color-coded maps showing penalty values for each potential 258 

grasp for each penalty function. (d) Overall penalty function computed as the linear combination 259 
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of maps in (c). (e) Human grasps projected into 2D penalty-function space neatly align with 260 

minimum of combined penalty map.  261 

 262 

To estimate the cost associated with each grasp, we take the combination of five penalty 263 

functions, determined by the object’s physical properties (surface shape, orientation, mass, 264 

mass distribution) as well as constraints of the human actuator (i.e. the human arm/hand). 265 

Specifically, we consider optimality criteria based on: (i) optimum force closure(17), (ii) minimum 266 

torque(18–22), (iii) alignment with the natural grasp axis(19, 23–25), (iv) optimal grasp 267 

aperture(26), and (v) optimal visibility(27, 28, 30). (see Methods for mathematical definitions). 268 

Figure 6c shows maps for each penalty function: white indicates low penalty, dark blue high 269 

penalty. To compare and combine penalty, values are normalized to [0,1]. 270 

Force closure: force closure is fulfilled when the two contact-point surface normals, along 271 

which gripping forces are applied, are directed towards each other(17). Thus, we penalize 272 

lateral offsets between the grasp point normals (Figure 7). 273 

 274 

Figure 7. Force Closure. Examples of grasps with (a) low penalty and (b) high penalty force 275 

closure.  276 

 277 

Minimum torque: grasping an object far from its CoM results in high torque, which causes the 278 

object to rotate when picked up(18–22). Large gripping forces would be required to prevent the 279 

object from rotating. We therefore penalize torque magnitude (Figure 8). 280 
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 281 

 282 

Figure 8. Torque. Examples of grasps with (a) low penalty and (b) high penalty torque.  283 

 284 

Natural grasp axis: when executing precision grip grasps, humans exhibit a preferred hand 285 

posture known as the natural grasp axis(19, 23–25). Grasps that are rotated away from this axis 286 

result in uncomfortable or restrictive hand/arm configurations (Figure 9). We therefore penalize 287 

angular misalignment between each candidate grasp and the natural grasp axis (taken from 288 

(24)). Unlike force closure and torque, this penalty map is asymmetric about the diagonal: 289 

swapping index and thumb positioning produces the same force closure and torque penalties, 290 

but changes the penalty for the natural grasp axis by 180 degrees. 291 

 292 

 293 

Figure 9. Natural grasp axis. Examples of grasps with (a) low penalty and (b) high penalty 294 

grasp axis.  295 

 296 
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Optimal grasp aperture: for two-digit precision grips humans prefer the distance between 297 

finger and thumb at contact (‘grasp aperture’) to be below 2.5 cm(26). We therefore penalize 298 

grasp apertures above 2.5 cm (Figure 10).  299 

 300 

 301 

Figure 10. Optimal grasp aperture. Examples of grasps with (a) low penalty and (b) high 302 

penalty aperture.  303 

 304 

Optimal visibility: our behavioral data, and previous studies, suggest humans exhibit spatial 305 

biases when grasping. It has been proposed that these may arise from an attempt to minimize 306 

energy expenditures through shorter reach movements(27). However, Paulun et al. (28) have 307 

shown that these biases may in fact arise from participants attempting to optimize object 308 

visibility. While our current dataset was not designed to untangle these competing hypotheses, 309 

re-analyzing published data (22, 30) confirms that object visibility—not reach length—is most 310 

likely responsible for the biases. We therefore penalized grasps that hindered object visibility 311 

(Figure 11). We also designed a penalty function for reach length and verified that, since reach 312 

length and object visibility are correlated in our dataset, employing one or the other penalty 313 

function yields very similar results.  314 

 315 
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 316 

Figure 11. Optimal visibility. Examples of grasps with (a) low penalty and (b) high penalty 317 

visibility.  318 

 319 

We assume that participants select grasps with low overall costs across all penalty 320 

functions. Thus, to create the overall grasp penalty function, we take the sum of the individual 321 

penalty maps. The minima of this full penalty map represent grasps that best satisfy all criteria 322 

simultaneously. The map in Figure 6d exhibits a clear minimum: the white region in its lower 323 

right quadrant.  324 

To assess the agreement between human and optimal grasps, we may visualize human 325 

grasps in the 2D representation of the grasp manifold. The red markers in Figure 6e are the 326 

human grasps from object L at orientation 2, projected in 2D and overlain onto the full penalty 327 

map. Human grasps neatly align with the minima of the penalty map, suggesting that human 328 

grasps are nearly optimal in terms of the cost criteria we use. 329 

Model Fitting. The simple, equal combination of constraints considered thus far already agrees 330 

with human grasping behavior quite well. However, it is unlikely that actors treat all optimality 331 

criteria as equally important. Different persons likely weight the constraints differently (e.g., due 332 

to strength or hand size). Therefore, we developed a method for fitting full penalty maps to 333 

participants’ responses. We assigned variable weights to each optimality criterion, and fit these 334 

weights to the grasping data from each participant, to obtain a set of full penalty maps whose 335 

minima best align with each participant's grasps (see Methods). 336 

 337 
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 338 

Figure 12. Model Results. (a) Grasping patterns reconstructed through the normative 339 

framework (right) closely resemble human grasps onto real objects varying in shape, 340 

orientation, and material (left). Simulated grasp patterns are generated with no knowledge of our 341 

human data (i.e. model not fit to human grasps). (b) Population level grasp similarity, i.e. 342 

similarity of human and unfitted model grasps to medoid human grasp across all participants. 343 

(c) Individual level grasp similarity, i.e. similarity of human, unfitted, and fitted model grasps to 344 

the medoid grasp of each participant. In panels (b, c), dashed line is estimated chance level of 345 

grasp similarity due to object geometry, bounded by 95% bootstrapped confidence intervals. (d) 346 
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Pattern of fitted weights across Experiments 1 and 2. (e) Relative weight of the minimum torque 347 

constraint in Experiments 1 and 2. (f) Relative weight of the visibility constraint in Experiments 1 348 

and 2. Data are means; error bars, 95% bootstrapped confidence intervals. ***p<0.001 349 

 350 

Model grasps are nearly indistinguishable from measured human grasps. To compare 351 

human and optimal grasps directly, we can sample predicted optimal grasps from around the 352 

minimum of the full penalty map (see Methods) and project back onto the objects. Figure 12a 353 

shows human grasps (left) and unfitted model predictions (right) on a few representative objects 354 

(see Figure S1 for complete set). Human and predicted grasps have similar size and orientation, 355 

and also cover similar portions of the objects. 356 

Figure 12b depicts grasp similarity at the population level, i.e., across participants and 357 

between human and unfitted model grasps. Grasp similarity between participants was computed 358 

(for each object and condition), as the similarity between the medoid grasp of each participant 359 

and the medoid grasp across all others. Grasp similarity between human and model grasps was 360 

computed as the similarity between the medoid unfitted model grasp and the medoid grasp 361 

across all participants.  362 

Unfitted model grasps were significantly more similar to human grasps than chance 363 

(t(31)=9.34, p=1.6*10-10), and effectively indistinguishable from human-level grasps similarity 364 

(t(31)=0.53, p=0.60). Note that this does not mean our current approach perfectly describes 365 

human grasping patterns; it suggests instead that our framework is able to predict the medoid 366 

human grasping patterns nearly as well as the grasps of a random human on average 367 

approximate the medoid human grasp. 368 

Fitting the model can account for individual grasp patterns. In both Experiments, 369 

participants repeatedly grasped the same objects in randomized order. Figure 12c depicts how 370 

similar human and model grasps are to the medoid grasp of each individual participant in each 371 

experimental condition. Individual subjects are highly consistent when grasping the same object 372 
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on separate trials. Grasps predicted through our framework with no knowledge of the empirical 373 

data were significantly less similar to the medoid grasps of individual humans (t(31)=9.28, 374 

p=1.9*10-10). This is unsurprising, since the unfitted model predicts the average pattern across 375 

observers, but there is no mechanism for it to capture idiosyncrasies of individual humans. 376 

Fitting the model to the human data (see Methods) significantly improved grasp similarity 377 

(t(31)=4.26, p=1.8*10-4). Note however that model grasp patterns fit to a single participant are 378 

still distinguishable from random real grasps by the same individual (t(31)=4.91, p=2.8*10-5).  379 

Force closure, hand posture, and grasp size explain most of human grasp point 380 

selection. The pattern of fitted weights across both experiments (Figure 12d) reveals the 381 

relative importance of the different constraints. Specifically, we find that force closure is the 382 

most important constraint on human grasping, which makes sense because force closure is a 383 

physical requirement for a stable grasp. Next in importance are natural grasp axis and optimal 384 

grasp aperture, both constraints given by the posture and size of our actuator (our hand). In 385 

comparison, participants appear to care only marginally about minimizing torque, and almost 386 

negligibly about object visibility.  387 

Analyzing the patterns of fitted weights confirms our empirical findings. The model also 388 

replicates our main empirical findings in a single step. Figure 12e shows that the relative 389 

importance of torque was much greater for the heavy objects tested in Experiment 2 compared 390 

to the light objects from Experiment 1 (t(24)=7.93, p=3.7*10-8). Conversely, Figure 12f shows 391 

that the relative importance of object visibility instead decreased significantly from Experiment 1 392 

to Experiment 2 (t(24)=2.62, p=0.015). Additionally, by simulating grasps from the fitted model, 393 

we are able to recreate the qualitative patterns of all behavioral results presented in Figures 3,4 394 

and 5 (see Figure S2).  395 

Experiment 3: Model Validation 396 

To further validate the model, we tested whether the model makes sensible predictions on novel 397 

objects and whether the model is robust to perturbations.  398 
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Model Predictions on Novel Objects. The model was designed from the insights derived from 399 

Experiments 1 and 2 with polycube objects made of brass and wood. To test whether the model 400 

generalizes beyond this type of object, we selected four mesh models of objects with smooth, 401 

curved surfaces from an in-house database (two familiar, two unfamiliar objects). We input 402 

these meshes to the model and generated grasp predictions (Figure 13a). The model was 403 

instantiated using the weights derived from Experiment 1. Next, we 3D printed these objects out 404 

of light plastic (~80g, comparable to Experiment 1 objects), and asked 14 human participants to 405 

grasp these novel objects. Figure 13b shows how human grasps agree with model predictions. 406 

Human and model grasps once again have similar size and orientation, and also cover similar 407 

portions of the objects. Figure 13c confirms this observation: predicted model grasps are as 408 

similar to medoid human grasps as grasps from a random human participant (t(13)=1.21, 409 

p=0.25).  410 

 411 

 412 

Figure 13. Model predictions for novel objects align with human grasps. (a) Grasping patterns 413 

predicted through the normative framework for novel objects with smooth and curved surface 414 

geometry. (b) Human grasps onto 3D printed versions of the objects align with model 415 

predictions. (c) Similarity of human and predicted model grasps to medoid human grasp across 416 

objects and participants. Dashed line is estimated chance level of grasp similarity, bounded by 417 

95% bootstrapped confidence intervals. 418 

 419 
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Model Perturbation Analysis. The model designed thus far receives as input a near-veridical 420 

representation of the objects to grasp. However, it is unlikely that humans have access to such 421 

a veridical object representation. We therefore implemented some perturbations to the inputs 422 

and key parameters of the model and observed how robust the model is to these perturbations. 423 

Specifically, we tested how model performance in predicting human grasping patterns from 424 

Experiment 3 varies as a functions of these perturbations.  425 

 The model input thus far consisted of densely sampled 3D mesh models. It’s unlikely 426 

that humans also have such a dense, accurate 3D representation of an object’s surface. Figure 427 

14a therefore shows model performance (in terms of similarity with human grasping patterns) 428 

with different levels of surface mesh subsampling. Model performance is robust to relatively high 429 

levels of subsampling, and decreases only once sampled surface locations are on average 430 

more than 4 mm distant from one another (below 5% mesh subsampling).  431 

 Since the backside of objects is occluded from view, it is unlikely that participants have 432 

an accurate estimate of the required grip aperture across the whole object. Additionally, since 433 

we constrained participants to two-digit precision grips, grasps above the threshold defined by 434 

Cesari and Newell (26) might be acceptable, as long as these are within a maximum 435 

comfortable grasp span. Figure 14b shows that indeed model performance is robust to 436 

increases in aperture threshold up to 100 mm.  437 

 Similarly, humans might also exhibit some tolerance for grasps oriented away from the 438 

natural grasp axis. Given that the ease of a rotation of the arm and hand is likely asymmetric 439 

along different directions, these tolerances likely also vary depending on rotation direction. 440 

Figure 14c shows how model performance does indeed decrease for perturbations of the 441 

natural grip axis along the transverse plane, and this decrease is more steep for clockwise 442 

(negative) rotations, as already suggested by Kleinholdermann and colleagues(15). Model 443 

performance is instead more robust to perturbations along the sagittal plane (Figure 14d), and 444 
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particularly for (positive) counterclockwise rotations in which the thumb tilts below the index 445 

finger.   446 

 447 

448 

Figure 14. Perturbation Results. All panels show model performance (in terms of grasp 449 

similarity to human data from Experiment 3) as a function of different perturbations. Grasp 450 

similarity for the original model implementation is shown in green. Red and black dashed lines 451 

are respectively human and chance levels of grasp similarity, bounded by 95% bootstrapped 452 

confidence intervals. (a) Model grasp similarity with input meshes subsampled by varying 453 

degrees. (b) Model grasp similarity for model implementations employing increasing aperture 454 

thresholds. (c, d) Model grasp similarity for models implemented with deviated natural grasp 455 

axis along the transverse (c) and sagittal (s) planes.  456 

 457 

 458 
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Discussion 459 

We investigated how an object’s 3D shape, orientation, mass, and mass distribution jointly 460 

influence how humans select grasps. Our empirical analyses showed that grasping patterns are 461 

highly systematic, both within and across participants, suggesting that a common set of rules 462 

governs human grasp selection of complex, novel 3D objects. Our findings reproduce, unify, 463 

and generalize many effects observed previously: (i) both 3D shape and orientation determine 464 

which portion of the object people grasp (8, 15, 18, 19, 34–37).; (ii) humans exhibit spatial 465 

biases even with complex 3D objects varying in shape and mass(15, 28, 30, 32, 33); (iii) object 466 

weight modulates how much humans take torque into account when selecting where to grasp 467 

objects(18–22). We then combined this diverse set of observations into a unified theoretical 468 

framework that predicts human grasping patterns strikingly well, even with no free parameters. 469 

By fitting this normative model to human behavioral data, we showed that force closure, hand 470 

posture, and grasp size are the primary determinants of human grasp selection, whereas torque 471 

and visibility modulate grasping behavior to a much lesser extent. We further demonstrated that 472 

the model is able to generate sensible predictions for novel objects and is robust to 473 

perturbations.   474 

3D Shape Behavioral research on the influence of shape on grasping is surprisingly scarce, 475 

primarily employs 2D or simple geometric 3D stimuli of uniform materials, and rarely 476 

investigates grasp selection (8, 18, 19, 34–37). For example, by using 3D stimuli that only 477 

varied in shape by a few centimeters, Schettino et al. (36) concluded that object shape 478 

influences hand configuration only during later phases of a reaching movement during which 479 

subjects use visual feedback to optimize their grasp. Here, we show that distinct 3D shapes are 480 

grasped in systematically distinct object locations, and our behavioral and model analyses can 481 

predict these locations directly from the object 3D shape.  482 

Orientation When grasping spheres or simple geometrical shapes, humans exhibit a preferred 483 

grasp orientation (the NGA) (19, 23–25), and most previous work on how object orientation 484 
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influences grasping has primarily focused on hand kinematics (18, 22, 35, 38). Conversely, with 485 

more complex 3D shapes we show that the same portion of an object is selected within a range 486 

of orientations relative to the observer, whereas for more extreme rotations the grasp selection 487 

strategy shifts significantly. Therefore, object shape and orientation together determine which 488 

portion of an object will be grasped, and thus the final hand configuration.  489 

Spatial Biases The spatial biases we observe are consistent with participants attempting to 490 

increase object visibility (28, 30), and our data also replicate the finding that these biases are 491 

reduced when object weight increases (22, 28).  492 

Material/Weight/Torque Goodale et al. (18) were among the first to show that participants tend 493 

to grasp objects through their CoM, presumably to minimize torque. Lederman and Wing (19) 494 

found similar results, yet in both studies low-torque grasps also correlated with grasps that 495 

satisfied force closure and aligned with the natural grasp axis. Kleinholdermann et al. (15) found 496 

torque to be nearly irrelevant in grasp selection, yet Paulun et al. (22) observed that grasp 497 

distance to CoM was modulated by object weight and material. More recent work by Paulun et 498 

al. has further shown that participants are fairly accurate at visually judging the location of the 499 

CoM even for bipartite objects made of two different materials (39). Our findings resolve these 500 

conflicting findings. By using stimuli that decorrelate different aspects of grasp planning, we find 501 

that shape and hand configuration are considerably more important than torque for light weight 502 

objects, and that the importance of minimizing torque scales with mass. Additionally, shifting an 503 

object’s mass distribution significantly attracted grasp locations towards the object’s shifted 504 

CoM, demonstrating that participants could reliably combine global object shape and material 505 

composition to successfully infer the object’s CoM.  506 

Modelling Grasp Selection Previous models of grasping have mainly focused on hand 507 

kinematics and trajectory synthesis (2–6) whereas we attempt to predict which object locations 508 

will be selected during grasping. Our modelling approach takes inspiration from 509 

Kleinholdermann et al. (15), which to the best of our knowledge is the only previous model of 510 
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human two-digit contact point selection, but only for 2D shape silhouettes. In addition to dealing 511 

with 3D objects varying in mass, mass distribution, orientation, and position, our modeling 512 

addresses several limitations of previous approaches. The fitting procedure quantifies the 513 

relative importance of different constraints, and can be applied to any set of novel objects to test 514 

how experimental manipulations affect this relative weighting. Additionally, while model fitting 515 

significantly improved the similarity between model and individual participant grasps, the 516 

agreement was not perfect. This suggests that grasp planning may involve additional, 517 

undiscovered constraints, which our approach would be sensitive enough to detect. The 518 

modular nature of the model specifically allows additional constraints to be included, excluded 519 

or given variable importance. For example, we know that end-state comfort of the hand plays a 520 

role in grip selection (40, 41), yet the tradeoff between initial and final comfort is unclear (42). By 521 

varying the participants’ task to include object rotations, and by including a penalty function 522 

penalizing final hand rotations away from the natural grasp axis, it would be possible to assess 523 

the relative importance of initial, final (or indeed intermediate) hand configurations on grasp 524 

planning. Relatedly, the effect of obstacles (and self-obstacles, such as the vertically protruding 525 

portions of some of the objects employed in this study) could also be assessed. The presence 526 

of obstacles could affect grasp selection by requiring reach-to-grasp trajectories that avoid an 527 

obstacle, although previous research has shown that forcing different hand paths does not 528 

affect selected grasp locations (25). Alternatively, the presence of obstacles might alter the 529 

configuration of the arm and hand during a grasp (43), which could be incorporated into the 530 

model by modifying the grip comfort penalties.   531 

Previous literature has also shown that object surface properties such as curvature (13), 532 

tilt (14), and friction (44, 45) modulate the fingertip forces employed during grasping. While the 533 

current study was not designed to examine how these factors influence grasp selection, the 534 

current model is already able to predict grasp patterns for objects with curved surfaces, even if 535 

not perfectly. Model performance with these objects could likely be improved by including into 536 
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our framework penalty functions that take into account local surface structure and friction. 537 

Incorporating friction into the model could even improve model performance for our composite 538 

objects from Experiment 2, as wood and brass may have different friction coefficients. Since 539 

surface friction plays a decisive role in determining force closure, friction coefficients could even 540 

be directly integrated into the force closure computations. Friction is also a particularly 541 

interesting test case for our assumption of a weighted linear combination of costs, as it may 542 

interact with other factors. When friction is low, it could cause the cost of torque to be 543 

upregulated, to avoid slipping (22). This would require the addition of parameters describing 544 

interactions between factors. Alternatively, friction and torque might be unified into a single 545 

penalty function capturing the magnitude of grip force required to avoid slippage. However, 546 

incorporating friction into the model would be non-trivial, since the coefficient of friction between 547 

skin and different materials depends on several factors, including temperature, hydration, and 548 

age (46). 549 

The model should also be extended to multi-digit grasping, by adding to each penalty 550 

function three dimensions for each additional finger considered (the x,y,z coordinates of the 551 

contact point). This approach is consistent with (and complementary to) the approach by 552 

Smeets and Brenner (2, 5), who posit that grasping is a combination of multiple pointing 553 

movements. Given that human participants adjust the number of digits they employ to grasp an 554 

object depending on grip size and object weight (26), multiple size/weight thresholds could be 555 

employed to determine the preferred multi-digit grip. Future models should also generalize from 556 

contact points to contact patches of nonzero area, as real human grasp locations are not only 557 

points but larger areas of contact between digit and object. To facilitate such developments, we 558 

provide all data and code (doi upon acceptance). 559 

Neuroscience of Grasping While our model is not intended as a model of brain processes, 560 

there are several parallels with known neural circuitry underlying visual grasp selection (for 561 

reviews see (47–49)). Of particular relevance is the circuit formed between the Ventral Premotor 562 
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Cortex (Area F5), Dorsal Premotor Cortex (Area F2), and the Anterior Intraparietal Sulcus (AIP). 563 

Area F5 exhibits 3D-shape-selectivity during grasping tasks and is thought to encode grip 564 

configuration given object shape (50–52), whereas area F2 encodes the grip-wrist orientation 565 

required to grasp objects under visual guidance (53). Both regions exhibit strong connections 566 

with AIP, which has been shown to represent the shape, size, and orientation of 3D objects, as 567 

well as the shape of the handgrip, grip size, and hand-orientation (54). Additionally, visual 568 

material properties, including object weight, are thought to be encoded in the ventral visual 569 

cortex (55–59), and it has been suggested that AIP might play a unique role in linking 570 

components of the ventral visual stream involved in object recognition to hand motor system 571 

(60). Therefore, the neural circuit formed between F5, F2, and particularly AIP is a strong 572 

candidate for combining the multifaceted components of visually guided grasping identified in 573 

this work (61–65). Combining targeted investigations of brain activity with the behavioral and 574 

modelling framework presented here holds the potential to develop a unified theory of visually 575 

guided grasp selection.  576 

 577 

Materials and Methods: 578 

Participants 579 

Twelve naïve participants (5 males and 7 females between the ages of 20 and 31, mean age: 580 

25.2 years) participated in Experiment 1. A different set of fourteen naïve participants (9 males 581 

and 5 females between the ages of 21 and 30, mean age: 24.4 years) participated in 582 

Experiment 2. An additional, different set of fourteen naïve participants (5 males and 9 females 583 

between the ages of 19 and 58, mean age: 25.1 years) participated in Experiment 3. 584 

Participants were students at the Justus Liebig University Giessen, Germany and received 585 

monetary compensation for participating. All participants reported having normal or corrected to 586 

normal vision and being right handed. All procedures were approved by the local ethics board 587 
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and adhered to the declaration of Helsinki. All participants provided written informed consent 588 

prior to participating. 589 

Apparatus 590 

Experiments 1 and 2 were programmed in Matlab version R2007a using the Optotrak Toolbox 591 

by V. H. Franz (66). Participants were seated at a table with their head positioned in a chinrest 592 

(Figure 2a), in front of an electronically controlled pane of liquid crystal shutter glass (67), 593 

through which only part of the table was visible and which became transparent only for the 594 

duration of a trial. Objects were placed at a target location, 34 cm from the chinrest in the 595 

participant’s sagittal plane. Small plastic knobs placed on participants’ right side specified the 596 

hand starting positions. A plate (28.5 cm to the right of the target location and with a 13 cm 597 

diameter at 26 cm from start position 1 in the participant’s sagittal plane) specified the 598 

movement goal location. We tracked participants’ fingertip movements with sub-millimeter 599 

accuracy and resolution using an Optotrak 3020 infrared tracking system. The Optotrak 600 

cameras were located to the left of the participants. To record index finger and thumb 601 

movement, sets of three infrared markers (forming a rigid body) were attached to the base of 602 

the participants’ nails. The fingertip and tip of the thumb were calibrated in relation to the marker 603 

position, as participants grasped a wooden bar with a precision grip, placing their fingertips at 604 

two known locations on the bar.  605 

Experiment 3 was programmed in Matlab version R2019b using the Motom Toolbox 606 

(68). Participants were seated at a table with their head positioned in a chinrest and had their 607 

eyes open only for the duration of the movement execution (Figure 15a). Objects were placed at 608 

a target location, 36 cm from the chinrest in the participant’s sagittal plane. A piece of tape 609 

placed 30 cm to the right of the chinrest specified the hand starting position. A plate (30 cm to 610 

the right of the target location and with an 18 cm diameter at 30 cm from the start position in the 611 

participant’s sagittal plane) specified the movement goal location. We tracked participants’ 612 

fingertip movements using an Optotrak Certus infrared tracking system. The Optotrak cameras 613 
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were located to the left of the participants. To record index finger and thumb movement, sets of 614 

three infrared markers (forming a rigid body) were attached to the base of the participants’ nails. 615 

The fingertip and tip of the thumb were calibrated in relation to the marker position, as 616 

participants touched another marker using a precision grip, placing their finger- and thumb tip at 617 

the center of the marker one after the other. 618 

 619 

 620 

Figure 15. Setup and stimuli for Experiment 3. (a) Experimental setup. Seated participants 621 

performed grasping movements with their right hand. Following an auditory signal, they opened 622 

their eyes, and moved from the starting position to the object and grasped it with a precision 623 

grip. They transported and released the object at the goal position and returned to the start 624 

position. (b) We employed four 3D-printed objects. Two objects had an abstract shape (that 625 

here we name ‘swan’ and ‘blob’), the other two objects were printed versions of a croissant and 626 

a cat. They were presented to the participant in the orientations displayed in here. 627 

Stimuli 628 

Experiment 1: Light objects made of wood. Four differently shaped objects (defined as 629 

objects L, U, S and V; Figure 2b) each composed of 10 wooden (beech) cubes (2.53 cm³), 630 
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served as stimuli. Objects were fairly light with a mass of 97 g. Two of the objects featured 631 

cubes stacked on top of each other, whereas the other two objects were composed exclusively 632 

of cubes lying flat on the ground. The objects were presented to the participants at one of two 633 

orientations. Across orientations, object L was rotated by 180 degrees, objects U and V were 634 

rotated by 90 degrees, and object S was rotated by 55 degrees. Figure 2b shows the objects 635 

positioned as if viewed by a participant.  636 

Experiment 2: Heavy composite objects made of wood and brass. For each of the 4 shapes 637 

from Experiment 1, we created 3 new objects (12 in total) to serve as stimuli for Experiment 2 638 

(Figure 2c). Individual cubes were made of either wood or brass. The objects were composed of 639 

5 cubes of each material, which made them fairly heavy with a mass of 716g. By reordering the 640 

sequence of wood and brass cubes, we shifted the location of each shape's CoM. For each 641 

shape we made one object in which brass and wooden cubes alternated with one another, and 642 

two bipartite objects, where the 5 brass cubes were connected to one another to make up one 643 

side of the object with the wooden cubes making up the other side. This configuration was also 644 

inverted, (i.e., wooden and brass cubes switched locations). The ‘alternating’ objects had 645 

approximately the same CoM as their wooden counterparts (mean ± sd distance: 5.1±2.5 mm). 646 

Conversely, the CoM of bipartite objects was noticeably shifted to one side of the object 647 

compared to their wooden counterparts (mean ± sd distance: 33.3±4.4 mm). The CoM locations 648 

for all stimuli are shown in Supplementary Figure S3. All objects were presented at the same 649 

two orientations as Experiment 1. 650 

Experiment 3: Curved 3D-printed object. Four novel, differently shaped objects were 3D-651 

printed. They were made from a yellow plastic with a stabilizing mesh inside. Two objects were 652 

abstract, curved shapes objects (defined as ‘swan’ (64g) and ‘blob’ (121g), the other two objects 653 

were known shapes: a cat (72g) and a croissant (74g). All objects were presented to 654 

participants in one orientation, as displayed in Figure 15b.  655 
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Object meshes. For Experiments 1 and 2 triangulated mesh replicas of all objects were created 656 

in Matlab; each cube face consisted of 128 triangles. For Experiment 3 we selected non-uniform 657 

mesh model objects from an in-house database, each mesh consisting of between 4500 and 658 

9000 triangles. To calibrate mesh orientation and position, we measured, using the Optotrak, 659 

four non planar points on each object at each orientation. We aligned the model to the same 660 

coordinate frame employed by the Optotrak using Procrustes analysis.  661 

 662 

Procedure 663 

Experiments 1 and 2: Prior to each trial, participants placed thumb and index finger at a pre-664 

specified starting location. In Experiment 1, two start locations were used (start 1 at 28 cm to the 665 

right of the chinrest in the participant’s coronal plane and 9.5 cm forward in the sagittal plane; 666 

start 2 9 cm further to the right and 3 cm further forward, 23 cm from the center of the goal 667 

plate). Given that we observed no effect of starting position in our data, in Experiment 2 only the 668 

first starting location was employed. When the subject was at the correct start position, the 669 

experimenter placed one of the stimulus objects at the target location behind the opaque shutter 670 

screen. Each object could be presented at one of two orientations with respect to the 671 

participant. The experimenter could very precisely position each object at the correct location 672 

and orientation by aligning two small groves under each object with two small pins on the table 673 

surface.  674 

Once both stimulus and participant were positioned correctly, a tone indicated the 675 

beginning of a trial, at which point the shutter window turned translucent. Participants were then 676 

required to pick up the object using only forefinger and thumb and place it at the goal location. 677 

Participants had 3 seconds to complete the task before the shutter window turned opaque. In 678 

Experiment 1, no instructions were given regarding how the objects had to be transported, yet 679 

we observed that participants never allowed the objects to rotate. Therefore, to match the 680 
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movement task across experiments, in Experiment 2 participants were instructed to keep the 681 

objects as level as possible.  682 

Experiment 1 had sixteen conditions: two starting locations, four wooden objects of 683 

different shapes, each object presented at two orientations. Each participant repeated each 684 

condition five times (eighty trials per participant).  685 

Experiment 2 had thirty-six conditions: twelve distinct objects (four shapes in three 686 

material configurations) presented at two orientations. Half of the participants handled only 687 

shapes L and V, the other half handled shapes U and S. Each participant repeated each 688 

condition seven times (eighty-four trials per participant). In both experiments trial order was 689 

randomized.  690 

Following each trial, the experimenter visually inspected the movement traces to 691 

determine whether the trial was successful or not. Unsuccessful grasps were marked as error 692 

trials, added to the randomization queue, and repeated.  693 

Experiment 3: Prior to each trial, participants placed thumb and index finger at the starting 694 

location, closed their eyes, and the experimenter placed one of the stimulus objects at the target 695 

location. The experimenter could precisely position each object by aligning it with its outline, 696 

drawn on millimeter paper. Once both stimulus and participant were positioned correctly, a tone 697 

indicated the beginning of a trial, at which point the participants opened their eyes. Participants 698 

were then required to pick up the object using only forefinger and thumb and place it at the goal 699 

location. Participants had 3 seconds to complete the task. Each participant picked up each 700 

object seven times (28 trials per participant). Trial order was randomized. Following each trial, 701 

the experimenter visually inspected the movement traces to determine whether the trial was 702 

successful or not. Unsuccessful grasps were marked as error trials, and repeated immediately.  703 

Error trials: A total of 397 error trials (13.8% of trials from Experiment 1, 13.9% from 704 

Experiment 2, and 6.9% from Experiment 3) were not analyzed. Trials were deemed 705 

unsuccessful when participants did not conclude the movement within the allotted time (10.1% 706 
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of error trials in Experiment 1, 41.4% of error trials in Experiment 2, and 0% in Experiment 3), 707 

and/or when tracking was lost (94.2% of error trials in Experiment 1, 88.7% of error trials in 708 

Experiment 2, and 100% of error trials in Experiment 3), or when participants placed the objects 709 

too hastily on the goal location, which resulted in the objects toppling over off the goal plate 710 

where they were supposed to rest (this occurred only twice throughout the study). Note that 711 

there was some overlap between causes of error. The trajectories of lost-tracking error trials, 712 

where the data are available, fall within the clusters of trajectories of corresponding non-error 713 

trials in 92.2% and 99.0% of cases across Experiments 1 and 2 respectively. In Experiment 3 714 

the experimenter manually recorded grasp locations for error trials, and these locations are all 715 

represented in the final dataset. It is therefore unlikely that excluded error trials differed strongly 716 

from the data included in our analyses.  717 

 718 

Training 719 

At the beginning of the experiments, each participant completed six practice trials in 720 

Experiments 1 and 2 (using a Styrofoam cylinder in Experiment 1, and by lifting random objects 721 

from the shapes not used in that participant’s run in Experiment 2) and five practice trials in 722 

Experiment 3 (using the wooden L-object from Experiment 1). This was done to give 723 

participants a sense for how fast their movement should be in order to complete the entire 724 

movement within three seconds. Prior to Experiment 2, participants were familiarized with the 725 

relative weight of brass and wood using two rectangular cuboids of dimensions 12.5x2.5x2.5 726 

cm, one of wood (50 g) and one of brass (670 g). Practice trial data were not used in analyses. 727 

Prior to Experiment 3, participants were familiarized with the weight of all four test objects by 728 

having each object placed on the flat, extended palm of their right hand. 729 

Analyses 730 
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All analyses were performed in Matlab version R2018a. Differences between group means were 731 

assessed via paired or unpaired t-tests, or through Pearson correlation, as appropriate. Values 732 

of p<0.05 were considered statistically significant.  733 

Contact points. Contact points of both fingers with the object were determined as the fingertip 734 

coordinates at the time of first contact, projected onto the surface of the triangulated mesh 735 

models of the object. The time of contact with the object was determined using the methods 736 

developed by Schot et al. (69) and previously described in Paulun et al. (22).  737 

Grasp similarity. We described each individual grasp �⃗⃗�  as a 6D vector of the x-, y-, z-738 

coordinates of the thumb and index finger contact points: 739 

�⃗⃗� = [𝒙𝑻, 𝒚𝑻, 𝒛𝑻, 𝒙𝑰, 𝒚𝑰, 𝒛𝑰] 740 

To compute the similarity 𝑆 between two grasps  𝑮𝟏
⃗⃗ ⃗⃗    and  𝑮𝟐

⃗⃗ ⃗⃗  , we first computed the Euclidian 741 

distance between the two 6D grasp vectors. We then divided this distance by the largest 742 

possible distance between two points on the specific object 𝑫𝒎𝒂𝒙, determined from the mesh 743 

models of the objects. Finally, similarity was defined as 1 minus the normalized grasp distance, 744 

times 100: 745 

𝑆 = 100 ∗ (1 −
‖ 𝑮𝟏

⃗⃗ ⃗⃗  − 𝑮𝟐
⃗⃗ ⃗⃗  , ‖

𝑫𝒎𝒂𝒙
) 746 

In this formulation, two identical grasps, which occupy the same point in a 6D space, will be 747 

100% similar, whereas the two farthest possible grasps onto a specific object will be 0% similar. 748 

Within-subject grasp similarity was the similarity between grasps from the same participant to 749 

the participant's own medoid1 grasp. Between-subject grasp similarity was the similarity 750 

between the medoid grasp of each participant and the medoid grasp across all other 751 

participants.  752 

                                                           
1 The medoid (a concept similar to the mean) is the element of a set that minimizes its distance to all other 
elements. We employ the medoid over the mean because it better represents the grasp data: while the medoid 
grasp belongs to the set of executed grasps, the mean grasp can result in a grasp that falls inside or outside of the 
grasped object.  
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Normative model 753 

The model takes as input 3D meshes of the stimuli and outputs a cost function describing the 754 

costs associated with every possible combination of finger and thumb position on the accessible 755 

surface locations of our objects (i.e., those not in contact with the table plane). First, we define 756 

the center of each triangle in the mesh as a potential contact point. Then, given all possible 757 

combinations of thumb and index finger contact points 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = [𝒙𝑻, 𝒚𝑻, 𝒛𝑻]; 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝒙𝑰, 𝒚𝑰, 𝒛𝑰], the 758 

surface normal at both contact points  𝒏𝑻⃗⃗ ⃗⃗  = [𝒙𝑻
𝒏, 𝒚𝑻

𝒏, 𝒛𝑻
𝒏]; 𝒏𝑰⃗⃗⃗⃗ = [𝒙𝑰

𝒏, 𝒚𝑰
𝒏, 𝒛𝑰

𝒏], and the CoM of the 759 

object 𝑪𝒐𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝒙𝑪𝒐𝑴, 𝒚𝑪𝒐𝑴, 𝒛𝑪𝒐𝑴], the five penalty functions we combined into a normative model 760 

of grasp selection were defined as follows: 761 

Force closure. For two-digit grasping, a grasp fulfills force closure when the grasp axis 762 

connecting thumb and index contact points lies within the friction cones resulting from the 763 

friction coefficient between object and digits (17). A grasp that does not fulfill force closure will 764 

not be able to lift and freely manipulate the object, no matter the amount of force applied at the 765 

fingertips. A grasp perfectly fulfills force closure when the grasp axis is perfectly aligned with the 766 

vectors along which gripping forces are applied, which are the opposite of the contact-point 767 

surface normals. Therefore, we defined the force closure penalty function as the sum of the 768 

angular deviances (computed using the atan2 function) of the grasp axis from both force vectors 769 

𝑭𝑻
⃗⃗ ⃗⃗  = −𝒏𝑻⃗⃗ ⃗⃗  ;  𝑭𝑰

⃗⃗⃗⃗ = −𝒏𝑰⃗⃗⃗⃗ : 770 

𝑷𝑭𝑪(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  𝒂𝒕𝒂𝒏𝟐(‖𝑭𝑻
⃗⃗ ⃗⃗  × (𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )‖, 𝑭𝑻

⃗⃗ ⃗⃗  ∙ (𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) )  771 

+ 𝒂𝒕𝒂𝒏𝟐(‖𝑭𝑰
⃗⃗⃗⃗ × (𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗)‖, 𝑭𝑰

⃗⃗⃗⃗ ∙ (𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) )  772 

Torque. If a force is applied at some position away from the CoM, the object will tend to rotate 773 

due to torque, given by the cross product of force vector and lever arm (the vector connecting 774 

CoM to the point of force application). Under the assumption that is possible to apply forces at 775 

the thumb and index contact points that counteract the force of gravity  𝑭𝒈
⃗⃗⃗⃗  ⃗ , we can compute the 776 
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total torque of a grip as the sum of torques exerted by each contact point. Therefore, we defined 777 

the torque penalty function as the magnitude of the total torque exerted by a grip: 778 

𝑷𝑻(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  ‖(𝑪𝒐𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) × −𝑭𝒈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + (𝑪𝒐𝑴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗) × −𝑭𝒈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 779 

Natural grasp axis. Schot, Brenner, and Smeets (24) have carefully mapped out how human 780 

participants grasp spheres placed at different positions throughout the peripersonal space, and 781 

provide a regression model that determines the naturally preferred posture of the arm when 782 

grasping a sphere. We input the configuration of our current experimental setup into the 783 

regression model developed by these authors, and found the natural grasp axis for our 784 

participants to be 𝑵𝑮𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝟎. 𝟒𝟗 𝟎. 𝟖𝟕 𝟎]. We therefore defined the natural grasp axis penalty 785 

function as the angular deviance from this established natural grasp axis: 786 

𝑷𝑵𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =  𝒂𝒕𝒂𝒏𝟐(‖𝑵𝑮𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ × (𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )‖,𝑵𝑮𝑨⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ (𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) ) 787 

Optimal grasp aperture for precision grip. Cesari and Newell (26) have shown that, when 788 

free to employ any multi-digit grasp, human participants selected precision grip grasps only for 789 

cubes smaller than 2.5 cm in length. As cube size increases, humans progressively increase the 790 

number of digits employed in a grasp. Therefore, since our participants were instructed only to 791 

employ precision grip grasps, we defined the optimal grasp aperture penalty function as 0 for 792 

grasp sizes smaller than 2.5 cm, and as a linearly increasing penalty for grasp sizes larger than 793 

2.5 cm: 794 

𝑷𝑶𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = {
0,                                          𝑖𝑓 ‖𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ < 25𝑚𝑚

‖𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ − 25, 𝑖𝑓 ‖𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖ > 25 𝑚𝑚
  795 

In pilot work, we observed that a penalty map linearly increasing from 0 cm worked equally as 796 

well as one linearly increasing from 2.5 cm. In Experiment 3 we further observed that increasing 797 

this threshold up to 10 cm did not hinder model performance. However, constructing this penalty 798 

function with the 2.5 cm threshold motivated by previous literature will allow us, in future work, 799 
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to construct penalty functions with multiple thresholds for multi-digit grasping, as those observed 800 

by Cesari and Newell (26).  801 

Object Visibility. Under the assumption that humans are attempting to minimize the portion of 802 

the objects hidden from view by their hand, we defined the optimal visibility penalty function as 803 

the proportion of object still visible during each possible grasp. We first defined the line on the 804 

XZ plane that passes through the thumb and index finger contact points. We made the 805 

simplifying assumption that, given all possible surface points on the object 𝑺𝑷𝑻𝑶𝑻, the surface 806 

points 𝑺𝑷𝑶𝑪𝑪(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) that fall to the side of the line where the hand is located will be 807 

occluded. Therefore, the object visibility penalty function was defined as: 808 

𝑷𝑶𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =
𝐿𝑒𝑛𝑔𝑡ℎ (𝑺𝑷𝑶𝑪𝑪(𝑪𝑷𝑻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰
⃗⃗ ⃗⃗ ⃗⃗  ⃗))

𝐿𝑒𝑛𝑔𝑡ℎ(𝑺𝑷𝑻𝑶𝑻)
 809 

Overall grasp penalty function. To obtain the overall grasp penalty function, each grasp 810 

penalty function was first normalized to the [0 1] range (i.e., across all possible grasps for each 811 

given object, independently of the other objects). Then, we took the sum of the individual 812 

penalty functions: 813 

𝑷𝑶(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 𝑷𝑭𝑪(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑷𝑻(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑷𝑵𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 814 

𝑷𝑶𝑮𝑨(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑷𝑹𝑻(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) 815 

For display purposes this final function was normalized to the [0 1] range. The minima of this 816 

overall grasp penalty function represent the set of grasps that best satisfy the largest number of 817 

constraints at the same time. 818 

Model fitting. In both Experiments 1 and 2, human participants executed repeated grasps to 819 

the same objects at each orientation. To fit the overall grasp penalty function to these human 820 

data, for each participant in each condition we first defined a human grasp penalty function 821 

𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) in which all grasps selected by a participant onto an object were set to have 0 822 
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penalty, and all grasps that had not been selected were set to have a penalty of 1. Then, we fit 823 

the function: 824 

𝑷𝑶,𝒇𝒊𝒕(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = √∑𝑤𝑖 ∗ 𝑷𝒊(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)
2

𝑖

 825 

to the human grasp penalty function. More specifically, we employed a nonlinear least-squares 826 

solver to search for the set of weights  𝑤𝑖 = [𝑤𝐹𝐶; 𝑤𝑇; 𝑤𝑁𝐺𝐴; 𝑤𝑂𝐺𝐴; 𝑤𝑅𝑇] that minimized the 827 

function: 828 

𝑭(𝒘𝒊) = √𝑹(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) ∗ [√∑𝑤𝑖 ∗ 𝑷𝒊(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)
2

𝑖

− 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)] 829 

i.e. we searched for the set of weights for which 𝑷𝑶,𝒇𝒊𝒕 best approximated the human grasp 830 

penalty function 𝑷𝑯. The solver employed the trust-region-reflective algorithm; we set the lower 831 

and upper bounds of the weights to be 0 and 1, and 0.2 as the starting value for all weights. The 832 

number of non-selected grasps with 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 1 vastly outnumbered the few selected 833 

grasps for which 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 0. To avoid overfitting the model to the regions of the grasp 834 

space where 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 1, we designed 𝑹(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗)  as a regularization function which 835 

served to give equal importance to high and low penalty grasps in the human grasp penalty 836 

function. Thus, for grasps where 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 0, 𝑹(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) was equal to the number of 837 

times the participant had selected that specific grasp. For grasps where 𝑷𝑯(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 1 838 

instead, 𝑹(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) =
𝑁𝐺,𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑁𝐺,𝑛𝑜𝑛−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
; where 𝑁𝐺,𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 was the total number of grasps performed 839 

by the participant onto the object, and 𝑁𝐺,𝑛𝑜𝑛−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 was the total number of non-selected 840 

grasps within the grasp manifold. This way for both selected and non-selected grasp regions, 841 

the sum of 𝑹(𝑪𝑷𝑻
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝑷𝑰

⃗⃗ ⃗⃗ ⃗⃗  ⃗) was 𝑁𝐺,𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, and both regions of grasp space were accounted for 842 

equally during the fitting. 843 
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Predicting Grasps. The minima of both the equally weighted (non-fitted) and the fitted overall 844 

grasp penalty functions represent the set of grasps predicted to be optimal under the weighted 845 

linear combination of the five penalty functions included in our normative model. To visualize 846 

these predicted optimal grasps, we sampled them from the minima of the penalty functions. 847 

First, we removed all grasps with penalty values greater than the lower 0.1th percentile. This 848 

percentile value was selected to approximately match the proportion of grasp space actually 849 

covered by human grasps. The remaining grasps were therefore all optimal or near-optimal. 850 

From this subset, we then randomly selected (with replacement) a number of grasps equal to 851 

the number of grasps executed by the human participants. The probability with which any one 852 

grasp was selected was set to be 1 minus the grasp penalty, thus grasps with zero penalty had 853 

the highest probability of being selected. These sampled grasps can then be projected back 854 

onto the objects for visualization purposes (Figure 12a, 13a), or they can be directly compared 855 

to human grasps using the grasp similarity metric described above (Figures 12b,c, 13c). 856 

 857 

Data availability. Data and analysis scripts as well as supplementary figures will be made 858 

available from the Zenodo database (doi upon acceptance). 859 
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Supporting information 1022 

 1023 

S1 Figure. Human and model grasping patterns for Experiments 1 and 2. Grasping 1024 

patterns from human participants (left), unfitted model (middle), and fitted model (right). (a) 1025 

Grasping patterns on wooden objects from Experiment 1. (b) Grasping patterns on mixed 1026 

material objects from Experiment 2. 1027 

 1028 

S2 Figure. Pattern of empirical results from Experiments 1 and 2 recreated from 1029 

simulating grasps from the fitted model. Panels are the same as in Figures 3, 4 and 5 of the 1030 

main manuscript, except that the data are simulated from the model. The grasp trajectories in 1031 

panel (4b) are from the human data, to highlight how the model correctly reproduces the biases 1032 

in human grasping patterns. Panel 5b is omitted since the model cannot learn to refine CoM 1033 

estimates.  1034 

 1035 

S3 Figure. Location of the center of mass for the stimuli employed in Experiments 1 and 1036 

2. The center of mass of the light wooden objects from Experiment 1 is shown as a black dot. 1037 

The centers of mass for the heavy alternate and bipartite wood/brass objects from Experiment 2 1038 

are shown as red dots and squares respectively. 1039 
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