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Abstract 15 

Global change may induce changes in savanna and forest distributions, but the dynamics of these 16 

changes remain unclear. Classical biome theory suggests that climate is predictive of biome 17 

distributions, such that shifts will be continuous and reversible. This view, however, cannot 18 

explain a widely observed mismatch between climate and tree cover, which some argue results 19 

from fire-vegetation feedbacks maintaining savanna and forest as bistable states, such that, 20 

instead, shifts will be discontinuous and irreversible. This bistable model, however, cannot 21 

reproduce the spatial aggregation of biomes. Here, we suggest that both models are limited in 22 

that they ignore spatial processes, such as dispersal. We examine the contributions of dispersal to 23 

determining savanna and forest distributions using a reaction-diffusion model, comparing results 24 

qualitatively to empirical savanna and forest distributions in Africa. The diffusion model induces 25 

spatially aggregated distributions, separated by a stable savanna-forest boundary. The 26 

equilibrium position of that boundary depends not only on precipitation but also on the curvature 27 

of precipitation contours with some history dependence (although less than in the bistable 28 

model). This model predicts different dynamics in response to global change: the boundary 29 

continuously tracks climate, recovering following disturbances, unless remnant biome patches 30 

are too small.  31 
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Introduction 32 

Climate and land use change are expected to result in large-scale shifts in global 33 

vegetation patterns (Aleman et al. 2016; Loarie et al. 2009; Malcolm et al. 2002; Salazar et al. 34 

2007), leading to loss of biodiversity and ecosystem services that are vital for human livelihoods 35 

(Daily 1997). However, biosphere responses to changing climate and land use are uncertain. This 36 

uncertainty stems from uncertainty in what determines global biome patterns; current biome 37 

distribution models are unable to explain even simple empirical features of today’s vegetation 38 

patterns. Predicting changes in biome distributions with respect to global change thus requires a 39 

better understanding of the drivers and the mechanisms by which these drivers shape global 40 

biome patterns. 41 

Conceptually, the classical theory suggests that climate is the fundamental determinant of 42 

vegetation pattern and that there is a one-to-one match between climate and biome (Holdridge 43 

1947; von Humboldt and Bonpland 1807; Whittaker 1970), such that biomes continuously track 44 

changes in climate through space. Thus, under the classical view, biome shifts are continuous 45 

and reversible, and as such, relatively predictable. An alternative viewpoint, supported by both 46 

field (Dantas et al. 2016) and remote-sensing approaches (Hirota et al. 2011; Staver et al. 2011a) 47 

suggests that a single climate can support multiple vegetation types, which are differentiated 48 

instead by other ecological processes including chronic fires (Bond et al. 2005; Staver et al. 49 

2011a; Staver et al. 2011b). Savanna and forest may be a classic example; fire experiments have 50 

repeatedly shown that frequent fires can maintain savanna in regions where a closed canopy 51 

forest is climatically possible (Swaine et al. 1992; Trapnell 1959; Veenendaal et al. 2018). 52 

Simple theoretical models that incorporate both climate and fire suggest that savanna and forest 53 

may be bistable, with substantial hysteresis in biome patterns (Beckage et al. 2009; Staver et al. 54 

2011b; Staver and Levin 2012). In this second scenario, unlike the classical theory, vegetation 55 

responses to changing climate and land use may be large and irreversible, and therefore difficult 56 

to foresee. 57 

The bistable theory, however, has its limitations as well. Although the mean-field bistable 58 

models can mechanistically explain the overlap in the climatic ranges over which savanna and 59 

forest occur (Beckage et al. 2009; Staver and Levin 2012), they cannot be used to describe 60 

spatial patterning of biomes. Most notably, they miss obvious spatial features of savanna and 61 

forest distributions: savannas are found near other savannas and forests near other forests, with a 62 
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distinct biogeographic boundary separating the two biomes (Aleman and Staver 2018). This 63 

spatial aggregation is not an obvious outcome of mean-field models, unless they invoke an 64 

additional assumption that the historical or paleo-distributions of savanna and forest are spatially 65 

structured by some extrinsic process (see Aleman and Staver 2018) (e.g., paleoclimate). 66 

An alternative explanation could be that some spatial process at the savanna-forest 67 

ecotone may spatially aggregate savanna and forest. For instance, studies show that seed 68 

dispersal from forest patches can allow recovery of nearby derived savannas (Holl et al. 2000; 69 

Puyravaud et al. 1994) by clumping fragmented forest patches into bigger forest aggregates. 70 

Thus, dispersal could potentially explain the observed spatial aggregation of savanna and forest. 71 

However, only a handful of theoretical studies (Favier et al. 2004; van de Leemput et al. 2015; 72 

Wuyts et al. 2018) have explicitly considered the role of dispersal in determining biome patterns 73 

at relevant spatial scales.  74 

The problem should be tractable, however, as dispersal is among the best-studied spatial 75 

ecological processes. Traditionally, dispersal in ecology is has been studied via 76 

reaction-diffusion equations. These equations offer a simple and analytically tractable way to 77 

incorporate dispersal in modeling dynamics of populations at large spatial scales (Levin 1992; 78 

Skellam 1951). Theoretical work on one-dimensional reaction-diffusion models shows that 79 

coupling diffusion with a bistable model (van de Leemput et al. 2015; Wuyts et al. 2018) can 80 

yield spatially aggregated biome distributions, separated by a stable savanna-forest boundary. 81 

Moreover, the one-dimensional reaction-diffusion model behaves, dynamically, like the classical 82 

biome theory: savanna and forest distributions continuously track changes in climate and 83 

recovers to equilibrium following perturbations. Unfortunately, this one-dimensional diffusion 84 

model (van de Leemput et al. 2015; Wuyts et al. 2018) also reverts to the main drawback of the 85 

classical biome theory: it, too, fails to reproduce the widely observed overlap in the climatic 86 

ranges over which savanna and forest biomes occur (Hirota et al. 2011; Staver et al. 2011a).  87 

One obvious avenue for exploration is that these models that couple diffusion to models 88 

for savanna-forest dynamics treat the landscape as one-dimensional (1D) (van de Leemput et al. 89 

2015; Wuyts et al. 2018), whereas, in reality, savanna and forest dynamics play out on 90 

two-dimensional (2D) landscapes. Going from 1D to 2D often gives rise to new dynamical 91 

features, such as motion by mean-curvature (Allen and Cahn 1979; Chen 1992; Evans et al. 92 

1992; Gandhi et al. 1999; Keener 1986; Merriman et al. 1992; Tyson and Keener 1988), that 93 
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could fundamentally change the dynamics of boundaries and thus their equilibrium distributions. 94 

Here, we address this directly by considering a model that couples the bistable mean-field 95 

vegetation structure with a diffusion process in two dimensions. In particular, we ask (i) whether 96 

seed dispersal, approximated as a two-dimensional diffusion process could contribute to spatial 97 

aggregation of savanna and forest biomes at continental scales; (ii) if yes, what then determines 98 

the equilibrium position of the savanna-forest boundary, and (iii) how this impacts the resilience 99 

of savanna and forest biomes to perturbations and global change. Finally, (iv) we empirically test 100 

some of the key analytical predictions of our 2D reaction-diffusion model using remotely sensed 101 

biome (Hansen et al. 2013) and climate patterns (Huffman and Bolvin 2013) in Sub-Saharan 102 

Africa. 103 

 104 

Model Description 105 

Here, we present a reaction-diffusion model of savanna and forest biomes that consists of 106 

two parts: the reaction term that determines how fire interacts with vegetation and climate, and 107 

the diffusion term that represents seed dispersal. Here, we first describe the reaction term, and 108 

then, following, the diffusion term. 109 

In savanna and forest ecosystems, fire exerts strong control over tree cover (Bond et al. 110 

2003; Bond et al. 2005) via feedbacks with vegetation. In a low tree-cover landscape, fire 111 

spreads readily in the landscape (Archibald et al. 2009; Staver and Levin 2012) because sparse 112 

tree cover promotes the formation of a continuous grass layer (Archibald et al. 2009; 113 

Hennenberg et al. 2006; Pueyo et al. 2010), in turn limiting the density of trees in the landscape 114 

(Higgins et al. 2000; Prior et al. 2010; Staver et al. 2009). Meanwhile, dense tree cover shades 115 

out grasses, resulting in a discontinuous grass layer that impedes fire spread (Archibald et al. 116 

2009; Hennenberg et al. 2006; Pueyo et al. 2010). Here, we capture these two alternative 117 

feedbacks using a step fire-mortality function ' (see also Staver et al. 2011b; Staver and Levin 118 

2012), that takes a high value (combining high fire frequency with its potential effects on forest 119 

trees) at low tree-cover and a low value (representing a background mortality rate in the absence 120 

of fires) at high tree-cover. Finally, we assume that in the absence of fire, the tree cover 121 

accumulates logistically to some carrying capacity, with a per-capita growth rate that we 122 

normalize, without loss of generality, to precipitation P, reflecting an increase in tree growth 123 

rates [via increased primary productivity (Lieth 1975)] with increasing precipitation.    124 
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With these simplifying assumptions, the mean-field or the reaction term can be 125 

mathematically expressed as 126 

 ((*, +) = * .+ /1 −
2

23
4 − '(*)5, (1) 127 

where *, *6, and + represent tree cover, local carrying capacity, and precipitation, 128 

respectively. This reaction term has two important ecological features. First, in the absence of 129 

fire (i.e., at ' = 0), the system equilibrates to a high tree-cover state. This feature of the reaction 130 

term ((*, +) is consistent with long-term (50-60 years) fire experiments that show that active 131 

fire suppression in mesic savannas can result in a closed canopy forest (Bond et al. 2005; Swaine 132 

et al. 1992; Trapnell 1959). Second, in the presence of fire, the mortality rate of trees has a 133 

threshold response to the tree cover itself (fire-vegetation feedbacks), consistent with previous 134 

empirical work (Archibald et al. 2009), because of which the equilibrium tree cover becomes 135 

bimodal in some intermediate range of rainfall. Theoretically, this implies that inclusion of fire 136 

results in a potential decrease in tree cover below the system’s carrying capacity by allowing for 137 

multiple stable states, corresponding to savanna (*8∗) and forest (*9∗), for some parts of parameter 138 

space. This is also evident from the bifurcation diagram in figure 1, which shows that both 139 

savanna and forest are stable states in the intermediate precipitation region, bounded by the two 140 

critical precipitation values (+89 and +98); meanwhile, outside this rainfall region, the system 141 

has only one stable solution corresponding to savanna and forest in low and high precipitation 142 

regions, respectively. An analogous mean-field system has been thoroughly elaborated in a 143 

number of papers (Staver et al. 2011b; Staver and Levin 2012; Touboul et al. 2018). 144 

Next, we incorporate seed dispersal in our model following Skellam (1951). In his paper, 145 

Skellam (1951) assumed that a plant disperses its propagules like a random walk process, with 146 

the probability of finding a propagule highest near the parent stem and falling off with increasing 147 

distance (Levin et al. 2003; Okubo and Levin 2013). This movement of plant populations, 148 

although random at an organism level can be statistically approximated to a continuous Diffusion 149 

(or Laplacian) operator ∇% when scaled to the landscape level (Okubo and Levin 2013; Skellam 150 

1951). Mathematically, ∇% is defined as . ;
<

;=<
5 in 1D and . ;

<

;=<
	+

;<

;?<
5	in 2D. Here, for 151 

simplicity, we assume that seed dispersal is isotropic, and ignore advective effects, for example 152 

due to wind. 153 

Finally, combining the reaction (mean-field) and the diffusion (spatial) components of the 154 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/476184doi: bioRxiv preprint 

https://doi.org/10.1101/476184
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

model yields a reaction-diffusion equation:  155 

 ;2

;@
= ((*, +) + A	∇%*, (2) 156 

 where A is the diffusion coefficient that captures the rate of seed spread. 157 

Although the reaction-diffusion approach to model plant dynamics has proven to be quite 158 

useful because of its analytical tractability and mathematical simplicity, this approach has some 159 

inherent drawbacks, such as approximating discrete variables (such as habitats) as continuous 160 

(Keitt et al. 2001) and failing to consider the effects of long-range seed dispersal (Kot et al. 161 

1996; see Appendix C), both of which have been previously shown to yield qualitatively 162 

different results. Moreover, we also ignore fire spread as spatially explicit process [see Schertzer 163 

et al. (2015) for a more realistic way of modeling fire spread within savannas and (Cochrane 164 

2003; Cochrane et al. 1999) for discussion of the spatial structure of fire spread at the 165 

savanna-forest boundary]; instead, we incorporate fire effects only in the reaction term. 166 

Nevertheless, at continental scales, in the absence of appropriate continuum models, a diffusion 167 

model is a reasonable place to start. 168 

In the next section, we explore the behavior of equation (2) using a series of simplifying 169 

assumptions that are ecologically relevant. It may also be worth mentioning that the qualitative 170 

behavior of the equation (2) is independent of the particular details of ((*, +). However, in this 171 

paper, we use a particular functional form of ((*, +) motivated by previous work on the subject 172 

(Staver et al. 2011b; Staver and Levin 2012). We do this to compare and contrast the simulation 173 

results of the previous mean-field model and its spatial counterpart, presented here. 174 

 175 

Methods and Results 176 

Since the mathematical literature on bistable reaction-diffusion models is scattered across 177 

various subfields of physics (Coleman 1977), mathematics (Aronson and Weinberger 1975; 178 

Bramson 1983; Fife and McLeod 1977), and ecology (Lewis and Kareiva 1993; Murray 2001; 179 

Okubo and Levin 2013), we begin by summarizing some of the well-known results of the 1D 180 

diffusion model in the context of savanna and forest biomes. Although some results for the 1D 181 

model have been presented numerically elsewhere (Eby et al. 2017; van de Leemput et al. 2015), 182 

here we provide analytical results that may yield deeper insights. These results will also provide 183 

a baseline for comparison with the 2D diffusion model that has not been discussed in the 184 

literature. 185 
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 186 

Reaction-Diffusion Model in One Dimension 187 

Since one of the primary goals of the paper is to determine the spatial limits (boundaries) 188 

of savanna and forest biomes, it is natural to look for solutions that naturally give rise to 189 

boundaries. Based on the extensive literature on invasion biology (Hastings et al. 2005; Keitt et 190 

al. 2001), we know that equation (2) has a traveling wave solution (see Fig. A1), where the 191 

wavefront can be interpreted as the savanna-forest boundary. In this section, we find the velocity 192 

of movement of the savanna-forest boundary as a function of system parameters, e.g., 193 

precipitation. We then set the velocity to zero to find the equilibrium boundary position.  194 

Using the generalized waveform in one-dimension, *(B, C) = *(B − DC) (Aronson and 195 

Weinberger 1975; Bramson 1983; Fife and McLeod 1977; Murray 2001; Okubo and Levin 196 

2013), where D is the velocity of the savanna-forest boundary, we find that  197 

 D ∝ √A	ΔU(+), (3) 198 

where ΔU(+) is defined as the difference between values of the potential function at forest and 199 

savanna state, respectively (see Appendix B.1 for calculations). Mathematically, the potential 200 

function is defined as U(*, +) = −∫
2

2J
((*, +)	K*, where ((*, +) is the mean-field growth 201 

function (Nolting and Abbott 2016; Strogatz 2014). This potential function is a formal way of 202 

defining the concept of a potential landscape that is commonly used to understand the resilience 203 

of dynamical systems (Holling 1996; Strogatz 2014). In a bistable system, the potential 204 

landscape consists of two wells corresponding to the two stable states of the system (see top row 205 

in Fig. 1). In the equation above, ΔU(+) [= −∫
2L
∗

2M
∗ ((*, +)	K*] is the difference between the 206 

depth of potential wells corresponding to savanna and forest. 207 

The equation above suggests that the magnitude of D is proportional to diffusion (√A) 208 

and the difference in the depth of the potential wells (ΔU), while the direction of D is purely 209 

determined by the sign of ΔU(+). Thus, in a homogeneous landscape (e.g., with constant 210 

precipitation across the whole landscape), the state with lower potential invades the one with 211 

higher potential, except in the trivial case when the potential for both states is equal (i.e., ΔU =212 

0; see top row in Fig. 1). The trivial case occurs at a unique precipitation value, which is referred 213 

to as Maxwell precipitation (+N) (Bel et al. 2012; Boettiger and Hastings 2013; Carr et al. 1984; 214 

Clerk-Maxwell 1875; Martín et al. 2015; Pomeau 1986; van de Leemput et al. 2015; Weissmann 215 
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and Shnerb 2014; Wuyts et al. 2017; Zelnik and Meron 2018). Next, to obtain the velocity of 216 

movement of the savanna-forest boundary as a function of precipitation, we Taylor expand 217 

ΔU(+) in equation (3) around +N: 218 

 D ∝ √A	(+N − +). (4) 219 

This equation implies that in a landscape with precipitation greater than +N, forest encroaches 220 

savanna (D < 0), and conversely, that in a landscape with precipitation less than +N, savanna 221 

encroaches forest (D > 0). Only when the landscape receives precipitation exactly equal to +N 222 

is the savanna-forest boundary neutrally stable (i.e., the magnitude of the small perturbations to 223 

the boundary neither increases or decreases over time). In other words, in a homogeneous 224 

precipitation landscape with + ≠ +N, a stable savanna-forest boundary is not possible, under 225 

these assumptions (van de Leemput et al. 2015). 226 

 227 

A Precipitation Gradient and Stable Savanna-Forest Boundary 228 

In the previous section, we assumed homogeneous precipitation conditions. However, at 229 

continental scales, landscapes have precipitation gradients. In this section, we show how a 230 

precipitation gradient can lead to a stable savanna-forest boundary (van de Leemput et al. 2015; 231 

Wuyts et al. 2018). 232 

To do this, we consider a 1D landscape with a linear precipitation gradient with 233 

precipitation + at site B given by 234 

 +(B) = S(B − BN) + +N, (5) 235 

where BN is the spatial location receiving +N and S is the change in precipitation per unit 236 

distance (precipitation gradient constant). Substituting equation (5) into equation (4) we get  237 

 ΔT = ΔTU	V
WXY√Z	@, (6) 238 

where T is the position of the savanna-forest boundary, ΔT = T − BN is the deviation of the 239 

boundary from BN, and [ the natural logarithm of the proportionality constant in equation (4).  240 

Equation (6) highlights two important features of the savanna-forest boundary. First, in a 241 

1D landscape with linear precipitation gradient, the boundary equilibrates to +N (Fig. 2). 242 

Second, if the boundary is perturbed locally (in any direction), it will recover back to BN. 243 

Moreover, the characteristic timescale of recovery is inversely proportional to √A and 244 

precipitation gradient constant S	. This suggests that the savanna-forest boundary is resilient to 245 

local spatial perturbations (Fig. 2). Although not shown here, our numerical experiments in 1D 246 
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also suggest that the equilibrium distribution of savanna and forest is independent of initial 247 

conditions (see also van de Leemput et al. 2015; Wuyts et al. 2018). 248 

Thus, the 1D diffusion model reproduces what the bistable biome theory (Beckage et al. 249 

2009; Staver et al. 2011b; Staver and Levin 2012) could not: that spatial interactions, overlaid on 250 

a large-scale precipitation gradient, can result in the spatial aggregation of savanna with savanna 251 

and forest with forest, separated by a stable savanna-forest boundary (Fig. 2). Moreover, the 252 

model also predicts that biome shifts are reversible provided the climatic conditions are restored. 253 

Unfortunately, the 1D diffusion model also predicts that the spatial limits of savanna and forest 254 

biomes are solely determined by Maxwell precipitation (+N). In other words, this model fails to 255 

produce overlap in the rainfall ranges of savanna and forest biomes (see also Eby et al. 2017; van 256 

de Leemput et al. 2015; Wuyts et al. 2018), observed in the empirical data (Dantas et al. 2016; 257 

Hirota et al. 2011; Staver et al. 2011a; Staver et al. 2011b). 258 

 259 

Reaction-Diffusion in Two Dimensions 260 

Above, we assumed a one-dimensional landscape. This assumption, however, may not be 261 

realistic for understanding distribution of savanna and forest biomes, since it is somewhat 262 

obvious to observe that their dynamics are better described on a two-dimensional landscape. In 263 

this section, we show that adding a second dimension can qualitatively change the equilibrium 264 

position of the savanna-forest boundary, which can explain the overlap in the rainfall ranges over 265 

which biomes occur. 266 

 To incorporate the second dimension in the model, we use a 2D polar representation of 267 

the Laplacian operator in equation (2). Following the same analytical approach as in the 1D case, 268 

we show that  269 

 |Δ+| ∝ √A	|]N^|, (7) 270 

where Δ+ represents the difference between the precipitation at the savanna-forest boundary 271 

and the Maxwell precipitation contour (+N^, notationally distinct from the Maxwell point in 1D 272 

+N; see Appendix B.2 for calculations), |]N^| the absolute curvature of +N^ (a measure of 273 

roundness; see Fig. A2), and A the diffusion constant (as above). This equation describes the 274 

local deviation of the savanna-forest boundary from the location of the +N^ in terms of the 275 

difference in the precipitation; to obtain the deviation in terms of absolute distance, we multiply 276 

Δ+ by S (precipitation gradient; see Eq. 5).  277 
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In plain terms, this means that, in a 2D landscape, the location of the boundary between 278 

savanna and forest is not determined only by precipitation but also crucially depends on the 279 

geometrical shape of the precipitation contours (specifically, of the Maxwell precipitation 280 

contour +N^). When the Maxwell precipitation contour is a straight line (i.e., where |]N^| = 0), 281 

the system behaves like a 1D model, and the savanna-forest boundary coincides with +N^ (Fig. 282 

3A). However, for an arbitrarily shaped +N^ (|]N^| ≠ 0), the boundary deviates from the +N^ 283 

depending upon the local curvature of +N^ (Fig. 3B). 284 

Ecologically, curvature effects described in equation (7) arise because of source-sink 285 

dynamics (Pulliam 1988; Pulliam 2000) at the savanna-forest boundary. When +N^ is a straight 286 

line, the inflow and outflow of seeds are balanced, thus resulting in a stable savanna-forest 287 

boundary that coincides exactly with +N^. However, if +N^ is curved, the balance between 288 

inflow and outflow of seeds is disrupted. For example, when the shape of +N^ is such that there 289 

are more forest neighbors than savanna neighbors surrounding a point in the landscape with P = 290 

+N^ (upper part of Fig. 3B), the inflow of seeds will be higher than their outflow. This creates a 291 

net positive inflow of seeds, resulting in a higher growth rate of trees. Forests expand, pushing 292 

the boundary into savanna region till the added growth rate of trees due to a higher influx of 293 

seeds is compensated by reduced growth rate due to a decrease in precipitation. Conversely, 294 

when a point on +N^ is surrounded by more savanna patches than forest patches (lower part of 295 

Fig. 3B), there will be a net positive outflow of seeds, which will favor savanna expansion. 296 

Similar to the previous case, the boundary will move into forest regions until the reduced growth 297 

rate of trees due to a lower influx of seeds is balanced by increased growth rate due to an 298 

increase in precipitation. 299 

The reaction-diffusion model, presented above, however, has some assumptions that are 300 

likely to be violated in real-world: (1) that dispersal is local (because of diffusion 301 

approximation), (2) that vegetation dynamics have no demographic or external noise, and (3) that 302 

the reaction part has a well defined potential function. As a robustness check, we relax these 303 

assumptions one by one, and numerically test their consequences for the theoretical results 304 

presented above. First, we find that incorporating long-range dispersal (via fat tail dispersal 305 

kernels) does not change equilibrium biome distributions (see Appendix C), presumably because 306 

fire vegetation feedbacks prevent tree establishment far away from the source even when a seed 307 

arrives there (Barton and Turelli 2011; Bates et al. 1997; Kot et al. 1996). Second, we find that 308 
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adding noise makes the boundary increasingly rough with increasing noise; however, the 309 

location of the boundary at a coarser scale does not move appreciably from its equilibrium 310 

position predicted from the deterministic 2D diffusion model (see Fig. D1). Thirdly, and finally, 311 

we consider a two-dynamical-variable reaction-diffusion system where a potential function 312 

cannot be defined. In such a system, the position of the boundary, in addition to the control 313 

parameter (e.g., precipitation), is dependent on the ratio of the two diffusion constants (Fig. D2); 314 

the system still exhibits curvature effects in equation (7). Therefore, in no case did we find that 315 

violating the above assumptions qualitatively changed dynamics. 316 

   To summarize, curvature effects in the 2D diffusion model can phenomenologically 317 

reproduce the overlap in the precipitation ranges over which savanna and forest biomes occur, 318 

missing from the 1D diffusion model, while simultaneously retaining the spatial aggregation 319 

property of biomes (Fig. 3D). Moreover, the 2D diffusion model suggests that this precipitation 320 

overlap is not maintained by hysteresis, a defining feature of a bistable biome theory. Instead, 321 

our simulations and analytical calculations suggest that in a landscape with a monotonic 322 

precipitation gradient, hysteresis is unlikely. Below we discuss an ecological scenario under 323 

which hysteresis may reappear. 324 

 325 

Critical Patch Size Effects in a Landscape with Non-Monotonic Precipitation Gradient 326 

 In the previous section, we assumed a monotonic gradient in precipitation. However, 327 

precipitation gradients in real-world landscapes are not always monotonic. As such, a landscape 328 

can have a complex distribution of precipitation with high precipitation regions intermittently 329 

distributed in low precipitation regions, and vice versa. In the following section, we describe 330 

how this feature of precipitation gradients can potentially lead to hysteresis.  331 

 But before we do that, we first consider a simpler case of a homogeneous precipitation model for 332 

analytical insight. Based on the theoretical works of Bradford and Philip (1970a,b), it can be 333 

shown that in a homogeneous precipitation landscape with bistable dynamics, the fate of an 334 

invasion process by a particular vegetation state into another is dependent on two factors: 335 

precipitation + and the initial patch area of the invading state _. An invading patch of 336 

vegetation smaller than a critical patch area (_ < _^) will not be able to expand even though that 337 

vegetation state is climatically favourable, i.e., the state which has lower potential (Bradford and 338 

Philip 1970a; Bradford and Philip 1970b; Holmes et al. 1994; Oxtoby 1998; Skellam 1951). Our 339 
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calculations suggest that near +N, the critical patch size in a homogeneous landscape can be 340 

approximated as 341 

 _^ ∝
Z

(`ab)
<
, (8) 342 

where Δ+c is the difference between the precipitation of the homogeneous landscape and +N. 343 

To fully understand the implications of equation (8), consider an initial savanna landscape with 344 

precipitation just above +N. Although in this landscape forest is more favourable than savanna 345 

because of lower potential (Eq. 3), the forest state will only be able to invade if there is an initial 346 

patch of forest that has an area greater than _^ (Eq. 8). This is because a small patch of forest 347 

has a high perimeter-to-area ratio (Skellam 1951), such that the accumulation of trees is slow 348 

because seed inflow per unit area from forest patches is low, preventing forest expansion. By the 349 

same token, a landscape in a forest state with precipitation just below +N would require a large 350 

patch of savanna to overcome high levels of seed rain from neighboring forest patches.  351 

The same phenomenon also applies to a landscape with precipitation gradients. Consider 352 

an initial savanna landscape with spatially varying precipitation patterns such that the whole 353 

landscape has rainfall less than +N, except in the center where the rainfall is just above +N. 354 

Since the whole landscape was initialized with savanna, the center of the landscape will remain 355 

in a savanna state, unless the central region is initialized with forest patch of area greater than 356 

_^. Conversely, a similar argument holds for an all forest landscape with a low-rainfall island in 357 

the center. 358 

This suggests that the vegetation state of small and isolated patches in intermediate 359 

rainfall regions depends on the availability of a nucleation center, suggesting that the 360 

characteristic biome state in those areas might be contingent on historical biome patterns, thus 361 

exhibiting hysteresis. And more importantly, this analysis suggests that critical patch size (Eq. 362 

8), in addition to curvature effects (Eq. 7), can also explain overlap in the rainfall ranges of 363 

savanna and forest biomes. 364 

 365 

Curvature and Critical Patch Size Effects in Empirical Systems 366 

In this section, we test some of the key analytical predictions of our 2D reaction-diffusion 367 

model—particularly those concerning curvature (Eq. 7) and critical patch size effects (Eq. 368 

8)—using real savanna and forest distributions in Sub-Saharan Africa. As described above, a 2D 369 

reaction-diffusion approximation of savanna-forest dynamics predicts that the location of the 370 
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savanna-forest boundary with respect to precipitation should vary depending upon the local 371 

curvature of the boundary (Eq. 7; Fig. 3B) in such a way that the difference between the 372 

precipitation at the boundary and +N^ is linearly proportional to the local curvature of the 373 

boundary. As such, plotting the absolute curvature of the boundary (ignoring its convexity) as a 374 

function of boundary precipitation should yield a V-shaped curve, the vertex of which should 375 

correspond to +N. Indeed, using African tree cover and mean annual precipitation (MAP) data 376 

(see Data Analysis in Online Appendix D), we show that the current distribution of savanna and 377 

forest in Africa is consistent with this prediction (black line in Fig. 4). The location of the vertex 378 

of that curve provides an estimate of +N = 1508 ± 84 mm MAP, consistent with previous 379 

empirical work (Staal et al. 2016 found PM = 1580 mm MAP). The confidence interval for this 380 

estimate was determined by calculating +N for various combination of parameter values of (i) 381 

boundary tree cover (73-80%) used for identifying boundary location, and (ii) arc length of the 382 

boundary (100-1000 km) used to estimate curvature. For more details on estimating +N, see 383 

figure D3 and sensitivity analysis in Online Appendix D. 384 

Next, we compare the above estimate of +N, by estimating +N with an alternative 385 

method. This involves simulating the potential distribution of savanna and forest using a 2D 386 

reaction-diffusion model with current biome distributions as the initial condition. To do this, we 387 

simulated spatial distributions of savanna and forest using present-day precipitation patterns for 388 

various combinations of +N and A (see Data Analysis in Online Appendix D), and, using a 389 

genetic algorithm (Scrucca 2013), selected those parameter values (+N and A) that yielded the 390 

‘best fit’ to the current distribution of biomes. Here, we refer to ‘best fit’ as maximizing pixel by 391 

pixel match between simulated and empirical savanna and forest distribution (see Data Analysis 392 

in Online Appendix D). This procedure yielded an estimate of +N (= 1538 mm MAP) that lay 393 

within the expected precipitation range obtained from the curvature analysis in figure 4 (see Fig. 394 

D4). These large-scale simulations also reproduced empirically observed biome distributions in 395 

Sub-Saharan Africa surprisingly well for such a simple model (Fig. 5A), except for small regions 396 

in the Bateke Plateau in Congo and Western Africa. In the Bateke Plateau, empirically observed 397 

savannas may be maintained because shallow sandy soils that reduce effective soil moisture 398 

(White 1986) or may alternatively be anthropogenic. Meanwhile, it is well established that 399 

savannas in Western Africa are a result of historical deforestation (Adams and Faure 1997; 400 

Aleman et al. 2017). 401 
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Next, to check whether the results of large-scale simulation in figure 5A were dependent 402 

on the initial conditions – at least theoretically possible because of critical patch size effects, as 403 

described above – we simulated the vegetation distribution for two more initial conditions: ‘all 404 

savanna’ and ‘all forest’ in Sub-Saharan Africa (Fig. 5B-C), using the best fit parameter values 405 

estimated above (+N and A). Simulations with ‘all savanna’ initial conditions (Fig. 5B) matched 406 

those using current distributions as initial conditions (see Fig. 5A). However, ‘all forest’ initial 407 

conditions produce substantially different biome patterns in the Southern Congo and Ethiopian 408 

Highlands (Fig. 5C).  409 

We propose that the critical patch area (_^) requirement can potentially explain why the 410 

simulations over-predict the forest extent in the Southern Congo (Fig. 5C) and under-predict the 411 

forest extent in Ethiopian Highlands (Fig. 5B). Since both of these regions are disconnected from 412 

the main forest cluster by savanna vegetation, biome distributions in these regions are dependent 413 

on the availability of historical nucleation centers (or initial conditions; Eq. 8). Based on our 414 

simulations we suspect that Southern Congo and Ethiopian Highlands were historically occupied 415 

by savannas and forests, respectively, which resulted in their present distribution. Although this 416 

claim is currently hard to test due to lack of reliable long-term paleo-records from these regions 417 

(however, see Elenga et al. 1994; Jolly et al. 1998), historical vegetation reconstructions for the 418 

early 20@j century (Aleman et al. 2017; White 1986) are consistent with the theoretical 419 

predictions of the model. 420 

 421 

Comparisons with Alternative Models 422 

Our calculations show that novel dynamical features of the 2D diffusion model — such 423 

as spatial aggregation (Eq. 6), curvature effects (Eq. 7), and critical patch size (Eq. 8) — can 424 

qualitatively explain many empirical features of savanna and forest distributions that previous 425 

biome distribution models could not. In this section, we investigate whether these dynamical 426 

features improve upon the predictions from previously proposed models of biome distribution. 427 

To do this, we simulate the distribution of savanna and forest in Sub-Saharan Africa using three 428 

alternatives (see Data Analysis in Online Appendix D). First, (a) we consider a ‘one-climate 429 

one-biome’ model in which the savanna-forest boundary is determined by a unique precipitation 430 

contour. This model is analogous to the classical biome theory (Fig. 6A). Next, (b) we consider a 431 

model in which the local vegetation dynamics in each patch are governed by mean-field bistable 432 
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model and the neighbouring patches do not interact. In this model, we randomly initialize the 433 

landscape with savanna and forest patches (Fig. 6B); note, however, that this test does not 434 

consider the possibility that initial conditions could be spatially structured, leading to spatial 435 

structure in biome distributions today. Finally, (c) we consider a 2D reaction-diffusion model, 436 

already described at length above (Fig. 6C). The diffusion model incorporates both bistability 437 

vegetation dynamcis and dispersal.  438 

We measure whether these models can – with parameter optimization – reproduce three 439 

components of biome distribution: overlap in the rainfall ranges of biomes, the spatial 440 

aggregation of savanna with savanna and forest with forest, and the match between the simulated 441 

and actual distribution of biomes (see Fig. 6, Fig. D5, and Table 1). Note, again, that tuned 442 

parameters do not necessarily correspond to demographic rates, etc., that might be measured 443 

empirically; note also that the three model alternatives we propose here are not exhaustive. 444 

In the ‘one-climate one-biome’ model, the precipitation cutoff between savanna and 445 

forest was found to be 1583 mm MAP (see Table 1). Whereas, in the other two models the 446 

rainfall ranges of savanna and forest showed considerable overlap between 1000 mm and 2000 447 

mm. Meanwhile, the one-climate one-biome and 2D diffusion models show a high probability of 448 

spatial aggregation (above 90%) that is missing in the mean-field bistable model (below 68%). 449 

Thus, of the three models, only the 2D diffusion model can reproduce both spatial aggregation 450 

and overlap in the rainfall ranges of biomes. Therefore, it is not surprising that the 2D diffusion 451 

model also outperforms (97% accuracy) other models in terms of predicting the spatial 452 

distribution of biomes in Sub-Saharan Africa. 453 

In summary, all models, except in a one-climate one-biome model, reproduce at least 454 

some overlap in the rainfall ranges of biomes (Table 1 and Fig. D5). Of the two remaining 455 

models, the mean-field bistable model fails to reproduce the spatial aggregation of biomes (Fig. 6 456 

and Table 1). This leaves us with the 2D reaction-diffusion model, which reproduces not only the 457 

climatic overlap in the limits of biomes, and the spatial aggregation in biome distributions, but 458 

also the overall biome distributions in Sub-Saharan Africa with remarkable accuracy (see Table 459 

1). 460 

 461 

Discussion 462 

  In this paper, we develop and analyze a reaction-diffusion model to examine the contributions 463 
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of dispersal to the distribution and resilience of tropical savanna and forest biomes. The model 464 

assumes that the local mean-field dynamics of biomes are governed by non-linear fire-vegetation 465 

feedbacks and that adjacent savanna and forest patches interact spatially through seed dispersal. 466 

We find that the model reproduces empirical features missing from existing biome 467 

distribution models. Specifically, the 2D reaction-diffusion model simultaneously reproduces 468 

both overlap in the climatic ranges of biomes, as well as spatial aggregation of savanna with 469 

savanna and forest with forest. As before, we find that fire-vegetation feedbacks may 470 

substantially expand savanna distributions at the expense of forests, but that in a spatial context 471 

this does not necessarily translate into bistable vegetation distributions. Instead, the equilibrium 472 

position of the savanna-forest boundary is determined by a combination of three factors: (a) 473 

climate (via impacts on the relative depth of potential wells for each biome), (b) source-sink 474 

dynamics (via local curvature of the Maxwell precipitation contour), and, occasionally, by (c) 475 

availability of historical nucleation centers (which contributes an element of hysteresis to 476 

distribution dynamics, albeit more limited than that described before). These theoretical 477 

predictions are empirically consistent with observations of the curvature of the savanna-forest 478 

boundary, and large-scale simulations which show that the 2D diffusion model can — with 479 

parameter optimization—reproduce empirically observed patterns of savanna and forest 480 

distributions in Sub-Saharan Africa.  481 

These findings have direct implications for how we think of the stability and resilience of 482 

tropical biomes. Classical biome theories suggest that perturbations to biome distributions should 483 

be easily reversible since vegetation tracks climate directly (Holdridge 1947; Schimper 1902; 484 

von Humboldt and Bonpland 1807; Whittaker 1970). By contrast, more recent work has 485 

suggested that fire-vegetation feedbacks can stabilize savanna as an alternative to forest in some 486 

areas, such that perturbations to biome distributions may not be easily reversible (Beckage et al. 487 

2009; Staver et al. 2011b; Staver and Levin 2012). Here, we show that combining a spatial 488 

dispersal process with an underlying bistable model radically alters stability predictions: biome 489 

recovery after perturbation becomes much more likely, even if fire-vegetation feedbacks do 490 

modify vegetation (which they probably do; see Bond et al. 2005). In this scenario, biome 491 

transitions may be regionally predictable and reversible, even if they are locally abrupt. 492 

However, there is a notable caveat to this prediction. In isolated rainfall islands, 493 

vegetation distributions may exhibit hysteresis; analogously, if remnant vegetation patches are 494 
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reduced below a critical area, recovery of the boundary may be impossible, resulting in a 495 

permanent loss of vegetation. As a result, extensive historical forest loss, e.g., in West Africa, 496 

coastal Kenya and Tanzania, and the Ethiopian highlands, may be irrecoverable without direct 497 

intervention, since remnant forest patches may be too small for forest to recolonize successfully 498 

(Aleman and Staver 2018). This also raises contrasting concerns about proposed afforestation 499 

plans in mesic savannas of the Southern Congo (Veldman et al. 2015). These isolated mesic 500 

savannas might be historically maintained as a stable alternative biome state (Aleman et al. 501 

2017); proposed afforestation practices (Veldman et al. 2015) in these regions could trigger a 502 

permanent shift in ecosystem state from savanna to forest (Fig. 5C), which may lead to loss of 503 

endemic biodiversity in mesic savannas (Bond 2016) and wastage of scarce management 504 

resources. 505 

The results of the reaction-diffusion model presented herein should be interpreted with 506 

caution, however. For starters, we here incorporate only a subset of important spatial processes, 507 

notably ignoring the long-range spread of fire within savannas (Schertzer et al. 2015) and local 508 

fire spread at the savanna-forest boundary (Cochrane 2003; Cochrane et al. 1999) both of which 509 

may be significant (note, however, that we have included fire effects in the reaction term of the 510 

model). However, ongoing analytical work on a more thorough set of models that examine fire 511 

effects at the boundary between savanna and forest (Durrett and Ma 2018) suggest that the 512 

phenomenological results presented herein may be applicable more broadly: scaling limits to 513 

those models appear also to be characterized by traveling waves, with the occurrence of 514 

stationary savanna-forest boundaries only in landscapes that include a gradient in rainfall 515 

(Durrett and Ma 2018). Notably, however, long-range fire effects seem to change predictions 516 

somewhat (Li et al., in review), resulting in the emergence of stable savanna-forest mosaics even 517 

under homogenous climatic conditions (Schertzer et al. 2015).  518 

Another major question surrounds the problem of time-scales of ecological processes. 519 

Here, we have considered only the equilibrium distribution of biomes, ignoring the speed of 520 

equilibration. Modern climate change is sufficiently rapid (Karl and Trenberth 2003), and so 521 

associated with extreme climatic events (Jentsch et al. 2007; Katz and Brown 1992), that biome 522 

responses to ongoing anthropogenic global change are unlikely to be dominated by these local 523 

spatial processes. This may result in transient mismatches between climate and equilibrium 524 

vegetation (Webb 1986), which may be persistent from timescales ranging from decades to 525 
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millennia depending on the speed of ecological dynamics (Hastings 2004; Hastings et al. 2018; 526 

Hastings and Higgins 1994). Therefore, understanding how fast biomes respond to changing 527 

climate (empirically from the paleo-records) and using this information to incorporate dispersal 528 

into existing non-spatial biosphere models (Bond and Keeley 2005; Bond et al. 2003; Moncrieff 529 

et al. 2014; Scheiter and Higgins 2009; Scheiter et al. 2013) will be critical to generating 530 

informative predictions for the effects of anthropogenic global change on biome distributions. 531 

Projections show that rapidly changing climate (Lewis et al. 2011; Nepstad et al. 2004) 532 

and land-use change (Aleman et al. 2016; Cochrane and Laurance 2002) are expected to result in 533 

large-scale biome shifts, which may yield huge economic and ecological losses. Here, we argue 534 

that, except in a few cases, dispersal can, in general, increase the resilience of tropical savanna 535 

and forest biomes to natural and anthropogenic disturbances (see also van de Leemput et al. 536 

2015). However, recovery from disturbance could be slow, due to slow dynamics of biomes and 537 

anthropogenic or natural dispersal barriers. 538 
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FIGURES 804 

  805 
Figure 1: Potential functions of different vegetation configurations (top) and bifurcation diagram 806 

of the mean-field reaction term (bottom). In the intermediate precipitation region (bounded by 807 

the critical precipitation values +98 and +89), the bifurcation diagram shows that the system can 808 

exist in both savanna and forest states, depending upon the initial conditions. In the bistable 809 

region, the depth of the potential function (U in the top row) corresponding to savanna and forest 810 

states depends on the precipitation value. Both savanna and forest states have equal potential at a 811 

unique precipitation value, referred to as Maxwell precipitation (+N). Below (above) +N, 812 

savanna (forest) state has a deeper potential than forest. In the bottom panel, stable (unstable) 813 

equilibrium points are marked as black circles (dark-grey crosses).   814 
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 815 
Figure 2: Equilibrium (solid sigmoidal curve) and transient (dash sigmoidal curve) tree cover 816 

along a linear spatial precipitation gradient in a 1D landscape. The two solid vertical lines 817 

correspond to the two critical points (+98 and +89), and the vertical black dashed line to the 818 

Maxwell precipitation (+N). The plot suggests that spatial interactions coupled with a large-scale 819 

gradient in precipitation can result in the spatial aggregation of savanna and forest, separated by 820 

a stable savanna-forest boundary (indicated by the blue vertical line, in this case coincident with 821 

+N). This boundary is resilient to perturbations and always recovers back to its equilibrium 822 

position after a disturbance. This model, however, fails to reproduce the non-deterministic 823 

relationship between biome and precipitation, observed in the empirical data. The simulations 824 

were initialized with random initial condition (see Numerical Methods in Online Appendix D).  825 
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  826 
Figure 3: Simulated equilibrium distribution of tree cover (A and B) and its relationship with 827 

precipitation (C and D) in a 2D landscape with a monotonic precipitation gradient. The columns 828 

show the results for two geometries of precipitation contours: linear (A and C) and curved (B and 829 

D). Simulations suggest that in a 2D landscape, the equilibrium position of the boundary is not 830 

only determined by +N, but also depends on the curvature of the Maxwell precipitation contour 831 

]N^ . When ]N^ = 0  (linear +N^ ), the boundary aligns with +N^  (A). This situation is 832 

analogous to the one-dimensional model in figure 2. However, when ]N^ ≠ 0 (arbitrary shaped 833 

+N^), the boundary deviates from +N^ according to equation (7) (B). These curvature effects 834 

can reproduce the non-deterministic relationship between biome and precipitation (A), missing in 835 

the one-dimensional model (Fig. 2). The simulations were initialized with random initial 836 

condition (see Numerical Methods in Online Appendix D).  837 
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  838 
Figure 4: Empirical response of local savanna-forest boundary curvature to mean annual 839 

precipitation at the boundary in sub-Saharan Africa. Results show that absolute curvature vs. 840 

boundary precipitation exhibit V-shaped relationship (black line), consistent with our theoretical 841 

prediction (eq. 7). In theory, the vertex of V corresponds to +N, loosely corresponding to results 842 

from the extensive sensitivity analysis that estimates +N = 1508 ± 84 MAP (Fig. D3; see Data 843 

Analysis in Online Appendix D).  844 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/476184doi: bioRxiv preprint 

https://doi.org/10.1101/476184
http://creativecommons.org/licenses/by-nc/4.0/


33 
 

  845 
Figure 5: Simulated distributions of savanna and forest in Africa, initialized with the current 846 

distribution of biomes (A), all savanna (B), and all forest (C). Blue lines correspond to the 847 

observed present-day savanna-forest boundary, and the grey line represents +N^ (with +N =848 

1538 mm MAP). The large-scale simulations in (A) and (B) matched, and reproduced the 849 

current distribution of savanna and forest, except the edaphic savannas on the Bateke Plateau in 850 

Congo and deforested areas in western Africa. However, the simulations in (C) significantly 851 

overpredicted the extent of forest in the Southern Congo. This region can climatically support 852 

both savanna and forest depending upon the historical vegetation state of the region (see Data 853 

Analysis in Online Appendix D).  854 
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  855 
Figure 6: Simulated distribution of savanna and forest biomes from three biome distribution 856 

models: ‘one-climate one-biome’ model (A), mean-field bistable model (B), 2D 857 

reaction-diffusion model (C). Blue lines correspond to the present-day savanna-forest boundary. 858 

These results indicate that the 2D reaction-diffusion model can, with tuning, describe the 859 

quantitative distribution of biome patterns. This model reproduces both spatial aggregation and 860 

overlap in rainfall ranges of biomes and is also the best predictor of biome patterns in Central 861 

Africa (see Table 1 and Data Analysis in Online Appendix D).  862 
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 Table 1: Summary statistics of the simulated distribution of biomes in Central Africa using three alternative models. The 

performance of models was evaluated on three aspects: overlap in the rainfall ranges of biomes (columns 2 and 3), spatial 

aggregation of savanna with savanna and forest with forest (columns 4 and 5), and match between the simulated and actual 

distribution of biomes (columns 6, 7, and 8). Note that we excluded the contributions of the deforested regions in Western Africa 

and edaphic savannas of Bateke Plateau while calculating the goodness of fit (see Data Analysis in Online Appendix D). 

 

 

 

Model 

Rainfall range (mm 

MAP) 

Spatial aggregation Goodness of fit (%) 

Savanna Forest 

Probability 

of finding 

savanna 

next to a 

savanna 

Probability 

of finding 

forest next 

to a forest 

Correctly 

classified 

Incorrectly 

classified 

as savanna 

 

Incorrectly 

classified 

as forest 

‘One-climate 

one-biome’ model 
Below 1583 

Above 

1583 
0.96 0.90 93.43 3.09 

 

3.48 

Mean-field bistable 

model 
Below 2000 

Above 

1000 
0.68 0.36 78.90 5.49 

 

15.61 

 

2D diffusion model 
Below 2042 

Above 

1058 
0.97 0.96 97.00 1.24 

 

1.76 

 

 863 
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