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Abstract. Barcoded DNA polony amplification techniques provide a
means to impart a unique sequence identity onto specific locations of a
surface wafer or chip. We describe a method whereby micro-scale spatial
information such as the relative positions of biomolecules on a surface can
be transferred to a sequence-based format and reconstructed into images
without the use of conventional optics. The principle is based on the pair-
wise association of uniquely tagged and spatially adjacenct polonies. The
network of polonies connected by shared borders forms a graph whose
topology can be reconstructed from a set of edges derived from pairs of
barcodes associated with each other during a polony crosslinking phase,
the sequences of which could be determined by isolation of the DNA and
next-gen sequencing. We developed a mathematical and computational
framework for this principle called Polony Adjacency Reconstruction for
Spatial Inference and Topology and show that Euclidean spatial data
may be partially stored and transmitted in the form of untethered graph
topology. This effect may be exploited to form images by transferring
molecular information from a surface of interest, which we demonstrated
in silico by reconstructing images formed from stochastic transfer of hy-
pothetical red, green, and blue molecular markers. The theory developed
here could serve as a guide for a highly automated, multiplexable, and
potentially super resolution imaging method based on molecular infor-
mation encoding and transmission.

Keywords: DNA computing · topology · next-gen sequencing · graph
theory · polonies · unique molecular identifiers

1 Introduction

1.1 Transfer of Spatial Information to DNA Sequences

Small-scale imaging techniques have, from their beginnings to modern techniques
like super resolution microscopy [7, 3, 16], relied on optics to amplify and en-
large signals derived from initially confined spatial regions. Notable exceptions

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2018. ; https://doi.org/10.1101/476200doi: bioRxiv preprint 

https://doi.org/10.1101/476200
http://creativecommons.org/licenses/by-nd/4.0/


2 I. T. Hoffecker et al.

Fig. 1. Encoding and recovering metrics through polony adjacency. (A) Seed molecules
with a unique barcode sequence land randomly on a surface of primers. (B) Local
amplification of seed molecules produces sequence-distinct polonies. (C) Saturation
of polonies occurs when polonies are blocked from further growth by encountering
adjacent polonies, forming a tessellated surface. (D) Random crosslinking of adjacent
strands leads to pairwise association of nearby barcodes. (E) Recovery and sequencing
of barcode pairs is used to reconstruct a network with similar relative positions of
polonies as the original surface.

include atomic force microscopy and transmission electron microscopy which
achieve resolutions superior to optical methods by utilizing effectively smaller
probes to interact with the sample e.g. the wavelength of an electron is smaller
than that of light as are the minute interactions between an AFM tip and sample
surface. DNA has a high information density, with storage levels of 5.5 petabits
per cubic millimeter achieved [4], making it an attractive medium for encoding
spatial information at micro- to nano-scales. In this paper, we present a theoret-
ical foundation for a spatial information encoding approach that utilizes DNA
sequencing and graph theory that in principle could be used to generate statis-
tical maps of biomolecules at micro- and nano-scales as well as whole images.

DNA has been used in conjunction with optical techniques to convey spa-
tial information such as with proximity ligation assay (PLA) [18], and DNA
PAINT [8] where DNA plays a role as a signifier of molecular interactions by
conveying this information through fluorescent signals and optical readout/de-
tection of binding events. This principle also underlies a family of techniques
for connecting spatial locations with single cell RNA sequencing data. In these
techniques, recovery of spatial locations are important for distinguishing tissue
types and subtle patterns in expression of cells varying across distances, infor-
mation that would otherwise be lost during the dissociation of cells prior to
single cell sequencing. The operating principle is to use a priori knowledge of
spatial marker genes to associate unknown genes to approximate locations, the
a priori data is in most cases obtained with microscopy such as with in situ hy-
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bridization or mathematical modelling of spatial expression patterns to retrieve
locations of associated genes following single cell sequencing[21, 9, 17, 1, 6, 12]. Al-
ternatively, direct microscopy-based in situ sequencing methods have emerged
in order to achieve precise context-sensitive spatial transcriptomic information
without needing to scramble spatial data by dissociation prior to sequencing[22].

Next generation sequencing strategies have made the rapid and large scale
reading of information stored in DNA an efficient process. However there is an
absence of strategies for encoding spatial information in a way that is preserved
during the scrambling during isolation and recovery from in situ contexts that
can then be read and recovered with sequencing. A few techniques achieve this
goal by encoding spatial information directly into the molecular format, e.g. in
the form of DNA read during sequencing along with transcriptomic data. These
methods are based on artificial generation of an addressable surface using print-
ing or lithographic means similar to that employed for microarray manufacture
[5, 19].

Herein, we describe a computational framework for a method called Polony
Adjacency Reconstruction for Spatial Inference and Topology (PARSIFT), which
is designed to accomplish the encoding of spatial information, for example the
positions of specific molecules relative to others in a 2D plane, directly into
a DNA-based format without transduction of information through any other
medium. The principle is to achieve this without a priori surface addressing,
circumventing the need for printing strategies. Instead PARSIFT utilizes topo-
logical information, i.e. the connectivity of vertices in a graph of spatially related
DNA sequences, as a means to partially preserve Euclidean spatial information,
and next-gen sequencing as a means to recover that information by post pro-
cessing.

Encoding of topological data in DNA sequence format is possible by using
DNA barcodes also known as unique molecular identifiers (UMI’s), i.e. randomly
generated sequences of synthetic DNA. Barcodes that are associated with spatial
patches can establish an identity for those locations, each patch distinguishable
from another based on its sequence. A DNA barcode with 10 bases has 1.04e6
possible sequences, and larger barcodes can be used to create effectively unique
labels in a system. The basic unit of topological data is an edge or association
between two adjacent patches by physically linking between their respective
barcodes. Topological mapping with barcoding has been used to map neural
connectomes by the strategy of assembling a network from cells that share com-
mon barcodes transmitted by viruses able to traverse cells and leave a unique
sequence identifier with each visit [10, 14, 15].

The assignment of barcodes to patches of a surface can be accomplished
with surface polony generation methods such as bridge amplification [2], a 2-
primer rolling circle amplification-based method [11], template walking amplifi-
cation [13], whereby unique “seed” strands are captured by the surface containing
primer strands (Figure 1 A) and then locally amplified in the immediate spa-
tial vicinity of where they landed thus generating a diverse surface of distinct
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patches of amplified DNA (Figure 1 B). A polony is defined as one of these
locally amplified patches of DNA derived from a single seed molecule.

By growing polonies on a surface of primers to the point of saturation (Figure
1 C), i.e. a point where nearby primers are depleted and growing polonies grow to
encounter the boundaries of other adjacent polonies, a tessellation of neighboring
polonies is created. Each member of the tessellation, a polony, has a limited
number of immediately adjacent neighboring polonies with distinct sequence
due to the use of barcodes in each of the seed strands. Though each patch is
associated with a unique sequence according to its parent seed molecule, isolation
of this DNA and subsequent sequencing would scramble information about the
polony’s position or its neighboring polonies. Thus the critical step is to crosslink
strands from each polony to strands from adjacent polonies (Figure 1 D) in
a way that enables both barcodes to be sequenced together in a single read.
Recovery of the strands, i.e. stripping them from the surface followed by next-gen
sequencing would then preserve topological association of neighboring polonies
in the form of covalently linked pairs of barcodes - a complete set of which
might be used to completely reconstruct the topological network of adjacent
polonies without direct knowledge of their original coordinates (Figure 1 E). For
seed distributions without long-range systematic variation, i.e. those that are
Poisson distributed, we show that topological information alone, constrained by
being a 2D planar network with known boundary geometry, retains significant
spatial metrics with only local and boundary-related distortions that become
insignificant at scales greater than those on the order of individual polonies.
By generating such a mappable surface, we suggest that spatial analysis of other
molecules could be accomplished by covalent association with the polony surface,
enabling inference of molecular spatial distributions and construction of images
where polonies serve as pixels. At the time of this manuscript’s publication online
as a preprint, we are aware of a preprint by Weinstein, Regev, and Zhang that
was made available immediately prior whose contribution is complementary to
ours, describing a method of DNA-based microscopic image formation on the
basis of UMI diffusion and concatenation and reconstruction of a large image by
assembling local connectivity [23].

2 Theoretical Framework

2.1 Voronoi Tessellation as a Model of Polony Saturation

The spatial distribution of polonies on a surface, the a priori Euclidean informa-
tion that is not explicitly accessible after isolation, can in principle be preserved
by associations between adjacent polony sequences and recovered with sequenc-
ing. Information that is available after sequencing and subsequent transforma-
tions of that data are then referred to as a posteriori.

Assume that seed molecule amplification takes the form of uniform circular
growth. At the point of saturation polonies have amplified to the extent that
expanding boundaries are restricted from further growth by having encountered
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Fig. 2. Encoding and recovering metrics via topology. (A) Seed molecule points dis-
tributed randomly on a real coordinate plane and used to compute a Voronoi tessella-
tion (blue lines) denoting the boundaries of polonies. Corresponding Voronoi tessella-
tion is shown in gray. (B) Planar embedding diagram with numbered horizontal lines
denoting vertices and vertical lines denoting edges. Filled in area shows the face with
the most edges. (C) Tutte embedding constructed from the graph from A by arranging
the largest face uniformly on the unit circle.
(D) Alignment of Tutte embedding from C with the original Delaunay from A with
dotted black lines drawn between corresponding points.
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neighboring expanding polonies, and the set of boundaries forms a Voronoi tes-
sellation S. Let the surface be represented with X, a real coordinate plane in IR2

with a Euclidean distance function d(xi, xj)∀x ∈ X. Let K be a set of indices
and let pk(k∈K) ∈ P be a tuple in the space X residing within a circle centered
at an origin x0 with radius a and Poisson distributed with spatial frequency λ.

At the point of saturation, each polony is represented by a facet sk ∈ S or
the set of points closest to its corresponding seed molecule pk.

sk = {x ∈ X|d(x, pk) ≤ d(x, pj)∀ j 6= k} (1)
Every Voronoi tessellation has a corresponding Delaunay triangulation D =

(P,E), a triangulation of the set of points P and set of edges E satisfying the
empty circle property: no circumcircle of any triangle in D has a point in its
interior. We refer to the graph, defined by its set of vertices and edges, without
Euclidean metrics as the untethered graph. Figure 2 A shows an example Voronoi
tessellation formed from a set of 9 seed points that fall within a circular region.
Figure 2 B shows the Delaunay triangulation corresponding to 2 A, and the
Delaunay-derived, non-embedded untethered graph G = (K,E) which is the
set of Delaunay edges and vertices lacking coordinates. The untethered graph
retains its topological metrics, i.e. a geodesic distance function defined as the
fewest number of edges that must be traversed between two vertices. A geodesic
distance 1 vertex, defined in relation to another vertex of distance 0 (origin), is
one whose shortest path is 1 edge. A distance 2 vertex is one whose geodesic
distance is 2 edges from the distance 0 vertex, and so on.

An individual polony is identified by its barcode, a sequence of the alphabet
Σ = {A, T,G,C}. We represent a barcode w as a string of length | w |= l with
each letter ∈ Σ. The set of all n possible barcode sequences of length l is Σl.
Let WA ⊆ Σl be a set of barcodes representing all polonies enclosed within a
circular region of S called A. The average number of polonies m enclosed by A
is thus Aλ.

The probability of m polonies all having unique barcodes for a sequence of
length l can be represented with binomial coefficients as follows:

Pr(nondegenerate) =

(
n
m

)
(
n+m− 1

m

) (2)

or approximated with the series:

Pr(nondegenerate) ≈ 1− (m− 1)m

n
+
(m− 1)2m2

2n2
− (m− 1)2m2(m2 −m+ 1)

6n3
...

(3)
For sufficiently large number of barcodes n or sufficiently small m the num-

ber of possible sequences is much greater than the number of polonies. For a 20
nucleotide barcode and a region with 4000 polonies and assuming a naive, uni-
formly distributed, base composition, the probability of them all being unique is
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p ≈ 0.99998. We thus consider the ideal scenario where n � m, and each polony
sk is uniquely distinguishable by its barcode sequence wk. Thus, the existence
of a barcode pair {wi, wj} implies physical adjacency of two polonies between
which crosslinks have associated their unique identifiers.

2.2 Geodesic Metrics as a Proxy for Euclidean Metrics

The untethered graph G = (V,E) may be constructed from the set of all edges

E = {Ei,j ∀i, j | ∃{wi, wj}} (4)

Through the Delaunay triangulation, a set of topological relationships are
defined based on spatial determinants, creating a connection between Euclidean
and geodesic metrics. Thus if we can robustly identify topological relationships
by sequencing pairs of barcodes, we could recover Euclidean metrics by embed-
ding the points in a plane and determining spatial positions of each vertex that
obey as much as possible the known constraints of the original metrics. Given
a known boundary geometry, e.g. a circle with known radius a, and knoweldge
that polonies are Poisson-distributed, we conjecture that for any two vertices
in the non-embedded graph G with a N length geodesic shortest path distance,
there exists a vertex along that shortest path with N − 1 geodesic distance that
is also closer to the origin in Euclidean distance.

Conjecture 1. Let {k0, kN , kN−1} ⊆ K be any subset of three vertices in K that
satisfies the property that kN has at least one geodesic shortest path (i.e. hop
count or number of edges) leading to a so-called origin k0 equal toN steps, and let
kN−1 be a vertex located on a geodesic shortest path to kN with its own geodesic
shortest path to k0 equal to N−1 steps. Let the set {pk0

, pkN
, pkN−1

} ⊆ P be the
corresponding set of real coordinate points in D in IR2. Then it is conjectured
that

∃ kN−1|d(pk0
, pkN

) > d(pk0
, pkN−1

)∀k0, kN ∈ K. (5)

In other words, a graph derived from a Delaunay triangulation contains en-
coded in its geodesic topology a certain limited representation of the Euclidean
spatial hierarchy that the Delaunay was generated from, whereby geodesic dis-
tance n vertices are further in Euclidean distance than at least one vertex lying
on a shortest path at geodesic distance n− 1.

2.3 Embedding the Untethered Graph and Approximation of
Spatial Position

By embedding the untethered graph in a Euclidean metric space, we can attempt
to reconstruct the Euclidean hierarchy that is stored as a geodesic hierarchy.
The embedding of G in a Euclidean metric space is defined by its graph and the
positions of its vertices, so the embedded a priori graph is {G,P} = D. Our goal
is to approximate {G,P} with an a posteriori embedding {G,P ′}. We can define
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a new set of Euclidean tuples p′k ∈ P ′ in a space X ′ residing in a unit circle. The
unit circle could be scaled according to a known boundary metric from the a
priori seed distribution - i.e. if the area extracted was known to have a diamter
of 10 µm. Each of the points p′k correspond to the vertices of G. Thus, together,
the points P ′ and the edges E determine whether or not two edges cross each
other in the embedded G. The goal is to determine the set of coordinates P ′

in a way that minimizes the distances between a priori and a posteriori points,
i.e. d(p′k, pk). One approach is to find a set P that shares as many knowable a
posteriori properties of P as possible.

One of these properties is planarity of the embedded graph {G,P}. This is
due to the physical assumption that adjacency is determined by the nearest-
neighborship of two polonies, and that an edge may not be formed if it must
cross over a polony to bridge two non-neighboring polonies. Since the graph
has no crosses and its points are embedded in a planar Euclidean space, the D
and {G,P} are planar. A graph’s planar embedding can be determined algo-
rithmically (Figure 2 C. The edges of this graph are taken from the set of edges
produced from the Delaunay triangulation from Figure 2 A, scrambled and de-
coupled from any explicit information about the a priori seed point distribution.

Another criterion is that an average spatial density of the a posteriori vertex
positions λ′ should be obtained from the final distribution with no systematic
variation across the reconstructed area. The points P should be consistent with
that which could be drawn from a Poisson distribution.

A final property that should be satisfied is what we may call the same-
Delaunay-topology criterion, in other words a new Delaunay triangulation D′

generated from the a posteriori vertex positions P ′ should have the same geodesic
structure G′ as G. If G = G′, then P ′ shares in common with P all of the spatial
constraints out of which D arose.

Since computing the positions that generate the same Delaunay topology
as the original is computationally expensive, we developed an approach for ap-
proximating the positions with reasonable accuracy. A fast approximation of the
original distribution can be obtained with a Tutte embedding or barycentric em-
bedding [20], which takes a planar graph and forms a crossing-free straight-line
embedding such that the outer face is a convex polygon and every interior vertex
is located at the average (barycenter) of its neighboring vertex positions. If the
outer face is fixed, the positions of the interior vertices are determined uniquely
as the solution to a system of linear equations. The unique solution is always
crossing-free, and every face is convex. The outer face can be found by enumer-
ating all minimal faces and identifying that which has more than 3 edges, as all
other faces in a true Delaunay graph are triangular.

We can make a conjecture analogous to Conjecture 1 about the coupling
of Euclidean and geodesic metrics in the Tutte embedding, a suggestion that a
Tutte embedding satisfies one of the major properties of the a priori distribution.

Conjecture 2. Let {k0, kN , kN−1} ⊆ K be any subset of three vertices in K that
satisfies the property that kN has at least one geodesic shortest path (i.e. hop
count or number of edges) leading to a so-called origin k0 equal toN steps, and let
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kN−1 be a vertex located on a geodesic shortest path to kN with its own geodesic
shortest path to k0 equal to N − 1 steps. Let the set {p′k0

, p′kN
, p′kN−1

} ⊆ P be
a corresponding set of real coordinate points in the embedded graph D′ in IR2.
Then it is conjectured that

∃ kN−1|d(p′k0
, p′kN

) > d(p′k0
, p′kN−1

)∀k0, kN ∈ K. (6)

Or in other words, analogous to the spatial hierarchical relationship to geodesic
hierarchy in the Delaunay triangulation, there is a corresponding spatial hierar-
chy in a Tutte embedding. We make this conjecture based on the observation that
attempts to violate this rule by artificially placing a distance N vertex closer in
Euclidean distance to some origin point than a distance N − 1 vertex invariably
result in the formation concave structures that are forbidden by the laws of the
Tutte embedding. Another related observation is that the geodesic contour lines
surrounding a vertex may never cross each other in Euclidean space. A geodesic
contour n may not be closer at all points than some points of geodesic contour
n − 1, however there will always be some point on contour n − 1 that is closer
to the origin in Euclidean distance.

If spatial metrics about the original Euclidean boundary are known - for in-
stance that we specify that points must lie within a circle, and the circle’s radius
is known. Then the embedding may be scaled to match the original Euclidean
metrics. Figure 2 C shows the Tutte embedding of untethered vertices from A-C
with the outer face arranged uniformly around the unit circle. An alignment by
scaling, rotating, translating, and flipping the a posteriori Tutte reconstruction
of the seed positions to be aligned with the a priori Delaunay triangulation
(Figure 2 C) shows that the basic spatial order is preserved, and vertices of the
two graphs devate only locally.

3 Simulation and Generalization Beyond an Ideal
(Triangulated) Posterior Graph

3.1 Simulation of Primer Lawn and Crosslinking

We performed an in silico proof of concept by simulating the random pairing of
adjacent polony primer sites, scrambling of edge data, and reconstructing the
untethered network based on topological information alone. We simulate the
primer lawn with a hexagonal lattice, assuming the limit of molecular packing
density Figure 3 A. Figure 3 B shows how crosslinking leads to random pairing
of adjacent sites, some of which are self-pairing events (providing no additional
information) and some of which are cross-polony sites that can be used to deduce
the presence of a spatial boundary. The probabilistic nature of the pairing opens
up the possibility to miss an existing boundary, particularly when the boundary
is small. The untethered graph approaches the Delaunay triangulation at ideal
pairing efficiency.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2018. ; https://doi.org/10.1101/476200doi: bioRxiv preprint 

https://doi.org/10.1101/476200
http://creativecommons.org/licenses/by-nd/4.0/
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Fig. 3. Simulation of polony adjacency reconstruction. (A) Lattice diagram of primer
lawn and polonies denoted with color and Voronoi face boundaries. (B) Illustration of
random site pairing between adjacent primer sites, with those that bridge two polonies
colored in red. The untethered graph (and the set of missed edges) is listed below, edges
colored in red text. (C) Overlay of Tutte reconstruction from C with the Delaunay graph
of the original Euclidean seed points. (D) Tutte reconstruction of the untethered graph
formed from pairing events gathered from A. Re-computed Voronoi diagram is shown
in dotted line. (E) Overlaid re-computed Delaunay-derived graph and embedded graph
after adjustment for matching Delaunay topology
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3.2 Reconstruction by Tutte Embedding

The edges formed from simulated cross-linking were scrambled, i.e. decoupled
from Euclidean coordinates of the a priori seed distribution. We reconstructed
the topological network from the list of edges and performed planar embedding,
outer face identification, and Tutte embedding as with the ideal Delaunay case
described in Figure 2. In practice, one does not have access to the original Eu-
clidean seed positions, however for the purpose of characterizing distortion, we
perform an alignment of the reconstructed graph with the original Delaunay
graph (3 C) for the Tutte embedding approach and spring relaxation approach
respectively. This is done by isotropically scaling, rotating, translating, and flip-
ping the planar graph to minimize the distance between corresponding vertices
by stochastic gradient descent. We can see that relative positions are preserved
albeit with local distortion that leads to slight displacement of each reconstructed
vertex relative to its original seed counterpart.

For relatively small graphs we could perform iterative adjustment to the
positions, initialized with the Tutte embedding, until they form a Delaunay
with the same topology as the original Delaunay. This was accomplished with a
simulated annealing whereby with each iteration, the Delaunay graph generated
by the current set of Euclidean coordinates (Figure 3 D orange) is compared with
the untethered graph (Figure 3 D red), its topology derived from the Delaunay
triangulation of the a priori seed distribution. After adjustment, a final graph
satisfies the property that its Delaunay triangulation has the same topology
as the untethered graph (Figure 3 E). The a posteriori positions that satisfy
this same-Delaunay topology criterion thus satisfy all of the constraints of the
original Delaunay triangulation.

3.3 Stamping and Image Formation

Approximate spatial location of each polony may be transmitted through this
means. This could then be exploited to provide spatial information about objects
of interest by association with polonies that we can trace the location of by
PARSIFT. We devised a basic model of image reconstruction from the principle
of contact-based transfer of molecules of interest to the mapped surface, i.e.
a kind of molecular stamp. As proof of concept, we use an image (Figure 4
A) as a representation of a hypothetical probability distribution of 3 types of
molecular markers (red, green, and blue). The image represents a surface of
interest that we would like to sample from, for example a cell surface covered in
oligo-tagged antibodies that would associate covalently with the mapped polony
surface (Figure 4 B). The darkness and color of the image corresponds to the
density of such markers and thus the probability that a marker of a particular
color is placed on the polony surface. To simulate contact based transfer of the
surface of interest with the polony surface, the overlaid lattice of primer sites
denotes points where a Monte Carlo sampling will occur in the corresponding
position in the image. If the image pixel at a given primer site location has
an RGB value dominated by red and green for example, then there is a higher
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Fig. 4. Transfer of surface of interest to the mappable polony surface for image recon-
struction. (A) An image is overlaid on a simulated mesh with 65 polonies. (B) Illus-
trated concept of molecular markers representing 3 different colors/targets transferred
by contact to the polony surface where they are covalently incorporated and associated
with one of the polony barcodes. (C) Monte Carlo sampling procedure to determine
whether a marker is associated with a given primer site and if so which color by taking
the probability from the RGB value normalized to 1 at the corresponding position in
the image. (D) Tallying of markers and empty sites within a given polony/Voronoi face
is then used to determine the color of that ”pixel” and a 65-pixel image (lower pane)
is formed by coloring each face accordingly. (E) Larger scale reconstruction using the
Tutte embedding approach of image from A but with 4000 polonies. (F) Reconstruction
analogous to F but with the spring relaxation approach.
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probability of that site being occupied by either a green or red marker (Figure
4 C). Since no spatial information is retained below the resolution of a single
Voronoi face, the positions of markers within a polony is scrambled. The final rgb
value of the face can be determined by tallying the markers that have associated
with the primer sites in the polony as well as the number of un-associated sites
(Figure 4 D). In this way we form a pixel from each polony/Voronoi face from
which a complete image may be constructed by the reconstruction procedure
described above.

Figure 4 E shows a Tutte reconstruction with 4000 polonies and a lattice
density with an average 125.7 primer sites per polony. Note how rotational in-
formation is not preserved from the original image, however structure and fea-
tures are represented from the original. Figure 4 F shows a reconstruction with
the same parameters as E but reconstructed using the non-deterministic spring
relaxation based procedure to generate the final positions. Note how the aver-
age size of polony is more uniform in the case of F compared to E which has
several enlarged and contracted polonies, a distortion due to the combination of
randomly missed edges and Tutte reconstruction which tends to expand gaps in
the mesh.

4 Assessment of Distortion and Precision

Distortions are limited to local scales. We looked at the alignment errors of each
point in the a posteriori reconstructed distribution compared to the original
a priori seed distribution to obtain an average error normalized to the unit
circle, i.e. with a value of 1.0 corresponding to the circle radius. This was done
for multiple numbers of polonies and 4 different lattice densities for the Tutte
embedding approach (Figure 5 A) as well as spring relaxation (Figure 5 B). In
both cases we see that relative error is higher when there are fewer polonies
but that this value decays gradually with more polonies. We can visualize the
distortion (Figures 5 C and D) with lines drawn between corresponding vertices
in the a posteriori reconstruction and the a priori seed distribution, and plotted
as a scatter as a function of radius extending from the center of the reconstructed
area. We see that while there are some systematic distortions at the local scale
mostly near the boundaries, such distortions do not extend further than a few
polonies. From this we can conclude that this approach should be effective for
determining global structural properties so long as constraints of the simulation
are met such as Poisson distributed seed points, uniform sampling from the
stamped surface of interest, and uniform boundary geometry.

5 Approach Variations

Due to the high number of non-information bearing pairing events that is most
likely to occur with the above technique, i.e.barcodes of one polony pairing with
neighboring barcodes of the same polony, we propose some advanced variations
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Fig. 5. Distortion estimation from a priori and a posteriori vertex position compar-
ison. (A) The average distance between a vertex a priori and a posteriori position
with region normalized to unit circle, and varied for different numbers of polonies and
primer site lattice densities, for the Tutte embedding reconstruction approach. (B)
The average distance between a vertex a priori and a posteriori position with region
normalized to unit circle, and varied for different numbers of polonies and primer site
lattice densities, for the spring relaxation reconstruction approach. (C) Visualization
of distortion of a 4000 polony a posteriori Tutte embedding aligned with the a priori
seed positions. Lines a drawn between corresponding vertices with color map indicative
of line length (red being longer). (D) Radial profile of Tutte embedding reconstruction
from C Scatter plot of a posteriori-a priori distances as a function of radius from the
center of the reconstructed area. Red line shows a moving average (10 point). (E) Dis-
tortion visualization analogous to C for a spring relaxation reconstruction. (F) Radial
profile analogous to D for the spring relaxation reconstruction approach.
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on the basic principle. One approach would be to use a bipartite network for-
mation. The bridge amplification approach to polony generation, for example,
leaves the possibility of having two species of independent primers on the surface
and the formation of essentially two interpenetrating/overlapping and indepe-
dentently saturated polony surfaces. By introducing crosslinking that bridges
the two networks, a bipartite network would be formed where essentially every
pairing event would be information bearing, since each cross link would neces-
sarily have two distinct barcodes (one of each polony species). Another possible
approach would be series growth of polonies. In the basic concept presented in
previous sections, a primer of uniform sequence is assumed, however genera-
tion of a saturated layer of polonies that could then be used as primers for a
subsequent polony generation step would then result in an overlapping of every
2nd-layer polony with multiple 1st-layer polony.

6 Conclusion

PARSIFT is a concept for microscopic image construction based on the encoding
of spatial information into the format of DNA bases that can be reconstructed
after sequencing. Here we have shown a mathematical basis for the transmis-
sion of spatial information via topology that stems from the relationship of Eu-
clidean neighborhood with that of topological geodesic neighborhood, the former
of which can be inferred from the latter. We have demonstrated an in silico proof
of concept by constructing a pipeline for taking decoupled edge data, generated
from simulated polony distributions, that are then reassembled into a topologi-
cal network and embedded in a Euclidean plane, resuming much of the spatial
characteristics of the original seed distribution. We saw that global distortion is
largely absent, and that local distortions decay with increasing polony density.
We hold that this framework and pipeline for reconstruction could be exploited
for image analysis of micro- and nano-scale surfaces with molecular libraries of
potentially very high multiplicity and with throughput automated in a way that
would not be possible with most optical approaches.
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