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Abstract

Understanding how gene expression translates to and affects human behaviour is one of the
ultimate aims of neuroscience. In this paper, we present a pipeline based on Mapper, a topolog-
ical simplification tool, to produce and analyze genes co-expression data. We first validate the
method by reproducing key results from the literature on the Allen Human Brain Atlas, and
the correlations between resting-state fMRI and gene co-expression maps. We then analyze a
dopamine-related gene-set and find that co-expression networks produced by Mapper returned
a structure that matches the well-known anatomy of the dopaminergic pathway. Our results
suggest that topological network descriptions can be a powerful tool to explore the relationships
between genetic pathways and their association with brain function and its perturbation due to
illness and/or pharmacological challenge.

1 Introduction

The human brain is a highly complex organ where its function emerges from the integration of
cellular, anatomical and functional circuits [3]. This complexity is thought to be crucial to the
plasticity needed to adapt to environmental changes. The architecture of the human brain is
ultimately shaped by the human genome through the regulation of gene expression. In fact, the
human brain consists of a set of differentiated regions each having a specific distribution of cell types
and a microscopic and macroscopic anatomical organization that are the results of the differential
expression of unique gene patterns during development that are kept stable when maturity is
reached [16]. Traditionally, genetic studies have investigated the association of genetic variants
with a variety of brain disorders in large population studies [28, 35]. However, these studies are
not particularly informative on the impact of these gene variants on brain structure and function.
Imaging-genetic studies provided additional insights by exploring the effect of genetic variants
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and expression of gene sets on normal and pathological brains. They are however not without
limitations [4]; a crucial one is that they look at the association between gene network and brain
phenotype in a limited number brain regions, e.g. the prefrontal cortex. However, the availability
of new data-sets such as the Allen Human Brain Atlas data set (AHBA) [13], with vastly enlarged
brain coverage and resolution, offered a unique opportunity to explore the architecture of the
brain transcriptomics in the entire brain. Critically, such a comprehensive data set allows the
investigation of the architecture of differential gene expression between brain regions. In fact, works
that explored the complexity of the human brain transcriptome, taking advantage of the AHBA
data set, are starting to uncover new knowledge about normal and pathological brain function. For
example, [14] revealed large transcriptional differences between brain regions. In addition, the same
authors analyzed the expression of genes with patterns of differential expression across regions that
are highly consistent between donors, a measure they called differential stability showing that: i)
these patterns reflects the physical topography and the developmental trajectories of brain regions,
ii) these genes are strongly associated with different brain disorders, and iii) the expression of these
genes in the cortex is correlated with resting state functional connectivity. Also, other authors
found that resting state functional connectivity networks are associated with between-brain-tissues
correlated expression of a set of 136 genes [27]. Both studies consolidated early evidence that
mesoscale differences and between brain regions similarities in terms of structure and function find
their backbone in the architecture of the human transcriptome. Network approaches have been
extensively used to investigate the complexity of the brain by using a variety of brain imaging
data including Magnetic Resonance Imaging (MRI), Electroencephalography (EEG) and Magneto-
encephalography (MEG). These studies revealed that some topological properties of the brain are
highly conserved across different scales and type of measures [6]. In particular, the brain appears
as a topological structure characterized by short path length and high clustering, organized in
hubs and shaped in modular communities [5]. Assuming that the brain is a self similar system
[12, 34], we expect that its transcriptomics could be described with topological analysis. Topological
characteristics of the brain transcriptome have been already investigated by some authors [18, 30].
However, one key limitation in the analysis of the topology of the brain transcriptomic is the
high-dimensionality of the data. The AHBA features the expression levels of >20,000 genes from
six post-mortem brains, profiled by ∼ 60,000 microarray probes in different brain regions that
are spatially-resolved at different level of anatomical coarseness [13]. As a result, the analysis
of the AHBA data set poses a significant problem of high-dimensionality that can be tackled by
using different strategies in variable selection and feature extraction [15]. Here we present a new
approach based on the Mapper algorithm [33] to reduce the dimensionality of microarray mRNA
expression data from the AHBA while preserving topological information and characteristics of the
human brain transcriptome. The Mapper algorithm is a tool that has been developed to identify
topological characteristics of data sets based on the distance between data points after applying
a pre-definite filter function [33]. The algorithm constructs a series of networks describing the
data-set at different levels of coarseness and, by using the composition of each node to map the
samples to their anatomical location, we can represent the similarity of the genetic expression of
samples obtained from different ROIs as network connectivity patterns. Mapper has been already
successfully used to analyse high dimensional behavioural, clinical, biological and neuroimaging
data sets [19, 20, 24, 31]. In this work, we present three different applications of the Mapper in the
microarray AHBA data set: i) replication of the gene co-expression analysis originally presented
by the Allen Institute for Brain Science [13] ; ii) topological co-expression analysis of the gene list
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identified by [27]; iii) topological co-expression analysis of the genes in the dopamine pathway. The
aim of these three case-studies is first to validate the pipeline by replicating previous findings and
then to test its ability to extract useful information from the dopamine system that is known to be
crucial for many brain disorders.

2 Results

In this section, we first briefly introduce the Mapper algorithm and the agreement matrix analysis
we used (a more in depth description can be found in the Methods section) before introducing the
data sets we analyzed. Finally, we present and discuss in details the results we obtained on the
three data set we considered.

2.1 Gene Mapper networks and agreement matrices

The Mapper algorithm was first introduced in [33] as a technique to extract low-dimensional skele-
tons for the classification of 3D shapes. In recent years, however, its use as a data analytic tool has
vastly extended. In its simplest form, the algorithm takes as input a set of data points equipped
with a similarity metric and returns a network which encodes a low-dimensional backbone of the
data set that can be interpreted as a network. In the present study, we use a correlation-based
distance to group together the gene-expression vectors of brain tissue samples from the left hemi-
sphere of six donors [1]. We use the first two principal components, which explain between 21.6%
and 30%, depending on the gene list considered, of the variance in the gene-expression to guide the
algorithm in the local clustering, and we optimize the parameters in order to obtain a good ratio
between noise, i.e. un-connected voxels, and signal, i.e. connected components, with we which we
obtain a series of networks describing the data-set at different levels of coarseness. Details about
the construction and robustness of the methods are given in the Supporting Information (S.I.).
Each node in the network produced by Mapper represents a cluster composed by samples with very
similar gene-expression profiles and similar loading on the first and second principal components.
Therefore, we can represent the similarity of the genetic expression of samples obtained from differ-
ent ROIs by mapping the samples constituting each node to map the samples to their anatomical
location. The connectivity patterns between nodes in the network further highlight this similarity.
In particular, we can study the subgraphs determined by nodes that contain samples from the same
ROIs. Scattered subgraphs indicate a loose similarity within the specific ROI and a higher similar-
ity with other ROIs, see Fig.1 for an illustration. Given a set of parameters {σ} for the Mapper, see
Methods for details, this information can be further summarized using a co-occurrence matrix A[σ],
where each element Aij [σ] counts the numbers of times a sample from region i and a sample from
region j are mapped to the same node. We obtain a co-occurrences matrix for each optimal set
of parameters and further compress the information obtained from the networks corresponding to
different parameter choices in an agreement matrix A = 〈A[σ]〉σ, computed by averaging across all
matrices and retaining the non-zero elements that have at least one connection in all the networks.

2.2 Data sets

We applied the construction described above to three different sets of genes: the whole human
genome (∼ 29000 genes), a list of 136 genes that support synchronous activity in brain networks
as shown by [27], and a list of 56 genes related to the dopamine system. The dopamine list was
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created by interrogating the Gene Ontology database (http://geneontology.org) and the Panther
gene classification system [22] from which the ”Dopamine receptor mediated signaling pathway
(P05912)” list was selected. The gene expression data for all three gene-lists we considered come
from the microarray data of the Allen Human Brain Atlas (http://human.brain-map.org). The
original log2 data were transformed into z-scores following the methodology present in [29]. We
use the first data set to validate the proposed methods within a fully gene-focused setup. The
analysis of the second dataset instead highlights the capacity of this method to meaningfully link
the genetics and activation level of specific ROIs. Finally the dopamine system analysis provides
new insights in brain organisation. We used both the agreement matrices and standard network
properties, e.g. shortest path distances, to compare our results with previous analysis done on
the same data set. Functional connectivity matrix was computed using high-resolution resting-
state fMRI data from 20 subjects (5F/5M aged 26–30; 5F/5M aged 31–35) were randomly selected
as part of the Human Connectome Project (h2ps://db.humanconnectome.org/). Please find full
details about data acquisition and pre-processing in S.I.)

2.3 Validation against the Allen Brain Atlas

Fig. 2 shows a few examples of Mapper network (parameters q=5, overlap = 20, 25, 35, see Methods)
obtained for the Allen Brain Atlas (AHBA) data set at different levels of coarseness. We can see
that in all cases few major connected components in the network: a small one, containing only
elements of the cerebellum, a giant component containing mostly cortical samples, and smaller
subcortical components. As the overlap increase, we can see how the larger components starts
developing connections towards the components containing samples from subcortical ROIs, while
the component containg samples from the cerebellar cortex is still very much isolated in all cases.

While some of these patterns and their stability can be guessed by direct observation, the
distinction is much clearer when we consider the structure of the agreement matrix (Fig. 3a) (for
parameters (window size, overlap)={(5, 25),(5, 30),(5, 35),(6, 20)}, See S.I. for more information
on the parameter choice) where we can clearly distinguish 4 blocks representing: the cerebral
cortex, the hippocampus, the cerebellum, and brainstem nuclei. We can see some regions of the
cerebral cortex that have higher connectivity with the two blocks from the subcortex, indicating
the connection in the network of the central community to the peripheral structures. We are now in
a position to compare the findings of Mapper to the original paper [13]. We do this by comparing
agreement matrices for the Mapper network with the co-expression matrix of the original paper,
which is summarised in Fig.3. To guide the eye, we ordered the regions in Fig. 3 in the same order
as in [13] (Fig. 3b) and it is easy to see that the Mapper agreement matrix reproduces the general
structure of the differential gene-expression matrix. In order to quantify this effect, we delve a
little deeper in the relationship between Mapper links and the standard differential gene-expression
techniques. In fact, we show that Mapper extracts the connections with lower differential of gene-
expression. To do this, we compare the differential gene-expression between the ROIs that are
connected in the Mapper and the ones that are not. In particular, we expect that present links
should be characterized by smaller differential expressions, since the presence of the link suggests a
higher similarity between the samples contained in the nodes, while the absence of a link supports
the opposite. To quantify this difference we use the Kolmogorov–Smirnov statistic which measures
a distance between the empirical distribution functions of two samples (Fig. 3e). We find that links
present in the Mapper generated networks are up to 27 % more likely to include low differential
co-expression between the ROIs than the complete full matrix, and up to 45% more likely than
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the ones ignored by the algorithm construction (3c). When confronting the two differential co-
expression distributions for present and absent links (3d) we can clearly see that Mapper tends to
contain more links with a differential gene-expression of at most e4.85 than the ones it excludes.

In addition to the large-scale results reported above, it is possible to focus on the comparison
of the brain systems analysed in [14]. In Fig. 4a, we reproduce the agreement matrix coloured
according to four regimes. These are based on the combinations of sparse/dense connectivity in
the Mapper and of low/high differential gene expression in the nodes. A link is qualified as dense
if there are on average more than 2 co-occurances between the nodes, and the low/high differential
expression is defined by the trade-off detected in Fig.3d. It is clear that the two most represented
cases are the expected ones: few different genes expression and dense Mapper connectivity, in light
blue, versus inconsistent genes expression profiles and sparse network connectivity, in dark red. In
the S.I. we give more details about how the classification in four regimes is done.

Beyond this broad classification into 4 regimes, there are more subtle connectivity patterns:
for example the cerebral cortex and the cerebellum are clearly more homogeneous than the hip-
pocampus or the amygdala (Fig. 4b). To extract all the information from the Mapper results and
interpret them correctly, we need to go further. We can quantify for each ROIs how many links of
a certain type link to other ROIs. We summarise this construction in the circular barplots of Fig.
4c. In general, we can see how for low differential gene expression the Mapper tends to always be
densely connected, while the viceversa is not always truw with clear examples in the hippocampus
and amygdala.

Using this information we can compare the Mapper results with those of the AHBA for each
system/ROI:

• Cerebral Cortex: The cerebral cortex appears to be very connected in the Mapper network,
consistent with the idea that the basic architecture across the entire cortex is similar or
“canonical”. This accordance of low differential genes expressed and high connectivity is
indicated by the light blue shading comprising cortical gyri ordered from the frontal pole
(fro) to cingulate gyrus (CgGP-s). The sole exception is the visual cortex LiG-str, which had
a uniquely diverse gene-expression that the network was not able to discern.

• Cerebellum: The same connectivity pattern can be seen for the cerebellum. [14] noticed how
the internal homogeneity across subdivisions of the cerebellum, with samples from different
cerebellar lobes listed from “PV-IV” through “He-VIIB” show no internally differentially ex-
pressing genes. This peculiarity is clearly picked up by the Mapper outputs, as the cerebellum
always creates a connected component of its own in the network.

• Hippocampus: In [14], the hippocampus showed a distinct pattern of gene expression across
its highly distinct and stereotyped anatomical divisions. This high number of differential gene-
expression is not reflected in the mapper generated network by a disconnection. Instead, the
samples from the various hippocampal structure are highly connected within the subcortex
and loosely connected with parts of the cortex (LiG-pest, SPL-s, SPL-i, STG-l). This pattern
is different from its close relative the cortex, and even more distinct from that of evolutionary
older brain regions.

• Amygdala: In their work, [14] found that the amygdala are very similar to one another
while very different from other brain regions, in the mapper these regions are instead loosely
connected within the subcortex and within itself.
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• Thalamus, Brainstem Nuclei: The thalamus and brainstem nuclei show a great deal
of complexity in the differential gene-expression matrix. This is confirmed in the mapper
agreement matrix. We can see how these two structures are interconnected in the network
but with high incidence of low connectivity links suggesting a less clear organization than
with the cerebral cortex and cerebellum.

2.4 Across modalities validation - The Richiardi list

[27] identified a list of 136 genes whose expression is correlated with the so-called resting-state
functional connectivity [7]. We recomputed the Mapper network using the gene-list identified by
[27] instead of the whole genome. We then compared this Mapper network to functional connectivity
matrix derived from resting state fMRI data from the Human Connectome Project. In the Mapper
generated networks we observe that again the cerebellum constitutes a stand-alone component,
while the remaining samples are divided in two larger and anatomically coherent components: one
containing most of the cortical samples and the other one containing mostly subcortical ones, see
Fig. 5.

In this case we can compare the properties of the Mapper links by comparing them to the
functional connectivity values. Indeed we find that the Mapper links correlate with higher functional
connectivity. The links extracted by the mapper generated network are up to 14% more likely to
include high functional connectivity between the ROIs than the complete full matrix, and up to
29% more likely than the ones ignored by the algorithm construction. These values were computed
using the Kolmogorov-Smirnov statistic measuring the highest gap in the cumulative distributions,
see Fig. 6e). Comparing more closely the distributions of functional connectivity for links presents
and absent in the mapper network we can identify the level at which the change in trade-off occurs
(Fig. 6d).

In their work, [27] in order to remove highly differential outliers, decided to focus their analysis
on 1777 cortex samples mappable via their Montreal Neurological Institute (MNI) coordinates to 13
functional networks (see S.I.for full list), excluding 1926 samples from the basal ganglia, cerebellum,
and deep gray matter regions including the hippocampus.

As with the analysis of the AHBA whole-genome, we can use this information to define different
regimes for the links and compare in more details the connectivity in the Mapper for the samples
considered by [27] in their analysis and those ignored. The results are presented in Fig. 7.

When considering the connectivity of the ROIs in the network via the co-occurrence matrix we
can see that there is a similar pattern to the one found in the fMRI covariance matrix where the
ROIs involved in the functional networks studied by Richiardi. All the samples not considered by
Richiardi in their work tend not to be clustered together in the Mapper network. Viceversa, the
samples that Richiardi found to correlate with fMRI tend to be clustered together in the network,
with the exception of the Temporal, Occipital lobes and Cingulate Gyrus which are less densly
connected.

2.5 Dopamine system

We can see two main connected components in the Mapper generated network, Fig.8 a). A small
component containing only elements of the cerebellum and a giant component containing most of
the samples. In the giant component two anatomically coherent modules are easily distinguishable:
one containing samples from the cortex, the other one from the subcortical ROIs.
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From the agreement matrix we clearly distinguish the two modules as deep red blocks, Fig.8
b). The fact that a significant portion of the high-connectivity is between ROIs indicates that the
clusters in the network are very inhomogeneous in their composition, i.e. it is very likely to find
samples from different ROIs clustered together. The organization of the network in two modules
is reminiscent of the anatomical organization of the mesolimbic dopamine pathway characterized
by a crosstalk between cortical and sub-cortical structures. For this reason we decided to study
the organization of the network relative to nodes containing samples from the substantia nigra and
ventral tegmental area (VTA). These regions were chosen because they are the areas of the brain
most densely populated by dopamine-producing neurons and therefore thought to be the starting
point of the dopaminergic pathway in the brain [23] (see Fig. 9a). We then calculated the shortest
path distance from these nodes to every other node in the main connected component. We discuss
here the results for seeds chosen in the ventral tegmental area, but the analysis is consistent for the
substantia nigra (see Fig. SI.5 for a comparison of the results between the two ROIs).

Each node/cluster thus had a value assigned to it that represents its distance in the Mapper
network from the ventral tegmental area (Fig. 9b). Since each sample in the left hemisphere
belongs to one or more nodes/clusters on in the network, the shortest path distance values was
mapped from the nodes to the samples (Fig. 9c). We then studied the distribution of these network
related values inside each ROIs (Fig. 9d). In blue the ROIs containing samples in the same cluster
or closer to the substantia nigra. The samples from these ROIs are mostly contained in the same
network community. The ROIs are ordered top to bottom from closest to farthest. In lighter blue
and oranges the ROIs with samples in the part of the network bridging the two modules. In red
the other module which encompasses most of the cortex. Interestingly, the ROIs in lighter blue
and orange (e.g. the striatum and the thalamus) are actually ROIs that contain a high number
of synapses between axons coming from the brainstem and neurons projecting into the cortex [25].
These results show that indeed the Mapper network reproduces closely the anatomical structure of
the dopaminergic pathway.

3 Discussion

Dimensionality reduction methods are as old as statistics and are an essential tool to study complex
and complicated systems. However, what is gained in size is often lost in interpretability; it is
therefore crucial to find lower dimensional representations of high dimensional spaces that are easily
associated to other measurements or observables of the system under study. Among topological
simplification tools [11, 26], Mapper is a method of choice to achieve this goal. Although a powerful
tool that yielded significant results [20, 24, 31], little work has focused on the cross-validation of
its results across modalities and data sets. In this study, we built a Mapper pipeline designed
to extract pattern of similarity in genetic expression and crossed examined them through brain
anatomy, with the aim to link genetic expression to neuroscience. Here we show that Mapper is
an efficient topological simplification tool when applied to gene-expression data from the AHBA.
Critically, it was able to extract from the data meaningful patterns of gene co-expression that are
related to brain function and structure. First, we validated the pipeline by replicating most of
the co-expression patterns obtained for the AHBA in [13, 14]. We found that in most cases the
Mapper algorithm creates densely connected areas between samples that have a low differential
gene expression such as areas within the neocortex. These results matched previous results [14]
obtained with other network analytic techniques such as Weighted Gene Co-expression Analysis

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2018. ; https://doi.org/10.1101/476382doi: bioRxiv preprint 

https://doi.org/10.1101/476382
http://creativecommons.org/licenses/by-nc-nd/4.0/


(WGCNA) [36]. However, the opposite does not hold for other areas such as the hippocampus
and the amygdala. Clear outliers are samples from the amygdala which even with low differential
expression tend to be overall sparsely connected. A possible explanation could be in the loadings
of the first two principal components on these areas, motivation for the slicing into bins for local
clustering. If the samples from the amygdala do not end up in neighboring bins it would be hard for
them to cluster together. Indeed, a potential solution would be to adopt underlying filters based
on recent dimensional reduction techniques designed to the effects of heterogeneous sampling of
gene-space [21].

We are also able to reproduce the results obtained in [27], by correlating resting-state fMRI
connectivity patterns with gene co-expression from a curated list of genes. This is extremely inter-
esting as no specific choice was required to extract a topological manifold (the Mapper network)
that linked directly gene expression to function. Moreover, recent results showed that the land-
scape of resting and task brain activations can be well approximated using Mapper on voxel-level
activation data [31]. The homogeneity of the methods and descriptive spatial scales would then
naturally allow to fuse the two approaches by characterizing the activity clusters at the genetic level
and viceversa, or by producing brain activity Mappers informed by the underlying gene-expression
Mapper networks.

Finally, armed with these validations, we turned to a subset of genes associated with a crucial
neurostransmitter, dopamine. Remarkably, the Mapper network follows closely the anatomical
dopaminergic pathway, elegantly relating complex genetic co-expression patterns to their physical
manifestation. At this point, it is worth noting that the pre-processing of the data input to Mapper
is minimal compared to traditional genetic studies [14, 17, 27] and that the results are stable across
large parameter ranges, see S.I. and previous results [9, 10]. This is of great importance since
the field is starting to raise concerns about reproducibility issues related with data pre-processing
[2]. These results suggest that Mapper can be used to test hypothesis regarding the implication of
specific genes or set of genes in brain function by producing associated networks and their relation
with other imaging modalities such as EEG, MEG, fMRI, and potentially generic combinations
of different modalities. This could provide an integrated representation of spatial, genetic and
functional structure of the brain, and lead to direct applications in understanding the interactions
and effect between neurotransmitters and finally shed light on the mechanism underlying i) mental
health disorders and ii) the effect and side-effect of their associated treatments.

4 Methods

To study the hidden organization of the gene-expression data set we use the Mapper algorithm
[33]. The Mapper algorithm builds a low-dimensional skeleton of the data set using similarity
information intrinsic to the original data set guided by other well established low-dimensional
embedding techniques. In our work we set out to construct a skeleton that would represent the
correlation similarity between the genetic expression of different brain regions.

4.1 Mapper

The algorithm requires many parameters and choices that help build the network that best describes
the aspect of the data set one wants to highlight. One can summarize the algorithm in 4 major
parts (see Fig. 11 for a detailed description):
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Low-dimensional embedding - A set of features of the data set are chosen as a local guide
in the slicing process. In our case we chose the first 2 components of the singular value
decomposition of the samples’ gene-expression covariance matrix.

Low-dimensional slicing - Each dimension of the embedding in 11a) is considered separately.
The data set is divided using overlapping windows. The windows’ size and overlap are key
parameters for the local topology of the output network.

Local clustering - Using the combined information of the slicing in 11b), the data set is divided
in overlapping bins. A clustering algorithm is run in parallel on each bin independently. In
our case we chose to run a density based clustering algorithm ([8]) with a correlation based
similarity as distance.

Building the network - Each cluster found in 11c) is represented by a node in the network.
Samples contained in the overlap between windows, will be present in more than one cluster.
When this happens an edge is drawn between the representing nodes to depict the non-empty
intersection.

The only two free parameters in our application of the algorithm are the window size and
overlap at step b. Instead of choosing a single parameter we use basic network features (number of
connected components and edge density) to get a set of optimal parameters and obtain a series of
network descriptors at different level of coarseness (in S.I. we show the resulting optimal parameter
for each list of genes).

4.1.1 Agreement Matrix

For each network, we can analyze the gene-expression similarity within anatomical brain regions via
the study of node connectivity in the network. To summarize the anatomical information stored in
each network connectivity we build a co-occurrences matrix, where each element Cij of the matrix
represents the number of times that two samples from ROI i and ROI j are mapped in the same
node/local cluster.

We condense the connectivity information from the networks built using all the optimal param-
eters in a unique matrix, where each element is the average co-occurance across all networks and
Cij is non-zero only if ROI i and j are connected in all the networks.

It useful to notice that the co-occurance matrix can also be constructed considering only a
subset of the samples present in the network. This approach gives a more selective account of the
correlation between anatomical regions, where the influence of the ignored regions is still accounted
for by the network but ignored in the numeric computation of the matrix. This effect can be
noticed in Fig. 7 where the connectivity of the samples considered by [27] in their work where
studied separately from the rest of the samples in the Allen human Brain Atlas.
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5 Supporting Information

5.1 Optimization of parameters for the Mapper algorithm

The Mapper method has 5 parameters that one needs to fix before running the algorithm:

filter the filter is a map, or series of maps, which will guide the subdivision of the data-set in
overlapping bins.
We decided to use the first 2 principal components of the gene-expression covariance for the
each list of genes.

coarseness the level of coarseness in the output network (number of nodes, threshold of connec-
tivity) is determined by the size of the overlapping bins on which the clustering algorithm
is performed. Big bins give fewer nodes than smaller ones. Bins with a high percentage of
overlap will give a densely connected network with many nodes. Viceversa, lower overlap will
give more connected components with few edges.

window size

overlap

clustering A clustering algorithm is run independently on each bin. The similarity measure used
by this algorithm is the key to the interpretation of the output network.

clustering algorithm We chose HDBSCAN [8] to use a density based hierarchical algorithm
that has a less supervised cutoff;

similarity measure Considering that we intended to study the relationship between gene-
expressions, we chose 1−correlation between the gene-expression vectors.

5.1.1 Find the window sizes that are going to give the most reasonable average bin
size

We look at 50 different window sizes -from 1 to 50. The size is chosen so that a fix percentage of
the data points are present in each window. To reduce the number of networks to build, we reduce
the number of window sizes in consideration by studying the resulting average bin size. In this
preliminary study the windows are built with no overlap. After intersecting the two sliced data-set,
we obtain the list of all bins to consider for clustering. We compute the average bin size for each
percentage value (see Fig.SI.1)

We chose window sizes that provide on average bin size of 5 data points or more. For window
sizes that have the same average bin size, we chose the smallest and biggest percentage of points
in the window. The resulting window sizes to study are:

[ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21,

24, 25, 30, 33, 34, 40, 49]

We then construct the windows with these sizes with an overlap ranging between [5%, 85%] of the
window size.
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5.1.2 Finding the best combination of window size to overlap

We study the 368 pairs of size and overlap using general structural parameters of the resulting
networks. In particular we take into consideration connected components and edge density (ratio
between existing edges and possible edges).
Here are the limitations that we considered:
STEP 1 - limiting the number of connected components: we impose to have more than 1 connected
component that is not and isolated point - top plot and at least 50% of nodes in the graph to be
isolated - bottom plot
STEP 2 - we limit the edge density of the connected components to 1. To do so, we assume the
number of nodes in the lattice to be square and we can always consider that Nc, the number of
nodes in a connected component, is n2 ≤ Nc < (n+ 1)2. We chose to maintain the same inequality
in the edge densities Ec

Ln
≥ 1 ≥ Ec

Ln+1
where Ec is the number of edges in the connected component

c , and Ln is the number of edges in the square lattice with n nodes on each side.
After having imposed these two rules we are left with a few optimal parameters for our analysis.

full (window density, overlap) = [(5, 25), (5, 30), (5, 35), (6, 20)]

fMRI correlated (window density, overlap) =
[(5, 25), (5, 30), (5, 35), (5, 40), (6, 20), (6, 25), (7, 20)]

dopamine (window density, overlap) = [(5, 25), (6, 20)]

5.2 Defining the different regimes for comparison with existing results

For a more detailed comparison of the resulting mapper network connectivity with existing results
found in the literature, we decided to divide the links found by the Mapper in 4 different regimes.
The regimes were defined to highlight the relation between high/low connectivity in the mapper
with high/low values in the comparing matrices (the differential expression matrix in Fig.3 and the
functional connectivity matrix in Fig.6). In the figures SI.2 and SI.3 we show how the elements in
the agreement matrix were divided in the 4 regimes respectively for the whole genome expression,
and for the 136 genes identified in [27].

5.2.1 Results from shortest path distance from ventral tegmental area

In Fig. SI.5 we show the distribution of shortest path distance from the substantia nigra and ventral
tegmental area. The distributions represent the path distance from all samples in the seeded area to
other ROIs present in the same component. ROIs with fewer samples or that are densely connected
in the network have a narrower distribution. Overall the results for the two type of seeds are
very similar to each other. This similarity is likely due to the samples from these two areas being
clustered together in the same nodes in the network.

5.3 fMRI data acquisition and pre-processing

Subjects were scanned in a Siemens Connectome Skyra 3T scanner with a Gradient echo echo-planar
imaging sequence (TR = 720 ms, TE = 33.1 ms, Kip angle = 52 degrees, multiband factor = 8, slice
thickness = 2 mm, 72 slices and 1200 volumes) for the duration of 15 minutes. During the scan,
the subjects fixed their gaze on a cross-hair on a black background. The images were subsequently
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processed in the following way. First, the structural pipeline was applied to create an undistorted
native structural volume space for each subject. T1- and T2-weighted images were aligned, and
bias field correction carried out. The pre-processed T1w were used for all subjects. Each subject’s
native space was then registered to the MNI-152 2-mm space. The next step of segmentation was
carried out in Freesurfer. The final part of structural pre-processing generated the NIFTI volume
file, to which the functional data was mapped in the next step. This included functional pre-
processing to remove spatial distortion, and realignment and registration to the structural MRI,
bias field reduction, and normalization of the volumetric 4-D image to a global mean. Finally the
4-D data was masked with a final brain mask derived from a structural NIFTI file. No slice-timing
correction was carried out, as the multiband factor required a large number of slices to be acquired
close together. The ICA-FIX approach was then applied [32]. Motion correction was the next step
of clean-up, using 24 confound time-series derived from motion estimation of the six rigid-body
transformations, and their backwards-looking temporal derivatives. The resultant 12 regressors
were squared. The motion parameters are subject to high-pass temporal filtering, and are then
regressed out of the data.

5.4 List of 136 genes used for the fMRI comparison

[’ADAM23’, ’ANKRD6’, ’ATP6V1C2’, ’BAIAP3’, ’C3orf55’, ’CARTPT’, ’CCDC39’, ’CD70’, ’CDC2’,
’CNTN6’, ’CRYBA2’, ’CTXN3’, ’CXXC11’, ’DMRT3’, ’EPN3’, ’FEZF1’, ’FZD7’, ’GAL’, ’GLRA3’,
’GNA14’, ’GNGT2’, ’GRP’, ’HSD11B1’, ’KANK4’, ’KCNA1’, ’KCNA3’, ’KCNA5’, ’KCNC1’,
’KCTD15’, ’KRT1’, ’KRT31’, ’LAIR2’, ’LINC00238’, ’LMOD3’, ’LRRC38’, ’LYPLA2’, ’MGP’,
’MYH7’, ’MYLK3’, ’NEB’, ’NECAB2’, ’NEFH’, ’NEUROD6’, ’NGFR’, ’NOL4’, ’NOV’, ’NRP1’,
’ONECUT2’, ’PCP4’, ’PIRT’, ’PNMT’, ’PRR15’, ’PRSS23’, ’PTGS1’, ’RBP4’, ’RBPMS2’, ’RHOBTB2’,
’RSPH9’, ’SCARA5’, ’SCN1B’, ’SCN4B’, ’SEMA7A’, ’SHD’, ’AC092324.1’, ’SLC16A6’, ’SLC22A10’,
’SLN’, ’SV2C’, ’SYT10’, ’SYT2’, ’TDO2’, ’TGFBI’, ’PLAC2’, ’TLX2’, ’TNNT2’, ’TRIM29’, ’TSHZ3’,
’AMDHD1’, ’ASGR2’, ’CD163L1’, ’COL5A2’, ’CYP2C18’, ’FAM163A’, ’GABRA5’, ’GALP’, ’GPR26’,
’GPR88’, ’GPX3’, ’HPCAL1’, ’IL13RA2’, ’ISCU’, ’NEXN’, ’NKAIN4’, ’NPBWR2’, ’ONECUT3’,
’OR51E2’, ’PLCH1’, ’PVALB’, ’SNAP25’, ’SPHKAP’, ’TMEM52’, ’TSPAN8’, ’ZCCHC18’, ’ALOX12’,
’CALB1’, ’CCBE1’, ’CD6’, ’CDR2L’, ’CPLX1’, ’ENPP6’, ’GMPR’, ’GOLT1A’, ’GPR20’, ’HOXD1’,
’HPCA’, ’IL33’, ’IQCJ’, ’KLK1’, ’KLK8’, ’LGR6’, ’TCL1A’, ’MS4A8B’, ’MYBPC1’, ’RP4-725G10.1’,
’PYDC1’, ’RTP1’, ’SEMA3C’, ’SH3RF2’, ’SLC16A5’, ’SLC20A2’, ’SLC39A12’, ’SOST’, ’WISP1’,
’WISP2’, ’WNT4’]

5.5 List of 56 genes used for study on dopamine system

[’ADCY2’, ’ADCY7’, ’CDK5’, ’CLIC6’, ’COMT’, ’DBH’, ’DDC’, ’DRD1’, ’DRD2’, ’DRD3’, ’DRD4’,
’DRD5’, ’EPB41’, ’EPB41L1’, ’EPB41L2’, ’EPB41L3’, ’FLNA’, ’GNAI1’, ’GNAI2’, ’GNAI3’, ’GNAZ’,
’GNB1’, ’GNB2’, ’GNB3’, ’GNB4’, ’GNG11’, ’GNG3’, ’GNG4’, ’GNG8’, ’KCNK3’, ’KCNK9’,
’MAOA’, ’MAOB’, ’NAAA’, ’OC90’, ’PPP1CA’, ’PPP1CC’, ’PPP1R1B’, ’PRKACA’, ’PRKACB’,
’PRKACG’, ’PRKAR2A’, ’PRKAR2B’, ’PRKX’, ’PRKY’, ’SLC18A2’, ’SLC6A3’, ’SNAP23’, ’SNAP25’,
’SNAP29’, ’STX3’, ’TH’, ’VAMP1’, ’VAMP2’, ’VAMP3’, ’VAMP8’]
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5.6 List of functional Networks used in work by Richiardi et al.

[’Auditory’, ’dDMN’, ’high Visual’, ’Language’, ’LECN’,’post Salience’, ’Precuneus’, ’prim Visual’,
’RECN’, ’Salience’,’Sensorimotor’, ’vDMN’, ’Visuospatial’, ’Z restOfBrain’]

5.7 Code Availability

The code used for the analysis showed in this paper can be found at the following repository:
https://github.com/alpatania/AHBA microarray Mapper/
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Figure 1: (Colors online) Representations and Analytical Tools for the Mapper output
After slicing the data space in overlapping slices, partial clustering is applied to each slice (a).
Since some points belong to adjacent slices, they will belong to clusters in both slices (a). These
overlapping clusters effectively produce a cover of the dataspace and can be summarised as nodes
(containing the data points) linked to other nodes, whenever two clusters share data points (b).
Data points correspond to samples of brain regions with specific anatomical and spatial charac-
terizations. It is therefore possible to investigate how distributed or –conversely– localized the
samples of a certain Region of Interest (ROI) are (c). This information is succinctly described by
the co-occurrences matrix that counts how often nodes belonging to different ROIs belong to the
same Mapper node (d).
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Figure 2: (Colour online) Mapper networks of the Allen Brain Atlas data set.
From left to right, we show some Mapper networks obtained for the same size but different overlaps
between windows (overlap 25%, 30%, 35%). The networks display very similar qualitative proper-
ties, e.g. the separation of the cerebellar areas, which we further characterize using the agreement
matrices.

20

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2018. ; https://doi.org/10.1101/476382doi: bioRxiv preprint 

https://doi.org/10.1101/476382
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 2 4 6 8
differential co-expression (log)

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8
differential co-expression (log)

0.1

0.0

0.1

0.2

4.82

difference KDE

Present links
Absent links
Full matrix

Cerebra l cort ex Hippocampus Amygdala Thalamus Cerebellum Bre inst em nuclei

5

4

3

2

1

0

0

2

4

6

8

0 2 4 6 8
differential co-expression

EC
D
F

0.0
0.2
0.4
0.6
0.8
1 .0

b)

c) d)

a)

K
D
E

e)

Figure 3: (Colour online) Comparison of the output network with differential analysis
from the Allen Brain Institute.
a) Agreement matrix between Mapper co-occurence matrices for parameters (window size, over-
lap)={(5, 25),(5, 30),(5, 35),(6, 20)} (See S.I. for more information on the parameter choice). b)
Differential gene-expression matrix, reproduced from [14]. c) distributions of (log) differential gene-
expression for links that are and are not present in the Mapper networks. d) difference between
the distributions in c). e) cumulative distributions.
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Figure 4: (Colors online) Comparison between the connectivity and the differential gene-
expression for links present in the Mapper
a) The agreement matrix coloured according to four regimes based on the combinations of
sparse/dense connectivity in the Mapper (defined as more or less than 2 co-occurances between
the regions) and of low/high differential gene expression (defined using the trade-off detected in
Fig.3d). b) and c) Visualizing the predominant regimes of the links connecting each region of in-
terest with the rest of the hemisphere. In b) only samples belonging to areas connected with the
ROI are shown colored according to their relative regime. In c) the we visualize the total number
of links between the ROIs belonging to each regime.
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Figure 5: (Colour online) Mapper networks on reduced Richiardi functional list.
From left to right, we show some Mapper networks obtained for different overlaps between bins
(overlap 0.25,0.3, 0.35). The networks displays the separation of the cerebellum and two larger
components, composed by cortical and subcortical areas repsectively, which we further characterize
using the agreement matrices.
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Figure 6: (Colour online) Comparison of the output network with an average functional
network from fMRI.
a) Agreement matrix between Mapper co-occurence matrices for Mapper networks built using
Richiardi list. b) Average fMRI synchronization between regions. c) distributions of fMRI corre-
lations for links that are and are not present in the Mapper networks. d) difference between the
distributions in c). e) cumulative distributions.
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Figure 7: (Colour online) Comparison of the connectivity for the samples correlated with
synchronous activity in fMRI and the rest of the brain.
a) A visualization in the MNI space of the samples considered by [27] in their work (in orange)
and the samples excluded in their work (in blue). b) The mapper agreement matrix reduced to
contain only the co-occurances within the samples considered by [27] (in shades of orange) and
the rest of the hemisphere (in shades of blue). c) the Agreement matrix colored according to
three regimes based on the combinations of sparse/dense connectivity in the Mapper and low/high
average functional connectivity.
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a) b)

Figure 8: (Colour online) Mapper networks of the dopamine system.
a) From top to bottom, we show some Mapper networks obtained for size 5%, with a 25% overlap
(top), and size 6%, with a 20% overlap (bottom). The networks display very similar qualitative
properties, e.g. the separation of the cerebellar areas, which we further characterize using the
agreement matrix b).
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Figure 9: (Colour online) Distribution of shortest path distance in the output networks.
For each network we identified the nodes in the network containing samples from the ventral
tegmental area and computed the shortest path distance from these nodes to the rest of the network.
a) The dopaminergic pathway (thanks to Gill Brown, London College of Communication, UK). b)
Each node/cluster is colored according to its average path distance from nodes containing samples
from the ventral tegmental area. c) The samples from the left hemisphere in the MNI space
colored according to the average path distance of the nodes they belong to in the network. d) The
distribution of path distance values for each ROIs ordered (top-bottom) according to their mean
value from closest to farthest.
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Figure 10: (Colour online) Comparison of the output network with differential analysis
from the Allen Brain Institute.
A) here goes the caption.
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Figure 11: (Colour online) Description of the Mapper algorithm.
Each point in the data-set is considered as a vector of gene-expression in a high-dimensional space
(∼ 29000 dim, 136 dim, or 56 dim according to the number of genes considered)
a) The first two principal components are computed reducing the initial dimensions to 2,
b) then the data set is sliced twice in overlapping windows of equal density along both components.
c) The information from both slicing is used together to divide the data-set in overlapping bins.
This way, each bin will have samples having similar weight in both component.
d) The samples from each bin are clustered independently from each other according to the gene-
expression correlation between the samples in the original high-dimensional space.
e) The information is then summarized in a network were each independent cluster is represented
by a node and two cluster are connected together if clustered belong to neighboring bins and share
samples.

29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2018. ; https://doi.org/10.1101/476382doi: bioRxiv preprint 

https://doi.org/10.1101/476382
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 10 20 30 40 50
window size

0

50

100

150

200

250

300

av
er

ag
e 

bi
n 

siz
e

Choosing window size based on average bin density

Figure SI.1: (Colour online) Average bin size as window density varies.
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Figure SI.2: (Color online) Defining connectivity regimes for whole transcriptome com-
parison
(left) Scatterplot depicting the subdivision of the links of the Mapper in the 4 different regimes.
On the x axis the values of the agreement matrix divided between high/low connectivity at 2, on
the y axis the differential expression of the links divided between high/low at 4, the value at which
the difference between the distribution of differential expression in the present and excluded link
changes sign 3d). (right) agreement matrix colored according to the 4 regimes to which each link
belongs to.
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Figure SI.3: (Color online) Defining connectivity regimes for fMRI comparison
(left) Scatterplot depicting the subdivision of the links of the Mapper in the 3 different regimes. On
the x axis the values of the agreement matrix divided between high/low connectivity at 14, on the
y axis the functional connectivity of the links divided between high/low at .44, the minimum func-
tional connectivity value within the cerebral cortex (lobes and cyngulate gyrus). (right) agreement
matrix colored according to the 4 regimes to which each link belongs to.
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VTA Substantia nigra

VTA Substantia nigra

Figure SI.4: (Colour online) Placement in the networks of the seeds from VTA and Sub-
stantia nigra
For each network we identified the nodes in the network containing samples from the ventral
tegmental area or substantia nigra and computed the shortest path distance from these nodes to
the rest of the network. Here we show the nodes in network containg elements from the ventral
tagmental area (left) and substantia nigra(right) for networks with parameters (size=5%, overlap=
25% (top) and (size=6%, overlap= 20% (bottom).
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Figure SI.5: (Colour online) Comparison of the distributions of shortest path distance
with seeds in VTA and Substantia nigra
For each network we identified the nodes in the network containing samples from the ventral
tegmental area or substantia nigra and computed the shortest path distance from these nodes to
the rest of the network. Here we show the distribution of path distance values for each ROIs ordered
(left-right) according to their median value from closest to farthest, for seeds in the substantia nigra
(top) and ventral tegmental area (bottom).
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