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Abstract

Motivation: Long-read sequencing technologies offer promising alternatives to high-throughput short
read sequencing, especially in the context of RNA-sequencing. However these technologies are currently
hindered by high error rates that affect analyses such as the identification of isoforms, exon boundaries,
open reading frames, and the creation of gene catalogues. Due to the novelty of such data, computational
methods are still actively being developed and options for the error-correction of RNA-sequencing long
reads remain limited.
Results: In this article, we evaluate the extent to which existing long-read DNA error correction methods
are capable of correcting cDNA Nanopore reads. We provide an automatic and extensive benchmark
tool that not only reports classical error-correction metrics but also the effect of correction on gene
families, isoform diversity, bias toward the major isoform, and splice site detection. We find that long
read error-correction tools that were originally developed for DNA are also suitable for the correction of
RNA-sequencing data, especially in terms of increasing base-pair accuracy. Yet investigators should be
warned that the correction process perturbs gene family sizes and isoform diversity. This work provides
guidelines on which (or whether) error-correction tools should be used, depending on the application type.
Benchmarking software: https://gitlab.com/leoisl/LR_EC_analyser
Key words: Long reads, RNA-sequencing, Nanopore, Error correction, Benchmark

1 INTRODUCTION
Recent advances in long-read sequencing technology have enabled
the sequencing of RNA molecules, using either cDNA-based or
direct RNA protocols from Oxford Nanopore (referred to as ONT or
Nanopore) and Pacific Biosciences (PacBio). The Iso-Seq protocol
from PacBio consists in a size selection step, sequencing of cDNAs,
and finally a set of computational steps that produce sequences
of full-length transcripts. ONT has three different experimental
protocols for sequencing RNA molecules: cDNA transformation
with amplification, direct cDNA (with or without amplification),
and direct RNA.

Long-read sequencing is increasingly used in transcriptome
studies (Sedlazeck et al., 2018; Wang et al., 2016; Byrne
et al., 2017; Oikonomopoulos et al., 2016) as they better
describe exon/intron combinations (Sedlazeck et al., 2018).
For instance the Iso-seq protocol has been used for isoform
identification, including transcripts identification (Wang et al.,
2016), de novo isoform discovery (Li et al., 2017) and fusion
transcript detection (Weirather et al., 2015). Nanopore has recently

been used for isoform identification (Byrne et al., 2017) and
quantification (Oikonomopoulos et al., 2016).

The sequencing throughput of long-read technologies is
significantly increasing over the years. It is now conceivable to
sequence a full eukaryote transcriptome using either only long
reads, or a combination of high-coverage long and short (Illumina)
reads. Unlike the Iso-Seq protocol that requires extensive in silico
processing prior to primary analysis (Sahlin et al., 2018), raw
Nanopore reads can in principle be readily analyzed. Direct RNA
reads also permit the analysis of base modifications (Workman et al.,
2018), unlike all other cDNA-based sequencing technologies. There
also exist circular sequencing techniques for Nanopore such as INC-
Seq (Li et al., 2016) which aim at reducing error rates, at the expense
of a special library preparation. With raw long reads, it is up to the
primary analysis software (typically a mapping algorithm) to deal
with sequences that have significant per-base error rate, currently
around 13% (Weirather et al., 2017).

In principle, a high error rate complicates the analysis of
transcriptomes especially for the accurate detection of exon
boundaries, or the quantification of similar isoforms and paralogous
genes. Reads need to be aligned unambiguously and with high
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base-pair accuracy to either a reference genome or transcriptome.
Indels (i.e. insertions/deletions) are the main type of errors produced
by long-read technologies, and they confuse aligners more than
substitution errors (Sović et al., 2016). Many methods have been
developed to correct errors in RNA-seq reads, mainly in the short-
read era (Tong et al., 2016; Song and Florea, 2015). They no longer
apply to long reads because they were developed to deal with low
error rates, and principally substitutions. However, a new set of
methods have been proposed to correct genomic long reads. There
exist two types of long-read error-correction algorithms, those using
information from long reads only (self or non-hybrid correction),
and those using short reads to correct long reads (hybrid correction).
In this article, we will report on the extent to which state-of-the-
art tools enable to correct long noisy RNA-seq reads produced by
Nanopore sequencers.

Several tools exist for error-correcting long reads, including ONT
reads. Even if the error profiles of Nanopore and PacBio reads are
different, the error rate is quite similar and it is reasonable to expect
that tools originally designed for PacBio data to also perform well
on recent Nanopore data. There is, to the best of our knowledge,
very little prior work that specifically addresses error-correction of
RNA-seq long reads. A notable exception is the PBcR tool, which
is mainly designed for genomes but is also evaluated on a Iso-Seq
transcriptome (Koren et al., 2012). Here we will take the standpoint
of evaluating DNA long-read error-correction tools on RNA-seq
data, an application that was likely not considered by the respective
tools authors.

We evaluate the following DNA hybrid correction tools:
LoRDEC (Salmela and Rivals, 2014), NaS (Madoui et al., 2015),
PBcR (Koren et al., 2012), proovread (Hackl et al., 2014); and
the following DNA self-correction tools: Canu (Koren et al., 2017),
daccord (Tischler and Myers, 2017), LoRMA (Salmela et al., 2016),
MECAT (Xiao et al., 2017), pbdagcon (Chin et al., 2013). A
majority of hybrid correction methods employ mapping strategies
to place short fragments on long reads and correct long read regions
using the related short read sequences. But some of them rely on
graphs to create a consensus that is used for correction. These
graphs are either k-mer graphs (de Bruijn graphs), or nucleotide
graphs resulting from multiple alignments of sequences (partial
order alignment). For self-correction methods, strategies using the
aforementioned graphs are the most common. LSCPlus, a RNA-
seq correction tool designed for PacBio reads, was not evaluated
as the software webpage was unreachable (Hu et al., 2016). We
have selected what we believe is a representative set of tools but
there also exist other tools that were not evaluated in this study,
e.g. HALC (Bao and Lan, 2017), Falcon sense (Chin et al., 2016),
HG-Color (Morisse et al., 2018), HECIL (Choudhury et al., 2018),
MIRCA (Kchouk and Elloumi, 2016), Jabba (Miclotte et al., 2016),
nanocorr (Goodwin et al., 2015), nanopolish (Loman et al., 2015),
and Racon (Vaser et al., 2017).

Other works have evaluated error correction tools in the context
of DNA sequencing. LRCStats evaluates error-correctors in a
simulated framework, without the need to align corrected reads (La
et al., 2017). A technical report from Bouri and Lavenier
(2017) provides an extensive evaluation of PacBio/Nanopore error-
correction tools, in the context of de novo assembly. Perhaps the
closest work to ours is the AlignQC software (Weirather et al.,
2017), which provides a set of metrics for the evaluation of RNA-
sequencing long-read dataset quality. In Weirather et al. (2017)

a comparison is provided between Nanopore and PacBio RNA-
sequencing datasets in terms of error patterns, isoform identification
and quantification. While Weirather et al. (2017) did not compare
error-correction tools, we will use and extend AlignQC metrics for
that purpose.

In this article, we will focus on the qualitative and quantitative
measurements of error-corrected long reads, with transcriptomic
features in mind. First we examine basic metrics of error-correction,
e.g. mean length, base accuracy, homopolymers errors, and
performance (running time, memory) of the tools. Then we ask
several questions that are specific to transcriptome applications: (i)
how is the number of detected genes, and more precisely the number
of genes within a gene family, impacted by read error correction?
(ii) Can error correction significantly change the number of reads
mapping to genes or transcripts, possibly affecting downstream
analysis based on these metrics? (iii) Do error-correction tools
perturb isoform diversity, e.g. by having a correction bias towards
the major isoform? (iv) What is the impact of error correction on
identifying splice sites? To answer these questions, we provide
an automatic framework (LC EC analyser, see Methods) for the
evaluation of transcriptomic error-correction, that we apply to nine
different error-correction tools.

2 RESULTS
2.1 Error-correction tools
Tables 1 and 2 present the main characteristics of respectively the
hybrid and non-hybrid error-correction tools that were considered
in this study. For the sake of reproducibility, in the Supplementary
Material Section S1 are described all the versions, dependencies,
and parameters. Note that these error-correction tools were all
tailored for DNA-seq data except for PBcR. PBcR was ran only in
hybrid mode, as the authors suggest using Canu over the non-hybrid
mode.

2.2 Evaluation datasets
Our evaluation dataset consists of a single 1D Nanopore run using
the cDNA preparation kit of RNA material taken from a mouse
brain. We obtained 1,256,967 Nanopore 1D reads representing
around 2 Gbp of data with an average size of 1650 bp and a N50
of 1885 bp. An additional Illumina dataset containing 58 million
paired-end 151 bp reads was generated using a different cDNA
protocol. The Nanopore and Illumina reads from the mouse RNA
sample are available in the ENA repository under the following
study: PRJEB25574.

2.3 Error-correction improves base accuracy and
affects the number of detected genes

Tables 3 and 4 show an evaluation of error-correction based on
AlignQC results, for the hybrid and non-hybrid tools, respectively.
The per-base error rate is 13.7% in raw reads, 0.3-4.5% for reads
corrected using hybrid methods and 2.9-6.4% with self-correctors.
As expected the correction rate is better for hybrid correctors leading
to a per-base error rate lower than 1% (except for LoRDEC and
Proovread/untrimmed, which was equal to 4.5% and 2.6% resp.)
because they use additional information from short Illumina reads
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Table 1. Main characteristics of the hybrid error correction tools considered in this study

LoRDEC NaS PBcR Proovread

Reference Salmela and Rivals (2014) Madoui et al. (2015) Koren et al. (2012) Hackl et al. (2014)

Context DNA DNA mRNA or DNA DNA

Technology PacBio or ONT ONT PacBio or ONT PacBio

Main
algorithmic
idea

Construction of short read dBG,
path search between k-mers in
long reads

Recruitment of short reads
by alignment to long reads,
assembly of short reads to
correct the long reads

Alignment of short reads to long
reads and consensus.

Alignment of short reads to long
reads and consensus.

Table 2. Main characteristics of the non-hybrid (self) error correction tools considered in this study

Canu daccord LoRMA MECAT pbdagcon

Reference Koren et al. (2017) Tischler and Myers (2017) Salmela et al. (2016) Xiao et al. (2017) Chin et al. (2013)

Context DNA DNA DNA DNA DNA

Technology PacBio or ONT PacBio PacBio or ONT PacBio or ONT PacBio

Main
algorithmic
idea

All-versus-all read
overlap, filtering,
alignment, DAG from
the alignments, highest
weight path search.

Multiple dBGs built from
overlapping window of
long reads alignments,
consensus per window

Path search in dBG and
multi-iterations.

k-mer based read
matching, pairwise
alignment between
matched reads, alignment-
based consensus calling
on trivial regions, local
POG-based consensus
calling on complicated
regions.

Align long reads to
”backbone” sequences,
correction by iterative
directed acyclic graph
consensus calling from
the multiple sequence
alignments.

to correct the long reads. The error rate is around 4-6% for self-
correction algorithms, except for LoRMA that reached 2.91%. A
detailed error-rate analysis will be carried in Section 2.4.

In terms of number of reads after the correction step, LoRDEC,
Proovread/untrimmed, daccord/untrimmed, and pbdagcon returned
a number of reads similar to that of the uncorrected (raw) reads. All
other softwares split and/or discard reads, likely because full-length
error-correction was deemed impossible in some reads. PBcR and
LoRMA tend to split reads into two or more shorter reads during
the correction step, as they return ∼2x more reads after correction
that are also shorter (mean length of respectively 776bp and 497bp,
versus 2011bp in raw reads) and overall have significantly less
bases in total (loss of respectively 298Mbp and 553Mbp). Canu
and MECAT mostly discarded reads (30-33%) resulting in 14-25%
less bases in total, with comparable mean length to other tools.
Apart from LoRDEC, Proovread/untrimmed, and daccord (trimmed
and untrimmed) for which only 85-94% of reads were mapped,
corrected reads from all the other tools were mapped at a rate

of 98.2-99.4%, showing a significant improvement over raw reads
(mapping rate of 83.5%).

Apart from Canu, tools with high mean read length (i.e.
LoRDEC, Proovread/untrimmed, daccord/untrimmed) showed the
lowest percentages of mapped reads, indicating that trimming,
splitting or discarding reads seems necessary in order to obtain
shorter but overall less error-prone reads. A similar conclusion can
be reached by comparing the results of trimmed and untrimmed
versions of the same tool: reads corrected with Proovread and
daccord in trimmed versions showed higher numbers of mapped
reads and bases, and lower per-base error rates. However trimmed
reads become 300-600 bases shorter on average, and around 2,000
genes are no longer detected. Therefore it is unclear whether
trimming should always be performed by error-correctors in a
transcriptomic context.

An important observation is that almost all tools, except for
LoRDEC and Proovread/untrimmed, lost at least 1,000 genes
after correction. Moreover, three of the tools that have the
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Table 3. Statistics of hybrid error correction tools on the 1D run RNA-seq dataset. To facilitate the readability of this table and the next ones, we
highlighted values that we deemed satisfactory in green colour, borderline in brown, and unsatisfactory in red, noting that such a classification is
somewhat arbitrary.

Raw LoRDEC NaS PBcR Proovread Proovread trimmed

nb of reads 741k 741k 619k 1321k 738k 626k
mapped reads 83.5% 85.5% 98.7% 99.2% 85.5% 98.9%
mean length 2011 2097 1931 776 2117 1796
nb of bases 1313M 1394M 1179M 1015M 1400M 1112M
mapped
basesa

89.0% 90.6% 97.5% 99.2% 92.4% 99.5%

per-base error
rateb

13.72% 4.50% 0.38% 0.67% 2.65% 0.33%

nb of detected
genes

16.8k (33.9%) 16.8k (33.9%) 15.0k (30.2%) 15.6k (31.4%) 16.6k (33.4%) 14.6k (29.5%)

aAs reported by AlignQC. Percentage of bases aligned among mapped reads, taken by counting the M parts of CIGAR strings in the BAM file. Bases in unmapped reads
are not counted.
bAs reported by AlignQC, using a sample of 1 million bases from aligned reads segments.

Table 4. Statistics of non-hybrid error correction tools on the 1D run RNA-seq dataset.

Raw Canu daccord daccord trimmed LoRMA MECAT pbdagcon

nb of reads 741k 519k 675k 840k 1540k 495k 778k
mapped reads 83.5% 99.1% 92.5% 94.0% 99.4% 99.4% 98.2%
mean length 2011 2193 2102 1476 497 1995 1473
nb of bases 1313M 1126M 1350M 1212M 760M 980M 1137M
mapped
basesa

89.0% 92.0% 92.5% 94.7% 99.2% 96.9% 97.0%

per-base error
rateb

13.72% 6.43% 5.20% 4.12% 2.91% 4.49% 5.65%

nb of detected
genes

16.8k (33.9%) 12.4k (24.9%) 15.5k (31.3%) 13.9k (28.1%) 6.8k (13.7%) 10.4k (20.9%) 13.2k (26.5%)

aAs reported by AlignQC. Percentage of bases aligned among mapped reads, taken by counting the M parts of CIGAR strings in the BAM file. Bases in unmapped reads are not
counted.
bAs reported by AlignQC, using a sample of 1 million bases from aligned reads segments.

highest number of detected genes (LoRDEC, Proovread/untrimmed,
daccord/untrimmed) also have the lowest percentage of mapped
reads, hinting that error correction might reduce gene diversity in
favor of lower error-rate. It is noteworthy that for some tools (e.g.
Canu, MECAT, LoRMA), the number of detected genes can drop by
26%-59% compared to the number of genes reported in raw reads.

Overall, no correction tool outperforms the others across all
metrics. We note that a reasonable balance appears to be achieved
by NaS and Proovread/trimmed, and that overall, hybrid correctors
tend to outperform self-correctors.

2.4 Detailed error-rate analysis
The high error-rate of transcriptome long reads significantly
complicates their primary analysis (Križanović et al., 2018). While
Section 2.3 presented a general per-base error rate, this section
breaks down sequencing errors into several types and examines how
each error-correction tool deals with them. The data presented here
is a compilation of AlignQC results. Note that AlignQC computed
the following metrics only on reads that could be aligned, thus

unaligned reads are not counted, yet they may possibly be the most
erroneous ones. AlignQC also subsampled aligned reads to around
1 million number of bases to calculate the presented values.

2.4.1 Deletions are the most problematic sequencing errors
Table 5 shows the error rate in the raw reads and in the corrected
reads for each tool. In raw reads, deletions are the most prevalent
type of errors (7.4% of bases), closely followed by subsitutions
(5.1%), then insertions (1.2%). LoRDEC is the least capable of
correcting mismatches (2% of them remaining), even though it
is a hybrid tool. This is possibly related to the large amount
of uncorrected reads in its output, 90k reads out of 741k (12%,
as computed by exactly matching raw reads to corrected reads).
The other hybrid tools result in less than 1% of substitution
errors. Surprisingly, the non-hybrid tools also presented very low
mismatches rates: all of them showed rates lower than 1%, except
for Canu (1.33%) and daccord/untrimmed (1.1%). This suggests
that the rate of systematic substitution errors in ONT data is low,
as self-correctors were able to achieve results comparable to the
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Table 5. Error rate in the raw reads and in the corrected reads for each tool, on the 1D run RNA-seq dataset, computed from 1M random aligned bases.

Raw LoRDEC NaS PBcR Proovread Proovread
trimmed

Canu daccord daccord
trimmed

LoRMA MECAT pbdagcon pbdagcon
trimmed

Error
rate

13.72% 4.50% 0.38% 0.67% 2.65% 0.33% 6.43% 5.20% 4.12% 2.91% 4.49% 5.65% 5.71%

Mismatch 5.11% 2.04% 0.20% 0.18% 0.93% 0.13% 1.33% 1.10% 0.67% 0.37% 0.35% 0.50% 0.49%
Deletion 7.40% 2.15% 0.09% 0.30% 1.51% 0.18% 4.82% 3.82% 3.27% 2.51% 4.08% 5.06% 5.17%
Insertion 1.20% 0.32% 0.08% 0.19% 0.22% 0.03% 0.28% 0.28% 0.19% 0.03% 0.06% 0.09% 0.05%

Table 6. Homopolymer error rate in the raw reads and in the corrected reads for each tool, on the 1D run RNA-seq dataset, computed from 1M random aligned bases.

Raw LoRDEC NaS PBcR Proovread Proovread
trimmed

Canu daccord daccord
trimmed

LoRMA MECAT pbdagcon pbdagcon
trimmed

Homop.
deletion

2.96% 0.77% 0.02% 0.10% 0.46% 0.04% 2.46% 2.14% 2.05% 1.82% 2.05% 2.26% 2.26%

Homop.
insertion

0.38% 0.08% 0.01% 0.02% 0.06% 0.01% 0.08% 0.06% 0.03% 0.01% 0.01% 0.02% 0.01%

hybrid ones, even without access to Illumina reads. Still, the three
best performing tools were all hybrid (Proovread/trimmed, PBcR
and NaS), which should therefore be preferred for applications that
require very low mismatch rates.

The contrast between self and hybrid tools is more visible
on deletion errors. All hybrid tools outperformed the non-
hybrid ones. Although in the hybrid ones, LoRDEC (2.15%)
and Proovread/untrimmed (1.51%) still showed moderate rates of
deletions, NaS, Proovread/trimmed and PBcR were able to lower
the deletion error rate from 7.4% to less than 0.3%. All non-hybrid
tools presented a high rate (3% or more) of deletion errors, except
LoRMA (2.51%). This comparison suggests that ONT reads exhibit
systematic deletions, that cannot be corrected without the help of
Illumina data. The contribution of homopolymer errors will be
specifically analyzed in Section 2.4.2. Considering insertion errors,
all tools performed equally well. It is worth noting that more non-
hybrid tools (LoRMA, pbdagcon/untrimmed, pbdagcon/trimmed
and MECAT) achieved sub-0.1% insertions than hybrid tools (NaS
and Proovread/trimmed).

Overall, hybrid tools outperformed non-hybrid ones in terms of
error-rate reduction. However, the similar results obtained by both
types of tools when correcting mismatches and insertions, and the
contrast in correcting deletions, seem to indicate that the main
advantage of hybrid correctors over self-correctors is the removal
of systematic errors using Illumina data.

2.4.2 Homopolymer insertions are overall better corrected than
deletions In this section we further analyze homopolymers indels,
i.e. insertion or deletion errors consisting of a stretch of the same
nucleotide. Table 6 shows that homopolymer deletions are an
order of magnitude more abundant in raw reads than homopolymer
insertions. It is worth noting that, by comparing the values for the

raw reads in Tables 5 and 6, homopolymers are involved in 40% of
all deletions and 31% of all insertions.

A closer look at Table 6 reveals that hybrid error correctors
outperform non-hybrid ones, as expected, mainly as homopolymer
indels are likely systematic errors in ONT sequencing. Hybrid
correctors correct them using Illumina reads that do not contain
such biases. Moreover, all tools performed well on correcting
homopolymer insertions, reducing the rate from 0.38% to
less than 0.1%. In particular, the hybrid tools NaS and
Prooovread/trimmed, as well as the non-hybrid ones LoRMA,
MECAT and pbdagcon/trimmed reached 0.01% homopolymer
insertion error rate. Regarding homopolymer deletions, hybrid
tools return less than 0.5% of them, except LoRDEC (0.77%).
Non-hybrid tools performed more pooly, returning 1.8-2.4% of
homopolymers deletion errors – a small improvement over the raw
reads.

NaS and Proovread/trimmed showed the best reduction of
homopolymers indels. It is also worth noting that hybrid correctors
are able to correct homopolymer deletions even better than non-
homopolymer deletions. For instance the ratio of homopolymer
deletions over all deletions is 40% in raw reads, and decreases
for all hybrid correctors, dropping to 20.2% for NaS and
25.6% for Proovread/trimmed, but increases to at least 43.8%
(pbdagcon/trimmed) up to 72.6% (LoRMA) in non-hybrid tools (see
Supplementary Material Section S3).

2.5 Error-correction perturbs the number of reads
mapping to the genes and transcripts

Downstream RNA-sequencing analyses typically rely on the
number of reads mapping to each gene and transcript for
quantification, differential expression analysis, etc. In the rest of
the paper, we define the coverage of a gene or a transcript as the
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Fig. 1. Number of reads mapping to genes (CG) before and after correction for each tool. The genes taken into account here were expressed in either the raw
dataset or after the correction by the given tool.

number of reads mapping to it. For short we will refer to those
coverages as CG and CT , respectively. In this section we investigate
if the process of error correction can perturb CG and CT , which in
turn would affect downstream analysis. Note that error correction
could potentially slightly increase coverage, as uncorrected reads
that were unmapped can become mappable after correction. Figure 1
shows the CG before and after correction for each tool. PBcR is the
only hybrid corrector that significantly inflates CG, probably due
to read splitting (see Section 2.3). Among self-correctors, LoRMA
also inflates this value (also due to read splitting), while MECAT
presents the lowest correlation and a significant drop in CG. Besides
these three tools, all the others present good correlation and the
expected slight increase in CG due to better mapping. All tools
systematically presented a similar trend and lower correlation values
on CT (see Supplementary Material Figure S1), in comparison to
CG. This is expected, as it is harder for a tool to correct a read into
its true isoform than into its true gene. The behaviour of the tools in
the isoform level are in coherence with their behaviour in the gene
level (CG): PBcR and LoRMA inflates CT ; MECAT deflates; and
all the others present a slight increase.

2.6 Error-correction perturbs gene family sizes
Tables 3 and 4 indicate that error correction results in a lower
number of detected genes. In this section we explore the impact
of error-correction on paralogous genes. By paralogous gene
family, we denote a set of paralogs computed from Ensembl (see
Section 4.3). Figure 2 represents the changes in sizes of paralogous
gene families before and after correction for each tool, in terms
of number of genes expressed within a given family. Overall,
error-correctors do not strictly preserve the sizes of gene families.
Correction more often shrinks families of paralogous genes than
it expands them, likely due to erroneous correction in locations
that are different between paralogs. In summary, 36-86% of gene
families are kept of the same size by correctors, 1-12% are expanded
and 6-61% are shrunk. Supplementary Material Figure S2 shows the
magnitude of expansion/shrinkage for each gene family.

2.7 Error-correction perturbs isoform diversity
We further investigated whether error-correction introduces a bias
towards the major isoform of each gene. Note that AlignQC does
not directly address this question. To answer it, we computed the
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Fig. 2. Summary of gene family size changes across error-correction tools.

Fig. 3. Histogram of genes having more or less isoforms after error-correction.

following metrics: number of isoforms detected in each gene before
and after correction by alignment of reads to genes, coverage of lost
isoforms in genes having at least 2 expressed isoforms, and coverage
of the major isoform before and after correction.

2.7.1 The number of isoforms varies before and after correction
Figure 3 shows the number of genes that have the same number of
isoforms after correction, or a different number of isoforms (-3, -2,
-1, +1, +2, +3). In this Figure, only the genes that are expressed
in both the raw and the corrected reads (for each tool) are taken
into consideration. The negative (resp. positive) values indicate that
isoforms were lost (resp. gained). We observe that a considerable
number of genes (1k-3k) lose at least one isoform in all tools,
which suggests that current methods reduce isoform diversity during
correction. NaS and MECAT tend to lose isoforms the most, and
PBcR identifies the highest number of new isoforms after correction.
It is however unclear whether these lost and new isoforms are real
(present in the sample) or due to mapping ambiguity. For instance,
PBcR splits corrected reads into shorter sequences that may map
better to other isoforms.

Overall, the number of isoforms is mostly unchanged in
daccord/untrimmed, LoRDEC and Proovread/untrimmed. We
observe that, counter-intuitively, trimming has a slight effect on the
number of detected isoforms for Proovread and daccord but not for
pbdagcon.

2.7.2 Multi-isoform genes tend to lose lowly-expressed isoforms
after correction Figure 4 explores the relative coverage of
isoforms that were possibly lost after correction, in genes having
two or more expressed isoforms. The relative coverage of a
transcript is the number of raw reads mapping to it over the number
of raw reads mapping to its gene in total. Only the genes that are
expressed in both the raw and the error-corrected reads (for each
tool) are taken into consideration here. We anticipated that raw
reads that map to a minor isoform are typically either discarded
by the corrector, or modified in such a way that they now map to
a different isoform, possibly the major one. The effect is indeed
relatively similar across all correctors, except for MECAT that tends
to remove a higher fraction of minor isoforms, and LoRDEC that
tends to be the most conservative. This result suggests that current
error-correction tool overall do not conservatively handle reads that
belong to low-expression isoforms.

2.7.3 Coverage of the major isoform before and after correction
To follow-up on the previous subsection, we investigate whether
the coverage of the major isoform, i.e. the isoform with the
highest expression in the raw dataset, increased after correction.
In Figure 5, We observe that the coverage of the major isoform
generally slightly increases after correction, except for MECAT,
where its coverage decreases, likely due to a feature of MECAT’s
own correction algorithm. This indicates that error-correction tools
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Fig. 4. Histogram of isoforms that are lost after correction, in relation to their relative transcript coverage, in genes that have 2 or more isoforms. The y axis
reflects the percentage of isoforms lost in each bin. Absolute values can be found in the Supplementary Material Figure S3.

tend to correct reads towards the major isoform, but the effect is
not pronounced. This is expected as the sum of expression of minor
isoforms is, by nature, a small fraction of the total gene expression.
Apart from LoRMA, MECAT and PBcR, where the correlations
of the major isoform coverages are spurious (r2 ¡ 0.77), other
correctors tend to preserve this coverage after correction (r2=0.90-
0.96), with LoRDEC and Canu showing the highest correlations
(96%). It is noteworthy that correction biases with respect to the
major isoform do not appear to be specific to self correctors nor
to hybrid correctors, but an effect that happens in both types of
correctors.

2.7.4 Correction towards the major isoform is more prevalent
when the alternative exon is small In order to observe if particular
features of alternative splicing have an impact on error-correction
methods, we designed a simulation over two controlled parameters:
skipped exon length and isoform relative expression ratio. Using
a single gene, we created a mixture of two simulated alternative
transcripts: one constitutive, one exon-skipping. Several simulated
read datasets were created with various relative abundances between
major and minor isoform (in order to model a local differential in
splicing isoform expression), and sizes of the skipped exon. Due to
the artificial nature and small size of the datasets, many of the error-
correction methods could not be run. We thus tested these scenarii
on a subset of the correction methods.

In Figure 6, we distinguish results from hybrid and self-
correctors, presented with respectively 100x coverage of short
reads and 100x coverage of long reads, and only 100x coverage
of long reads. Results on more shallow coverage (10x) and
impact of simulation parameters on corrected reads sizes are
presented in Supplementary Material Sections S7 and S8. Overall,
hybrid correctors are less impacted by isoform collapsing than
self-correctors. LoRDEC shows the best capacity to preserve
isoforms in presence of alternatively skipped exons. However
with less coverage, e.g. due to low-expressed genes and rare
transcripts, all tools tend to mis-estimate the expression of isoforms
(see Supplementary Material). Self-correctors generally have a
minimum coverage threshold (only daccord could be run on the
10x coverage dataset of long reads, with rather erratic results,
see Supplementary Material). Even with higher coverage, not

all correctors achieve to correct this simple instance. Among all
correctors, only LoRDEC seems to report the expected number of
each isoforms consistently in all scenarios. We could not derive
any clear trend concerning the relative isoform ratios, even if the
90% ratio seems to be in favor of overcorrection towards the major
isoform. Skipped exon length seems to impact both hybrid and self
correctors, small exons being a harder challenge for correctors.

2.8 Error-correction affects splice site detection
The identification of splice sites from RNA-seq data is an important
but challenging task (Kaisers et al., 2017). When mapping reads
to a (possibly annotated) reference genome, mapping algorithms
typically guide spliced alignments using either a custom scoring
function that takes into account common splices sites patterns (e.g.
GT-AG), and/or a database of known junctions. With long reads,
the high error rate make precise splice site detection even more
challenging, as indels (see Section 2.4) confuse aligners, shifting
predicted spliced alignments away from true splice sites.

In this section, we evaluate how well splice sites are detected
before and after error-correction. Figure 7 shows the number
of correctly and incorrectly mapped splice sites for the raw and
corrected reads, as computed by AlignQC. One would expect that
a splice site is correctly detected when little to no errors are present
in reads mapping around it. Thus, as expected, the hybrid error
correction tools present a clear advantage over the non-hybrid ones,
as they better decrease the per-base error rate. In the uncorrected
reads, 27% of the splice sites were incorrectly mapped, which is
brought down to between 0.28% (Proovread/trimmed) and 2.43%
(LoRDEC) with hybrid correction tools. Among non-hybrid tools,
LoRMA presented the lowest proportion of incorrectly detected
splice sites (3.04%), however it detects 3.5-7x less splice sites
(280k) than the other tools (which detect around 1-2 million splice
sites). The other non-hybrid tools incorrectly detected splice sites
at a rate between 5.61% (daccord/trimmed) and 11.95% (Canu). A
detailed analysis of the incorrectly mapped splice sites can be found
in the Supplementary Material Section S9.
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Fig. 5. Coverage of the major isoform of each gene before and after error-correction. The x-axis reflects the number of reads mapping to the major isoform of
a gene before correction, and the y-axis is after correction.

2.9 Running time and memory usage of
error-correction tools

Table 7 shows the running time and memory usage of all evaluated
tools, measured using GNU time. The running time shown is the
elapsed wall clock time (in hours) and the memory usage is the
maximum resident set size (in gigabytes). All tools were ran with
32 threads. Overall, all tools were able to correct the dataset within
0.3-7 hours except for PBcR, NaS and Proovread, which took 63-
116 hours, but also achieved the three lowest post-correction error
rates in Table 3. In terms of memory usage, all tools required
less than 10 GB of memory except PBcR, proovread and LoRMA,
which required 53-166 GB. It is worth noting, however, that hybrid
error correctors have to process massive Illumina datasets, which
contributes to them taking higher CPU and memory usage for
correction.

3 DISCUSSION
This work shed light on the versatility of long-read DNA error-
correction methods, which can be successfully applied to error-
correction of RNA-sequencing data as well. In our tests, error rates
can be reduced from 13.7% in the original reads down to as low
as 0.3% in the corrected reads. This is perhaps an unsurprising
realization as the error-correction of RNA-sequencing data presents
similarities with DNA-sequencing data, however this comes with
a collection of caveats that we described in the Results section.
Most importantly, the number of genes detected by alignment of
corrected reads to the genome was reduced significantly by most
error-correction methods. Furthermore, depending on the method,
error-correction results have a more or less pronounced bias towards
correction to the major isoform for each gene, jointly with a loss
of the most lowly-expressed isoforms. We provided a software
that enables automatic benchmarking of long-read RNA-sequencing
error-correction software, in the hope that future error-correction
methods will take advantage of it to avoid biases.

The summary statistics of error-corrected data (number of
corrected reads, mean length, percentage of mapped reads, per-base
error rate, number of detected genes) reveal that no tool outperforms
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Fig. 6. Mapping of simulated raw and error-corrected reads to two simulated isoforms, and measurements of the percentage of reads mapping to the major
isoform. The two isoforms represent an alternatively skipped exon of variable size: 10 bp, 50 bp, 100bp. Left: isoform structure conservation using 100X short
reads coverage and 10X long reads, using three error-correction programs, one per row: LoRDEC, PBcR, proovread. Right: same with three self-correctors
and 100X long reads: daccord, LoRMA and pbdagcon. Columns are alternative exon sizes. Bars are plots for each isoform ratio (50%; 75% and 90%) on the
x-axis. On the y-axis, the closer a bar is to its corresponding ratio value on the x, the better. For instance, the bottom left light blue bar corresponds to a 50%
isoform ratio with an exon of size 10, and we do not retrieve a 50% ratio after correction with Proovread (the bar does not go up to 50% on the vertical axis,
but around 75% instead). The same layout applies to the right plot, where self-correctors are presented.

Fig. 7. Statistics on the correctly and incorrectly mapped splice sites (abbreviated SSs) for the uncorrected (raw) and corrected reads.

the others across all metrics, yet a reasonable balance is achieved
by NaS and Proovread/trimmed, and that hybrid correction tools
generally outperformed the self-correctors.

Detailed error-rate analysis showed that while hybrid correctors
have lower error rates than self-correcters, the latter achieved
comparable performance to the former in correcting substitutions
and insertions. Deletions appear to be caused by systematic
sequencing errors, making them fundamentally hard (or even

impossible) to address in a self-correction setting. Moreover PBcR,
NaS, and Proovread are the most resource-intensive error-correction
tools, but also are the only correctors able to reduce base error rate
below 0.7%.

We note that LoRDEC, PBcR, Proovread/untrimmed, daccord/untrimmed,
and to a lower extent NaS, were able to preserve the number
of detected genes better than other correctors. Among those,
LoRDEC, Proovread/untrimmed and daccord/untrimmed appear to
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Table 7. Running time and memory usage of error-correction tools on the 1D run RNA-seq dataset

LoRDEC NaS1 PBcR2 Proovread Canu daccord3 daccord
trimmed3

LoRMA4 MECAT pbdagcon3 pbdagcon3

trimmed

Running
time

2.4h 63.2h 116h 107.1h 0.7h 6.9h
(7.4h)

6.6h
(7.1h)

3.4h 0.3h 5.7h
(6.2h)

5.6h
(6.1h)

Memory
usage

5.6GB 3GB 166.5GB 53.6GB 2.2GB 6.9GB
(27.2GB)

6.8GB
(27.2GB)

79GB 9.9GB 6.4GB
(27.2GB)

6.4GB
(27.2GB)

1NaS was ran in batches on a different system (TGCC cluster) than other tools; total running time was estimated based on subset of batches.
2PBcR was ran on a machine different from the others.
3daccord and pbdagcon need DAZZ DB and DALIGNER to be ran before performing their correction. DAZZ DB execution time and memory usage was disregarded due to being
negligible. DALIGNER, however, took 0.5h and 27.2Gb of RAM. The runtime in parenthesis denotes the runtime of the tool + DALIGNER. The memory usage in parenthesis denotes
the maximum memory usage between the tool and DALIGNER.
4LoRMA was using more than its allocated 32 cores in some (short) periods of time during the run.

also better preserve the number of detected isoforms better than
other correctors. All tools tend to lose lowly-expressed isoforms
after correction. This is expected, as these tools were mainly tailored
to process DNA data where heterogeneous coverage is not expected.
Furthermore, hybrid correctors outperformed self-correctors in the
correction of errors near splice site junctions.

As a result, we conclude that no evaluated corrector is the
most suited in all situations, and the choice should be guided
by the downstream analysis. For quantification, we have shown
that error-correction introduces undesirable coverage biases, as per
Section 2.5, therefore we would recommend avoiding this step
altogether. For isoform detection, LoRDEC, Proovread/untrimmed
(hybrid) and daccord/untrimmed (non-hybrid) appear to be the
methods of choice as they result in the the highest number of
detected genes in Tables 3 and 4 and also preserve the number
of detected isoforms as per Section 2.7. For splice site detection,
we recommend using hybrid correctors, preferably NaS, PBcR or
Proovread, as per Section 2.8. The same three tools (however,
Proovread should be in trimmed mode) are also recommended if
downstream analyses require very low general error rate. Finally
for all other applications, NaS and Proovread/trimmed achieve a
reasonable balance across all metrics.

In our analysis, we used a single mapping software (GMAP) to
align raw and error-corrected reads, as in previous benchmarks (Weirather
et al., 2017; Križanović et al., 2018). We note that other long-read
mapping software have since been published, e.g. minimap2 (Li,
2018), which may increase the percentage of mapped read across
all methods.

Furthermore, we only focused our evaluation on a single data
type: 1D cDNA Nanopore data, using Illumina data for hybrid
correction. While it would be natural to also evaluate PacBio data,
we note that data from the PacBio Iso-Seq protocol is of different
nature as the reads are pre-corrected by circular consensus.

As a side note, AlignQC reports that raw reads contained 1% of
chimeric reads, i.e. either portions of reads that align to different
loci, or to overlapping loci. The number of chimeric reads after
error-correction remains in the 0.7%-1.3% range except for PBcR
(0.1%), Proovread/trimmed (0.1%), MECAT (0.1%) and LoRMA
(0.04%), which either correctly split reads or discarded chimeric
ones.

In the evaluation of tools, we did not record the disk space used
by each method, yet we note that it may be a critical factor for some
tools (e.g. Canu) on larger datasets. We note also that genes that have
low Illumina coverage are unlikely to be well corrected by hybrid
correctors. Therefore our comparison does not take into account
differences in coverage biases between Illumina and Nanopore
data, which may benefit self-correctors. Finally, transcript and gene
coverages are derived from the number of long reads aligning to a
certain gene/transcript. This method enables to directly relate the
results of error-correction to transcript/gene counts, but we note that
in current RNA-seq analysis protocols, transcript/gene expression is
still generally evaluated using short reads.

4 METHODS

4.1 Nanopore library preparation and sequencing
RNA MinION sequencing cDNA were prepared from 4 aliquots (250ng
each) of mouse commercial total RNA (brain, Clontech, Cat# 636601),
according to the Oxford Nanopore Technologies (Oxford Nanopore
Technologies Ltd, Oxford, UK) protocol ”1D cDNA by ligation (SQK-
LSK108)”. The data generated by MinION software (MinKNOW 1.1.21,
Metrichor 2.43.1) were stored and organized using a Hierarchical Data
Format. FASTA reads were extracted from MinION HDF files using
poretools (Loman and Quinlan, 2014).

4.2 Illumina library preparation and sequencing
RNA-Seq library preparations were carried out from 500 ng total RNA
using the TruSeq Stranded mRNA kit (Illumina, San Diego, CA, USA),
which allows mRNA strand orientation (sequence reads occur in the same
orientation as anti-sense RNA). After quantification by qPCR, each library
was sequenced using 151 bp paired end reads chemistry on a HiSeq4000
Illumina sequencer. Reads were filtered in silico to remove mtRNA and
rRNA using BLAT and est2genome.

4.3 Reference-based evaluation of long read error
correction

A tool coined LR EC analyser, available at https://gitlab.com/
leoisl/LR_EC_analyser, was developed using the Python language
to analyze the output of long reads error correctors. The required
arguments are the BAM files of the raw and corrected reads aligned
to a reference annotated genome, as well as the reference genome in
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Fasta file format and the reference annotation in GTF file format. A file
specifying the paralogous gene families can also be provided if plots on
gene families should be created. The main processing involves running
the AlignQC software (Weirather et al., 2017) (https://github.com/
jason-weirather/AlignQC) on the input BAMs and parsing its
output to create custom plots. It then aggregates information into a HTML
report. For example, Tables 3 − 6 are compilations from AlignQC results,
as well as Figure 7. Figures 1 − 5 were created processing text files built
by AlignQC called ”Raw data” in their output. In addition, an in-depth gene
and transcript analysis can be performed using the IGV.js library (https:
//github.com/igvteam/igv.js). In this paper, we did not include
all plots and tables created by the tool. To visualise the full latest reports, visit
https://leoisl.gitlab.io/LR_EC_analyser_support/ .

More specifically, in this work we aligned the raw and corrected reads
to the Ensembl r87 Mus Musculus unmasked reference genome using the
GMAP software (version 2017-05-08 with parameters -n 10) (Wu and
Watanabe, 2005). The GMAP parameters map those from the original
AlignQC publication (Weirather et al., 2015). Gene families were computed
by selecting all paralogs from Ensembl r87 mouse genes with 80%+ identity.
Note that paralogs from the same family may have significantly different
lengths, and no threshold was applied with respect to coverage. The complete
selection procedure is reported here: https://gitlab.com/leoisl/
LR_EC_analyser/blob/master/GettingParalogs.txt.

4.4 Simulation framework for biases evaluation
In the simulation framework of Section 2.7.4, exons length and number were
chosen according to resemble what is reported in eukaryotes (Sakharkar
et al., 2004) (8 exons, 200 nucleotides). A skipped exon, whose size can
vary, was introduced in the middle of the inclusion isoform. Skipped exon
can have a size of 10, 50 or 100 nt. We also allowed the ratio of minor/major
isoforms (M/m) to vary. For a coverage of C and a ratio M/m, the number
of reads coming from the major isoform is MC and the number of minor
isoform reads is mC. We chose relative abundances ratios for the inclusion
isoform as such: 90/10, 75/25 and 50/50. All reads are supposed to
represent the full-length isoform. Finally for hybrid correction input, short
reads of length 150 were simulated along each isoform, with 10X and 100X
coverage.

During the simulation, we produced two versions of each read. The
reference read is the read that represents exactly its isoform, without errors.
The uncorrected read is the one in which we introduced errors. We used
an error rate and profile that mimics observed R9.4 errors in ONT reads
(total error rate of ∼13%, broken down as ∼5% of substitutions, ∼1% of
insertions and ∼7% of deletions). After each corrector was applied to the
read set, we obtained a triplet (reference, uncorrected, corrected) read that
we used to assess the quality of the correction under several criteria.

We mapped the corrected reads on both exclusion and inclusion reference
sequences using a fast Smith-Waterman implementation (Zhao et al., 2013),
from which we obtained a SAM file. It is expected that exclusion corrected
reads will map on exclusion reference with no gaps, and that a deletion of
the size of the skipped exon will be reported when mapping them to the
inclusion. For each read, if it could be aligned to one of the two reference
sequences in one block (according to the CIGAR), then we assigned it to
to this reference. If more blocks were needed, we assigned the read to the
reference sequence with which the cumulative length of gaps is the loweest.
We also reported the ratio between corrected reads size of each isoform kind
and the real expected size of each reference isoform.

KEY POINTS
• Long-read transcriptome sequencing is hindered by high error

rates that affect analyses such as the identification of isoforms,
exon boundaries, open reading frames, and the creation of gene
catalogues.

• This review evaluates the extent to which existing long-read
DNA error correction methods are capable of correcting cDNA
Nanopore reads.

• Existing tools significantly lower the error rate, but they also
significantly perturb gene family sizes and isoform diversity.
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