
 - 1 - 

Extending long-range phasing and haplotype library 1 

imputation algorithms to very large and 2 

heterogeneous datasets 3 

Daniel Money1, David Wilson1, Janez Jenko1, Gregor Gorjanc1, & John M. Hickey1§ 4 

1The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University 5 

of Edinburgh, Easter Bush, Midlothian, Scotland, UK 6 

§Corresponding author 7 

Email addresses: 8 

DM: daniel.money@roslin.ed.ac.uk 9 

DW: david.wilson@roslin.ed.ac.uk 10 

JJ: janez.jenko@roslin.ed.ac.uk 11 

GG: gregor.gorjanc@roslin.ed.ac.uk 12 

JMH: john.hickey@roslin.ed.ac.uk  13 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2018. ; https://doi.org/10.1101/477398doi: bioRxiv preprint 

https://doi.org/10.1101/477398
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 2 - 

Abstract  14 

Background 15 

This paper describes the latest improvements to the long-range phasing and 16 

haplotype library imputation algorithms that enable them to successfully phase both 17 

datasets with one million individuals and datasets genotyped using different sets of 18 

single nucleotide polymorphisms (SNPs). Previous publicly available 19 

implementations of long-range phasing could not phase large datasets due to the 20 

computational cost of defining surrogate parents by exhaustive all-against-all 21 

searches. Further, both long-range phasing and haplotype library imputation were not 22 

designed to deal with large amounts of missing data, which is inherent when using 23 

multiple SNP arrays. 24 

Methods 25 

Here, we developed methods which avoid the need for all-against-all searches 26 

by performing long-range phasing on subsets of individuals and then combing results. 27 

We also extended long-range phasing and haplotype library imputation algorithms to 28 

enable them to use different sets of markers, including missing values, when 29 

determining surrogate parents and identifying haplotypes. We implemented and tested 30 

these extensions in an updated version of our phasing software AlphaPhase. 31 

Results 32 

A simulated dataset with one million individuals genotyped with the same set 33 

of 6,711 SNP for a single chromosome took two days to phase. A larger dataset with 34 

one million individuals genotyped with 49,579 SNP for a single chromosome took 14 35 

days to phase. The percentage of correctly phased alleles at heterozygous loci was 36 
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respectively 90.5% and 90.0% for the two datasets, which is comparable to the 37 

accuracy achieved with previous versions of AlphaPhase on smaller datasets. 38 

The phasing accuracy for datasets with different sets of markers was generally 39 

lower than that for datasets with one set of markers. For a simulated dataset with three 40 

sets of markers 2.8% of alleles at heterozygous positions were phased incorrectly 41 

whereas the equivalent figure with one set of markers was 0.6%.  42 

Conclusions 43 

The improved long-range phasing and haplotype library imputation algorithms 44 

enable AlphaPhase to quickly and accurately phase very large and heterogeneous 45 

datasets. This will enable more powerful breeding and genetics research and 46 

application.  47 

 48 

Keywords: Phasing, Large datasets, Heterogeneous datasets49 
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Background 50 

 51 

Here we describe the latest improvements to the Long-Range Phasing (LRP) and 52 

Haplotype Library Imputation (HLI) algorithms to phase genotypes for hundreds of 53 

thousands of individuals that have been genotyped on different platforms. Phasing 54 

genotypes is the process of inferring the parental origin of individual’s alleles. This 55 

process resolves the inheritance of chromosome segments in a population and is as 56 

such a cornerstone technique in genetics. For example, it is useful for making 57 

genotype calls, imputing genotypes, detecting phenotype-genotype associations in the 58 

presence of effects such as allele-specific expression, and inferring recombination 59 

points and demographic history [1]. 60 

The size of genomic datasets has grown rapidly in recent years as genotype data is 61 

collected on an increasing number of individuals. In agriculture this growth has been 62 

driven by the increased value of genomic selection [2–4], whereas in human genetics 63 

it has been driven by the increased power of genome-wide association studies [5–7] 64 

and genomic prediction in human medicine [8]. Examples of such large datasets 65 

include the UK Biobank [9], which has recently released genotype data from 66 

approximately half a million people [10], and the US Dairy Cattle and Irish Cattle 67 

Breeding Federation Databases that each host well over a million of genotyped 68 

animals [4,11,12]. 69 

In many cases these datasets have been collected over several years and have been 70 

genotyped using different single nucleotide polymorphism (SNP) arrays [4,12]. 71 

Methods such as SNPchiMp [13] have been developed to allow the manipulation of 72 

different sets of markers from multiple SNP arrays, but their main aim is to ensure 73 
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that the different sets are combined correctly rather than to perform analyses of the 74 

combined dataset. 75 

Several methods for phasing genotype data have been developed based on 76 

probabilistic methods, such as those implemented in fastPHASE [14] and Beagle [15]. 77 

Others, such as AlphaPhase [16] and findHap [17], are based on heuristic methods. 78 

Recent developments in probabilistic methods e.g., SHAPEIT3 [18] and Beagle [15], 79 

have enabled phasing of very large datasets, potentially containing over one million 80 

individuals [19]. Heuristic methods are fast when compared to statistical methods and, 81 

in many cases, more accurate. Thus, enabling their use on large datasets will be 82 

beneficial for large scale genomic studies. 83 

AlphaPhase [16] is a heuristic method that combines LRP [20] and HLI. LRP infers 84 

parental origin of alleles by finding surrogate parents of an individual, that is 85 

individuals who likely have the same haplotype as the individual. If a surrogate parent 86 

is homozygous then it can be used to phase the individual’s genotype. When a 87 

homozygous surrogate parent cannot be found, surrogate parents of the heterozygous 88 

surrogate parent can be used. This process is repeated, with increasingly remote 89 

surrogate parents, until the individual’s genotype can be phased. 90 

HLI infers the phase of a genotype by creating a library of haplotypes that are fully 91 

phased. Partially phased haplotypes can be fully phased by matching with library 92 

haplotypes. 93 

Existing publicly available LRP algorithms cannot efficiently phase large datasets as 94 

finding surrogate parents amongst all individuals in a population involves comparing 95 

every individual with every other individual. Both runtime and memory usage quickly 96 
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become impractical with large datasets as they scale with the square of the number of 97 

individuals. 98 

Additionally, existing publicly available algorithms for LRP and HLI could not phase 99 

heterogeneous datasets with different sets of markers as they were not designed to 100 

cope with large amounts of missing data. Combining data from multiple SNP arrays 101 

can lead to large amounts of missing data. 102 

In this paper we introduce improvements that allow a) LRP of large datasets and b) 103 

LRP and HLI to work with missing data. These improvements enabled us to quickly 104 

and accurately phase large heterogeneous simulated datasets. We phased one million 105 

individuals, genotyped for 49,579 SNPs, in 14 days using modest computing 106 

resources and correctly phased over 90% of alleles at heterozygous loci. We were also 107 

able to phase a dataset consisting of individuals genotyped with three different arrays 108 

and correctly phased 95% of alleles at heterozygous loci. The percentage of 109 

incorrectly phased alleles at heterozygous loci was respectively only 1.0% and 2.8% 110 

for the two examples. Our results show that it is possible to quickly and accurately 111 

phase large heterogeneous datasets and our algorithm improvements will be of benefit 112 

to those conducting large scale genomic studies. 113 

  114 
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Methods 115 

Previous LRP and HLI Algorithms 116 

Both LRP and HLI operate on genome regions called cores. A core is a set of 117 

consecutive SNPs for which phasing is being attempted. For further details see Hickey 118 

et al. [16]. 119 

LRP infers the phase of an individual by using other individuals known to share a 120 

haplotype with the individual. Individuals sharing a haplotype are called “surrogate 121 

parents” (shortened here to “surrogates”) and are identified by finding no opposing 122 

homozygote markers at any position within a core. These surrogates are then 123 

partitioned into either paternal or maternal surrogates of the individual using pedigree 124 

information, if it is available. If pedigree information is not available, this assignment 125 

is arbitrary. 126 

If a surrogate is homozygous at a position then it enables phasing of the individual at 127 

that position. If no homozygous surrogate is found, then it may be possible to phase 128 

the individual by using surrogates of surrogates. This process can be continued to an 129 

arbitrary depth. In practice, the consensus of several homozygous surrogates is taken 130 

to allow for error in determining surrogates or genotype data. 131 

HLI infers phase by matching partially phased haplotypes to a library of known 132 

haplotypes. In the existing algorithm the initial library is constructed from the fully 133 

phased haplotypes found during LRP and by adding new haplotypes as they are 134 

discovered. New haplotypes are discovered when one haplotype of an individual is 135 

inferred, because this haplotype together with genotype information determines the 136 

other haplotype of the individual. This process is iterated until no new haplotypes are 137 

found. 138 
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Extending long-range phasing to large datasets 139 

To address the problem of scaling LRP to large datasets we modified the algorithm so 140 

that it is performed on subsets of individuals and the results from each subset are 141 

combined. By performing LRP on subsets the runtime can be vastly reduced, because 142 

search for surrogates has quadratic runtime scaling, and in the worst case involves all-143 

against-all search for surrogates. When datasets are very large, all-against-all search 144 

for surrogates on the full dataset is too time consuming, while splitting the data into 145 

subsets limits the search time. Subsets of individuals, without replacement, are chosen 146 

randomly so that every individual is in a subset. These subsets are then merged and 147 

HLI is run on the complete dataset. We refer to this as the sub-setting method.  148 

Preliminary analysis showed that including individuals in multiple subsets did not 149 

offer a significant improvement in accuracy, but increased runtime significantly (data 150 

not shown). Including related individuals in subsets also decreased accuracy (data not 151 

shown). 152 

Extending long-range phasing and haplotype library imputation to 153 

heterogeneous datasets 154 

The LRP algorithm was modified to enable the identification of surrogates in the 155 

presence of missing data. Missing data hinders the identification of opposing 156 

homozygotes and so has the potential to wrongly identify surrogates. To alleviate this 157 

problem we introduced an additional parameter that defines the required number of 158 

shared markers by two individuals before surrogacy is tested. 159 

The HLI algorithm required more complex modifications. In a multiple SNP array 160 

setting it is likely that most, or even all, individuals will have been genotyped with 161 

one array, so will not have a data for all array markers. Consequently, LRP cannot 162 
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infer parental origin of alleles at missing markers. We developed methods that 163 

allowed partially inferred haplotypes to be included in the haplotype library and to be 164 

used to infer other haplotypes. 165 

Allowing for partially inferred haplotypes in the haplotype library makes matching a 166 

new partially inferred haplotype to a library haplotype much more difficult. It is 167 

necessary to ensure that the two haplotypes have enough markers with non-missing 168 

information to be confident they are the same haplotype. Thus, we added a parameter 169 

to the HLI algorithm that specifies the required number of shared alleles to match two 170 

haplotypes (Figure 1a). 171 

In some cases it is possible that the new haplotype matches more than one library 172 

haplotype. In these cases it is possible that the new haplotype identifies duplicated 173 

library haplotypes (Figure 1b). In this situation we merge the new haplotype and 174 

library haplotypes, replace the incomplete library haplotypes with the merged 175 

haplotype, and update individuals known to carry the original incomplete library 176 

haplotypes. 177 

If a new haplotype matches multiple library haplotypes and these matches cannot be 178 

the same haplotype, due to opposing homozygotes between the library haplotypes, 179 

then we add the new haplotype to the library. 180 

Software engineering the new algorithms 181 

Several changes were made to AlphaPhase to optimise it for speed and memory use. 182 

AlphaPhase was modified to store haplotypes and genotypes as bits and to use bit 183 

operations to operate on multiple SNPs at once wherever possible. It was also 184 

parallelised in several places to exploit high performance computing clusters. 185 
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Test Datasets 186 

The performance of our new improvements to the LRP and HLI algorithms were 187 

tested on large and heterogeneous simulated datasets. 188 

Simulated Data 189 

AlphaSim [21] was used to simulate test datasets. We followed the simulation scheme 190 

from [22] which we describe briefly and show in Figure 2. AlphaSim first uses MaCS 191 

[23] to simulate base population haplotypes. We simulated a single ‘breed’ that split 192 

into three breeds 400 generations ago. 50 generations ago each of these breeds split 193 

again into either three or four breeds to give ten breeds. 194 

AlphaSim was then used to simulate two datasets consisting of ten equal-sized 195 

‘breeds’ and ten generations of selective breeding were simulated for each of these 196 

‘breeds’ (Figure 2). Selection was based on a single trait that had 10,000 quantitative 197 

trait nucleotides with normally distributed effects. For the first dataset, for each breed 198 

and for each generation, we selected 25 sires and 500 dams and generated 1,000 199 

offspring. This resulted in a dataset of 100,000 animals (100k dataset). The second 200 

dataset was created using 10,000 offspring for each breed and for each generation to 201 

create a total dataset of one million animals (one million dataset). For both datasets 202 

one chromosome worth of SNP data was generated and SNPs with a minor allele 203 

frequency of at least 0.05 were chosen as possible candidates for inclusion on SNP 204 

arrays. 205 

SNPchiMp [13] was used to obtain information on the SNPs on different arrays and 206 

the overlap between arrays. Across the bovine arrays there are 8,771 unique SNPs on 207 

chromosome 1. We selected this number of SNPs from the candidate SNPs generated 208 
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by AlphaSim and then assigned SNPs to different arrays following the same pattern as 209 

reported by SNPchiMp for bovine arrays. 210 

We then used the assigned arrays to create scenarios (Table 1), where individuals 211 

were genotyped with different arrays. There were two scenarios with Homogeneous 212 

Arrays, where all individuals were genotyped with either the medium density (MD) 213 

Bovine Illumina 50Kv2 or the high density (HD) Illumina HD SNP arrays. There 214 

were five scenarios with Heterogeneous Arrays, where individuals were genotyped 215 

with a set of partially overlapping combinations of SNP arrays. Three of these 216 

scenarios were based on different MD chips. The Two Illumina scenario included 217 

two different versions of the Illumina MD chip (Illumina 50K v1 and Illumina 50K 218 

v2). The Two Mixed scenario combined one Illumina chip (Illumina 50K v2) and one 219 

other chip (IDBv3). The Three MD scenario combined the Illumina 50Kv2 chip with 220 

the IDBv3 chip and the GSeekHD chip. The mixed MD / HD scenario combined a 221 

MD Illumina chip (Illumina 50K v2) with a HD Illumina chip (Illumina HD). 222 

We created a further scenario that was not based on existing arrays, as in the future it 223 

is likely that individuals will be genotyped on a wider range of SNP arrays. The Ten 224 

Array scenario comprises five HD arrays and five MD arrays. We based the first HD 225 

and first MD arrays on the Bovine Illumina HD and Bovine Illumina 50Kv2 arrays, 226 

respectively.  227 

We then created three further HD and three further MD arrays based on these two 228 

arrays by splitting SNPs into four categories, those on both the original HD and MD 229 

arrays (HD/MD set), those just on the HD array (HD set), those just on the MD array 230 

(MD set) and those on neither (unused set). We removed ten percent of the SNPs 231 

from each of the HD/MD, HD and MD sets and replaced them with randomly 232 
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sampled SNPs from the unused set. From these new sets we then created a second HD 233 

and second MD array. We generated the third and fourth HD and MD arrays from the 234 

previous arrays in the same way. Rather than removing the exact number of SNPs that 235 

were to be added (or removed) we sampled based on a probability that resulted in the 236 

expected number of SNPs being added (or removed). Because of this sampling the 237 

resulting arrays were of slightly different in size. 238 

We created the fifth HD and MD arrays to represent arrays from a different family of 239 

arrays, perhaps from a different manufacturer. These arrays were simulated in a 240 

similar way to the other arrays but by removing and replacing fifty percent of the 241 

SNPs from the first HD and MD arrays. 242 

For all scenarios we simulated individuals as being genotyped on different arrays by 243 

assigning them to arrays in proportions we might expect to see in real datasets (Table 244 

1). 245 

Phasing parameters used for AlphaPhase  246 

AlphaPhase has several parameters that control phasing of alleles. Two of these were 247 

expected to have a significant effect on the performance of AlphaPhase – the existing 248 

parameter controlling core length (defined as the number of SNP in each core) and a 249 

new parameter that controlled the size of phasing subsets to speedup phasing of a 250 

large dataset. 251 

The length of the cores can have a significant effect on phasing accuracy [16]. To find 252 

the best core length for both of the MD and HD scenarios we tested different core 253 

lengths. For the Illumina 50Kv2 scenarios we tested core lengths in the same range as 254 

those tested in Hickey et al. [16] for a similar size array: 50, 100, 200, 500, and 1,000 255 
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SNPs. For the Illumina HD scenario we tested core lengths of 500, 1,000, 2,000, 256 

5,000, and 10,000 SNPs because the Illumina HD array contains approximately ten 257 

times as many SNPs as the Illumina50Kv2 array. 258 

We tested different sizes of the phasing subsets as this was expected to have an effect 259 

on phasing accuracy. Tested values were 500, 1,000, 2,000, 5,000, and 10,000 260 

individuals. For the Illumina 50Kv2 scenario we tested all combinations of core 261 

length and subset size. We only report subset size results for a fixed core length of 262 

500 SNPs since the interaction between core length and subset size was minimal (data 263 

not shown). For the Illumina HD scenario we set the core length to 5,000 SNPs when 264 

testing subset size. 265 

For evaluating the Heterogeneous Array scenarios we set the core length to 500 SNPs 266 

when the dataset consisted of only MD arrays since this value gave good performance 267 

in Homogeneous MD Array scenarios. Similarly, for datasets containing HD arrays 268 

we set core length to 5,000 SNPs. In both scenarios we set subset size to 5,000 SNPs. 269 

AlphaPhase had several other parameters for which fixed default values were used. 270 

Specifically, we fixed the maximum number of surrogates used to ten and allowed 271 

10% of the marker genotypes to disagree between pairs of surrogates. We also set the 272 

number of allele mismatches for clustering pairs of nearly identical library haplotypes 273 

to be zero. 274 

When phasing multiple arrays we added an additional parameter to AlphaPhase. This 275 

parameter governs the minimum required number of matching alleles before two 276 

haplotypes can be identified as the same haplotype. If all SNPs were independent of 277 

each other, i.e., there was no linkage between them, we would expect the optimal 278 
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value of this parameter to remain unchanged irrespective of SNP density. Our results 279 

(data not shown) suggest that the presence of linkage does not have a significant 280 

effect for the SNP densities considered here and that requiring a match of 200 alleles 281 

between two haplotypes is an appropriate value for this parameter. If SNP arrays with 282 

greater density are considered then the value of this parameter may need to be revised. 283 

Performance Testing 284 

To test the performance of the new improvements to the LRP and HLI algorithms on 285 

large datasets we used the data from the Homogeneous Array scenarios for both the 286 

100k and one million datasets. To test the scenario where parents are known and 287 

genotype information is available for them we evaluated phasing accuracy within each 288 

of the ten breeds individually using data from all generations. Similarly, to test the 289 

scenario where no parentage information is available we evaluated phasing accuracy 290 

for each of the ten generations individually (Figure 2). We report average results 291 

across either all ten families or all ten generations. 292 

To test the speed and memory usage of AlphaPhase on large datasets we tested 293 

multiple combinations of number of generation and families from both the 1000k and 294 

the one million datasets using Homogeneous Array scenarios. To test the performance 295 

of the new improvements to the LRP and HLI algorithms on heterogeneous datasets 296 

we used the data from the Heterogeneous Array scenarios on the 100k dataset. 297 

We report three phasing statistics – percentage of correctly phased alleles, percentage 298 

of unphased alleles, and percentage of incorrectly phased alleles. Unless explicitly 299 

stated otherwise, we report these statistics for heterozygous loci only. We also report 300 

on memory usage and runtimes. Runs were performed on computers with an Intel 301 

Xeon Processor E5-2630 v3 (2.4 GHz) and between 64 and 256GB of RAM. 302 
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Results 303 

Long Range Phasing and Haplotype Library Imputation of Large Datasets 304 

Core Length 305 

To determine the accuracy of our new sub-setting method we first determined the 306 

optimal core length for each of the Illumina 50Kv2 and Illumina HD scenarios. Figure 307 

3 and Tables S1-S2 show the accuracy on the Illumina 50Kv2 scenario for a variety of 308 

core lengths. Figure 3a shows the percentage of correctly phased heterozygous loci for 309 

the Illumina 50Kv2 array per family scenario. The percentage of correctly phased 310 

alleles increased as the core length increased, although the difference in accuracy 311 

between a core length of 500 SNPs (92.7%) and 1,000 SNPs (93.3%) was small. For 312 

the per generation scenario the percentage of correctly phased alleles peaked at a core 313 

length of 500 SNPs (92.3%) before dropping significantly for a core length of 1,000 314 

SNPs (89.8%). The pattern for the number of incorrectly phased alleles for the 315 

Illumina 50Kv2 (Figure 3b) was less clear although there was a significant increase in 316 

the number of incorrectly phased alleles for a core length of 1,000 SNPs. Using a core 317 

length of 500 SNP the percentage of alleles incorrectly phased was 0.6% (per family 318 

scenario) and 0.9% (per generation scenario). 319 

Figure 3 and Tables S3-S4 show that for the Illumina HD scenario the percentage of 320 

correctly phased alleles at heterozygous loci peaked at either a core length of 2,000 321 

SNPs (per generation) or 5,000 SNPs (per family). For this scenario the number of 322 

incorrectly phased alleles was minimised at a core length of 1,000 SNPs (0.3% per 323 

family; 0.5% per generation), a shorter core length than that which maximised the 324 

number of correctly phased markers. Using a core length of 5,000 SNPs 93.5% (per 325 
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family) or 92.1% (per generation) of alleles were phased correctly, while 0.8% (per 326 

family) or 1.3% (per generation) were phased incorrectly. 327 

In all scenarios runtime was inversely proportional to core length (Tables S1-S4). We 328 

chose to study core lengths of 500 SNPs (for MD scenarios) and 5,000 SNPs (for HD 329 

scenarios) as a reasonable trade-off between accuracy and runtime. For these core 330 

lengths runtime was around three minutes for both arrays and for both the per 331 

generation and per family scenarios. Memory usage was 2.5GB for the Illumina 332 

50Kv2 array and 5.3GB for the Illumina HD array (Tables S1-S4). 333 

Subset Size 334 

Subset size can be expected to have a significant effect on the accuracy of phasing as 335 

it will directly influence the number of surrogates that are found. To test this we 336 

evaluated subset sizes of between 500 and 10,000 individuals (Figure 4, Tables S5-337 

S8). For both the Illumina 50Kv2 and Illumina HD arrays accuracy increased as the 338 

subset size increased. For the Illumina 50Kv2 per family scenario the percentage of 339 

correctly phased alleles at heterozygous loci increased from 86.9% to 97.9% as subset 340 

size increased from 500 to 10,000 individuals. For the Illumina HD per family 341 

scenario it increased from 87.0% (500 individuals) to 97.8% (10,000 individuals). The 342 

results for phasing in the per generation scenarios were similar. The percentage of 343 

correctly phased alleles increased from 84.8% to 95.8% for the Illumina 50 Kv2 array 344 

and from 84.0% to 94.9% for the Illumina HD array as the subset size increased from 345 

500 to 10,000 individuals. 346 

In nearly all scenarios runtime was proportional to subset size (Tables S5-S8). The 347 

exception was for the Illumina 50Kv2 per family scenario in which runtime for a 348 

subset size of 10,000 individuals was noticeably shorter than runtime for a subset size 349 
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of 5,000 individuals. This was likely due to nearly all animals having had both parents 350 

included in the subset when the subset size was 10,000, which can significantly 351 

decrease the time required to partition surrogates into maternal and paternal 352 

surrogates. Memory usage also increases as subset size grows. We chose to use a 353 

subset size of 5,000 for the remainder of this study as a reasonable trade-off between 354 

accuracy and runtime. With subsets of this size the percentage of correctly phased 355 

alleles at heterozygous loci was 92.7% (per family) or 92.3% (per generation) for the 356 

Illumina 50Kv2 scenario and 93.5% (per family) or 92.1% (per generation) for the 357 

Illumina HD scenarios. The percentage phased incorrectly was 0.1% (per family) or 358 

0.9% (per generation) for the Illumina 50Kv2 scenarios and 0.8% (per family) or 359 

1.3% (per generation) for the Illumina HD scenarios. 360 

Accuracy, Runtime, and Memory Usage on Different Dataset Sizes 361 

To test the performance of our new improvements to the LRP and HLI algorithms on 362 

datasets of different sizes we created multiple different sized scenarios from the 100k 363 

and the one million datasets. Phasing accuracy was broadly comparable to the phasing 364 

accuracy observed when investigating optimal core length and subset size (Tables S9 365 

and S10). Figure 5 shows that runtimes scaled approximately linearly with the number 366 

of individuals in a dataset. For the Illumina 50Kv2 dataset memory usage varied 367 

between 0.6GB for the smallest dataset of 1,000 individuals to 76GB for a dataset of 368 

one million individuals (Figure 6 and Table S19). Comparable figures for the Illumina 369 

HD dataset were 0.9GB and 325GB (Figure 6 and Table S10). 370 

Heterogeneous Datasets 371 

Table 2 shows phasing accuracy, runtime and memory requirements for each of the 372 

five Heterogeneous Arrays per family scenarios. For the scenarios involving only MD 373 
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arrays the percentage of alleles at heterozygous loci phased correctly was between 374 

93.8% and 95.2% with between 1.9% and 2.8% phased incorrectly. For the two array 375 

scenarios (Two Illumina and Two Mixed) runtime was approximately two minutes. 376 

For the Three MD scenario runtime was approximately five minutes. For the two 377 

array scenarios memory usage was around 2.6GB whereas for the Three MD scenario 378 

memory usage was approximately 3GB. 379 

We also tested a mixture of one MD array and one HD array with nine individuals 380 

genotyped on the MD array for every individual genotyped on the HD array (Mixed 381 

MD/HD). As expected the percentage of correctly phased alleles at heterozygous loci 382 

was lower than in other scenarios, but was still 93.4%. Runtime was around six hours 383 

and memory usage was 5.3GB. For the Ten Array scenario the percentage of correctly 384 

phased alleles was slightly higher at 95.4%, although memory usage was also higher 385 

at 7.6GB. 386 

Table 3 shows results for the per generation scenarios. Results were broadly 387 

comparable to the per family results. Across the scenarios containing only MD arrays 388 

the percentage of correctly phased alleles at heterozygous loci was between 93.1% 389 

and 95.6% with between 3.1% and 3.6% incorrectly phased. Runtime was similar to 390 

the per family scenarios taking around three minutes for the two array scenarios and 391 

two minutes for the Three MD scenarios. Memory usage was the same as that of the 392 

per family scenarios. 393 

The Mixed HD/MD per generation scenario showed a lower percentage of correctly 394 

phased alleles at heterozygous loci (88.4%) compared to the per family scenario 395 

(93.4%). Runtime and memory requirements were similar. The Ten Array per 396 

generation scenario also had lower accuracy than the per family scenario with 93.8% 397 
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of alleles correctly phased compared with 95.4% in the per family scenario. Runtime 398 

and memory usage were similar for the per family and the per generation results. 399 

  400 
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Discussion 401 

In this paper we introduced improvements to the LRP and HLI algorithms of 402 

AlphaPhase [16] to enable phasing of very large and heterogeneous datasets in which 403 

individuals have been genotyped on differing sets of markers. We tested the revised 404 

algorithms’ performance on a range of simulated datasets and show that AlphaPhase 405 

can be used to accurately phase datasets that contain up to one million individuals and 406 

that have been genotyped with multiple different SNP arrays. In what follows we 407 

discuss the effect of: (i) core length and (ii) subset size on phasing accuracy and 408 

computational runtime and memory use; and (iii) the impact of these improvements 409 

on the phasing of large and heterogeneous datasets. 410 

Effect of core length on phasing performance 411 

Both LRP and HLI break the genome into smaller sections of consecutive SNPs called 412 

cores. Each of these cores is then phased independently of each other. Core length, 413 

defined as the number of SNPs in each core, has previously been shown to have a 414 

significant effect on accuracy [16]. In light of our new improvements to the LRP and 415 

HLI algorithms and the availability of much denser SNP arrays we further 416 

investigated the impact of this parameter. 417 

As expected we found that core length has a significant effect on phasing accuracy. 418 

Short cores showed similar levels of phasing accuracy. Accuracy started to deteriorate 419 

notably as cores get longer. We also found that phasing accuracy is a function of the 420 

length of the core as a proportion of the length of the chromosome, rather than the 421 

number of SNPs it contains, and that the Illumina 50Kv2 and Illumina HD arrays 422 

show a very similar pattern of results when core length is expressed as a proportion of 423 

chromosome length. This is to be expected, as phasing accuracy is likely to be highly 424 
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affected by the presence of recombinations within a core. The latter can be reliably 425 

measured by the relative size of a core versus the whole chromosome, and less so by 426 

the number of SNP array markers in a core. The reduction in accuracy observed as the 427 

core length increased is likely due to the increased chance of a core containing a 428 

recent recombination. This would reduce the number of surrogates and thus, reduce 429 

the information available for phasing. 430 

Both runtime and memory usage were significantly affected by core length with 431 

runtime being approximately proportional to the number of cores and therefore, 432 

inversely proportional to core length. Memory usage also increased as the number of 433 

cores increased although the effect was less pronounced than for runtime. For these 434 

reasons we recommend the use of the longest possible cores that do not result in an 435 

unacceptable drop in accuracy. For the bovine arrays considered in this paper, our 436 

results suggest a core length of 500 when only MD arrays are used and a core length 437 

of 5,000 when HD arrays have also been used. 438 

Effect of subset size on phasing performance 439 

Our new improvements of the LRP algorithm partition a large dataset into subsets and 440 

then performing LRP on each of the subsets. We introduced a new parameter to the 441 

LRP algorithm that controls the size of these subsets and our results show that this 442 

parameter can have a significant effect on phasing accuracy. A subset size of 10,000 443 

gave both the highest percentage of correctly phased alleles and the lowest percentage 444 

of incorrectly phased ones. As the subset size decreased the proportion of correctly 445 

phased alleles decreased and the proportion of incorrectly phased alleles loci 446 

increased. This decrease in phasing performance was very likely due to the reduction 447 
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in the number of surrogates that would be expected in a smaller subset which, in turn, 448 

led to less information with which to accurately phase. 449 

The increase in phasing accuracy that resulted from increasing subset size had a 450 

significant cost in terms of runtime. We found an approximately linear relationship 451 

between the size of the subset and runtime with the used runtime parameters. 452 

Consequently, there was a trade-off between runtime and accuracy. As the size of 453 

subsets got larger the number of incorrectly phased alleles appeared to begin to 454 

plateau for a subset size of 5,000 or greater and runtime started to increase 455 

significantly. For the datasets we tested the subset size for which this value occurred 456 

seemed to be largely invariant to total dataset size and so we suggest that a subset size 457 

of 5,000 is an appropriate compromise. The optimal size for datasets with a different 458 

structure, such as a human populations in which individuals are likely to be less 459 

related than the ones considered here, warrants further investigation. 460 

Phasing of large datasets is likely to be computationally expensive for any phasing 461 

techniques due to the large number of individuals involved. Our results suggest that 462 

there is sufficient information in small subsets from a larger dataset to allow a 463 

significant number of alleles to be phased accurately. This suggests that for other 464 

phasing methods, such as those based on probabilistic models, it could also be 465 

beneficial to break the phasing of large datasets into subsets before merging the 466 

results. 467 

Ability of AlphaPhase to phase large heterogeneous datasets 468 

Our results show that it is viable to run heuristic phasing on very large datasets, such 469 

as those now available for humans [10] or cattle [4,11,12]. AlphaPhase took two days 470 

and 76GB of memory to phase one million animals genotyped on a simulated Illumina 471 
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50Kv2 array. To phase one million animals genotyped on a simulated Illumina HD 472 

array took 14 days and 325GB of memory. 473 

The ability to phase datasets genotyped using multiple different arrays is important as 474 

datasets are increasingly likely to consist of individuals genotyped using different 475 

arrays due to the increase in the number of available arrays for commonly genotyped 476 

species. Results from the analysis of the Heterogenous Arrays scenarios show that 477 

similar phasing accuracy can be achieved for heterogenous datasets, consisting of 478 

individuals genotyped on multiple MD arrays, as can be achieved for homogeneous 479 

datasets. In general, accuracy was slightly worse than for the single array scenarios 480 

that were tested, although in many scenarios the Heterogeneous Arrays phased 481 

slightly more alleles correctly. However, this increase in percentage of correctly 482 

phased alleles came at the cost of phasing more alleles incorrectly as well. 483 

AlphaPhase can now also accurately phase individuals genotyped on a mixture of MD 484 

and HD SNP arrays. The phasing of such datasets is likely to become increasingly 485 

common as it is desirable to continue to use the data already collected using MD 486 

arrays even as the use of HD arrays grows. Although the phasing accuracy for 487 

heterogeneous datasets was often lower than when individuals were genotyped on a 488 

single SNP array, the percentage of correctly phased alleles was still over 93% in all 489 

scenarios tested other than the Mixed MD/HD per generation scenario. In this 490 

scenario many individuals had high amounts of missing data due to them being 491 

genotyped on the MD rather than HD array and so we would expect phasing to be 492 

more difficult.  493 
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Conclusions 494 

We have modified the LRP and HLI algorithms to allow phasing of large 495 

heterogeneous datasets. These modifications are implemented in AlphaPhase version 496 

1.3.7 (available from http://alphagenes.roslin.ed.ac.uk/) and allow the accurate 497 

phasing of millions of individuals genotyped on multiple SNP arrays. 498 
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Figures 586 

Figure 1 - New improvements to the LRP and HLI algorithms for dealing with 587 

library haplotypes with missing data. a) In this example we have generated 588 

haplotypes using two different SNP arrays indicated by green and blue haplotypes. If 589 

the shared markers between two haplotypes are identical (shown in red) then the two 590 

haplotypes can be merged into one haplotype. To ensure the two haplotypes are the 591 

same haplotype we set a minimum number of alleles that must be shared. Note that 592 

in reality blue and green markers will both be distributed along the length of the 593 

haplotype. b) In this example we have generated haplotypes using three different 594 

SNP arrays. Finding the new purple haplotype allows us to recognise that the green, 595 

purple, and blue haplotype are actually the same haplotype. 596 

  597 
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a) 598 
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b) 601 

 602 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2018. ; https://doi.org/10.1101/477398doi: bioRxiv preprint 

https://doi.org/10.1101/477398
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 31 - 

Figure 2 - Simulation structure. MaCS is used to simulate a base population. This 603 

base population is generated from a single ‘breed’ that split into three breeds 400 604 

generations ago. 50 generations ago each of these breeds split again into either 605 

three or four breeds to give ten breeds. Each of these ten breeds then undergoes ten 606 

generations of selection using AlphaSim. The dotted blue line shows an example for 607 

the “per generation” scenario, while the dotted red line shows an example for the “per 608 

family” scenario. 609 

 610 
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Figure 3 – a) Percentage of correctly phased alleles at heterozygous loci for a range 611 

of core lengths. b) Percentage of incorrectly phased alleles at heterozygous loci for a 612 

range of core lengths. Core lengths are given as a proportion of the total 613 

chromosome length. 614 

a) 615 

 616 
  617 
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b) 618 

 619 
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Figure 4 - a) Percentage of correctly phased alleles at heterozygous loci for a range 620 

of subset sizes. b) Percentage of incorrectly phased alleles at heterozygous loci for a 621 

range of subset sizes. 622 

a) 623 

 624 

  625 
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b) 626 

 627 
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Figure 5 – Runtime of AlphaPhase for a range of dataset sizes genotyped on two 628 

different SNP arrays. 629 

  630 
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Figure 6 – Memory usage of AlphaPhase for a range of dataset sizes genotyped on 632 

two different SNP arrays. 633 

 634 
  635 
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Tables 636 

Table 1 – The different genotyping scenarios tested 637 

Scenario Description 

Illumina 50Kv2 Illumina 50Kv2 (all) 
Illumina HD Illumina HD (all) 

Two Illumina Illumina 50Kv1 and Illumina 50Kv2 in a 1:1 ratio  
Two Mixed Illumina 50Kv2 and IDBv3 in a 1:1 ratio 
Three MD Illumina 50Kv2, GSeekHD and IDBv3 in a 1:1:1 ratio 

Mixed MD/HD Illumina 50Kv2 and Illumina HD in a 9:1 ratio 
Ten Array Five MD and Five HD with equal numbers of individuals 

genotyped on each array 
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Table 2 – Different genotype scenarios per family results 638 

Table 3 – Different genotype scenarios per generation results 639 

640 

  All  Heterozygous  Time Memory 

Scenario  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

Illumina 

50Kv2 

 98.30 1.59 0.11  92.65 6.77 0.58  143 2,585 

Illumina HD  98.40 1.46 0.14  93.48 5.77 0.75  154 5,279 

Two Illumina  94.12 3.18 2.70  93.83 4.25 1.92  126 2,570 
Two Mixed  96.67 2.77 0.56  94.41 3.26 2.33  153 2,609 
Three MD  96.66 2.41 0.93  95.15 2.05 2.79  322 3,034 

Mixed MD/HD  93.64 5.12 1.23  93.41 4.38 2.20  342 5,311 
Ten Array  95.12 4.05 0.83  95.37 3.66 0.97  562 7,671 

  All  Heterozygous  Time Memory 

Scenario  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

Illumina 
50Kv2 

 98.29 1.55 0.16  92.27 6.79 0.94  183 2,534 

Illumina HD  98.40 1.46 0.14  93.50 5.75 0.75  165 5,262 

Two Illumina  95.04 2.08 2.88  93.06 3.82 3.13  147 2,544 
Two Mixed  97.51 1.70 0.80  94.02 2.38 3.60  196 2,591 
Three MD  97.13 1.66 1.22  95.59 1.26 3.15  107 3,040 

Mixed MD/HD  91.15 6.86 1.99  88.36 6.72 4.92  340 5,257 
Ten Array  94.36 4.35 1.29  93.80 4.56 1.64  568 7,732 
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Supplementary tables 641 

Table S1: Illumina 50Kv2 per family results for a range of core lengths 642 

Table S2: Illumina 50Kv2 per generation results for a range of core lengths 643 

  All Loci  Heterozygous Loci  Time Memory 

Core Length  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

50  97.37 2.53 0.10  86.30 13.16 0.53  3,247 5,930 

100  97.66 2.25 0.09  88.14 11.40 0.46  1,392 4,286 

200  97.93 2.00 0.07  90.02 9.58 0.40     561 3,271 

500  98.30 1.59 0.11  92.65 6.77 0.58     143 2,585 

1,000  98.39 1.40 0.21  93.33 5.60 1.08       39 2,060 

  All Loci  Heterozygous Loci  Time Memory 

Core Length  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

50  97.92 1.93 0.15  88.75 10.46 0.79  4,017 5,946 

100  98.18 1.69 0.13  90.57 8.76 0.68  1,729 4,263 

200  98.34 1.56 0.10  91.87 7.55 0.58     706 3,233 

500  98.29 1.55 0.16  92.27 6.79 0.94     183 2,534 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted N
ovem

ber 24, 2018. 
; 

https://doi.org/10.1101/477398
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/477398
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 41 - 

Table S3: Illumina HD per family results for a range of core lengths 644 

Table S4: Illumina HD per generation results for a range of core lengths 645 

1,000  97.82 1.84 0.34  89.84 8.17 1.99       46 2,047 

  All Loci  Heterozygous Loci  Time Memory 

Core Length  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

500  97.56 2.36 0.08  87.55 12.02 0.44  2,633 7,707 

1,000  97.77 2.16 0.06  89.09 10.58 0.34  1,151 6,705 

2,000  98.10 1.83 0.07  91.30 8.34 0.36     494 5,974 

5,000  98.40 1.46 0.14  93.48 5.77 0.75     154 5,279 

10,000  98.23 1.49 0.28  92.21 6.32 1.47       78 4,904 

  All Loci  Heterozygous Loci  Time Memory 

Core Length  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

500  98.16 1.71 0.12  90.42 8.93 0.65  3,138 7,783 

1,000  98.32 1.59 0.09  91.75 7.77 0.48  1,351 6,683 

2,000  98.43 1.48 0.09  92.90 6.58 0.52     583 5,990 
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Table S5: Illumina 50Kv2 per family results for a range of subset sizes 646 

Table S6: Illumina 50Kv2 per generation results for a range of subset sizes 647 

5,000  98.19 1.59 0.23  92.13 6.55 1.32     183 5,255 

10,000  97.19 2.31 0.50  86.01 11.10 2.89       79 4,877 

  All Loci  Heterozygous Loci  Time Memory 

Subset Size  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

500  96.98 2.86 0.16  86.93 12.20 0.16      4 1,246 

1,000  97.39 2.45 0.16  88.82 10.34 0.16      8 1,360 

2,000  97.69 2.17 0.14  90.11 9.13 0.14    23 2,153 

5,000  98.31 1.58 0.11  92.68 6.75 0.11  138 2,579 

10,000  99.60 0.34 0.06  97.89 1.81 0.06    56 3,277 

  All Loci  Heterozygous Loci  Time Memory 

Subset Size  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

500  96.40 3.40 0.20  84.80 14.07 1.12      4 1,248 

1,000  97.00 2.81 0.19  87.45 11.48 1.07      8 1,367 
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  648 

2,000  97.55 2.27 0.17  89.60 9.40 1.00    24 1,955 

5,000  98.30 1.54 0.16  92.31 6.77 0.92  168 2,530 

10,000  99.28 0.56 0.16  95.76 3.30 0.94  703 3,788 
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Table S7: Illumina HD per family results for a range of subset sizes 649 

Table S8: Illumina HD per generation results for a range of subset sizes 650 

  All Loci  Heterozygous Loci  Time Memory 

Subset Size  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

500  96.94 2.83 0.22  87.03 11.78 1.19    20 4,146 

1,000  97.45 2.34 0.21  89.56 9.33 1.11    30 4,243 

2,000  97.76 2.05 0.19  91.00 8.00 1.00    49 4,854 

5,000  98.40 1.46 0.14  93.50 5.75 0.75  165 5,262 

10,000  99.57 0.37 0.06  97.76 1.94 0.31  247 6,109 

  All Loci  Heterozygous Loci  Time Memory 

Subset Size  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

500  96.20 3.54 0.27  84.01 14.45 1.54    19 4,172 

1,000  96.86 2.89 0.25  87.27 11.26 1.47    30 4,280 

2,000  97.43 2.33 0.24  89.52 9.07 1.41    48 4,759 

5,000  98.18 1.59 0.23  92.11 6.57 1.32  163 5,261 

10,000  99.12 0.65 0.22  94.90 3.78 1.32  533 6,586 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted N
ovem

ber 24, 2018. 
; 

https://doi.org/10.1101/477398
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/477398
http://creativecommons.org/licenses/by-nc-nd/4.0/


 - 45 - 

Table S9: Illumina 50Kv2 results for scenarios of different sizes 651 

Table S10: Illumina HD results for scenarios of different sizes 652 

 Families × Number of  All Loci  Heterozygous Loci  Time Memory 

Dataset Generations Individuals  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 

100k 1 × 1        1,000  99.62 0.30 0.07  98.39 1.29 0.31         1      613 

100k 3 × 3        9,000  98.08 1.86 0.06  93.19 6.55 0.26       15   2,022 

100k 5 × 5      25,000  98.01 1.89 0.10  92.59 6.96 0.45       87   3,770 

100k 7 × 7      49,000  97.98 1.88 0.14  91.82 7.50 0.67     326   6,326 

100k 10 × 10    100,000  97.81 2.02 0.17  90.25 8.83 0.92  1,253 10,542 

One million 1 × 1      10,000  98.59 1.35 0.06  95.48 4.27 0.25       21   6,927 

One million 3 × 3      90,000  96.98 2.94 0.07  89.73 9.95 0.32     102 11,972 

One million 5 × 5    250,000  97.62 2.27 0.11  91.40 8.13 0.47     341 22,455 

One million 7 × 7    490,000  97.70 2.17 0.13  91.30 8.10 0.60     751 40,112 

One million 10 × 10 1,000,000  97.60 2.22 0.18  90.35 8.84 0.81  2,534 76,305 

 Families × Number of  All Loci  Heterozygous Loci  Time Memory 

Dataset Generations Individuals  Correct Unphased Incorrect  Correct Unphased Incorrect  (minutes) (MB) 
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 653 

100k 1 × 1        1,000  99.57 0.36 0.08  98.16 1.52 0.33          2        906 

100k 3 × 3        9,000  98.10 1.83 0.07  93.89 5.82 0.29         54     4,449 

100k 5 × 5      25,000  98.04 1.85 0.12  93.27 6.20 0.53       205   10,864 

100k 7 × 7      49,000  98.01 1.82 0.17  92.41 6.76 0.83       587   20,319 

100k 10 × 10    100,000  97.75 2.01 0.24  90.47 8.27 1.26    1,350   39,682 

One million 1 × 1      10,000  98.61 1.32 0.07  95.84 3.85 0.31         63     9,545 

One million 3 × 3      90,000  97.18 2.74 0.09  91.35 8.28 0.37       572   38,500 

One million 5 × 5    250,000  98.07 1.81 0.12  93.23 6.22 0.55    2,346   96,974 

One million 7 × 7    490,000  97.96 1.88 0.16  92.30 6.98 0.72    7,313 162,024 

One million 10 × 10 1,000,000  97.53 2.26 0.21  90.00 9.03 0.97  23,223 325,217 
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