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Abstract 

Designer receptors exclusively activated by designer drugs (DREADDs) derived from 

muscarinic receptors are a powerful tool to test causality in basic neuroscience, but are also 

potentially amenable to clinical translation. A major obstacle is however that the widely-used 

agonist clozapine-N-oxide undergoes conversion to clozapine, which penetrates the blood-

brain barrier but has an unfavorable side effect profile. Perlapine has been reported to activate 

DREADDs at nanomolar concentrations, but is not approved for use in humans by the Food 

and Drug Administration or European Medicines Agency, limiting its translational potential. 

Here we report that the atypical antipsychotic drug olanzapine, widely available in various 

formulations, is a full and potent agonist of the human muscarinic-receptor M4-based 

DREADD, facilitating clinical translation of chemogenetics to treat CNS diseases. 
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Introduction 

CNS diseases caused by abnormal circuit function represent a major burden to society. 

Although many respond to conventional small molecule treatment, some diseases such as 

intractable pain and refractory epilepsy account for a substantial unmet need. Drug-resistant 

focal epilepsy alone affects approximately 0.2% of the entire population (1, 2). Although 

surgical resection of the epileptogenic zone is effective, it is contraindicated in the 

overwhelming majority of patients because of high risks of permanent disability associated 

with brain tissue removal (3). Several gene therapies for refractory epilepsy, based on altering 

the balance of excitation and inhibition, have been validated in preclinical models (4-8). 

Chemogenetics using viral vector-mediated expression of inhibitory DREADDs is especially 

promising because the therapeutic effect can be titrated by adjusting the dose of the activating 

ligand (9).  

A potential limitation to clinical translation of DREADD technology is that most studies to 

date have used clozapine-N-Oxide (CNO), the inactive metabolite of the atypical antipsychotic 

drug clozapine (CZP) (10), as the ligand. CNO is not approved for clinical use, and recent 

evidence shows that CNO is actively exported from the CNS and back-converted to CZP, 

which crosses the blood brain barrier and subsequently acts as the ligand activating the 

DREADD (11, 12). CZP has a relatively high EC50 (~57nM) at the muscarinic receptor M4-

based Gi-coupled DREADD (hM4D(Gi)) (10). This is up to 5-fold higher than the EC50 or IC50 

at receptors relevant to its action as an antipsychotic drug (13). In addition, patients on CZP 

can develop agranulocytosis, myoclonus and generalized seizures (14-16). Although recent 

studies highlight the ability of hM4D(Gi) expressed in epileptogenic zones to suppress focal 

seizures when activated (8, 17, 18), the pharmacological profile of CZP is far from optimal for 

clinical translation. Related antipsychotic drugs have been proposed as potential agonists (10, 

11), and two other drugs activating DREADDs have recently been described: “Compound 21” 

(C21) and perlapine (PLP) (19, 20). Although perlapine has previously been used as a mild 

sedative anti-histamine drug in Japan, neither it nor C21 is approved for clinical use by the 

FDA or EMA. Identification of an FDA/EMA-approved drug for repurposing as a DREADD 

activator would facilitate clinical translation of DREADD technology to treat CNS diseases.  
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Results  

hM4D(Gi)-dependent Kir3.1 and Kir3.2 activation 

In order to measure Gi-coupled hM4D(Gi) activation, we established an electrophysiological 

screen based on measuring the potentiation of the inward-rectifying potassium current in a 

HEK cell line stably expressing Kir3.1 and Kir3.2 (21) (Fig. 1a). We verified the sensitivity of 

the system by estimating the EC50 of CZP as 61±19nM (mean ± SEM, n=6), close to the 

reported EC50 of 57nM (10)). We used CNO (1µM) as a positive control to define maximal 

activation of hM4D(Gi) (Fig 1b), and confirmed that CZP, PLP and C21 are full agonists 

(efficacy in comparison to 1µM CNO: CZP/CNO=1.14±0.06, n=6; PLP/CNO=1.17±0.16, n=9; 

C21/CNO=1.11±0.07). C21 showed a significant lower EC50 than CZP (CZP EC50=61±19nM; 

PLP EC50=40±10nM; C21 EC50=20±4nM; p<0.05 one-way ANOVA with Bonferroni post-hoc 

test). We performed a shape (3D) (22, 23) and 2-D similarity (2D) screen (24) in order to 

identify FDA/EMA-approved drugs with structural and electrochemical properties similar to 

those of C21 (Fig. 2a). Prioritized drugs with similarity indicated by the TanimotoCombo score 

for the 3D screen, and by similarity for the 2D based screen, are listed in Fig. 2b and 

Supplementary Table 1. 

 

 

 
Figure 1: Electrophysiology-based screen of hM4D(Gi) activation. 
a) Left: Representative traces of Kir3.1 and Kir3.2 currents with (+CNO 1µM, lower) and without (baseline, 
upper) hM4D(Gi) agonist application. Middle: Mean current measured during the time indicated by the gray area 
in the left panel, plotted against holding voltage. The red line indicates the calculation of the membrane leak 
conductance, obtained from a linear fit between 0 and +50mV. Right: Leak-subtracted Kir3.1/Kir3.2-mediated 
currents, together with a linear fit to currents at negative potentials (blue). The slope of the current-voltage 
relationship (k) was used for subsequent analysis of hM4D(Gi) activation. b) Left: CZP, C21, and PLP act as full 
agonists of hM4D(Gi). All data are shown normalized to CNO (1µM) as a positive control, and fitted by a Hill 
equation. Right: EC50 of CZP, C21, and PLP (CZP:  EC50=61±19nM, n=6; PLP: EC50=40±10nM, n=9; C21: 
EC50=20±4nM; * p<0.05 one-way ANOVA with Bonferroni post-hoc test). 
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hM4D(Gi) activation with drugs identified by similarity screens 

We tested olanzapine (OZP, 3D rank 1), promazine (PZN, 3D rank 2), triptilennamine (TNA, 

3D rank 5), diphenhydramine (DPH, 3D rank 6), chlorprothixen (CZX, 3D rank 9), and 

amoxapine (AXN, 2D rank 2). We also tested the first, putative active metabolite of quetiapine 

(2D rank 6), norquetiapine (NQN) (25) (for chemical structures of all tested molecules – 

Supplementary Table 2). Of all drugs tested, only OZP was able to fully activate hM4D(Gi) 

at a concentration between 100-300nM, using 1µM CNO as control as above 

(OZP/CNO=1.18±0.13; n=3) (Fig. 2b). A full dose-response curve for OZP revealed an EC50 

of 5±2nM (n=6), significantly lower than CZP (EC50=61±19nM, n=6; p=0.0128, Student’s t-

test) (Fig. 3a).  

 

 

 
Figure 2: Shape- and 2D-similarity-based identification of novel hM4D(Gi) agonists. 
a) Overview of the 3D- and 2D-based virtual screen. C21 was used as the query compound for both the 2D-
similarity search of the ChEMBL database and the generation of a 3D shape-based model, because it showed the 
lowest EC50 at hM4D(Gi) of known agonists. For detailed virtual screening results see Supplementary Table 1. 
b) hM4D(Gi)-dependent potentiation of Kir3.1/Kir3.2 mediated currents measured for selected hit compounds, 
normalized by 1µM CNO as positive control. The Tanimoto-Combo (TC) score (for 3D screen), similarity (S) 
index (for 2D screen), the screening method (3D or 2D), and the tested concentration is indicated. For detailed 
structures of selected drugs see Supplementary Table2. 

 

In vivo verification that olanzapine activates hM4D(Gi) 

To test whether OZP is effective in vivo we redesigned a codon-optimized version of 

hM4D(Gi) linked via a viral self-cleaving 2A-peptide to GFP (hM4D(Gi)opt), and put it under 

control of a human CamKIIα promoter for selective expression in excitatory neurons (26). We 

verified that the EC50 of OZP at hM4D(Gi)opt was similar to that at the original hM4D(Gi): 

OZP hM4D(Gi)opt: EC50=7±2nM, n=6; OZP hM4D(Gi): EC50=5±2nM, n=6). P0 mice were 

randomized for injection of either 2.5µl AAV2/8-hM4D(Gi)opt or 2.5µL AAV2/8-CamKII-

copGFP (control) into both lateral ventricles (Fig. 3b right). A third group of mice received 
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no injection. After a period of training, their performance on the rotarod was then tested at 

~P42, while blinded to the viral injection. All mice received an acclimatization session on the 

rotarod on the day of testing, followed by two test sessions, one before and one after ligand 

injection. We injected OZP at a dose of 0.1mg/kg intraperitoneally, approximately 10-fold 

lower than the dose reported to achieve a peak plasma concentration equivalent to that obtained 

in patients treated with a typical anti-psychotic dose (27). OZP significantly reduced the latency 

to fall from 149±14sec to 111±11 sec (n=15; p=0.002; paired Student’s t-test) in hM4D(Gi) 

injected animals. In contrast GFP-injected animals showed no significant difference pre- and 

post-OZP (control: 180±21, OZP 0.1mg/kg: 169±25; n=15; p=0.568; paired Student’s t-test) 

(Fig. 3b). OZP also had no effect in mice that had received no viral injection (control: 212±21, 

OZP 0.1mg/kg: 189±20; n=6; p=0.109; paired Student’s t-test). 

 

 

 
Figure 3: Olanzapine is a potent agonist at hM4D(Gi). 
a) Left: Dose-response curves for CZP and OZP at hM4D(Gi). The inset shows the efficacy of OZP (100nM) and 
CZP (1µM), normalized to 1µM CNO as a positive control (CZP/CNO=1.14±0.06, n=6; OZP/CNO=1.01±0.06; 
n=6; p=0.12, Student’s t-test). Right: EC50 for CZP at hM4D(Gi), and OZP at hM4D(Gi) and at the codon 
optimized hM4D(Gi)opt (CZP: hM4D(Gi) EC50=61±19nM, n=6; OZP: hM4D(Gi) EC50=5±2nM, n=6, p<0.01 in 
comparison to CZP hM4D(Gi); OZP: hM4D(Gi)opt EC50=7±2nM, n=6, p<0.01 in comparison to CZP hM4D(Gi); 
one-way ANOVA with Bonferroni post-hoc test). b) Left: Latency to fall (sec) of animals injected with either 
AAV2/8-hCamKII-hM4D(Gi)opt (pre-OZP: 149±14sec, post-OZP: 111±11sec; **p=0.002, paired Student’s t-
test), or AAV2/8-hCamKII-GFP (pre-OZP: 180±21sec, post-OZP: 169±25sec; p=0.568, paired Student’s t-test)  
pre- and post-injection of OZP (0.1mg/kg intraperitoneal). Right: Representative confocal fluorescence images 
of mouse brains injected with either AAV2/8-hCamKII-hM4D(Gi)opt (DREADD), or AAV2/8-hCamKII-GFP 
(GFP) (scale bar 1mm). 
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Discussion  

Although recent papers highlight the potential of PLP or C21 as full and potent activators of 

the hM4D(Gi), they would require extensive screening to be approved for clinical use (28).  

PLP has been used clinically in Japan but was subsequently withdrawn from the market, calling 

for an alternative licensed drug that can be repurposed as an activator of hM4D(Gi) for clinical 

translation of DREADD technology. The present study shows that OZP (ranked first in the 3D-

based in silico screen) is a full and potent activator of hM4D(Gi). Its EC50 in comparison to 

EC50 and IC50 at targets related to its clinical use as an antipsychotic, is lower than for CZP 

(13). OZP is a second-generation atypical antipsychotic which is approved by the FDA and 

EMA for treatment of schizophrenia and manic episodes in bipolar disorder. A common side 

effect of OZP at doses used in schizophrenia and bipolar disorder is a small degree of weight 

gain (29). OZP is a D2-receptor antagonist and its side effect profile therefore also includes 

akathisia, extrapyramidal symptoms, tardive dyskinesia, and neuroleptic malignant syndrome, 

although these are much less common than for first-generation antipsychotic drugs such as 

haloperidol and chlorpromazine. The in vitro EC50 of OZP at hM4D(Gi) is in the range of 

affinities reported for its native drug targets (30). The ability to affect performance on the 

rotarod with 0.1mg/kg OZP reported here is consistent with the principle of receptor reserve, 

whereby GPCR-mediated effects can be achieved with low doses of agonist (31). Given that 

CZP is typically only prescribed for treatment-resistant patients, due to its unfavorable side 

effect profile (13), CZP is much less suitable for repurposing as a DREADD activator.  

We therefore propose that OZP, which is widely available in oral, intramuscular and 

intravenous formulations, is suited for clinical translation of hM4D(Gi)-based chemogenetics 

to treat CNS diseases, including refractory epilepsy.  
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Materials and Methods 

Voltage clamp recordings: 

A cell line stably expressing Kir3.1/3.2 (32) was cultured in DMEM GlutaMax® (Gibco), 

supplemented with 10% fetal bovine serum (Gibco), Penicillin/Streptomycin (50 I.U./m, 

Gibco), and contained 500µg/ml Geneticin® (Gibco) as a selection marker. Cells were 

transiently transfected with TurboFect® transfection reagent (Thermo Fisher Scientific) with 

3 µg of hM4D(Gi)-plasmid (Addgene, 45548) and 1 µg of CMV-GFP for cell identification. 

Standard whole-cell patch-clamp experiments were performed after 2-3 days as previously 

described (26). Briefly, borosilicate-glass electrodes were pulled (Sutter Instruments) and fire 

polished (Narishige), with a final resistance of 2-4.5 MΩ.  The extracellular recording solution 

contained (in mM): KCl 140, CaCl2 2.6, and MgCl2 1.2, HEPES 10, adjusted to pH 7.4 with 

KOH. The intracellular recording solution contained (in mM): KCl 107, MgCl2 1.2, CaCl2 1, 

EGTA 10, HEPES 5, Mg-ATP 2, and NA2-GTP 0.3, adjusted with KOH to pH 7.2. Cells were 

voltage-clamped at a holding potential of 0 mV, and a 100 ms step depolarization from -100 

mV to 50 mV was applied in 10 mV increments and a 30 sec inter-pulse interval. Whole cell 

currents were low-pass filtered at 2 kHz (Axopatch 1-D, Axon Instruments) and digitized at 10 

kHz. The membrane leak conductance in each cell was estimated from a linear fit to currents 

measured between 0 and +50 mV. The inward rectifying conductance mediated by Kir3.1/3.2 

was estimated from a linear fit to currents between -100 and 0 mV after subtracting the leak 

conductance (Fig. 1a).  All recordings were performed at room temperature, and the different 

drugs were applied by a custom-built perfusion system. Clozapine-N-oxide (CNO, Generon, 

#HY17366), perlapine (PLP, Tocris, #5549), compound 21 (C21, HelloBio, #HB6124), 

clozapine (CZP, Cayman Chemicals, #12059), olanzapine (OZP, Santa Cruz Biotechnology, 

#sc-212469), promazine (PZN, Sigma Aldrich, #46674), triptilennamine (TNA, Santa Cruz 

Biotechnology, #sc-229608), diphenhydramine (DPH, Cerilliant, #D-015), chlorprothixen 

(CZX, Santa Cruz Biotechnology, #sc-211077), norquetiapine (NQN, BioVision, #2362), and 

amoxapine (AXN, LKT labs, #A5059) were dissolved in either DMSO or extracellular 

recording solution at a stock concentration of 1mM, and subsequently diluted to specified 

concentrations. CNO (1 µM) was routinely tested to estimate maximal activation of hM4D(Gi) 

in each cell, and the Kir3.1/3.2-mediated conductance activated by each agonist application 

was therefore related to that evoked by 1 µM CNO. 

Molecular biology: 

The hM4D(Gi)-plasmid was purchased from Addgene (#45548). Standard molecular biology 

techniques were used to clone dscGFP-T2A into an AAV2 transfer plasmid.  The codon-
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optimized version  of the HA-hM4D(Gi) (GeneOptimizer®, GeneArt®, Thermo Fisher 

Scientific) was linked to dscGFP via a viral 2A peptide. For in the in vivo experiments the 

CMV promoter was replaced with a CamKIIα-promoter to allow expression in excitatory 

neurons (26), the antibiotic resistance was changed from ampicillin to kanamycin, and a 

restriction site after the 2A peptide was removed. 

In silico screening: 

One low energy conformation of C21 calculated with Omega 2.3.2 (33, 34) was used as the 

query for the generation of the shape-based model. The default model was modified and the 

final model only contained the color features shown in Fig. 2a. A maximum number of 200 

conformers were generated for Drugbank version 5.0.7 (32) with Omega 2.3.2 (33, 34). The 

default settings of vROCS 3.0.0 (22, 23) were used for screening and hits were ranked 

according to the TanimotoCombo score. 

The ChEMBL (24) web service (https://www.ebi.ac.uk/chembl/; access date 2017/06/21) was 

employed to find FDA/EMA-approved drugs with similar 2D structure as C21. 

Viral injections: 

All animal procedures were performed in accordance with the [Author University] animal care 

committee's regulations. Viral aliquots were prepared of AAV2/8-CamKIIα-GFP-T2A-

hM4D(Gi)opt or AAV2/8-CamKIIα-GFP (both titres >1011 GC/ml; Vectorbuilder) and coded 

by a researcher conducting neither surgical procedures nor behavioral analyses. P0 neonatal 

CL57BL/6 mice were anaesthetized with intraperitoneal ketamine 6mg/kg and midazolam 

0.2mg/kg. A 10μl microinjection syringe fitted with a 32G angled needle (Hamilton) was filled 

with one or other virus. Mouse pups (n=30) were divided equally between viral types and 

manually injected with 2.5μl into each lateral ventricle, approximately 1mm lateral from the 

sagittal suture and halfway between lambda and bregma, to optimize widespread cerebral 

transduction. 6 pups received no injection. Pups’ paws were marked with green tattoo ink to 

allow differentiation between viral types, and after recovery they were returned to their home 

cage. 

Behavioral analysis: 

At P35 mice were trained on a mouse Rotarod (Ugo Basile). Mice were initially acclimatized 

for 10 minutes on the Rotarod turning at 5 revolutions per minute (RPM), replacing them each 

time they fell off, followed by acceleration over a 5-minute period from 5 to 40 RPM. The 

sequence was repeated 4 times. The latency to fall or to three consecutive cartwheels was 

recorded. Training was repeated daily until every mouse’s performance reached a plateau, 

taking approximately 2 weeks. 
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On the day of DREADD agonist testing the mice had a further acclimatization session (5 

minutes at 5RPM followed by 4 accelerations) followed by a break of at least 30 minutes. They 

were then tested twice, with the same protocol as the acclimatization session, before and 20 

minutes after intraperitoneal injection of OZP 0.1mg/kg. The latency to falling off or 

cartwheeling was recorded. Trial times were recorded using Excel (Microsoft), and statistical 

analyses performed with Graph Pad Prism 5.01, by a researcher blinded to viral treatment. 

Confocal Fluorescence: 

To establish the extent of viral transduction mice were anaesthetized with 150mg/kg 

pentobarbital (Boehringer Ingelheim) and transcardially perfused with 20ml heparinized 

(80mg/L) phosphate-buffered saline (PBS, Sigma-Aldrich) until the perfusate was clear, then 

switched to 4% paraformaldehyde (Tocris) (20ml). Brains were extracted and immersed in 4% 

PFA for a further 24 hours, before vibratome slicing (VT1000S Leica) at 50μm, mounting on 

slides with Vectashield mounting medium with DAPI (Vector Labs) and confocal fluorescence 

imaging (Zeiss LSM 710) to visualize GFP expression. 

Statistical Analysis: 

Statistical analysis was performed with Graph Pad Prism 5.01. Unpaired/paired Student’s t-

test, or one-way ANOVA with Bonferroni post-hoc test was used as indicated. Data are shown 

as mean±sem, and the significant level was set to an α-error of p<0.05. 
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Supplementary Table 1: Hit list of the 3D- and 2D-based screens. Only FDA/EMA-approved 

molecules are listed (applicable for CHEMBL databank). The drug name, Tanimoto Combo 

(for 3D) or similarity (for 2D), as well as the screen database, and the individual identifiers 

(ID) are indicated. (Drugbank 5.0.7(35), CHEMBL(24), accessed 21.June 2017) 
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Supplementary Table 2: Structures of all tested molecules (note that also Norquetiapine is 

shown which has not been tested) 
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