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Abstract. Drug combinations have demonstrated high efficacy and low
adverse side effects compared to single drug administrations in can-
cer therapies, and thus draw intensive attentions from researchers and
pharmaceutical enterprises. Thanks to the fast development of high-
throughput screening (HTS) methods, the amount of available drug com-
bination datasets has tremendously increased. However, existing drug
combination databases are lack of indications of the drug combination-
s and quantitative dose-responses. Therefore, there is an urgent need
for a comprehensive database that is crucial to both experimental and
computational screening of drug combinations. In this paper, we present
DrugCombDB, a comprehensive database dedicated to integrating drug
combinations from various data sources. Concretely, the data sources
include 1) high-throughput screening assays of drug combinations, 2)
external databases, and 3) manual curations from PubMed literature. In
total, DrugCombDB includes 1,127,969 experimental data points with
quantitative dose response and concentrations of drug combinations cov-
ering 561 unique drugs and 104 human cancer cell lines, and 1,875 FDA
approved or literature-supported drug combinations. In particular, we
adopted the zero interaction potency (ZIP) model [2] to compute the
scores determining the synergy or antagonism of two drugs. To facili-
tate the downstream usage of our data resource, we prepared multiple
datasets that are ready for building prediction models of classification
and regression analysis. A website with user-friendly data visualization is
provided to help users access the wealth of data. Users can input a drug
of interest to retrieve associated drug combinations, together with the
supporting evidence sources and drug targets. Our database is available
at http://drugcombdb.denglab.org/.

Background

Although targeted drugs have led to remarkable advances in the treatment of
cancer patients, their clinical benefits to tumor therapies are greatly limited due
to intrinsic and acquired resistance of cancer cells against such drugs. The root
cause of development to drug resistance lie in that compensatory kinases and
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pathways become activated and maintain the growth and survival of tumor cells.
Drug combinations have demonstrated great advantage to improve efficacy and
overcome resistance for treating complex and refractory diseases, compared to
single drug administrations in cancer therapies, and thus draw increasing atten-
tions from researchers and pharmaceutical enterprises. Despite the increasing
successes of combination drugs in inhibiting cancer cell proliferation, most of
them are discovered by clinical experience or by occasional chances. So, there
is an urgent demand for rational and systematic methodology to screen cancer-
specific and sensitive combinatorial drugs for cancer therapy. With insight gained
by the understanding of pathway interdependencies that are critical for cancer
cell proliferation and survival in a specific cancer type, researchers are able to de-
sign multiple agents to synergistically inhibit signaling pathways. However, the
wet-lab experiments currently used to dissect the cellular mechanism of cascade
signal transduction and signaling network.

Thanks to the fast development of high-throughput screening (HTS) method-
s, it is possible to systematically evaluate the pairwise combinations from a large
number of both approved and investigational chemical compounds. As a result,
the amount of available drug combination datasets has tremendously increased,
which can benefit the researchers a lot. However, existing database DCDB [1],
which has not been updated since 2014, covers only 1,363 drug combination an-
notations extracted from FDA orange books and records of clinical trials using
the text-mining technique, which are lack of indications of the drug combina-
tions and quantitative dose-responses. Therefore, there is an urgent need for a
comprehensive database that is crucial to both experimental and computational
screening of drug combinations.

In this paper, we present DrugCombDB, a comprehensive database dedicat-
ed to integrating drug combinations from various data sources. Concretely, the
data sources include 1) high-throughput screening assays of drug combination-
s, 2) external databases, and 3) manual curations from PubMed literature. In
total, DrugCombDB includes 1,127,969 experimental data points with quantita-
tive dose response and concentrations of drug combinations covering 561 unique
drugs and 104 human cancer cell lines, and 1,875 FDA approved or literature-
supported drug combinations. In particular, we adopted the zero interaction
potency (ZIP) model [2] to compute the scores determining the synergy or an-
tagonism of two drugs. To facilitate the downstream usage of our data resource,
we prepared multiple datasets that are ready for building prediction models
of classification and regression analysis. Moreover, a website with user-friendly
data visualization is developed to help users access the wealth of data. Users
can input a drug of interest to retrieve associated drug combinations, together
with the supporting evidence sources and drug targets. The dose responses and
drugs concentrations with respect to cancer cell lines are displayed in interactive
scatter plots.

To the best of our knowledge, DrugCombDB is the first comprehensive database
with the largest number of drug combinations to date. We believe it would great-

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/477547doi: bioRxiv preprint 

https://doi.org/10.1101/477547
http://creativecommons.org/licenses/by-nc-nd/4.0/


ly facilitate and accelerate the discovery of novel synergistic drugs for the therapy
of complex diseases, especially for the cancers developed drug resistance.

Data resources

HTS assays

The main data source of DrugCombDB comes from high-throughput screen-
ing assays that are released by publications concentrated on combinational ther-
apies. We have conducted careful publication retrieval to collect experimental
data sets via PubMed and search engine. As a result, three large-scale wet-lab
experiments carried to explore efficacy of drug combination are collected from
related publications [3, 4]. In these experiments, high-throughput screening as-
says are applied to identify the combinatorial efficacy (synergy, additivity and
antagonism) between different drugs, in which the quantitative dose responses
of cancer cells to different drug combinations and different concentrations are
recorded.

Mohammad et al. aimed to explore adaptive resistance of melanoma cells to
RAF inhibition [3]. By performing dye-based imaging assays, the dose respons-
es of BRAFV600E melanoma cells in response to Vemurafenib with another
compound were monitored. Viability and apoptosis were scored to measure the
resulting states of BRAF melanoma cells. We collected 620 experimental da-
ta points in total, in which Vemurafenib was in combination with 37 different
compounds at different concentrations.

Similarly, a high throughput screening platform is adopted to discover thera-
peutic combinations for the activated B-celllike subtype (ABC) of diffuse large B
cell lymphoma (DLBCL) [5]. The therapeutic efficacy between different drugs in
combination with Brutons tyrosine kinase inhibitor ibrutinib are measured. Ibru-
tinib is designed to target the chronic active B-cell receptor signaling pathway
that characterizes ABC DLBCL. In total, 466 different agents were evaluated in
combination with ibrutinib using 6× 6 dose-response blocks. As a result, 16,776
experimental data points were integrated into DrugCombDB.

Jennifer et al. presented an unbiased oncology compound screening to iden-
tify novel combination strategies [4]. The high-throughput screening for combi-
natorial drugs was performed on the fully automated GNF PolyTarget robotic
platform, where cells were treated with a 4 by 4 matrix of drug concentrations.
Based on the cell viability measured by using CellTiter-Glo cell viability reagent
(Promega), the highest single agent (HSA) and Bliss independence models were
applied to determine the combinatorial efficacy. Totally, this assay yield to 22,737
data points of 583 pairwise drug combinations over 39 diverse cancer cell lines.

Moreover, a large amount of organized experimental points from national
institutes of health (NIH) database supported by national cancer institute (NCI),
which is also devoted to helping researchers from related fields to do analytical
work, were integrated into DrugCombDB. Thanks for the persevering effort of
NCI, we are able to download the data set that is available on NCI website [7].
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This assay was conducted within 3 x 3 dose-response matrix containing 82,209
pairs of drug combinations. Consequently, 739,881 data points were integrated
to DrugCombDB.

In summary, DrugCombDB contains 1,126,109 experimental data points cov-
ering 105,449 pairwise drug combinations, 561 unique drugs and 104 cancer cell
lines.

Text Mining

To extend the coverage of DrugCombDB, text mining tools are employed
to extract drug combinations from literature. Using drug combinations, combi-
nation drug, combinatorial drugs, and synergistic drugs as query keywords, we
searched the PubMed database and obtained 922 distinct publications with ti-
tles including one of these keywords. These publications focus on the therapeutic
effect of various drug combinations using in vitro models and flow cytometry.
Subsequently, we adopted PubTator [5], a web-based tool facilitating manual
literature curation through powerful text-mining techniques, to annotate the
abstracts of the publications. Taking the PubMed ID list of the filtered publica-
tions as the input, PubTator can mark the discriminative concepts such as gene,
chemical, disease, species and mutations in different colors. Consequently, we
manually check the titles and abstracts with highlighted concepts, and identify
drug combinations that have demonstrated therapeutic efficacy in certain cancer
cells in these publications.

Three-drug combinations

Due to the limitations of experimental capability, the high-throughput assays
were generally conducted within dose-response matrixes, which can only accom-
modate two drugs. Accordingly, double-drug treatments are the research focus
in drug screening. However, complicated drug combinations mean more targets,
which can improve efficacy and overcome resistance for treating complex and re-
fractory diseases. During the process of collecting data, especially in text-mining,
we also collected many combinations of multiple drugs evaluated by biochemical
experiments or clinical trials. In order to expand the scale of DrugCombDB, we
also integrated these data into our database for enhanced functionalities.

Data Normalization

As the drug combinations in DrugCombDB were collected from different
types of sources, including biochemical assays, high-throughput screening ex-
periments, other related databases and text mining results, the dose response
values vary from different experimental protocol and platforms. To facilitate
usage of our database, we normalized the dose response values to give coinci-
dent and comparable therapeutic efficacy over different data sets. Considering
that the cell viability and the apoptosis rate upon treatments are the most used
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measures in drug combination assays, we introduced the normalized inhibition
rate of cancer cell to drug treatments as the uniform measure, using min-max
normalization that is defined below:

inhibition rate =
max(viability) − viability

max(viability) −min(viability)
(1)

inhibition rate =
apoptosis−min(apoptosis)

max(apoptosis) −min(apoptosis)
(2)

As a result, 1 represents the most synergistic efficacy and 0 represents the
most antagonistic efficacy. The normalized inhibition rates range from 0 to 1,
which is favorable for regression analysis. It is worth noting that, for each tested
drug combination, HTS assays yield to a number of experimental data points
comprised of a dose response matrix corresponding to different concentration
combinations. Together with the drug concentrations, the normalized inhibition
rates greatly expand the volume of training data for regression analysis.

Classification of synergism and antagonism

It is well-known that the efficacy of drug combinations is classified as syn-
ergistic or antagonistic, depending on that cancer cells are inhibited from or
accelerated to proliferation than the additivity efficacy of independent treat-
ment of two drugs. The synergistic or antagonistic effect can be determined by
the deviation of the dose response curves from the expected effect calculated
based on a reference model of Loewe additivity or bliss independence. When the
percentage of inhibited or killed cancer cells is greater than expected, then the
drug combinations are classified as synergistic. On the other hand, antagonism
is determined when the drug combination produces effect worse than expected.
Although the normalized inhibition rate mentioned above quantify the response
of cancer cells to certain concentrations of drug combinations, the cutoff of syn-
ergy and antagonism cannot be simply determined. To build the training set for
classification model, we proceed to process these data sets using comprehensive
model that takes the whole dose response matrix into account.

The existing scoring models to quantify the efficacy of drug combination-
s, for example, highest single agent model and bliss independence model, were
proposed originally for low-throughput drug combination experiments. When
tackling large-scale doseresponse experiments with various dose pairs, the mod-
el assumptions are not capable for the complex patterns of drug interactions.
To overcome the limitations, we adopt a novel reference model named zero in-
teraction potency (ZIP), to further process our data sets. ZIP model has been
demonstrated to capture the drug interaction relationships by comparing the
change in the potency of the doseresponse curves between individual drugs and
their combinations [3].

ZIP is a response surface model that combines the advantages of the Loewe
and the Bliss models, which proposed a delta score to characterize the synergy

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2018. ; https://doi.org/10.1101/477547doi: bioRxiv preprint 

https://doi.org/10.1101/477547
http://creativecommons.org/licenses/by-nc-nd/4.0/


landscape over the full dose-response matrix. The ZIP model assumes that two
non-interacting drugs are expected to incur minimal changes in their dosere-
sponse curves. A delta score is computed to quantify the deviation from the
expectation of ZIP for a given dose pair and utilized the average delta over a
doseresponse matrix as a summary interaction score for a drug combination. As
a result, ZIP model is perfectly compatible with high-throughput drug combi-
nation screening data. One advantage over traditional model is that ZIP model
has definite threshold derived from mathematical reasoning to determine the
classification of drug combinations (synergy or antagonism). Formally, the drug
combinations with ZIP score greater than 0 are classified as synergistic ones, oth-
erwise antagonistic ones. Therefore, we computed the ZIP score by running Syn-
ergyFinder [2], a web application for analyzing drug combination dose-response
matrix, for each data sets, and classify each drug combinations to synergy or
antagonism according to its ZIP score.

FUNCTIONALITIES

A website with user-friendly data visualization is provided to help users ac-
cess the wealth of data. We have developed a few functional modules to assist
downstream users explore the value of our website. The browser module is the
fundamental section, where all drug combinations we collected can be displayed
with different entries. Meanwhile, to help users make sufficient usage, more de-
tailed information of the associated drugs is also displayed, including molecular
weight and smile string, which can be retrieved on Stitch. The browser page is
shown in Figure 1.

The query module takes drug names as input to search for all related drug
combinations containing the drug, and the query drug combinations with respect
to cancer cell lines will be presented in the form of both interactive scatter plot
and tabular viewers. In the scatter plot viewer, each dynamic point represents
a pair of drug combination with concentrations, the horizontal axis corresponds
to different cell lines targeted by the drug combination, and the the vertical
axis indicates the normalized growth rate, as shown in Figure 2. In particu-
lar, the same drug combination has diverse concentrations, therefore, different
kinds of drugs are marked with different colors for better distinction. Detailed
information about the combinations can be displayed by clicking the hyperlinks
of the scatters, where other original data about the combination assay and its
source can be explored, as shown in Figure 3. In the tabular viewer, the partici-
pated drugs of the combination, corresponding concentrations, normalized dose
response or referred to as growth, targeting cell line and its supporting literature
source are displayed for each combination, as shown in Figure 4.
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Fig. 1. The predicted sensitivities of the combination drugs Lapatinib and Rapamycin.

Fig. 2. The predicted sensitivities of the combination drugs Lapatinib and Rapamycin.
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Fig. 3. The predicted sensitivities of the combination drugs Lapatinib and Rapamycin.
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