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ABSTRACT 
Speech comprehension requires segmenting continuous speech to connect it on-line with 

discrete linguistic neural representations. This process relies on theta-gamma oscillation 

coupling, which tracks syllables and encodes them in decipherable neural activity. Speech 

comprehension also strongly depends on contextual cues predicting speech structure and 

content. To explore the effects of theta-gamma coupling on bottom-up/top-down dynamics 

during on-line speech perception, we designed a generative model that can recognize syllable 

sequences in continuous speech. The model uses theta oscillations to detect syllable onsets 

and align both gamma-rate encoding activity with syllable boundaries and predictions with 

speech input. We observed that the model performed best when theta oscillations were used 

to align gamma units with input syllables, i.e. when bidirectional information flows were 

coordinated, and internal timing knowledge was exploited. This work demonstrates that 

notions of predictive coding and neural oscillations can usefully be brought together to account 

for dynamic on-line sensory processing. 

Key words: Speech processing, neural theory, computational modelling, neural oscillations, 

predictive coding. 

INTRODUCTION 
Neural oscillations are involved in many different cognitive operations (Buzsáki and Draguhn, 

2004; Lakatos et al., 2008; Wang, 2010), and considering their cross-frequency coupling 

permits to even more closely approach their function, e.g. perception, memory, attention etc. 

(Hyafil, Giraud, et al., 2015). In the domain of natural speech recognition, an important role 

has been assigned to the coupling of theta and gamma oscillations (Canolty et al., 2006; 

Ghitza, 2011; Giraud and Poeppel, 2012), as it permits to hierarchically coordinate the 

encoding of phonemes within syllables, without prior knowledge of their duration and temporal 

occurrence, i.e. in a purely bottom-up on-line way (Hyafil, Fontolan, et al., 2015). 

Natural speech recognition also strongly relies on contextual cues to anticipate what is going 

to be said next, and when (Rimmele et al., 2018). Recent studies underline the importance of 

top-down predictive mechanisms during continuous speech perception and relate them to 

another range of oscillatory activity, the low-beta band (Ghitza, 2011; Fontolan et al., 2014; 

Park et al., 2015; Lewis et al., 2016; Sedley et al., 2016; Pefkou et al., 2017). Predictive coding 

(Rao and Ballard, 1999; Friston and Kiebel, 2009; Bastos et al., 2012) offers a theory of brain 

function in the tradition of Analysis-by-Synthesis (Liberman et al., 1967; Norris and McQueen, 
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2008; Moulin-Frier et al., 2015) and the Bayesian Brain (Knill and Pouget, 2004) hypothesis, 

which are invoked as critical in speech processing (Poeppel, Idsardi and Van Wassenhove, 

2008).  

Bottom-up and top-down approaches of speech processing both find support in modeling 

studies. A neurocomputational model involving the coupling of realistic theta and gamma 

excitatory/inhibitory networks was able to pre-process speech in such a way that it could then 

be correctly decoded by machine learning (Hyafil, Fontolan, et al., 2015). This model aimed 

at understanding the computational potential of realistic oscillatory neural processes rather 

than simply fitting existing data. A radically different model, solely based on predictive coding, 

was able faithfully recognize isolated speech items (such as words, or full sentences when 

considered as a single speech item) (Yildiz, von Kriegstein and Kiebel, 2013). Although both 

approaches intended to describe speech perception, one model focused on the on-line 

parsing aspect of speech processing, and the other on recognizing isolated speech segments 

(no parsing needed). Combining the physiological notion of neural oscillations with the 

cognitive notion of predictions is appealing as it could broaden the capacity, improve 

performance, and enhance the biological realism of neurocomputational models of speech 

processing. More generally and interestingly, such an attempt offers the opportunity to explore 

the possible articulations between two equally important neuroscientific levels of description, 

computational/algorithmic for analysis-by-synthesis and algorithmic/implementational for 

neural oscillations (Marr and Poggio, 1976). 

In this study, we addressed whether a predictive coding speech recognition model could 

benefit from neural oscillation processes. We designed a neurocomputational model based 

on the predictive coding framework in which we included theta and gamma oscillatory 

functions. The specific goal of the model was to parse and identify on-line syllables from 

natural sentences. We examined the possible mechanisms by which theta oscillations can 

interact with bottom-up and top-down information flows and assessed the effects of this 

interaction on the efficacy of the syllable decoding process. We show that on-line speech 

recognition works best when syllable onset information provided by theta oscillations is 

combined with endogenous knowledge about syllable duration, and more broadly when 

continuous predictive processes are informed by dynamic oscillation-based cues. 

RESULTS 

Model architecture and performance 
Our goal was to assess the role of temporal information/cues in the extraction of individual 

syllables from a continuous speech signal (segmentation). We hypothesized that internal 

generative models including temporal predictions should benefit from such cues. To address 

this hypothesis and to account for recurrent processes occurring during speech recognition 

(Wacongne et al., 2011; Gagnepain, Henson and Davis, 2012; Fontolan et al., 2014; Lewis 

and Bastiaansen, 2015), we used a continuous predictive coding model (described in 

Methods). Our model explicitly separates “what” from “when”, with “what” referring to the 

identity of a syllable and its spectral representation (a non-temporal sequence of spectral 

vectors), and “when” to the prediction of the timing and duration of syllables as implemented 

through periodic/oscillatory processes (Arnal, 2012; Arnal, Doelling and Poeppel, 2015). 

“When” predictions took two forms: statistical (not syllable specific) in a theta-module, and 

syllable-specific in a parallel spectrotemporal-module (Figure 1).   
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Figure 1. Model of natural sentence processing: syllable parsing and identification. The bottom 
two rows show the speech waveform and the corresponding envelope and full auditory spectrogram 
(Chi, Ru and Shamma, 2005). The envelope and a reduced auditory spectrogram serve as input to the 
model, whose two main levels are represented in the top two panels. The bottom level of the generative 
model encodes the envelope (left) and the dynamics of the reduced 6 frequency channels (right). The 
reduced auditory spectrogram was obtained by splitting the original 128 channels into 6 bands; the 
extent of each band is indicated by a different color in the stacked vertical lines to the right of the 
spectrogram. The averages across frequencies within each band define the reduced channels 
appearing on the bottom level of the model (the colors of the stacked vertical lines indicate the 
corresponding frequency band in the full spectrogram). The top level of the model includes a theta 
module, and a spectrotemporal module with gamma and syllable units. The theta module contains a 
theta oscillation and is fed with the envelope; it extracts candidate syllable onsets from local minima in 
the envelope and uses a theta oscillation to parse them. It sends the resulting signal to reset gamma 
units. The 8 gamma units operate at the gamma scale and provide processing windows for the syllable 
encoding process. They activate sequentially and periodically at syllabic rhythm. The model uses the 
last (8th) unit in the cycle to “predict” the end of the syllable and reset syllable units to a common value, 
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such that evidence accumulation can start anew upon arrival of a new syllable (upward arrows). The 
gamma units also deploy in time the learned spectrotemporal patterns associated with each syllable 
unit. During inference, the model changes the activation level of each syllable unit, which represents 
the model’s estimated probability that the associated syllable is generating the current sensory input. 
The unit with the highest average activation level within the temporal window corresponding to a syllable 
in the input sentence is considered the recognized syllable.   

 

The model works by inverting an internal model that generates sensory input from internal 

representations about the causes of that input. Sensory input corresponds to the speech 

envelope and a 6-channel auditory spectrogram of a full natural sentence (bottom rows of 

Figure 1), which the internal model generates from four elements (depicted in Figure 1): 1/ a 

theta oscillation, 2/ a speech envelope unit in a theta-module, 3/ a pool of syllable units (as 

many as syllables in the input sentence), and 4/ a bank of eight gamma units in a 

spectrotemporal-module. Together gamma and syllable units generate top-down predictions 

of the input spectrogram. Each of the eight gamma units represents a phase in the syllable; 

they activate sequentially and the whole activation sequence repeats at syllabic rhythm. Each 

syllable unit is hence associated with a sequence of eight vectors (1 per gamma unit) with 6 

components each (one per frequency channel) (see Figure S1). The auditory spectrogram of 

a single syllable is therefore generated by the dynamic activation of the corresponding syllable 

unit over the entire duration of the syllable. As gamma units become sequentially activated 

they span the 8 vectors that represent the syllable and are deployed over the duration of the 

syllable (400 timepoints in the simulation, corresponding to 200ms).  

Since each gamma unit corresponds to a specific vector in the sequence, it is important that 

the 1st gamma unit aligns with the beginning of a syllable in the input. To achieve this precise 

alignment the theta-module detects syllable onsets making use of an envelope unit that tracks 

the envelope, and a theta oscillation. Syllable onset detection relies on the selection, by the 

theta oscillation, of local minima in the envelope that are separated by (at least) one theta 

period. When local minima in the envelope fall within the eligibility window defined by a specific 

theta phase, they are considered as syllable onsets (Figure 2C). Detected syllable onsets 

reset gamma units so that the first one, which initiates the whole sequence, is activated at the 

right time. Once gamma units are temporally aligned with the input, the model updates its 

estimates about syllable units to minimize the difference between the model’s generated 

spectrogram and the actual input spectrogram. Syllable units whose spectrogram is consistent 

with the sensory input increase their activity level, while activity of the others decreases. 

Successful recognition occurs when this online prediction error driven process leads to 

elevated activity in a single syllable unit. The syllable unit with the highest activation level 

within the temporal window corresponding to a syllable in the input sentence is considered the 

recognized syllable, Figure 2D. The last (8th) gamma unit (Figure 2E, teal arrows) signals the 

last part of the syllable and resets all the syllable units to a common low activation level; thus, 

evidence accumulation can start anew when the sensory input from the next syllable arrives. 

In the model, theta and gamma oscillations are used for syllable parsing and spectrotemporal 

pattern encoding at phonemic scale, respectively. The theta module implements an explicit 

oscillator at theta frequency, deploys temporal predictions about syllable onset and results in 

syllable parsing. It represents endogenous knowledge about average syllable duration and is 

not syllable specific. The spectrotemporal module is based on a theta phase code at phonemic 

scale for the deployment of the syllable spectrogram, each gamma unit representing a given 

phase within the overall syllable-driven theta. This module contains predictions about spectral 
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features and expected duration of each possible syllable. These predictions are deployed in a 

nested way by having gamma units repeat at a theta rhythm (Figure 1, top-level). In summary, 

syllable specificity is implemented through syllable units in a pool of potential syllables. 

Syllable units express the model’s confidence that the corresponding syllable is the cause of 

the current sensory input; their causal states take values from 0 to 1. The model can therefore 

make any number of syllable-specific predictions based on the activation of the syllable units. 

In the present model, they predict a spectral pattern (a sequence of spectral vectors) and 

implicitly their own duration, which corresponds to a fixed sequence of gamma units, where 

each one represents a particular phase within a syllable specific “theta” period (a theta-related 

principle different from the one used within the theta-module). 

  

Figure 2. Temporal dynamics of model variables during the inference process. Panels A, B and 
C on the left illustrate the extraction of theta and local minima triggers, the two alternative syllable onset 
signals that can be extracted from the speech envelope. Panel A: theta oscillation (in blue) and eligibility 
windows defined by theta-phase (in red). Panel B: envelope causal state (in blue) and local minima 
triggers derived from it. The outcome of theta filtering is shown in panel C with envelope in blue and, in 
red the level of coincidence between the eligibility windows in A (derived from the theta oscillation) and 
local minima in B (derived from the speech envelope). Red spikes correspond to the model’s estimate 
of syllable onsets, and define the triggers used to reset gamma units in the full model. The theta module 
also generates a speech envelope signal (panel F, thick line), which is compared with the input envelope 
(thin line) at the bottom level. Panels D and E illustrate the reset of gamma and syllable units (causal 
states in E and D, respectively). Syllable onset information carried by theta triggers resets the dynamics 
of gamma units and the last gamma unit (thick teal coloured unit, Tint) is used to reset the dynamics of 
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syllable units. Causal states corresponding to gamma and syllable units generate the sound 
spectrogram (panel G, colour codes the 6 frequency channels) as a weighted sum of syllable specific 
patterns fed into a Hopfield network (detailed in equations 18 and 19, in Methods). The generated 
envelope (2F, thick line) and amplitude modulations of the 6 frequency channels (2G, thick lines) are 
then compared with the envelope (2F, thin line) and auditory spectrogram (2G, thin lines) of the input 
sentence; mismatch between predicted dynamics and input (prediction errors) propagates back through 
the hierarchy and updates internal estimates of the hidden and causal states in the theta and 
spectrotemporal modules. The sentence used for these illustrations was “She had your dark suit in 
greasy wash water all year”. 

  

The model was presented with 30 spoken English sentences corresponding to 10 different 

sentences for 3 different speakers (Table S1). Sentences were presented one at a time and 

the syllable pool contained only the syllables present in the input sentence. Even though a 

biological theta oscillator can deal with variable syllable rates (Hyafil, Fontolan, et al., 2015; 

Pefkou et al., 2017), we normalized syllable length to have standardized spectrotemporal 

representation and same number of gamma units for each syllable. After normalization all 

syllables had the same duration. However, naturally occurring gaps of different durations 

broke perfect rhythmicity. Figure 2 illustrates the dynamics of the model’s first and second 

levels during inference for a sample sentence. Model performance, quantified by the median 

percentage of correctly identified syllables was 90.2%. For the sentence in Figure 2, all 

syllables were correctly identified. After each reset of syllable units at the end of the previous 

syllable, all units started with the same low activation and prediction errors increased the 

activity of the correct unit (Figure 2D).  

Resets and theta oscillation 
The model presented above includes a physiologically motivated theta oscillation, which uses 

local minima in the envelope to provide syllable onsets, to temporally align internally generated 

predictions with the input. It also relies on the reset of accumulated evidence by silencing 

syllable units at syllable boundaries. In a next step, we sought to assess the importance of 

these two processes for proper online syllable parsing and identification. We also wanted to 

compare the two sources of temporal information available, the endogenous knowledge 

represented by gamma and syllable units, and the external information carried by the 

combination of envelope and theta oscillation. To this end, we run simulations for five different 

model architectures (Figure 3, top panel), where the main components were the same, but the 

information used to organize (reset) the activity of gamma and syllable units differed (Table 1, 

in Methods). Model 3E is the model described in the previous section and depicted in Figure 

1. Variants included models with 1/ no reset of syllable units (no reset of accumulated 

evidence, models 3A and 3B), 2/ reset of gamma units by candidate syllable onsets provided 

directly by local envelope minima (3A and 3C), or 3/ by theta parsed local minima (3B, 3D and 

3E), and 4/ reset of syllable units (accumulated evidence) by theta parsed local minima 

(stimulus driven duration information, 3D) or 5/ by the last gamma unit (internal expectations 

of syllable duration, 3E). 

Figure 3 (bottom panel) shows the median performance for each architecture. Although all 

model variants performed well above chance level (around 8%), there were significant 

performance differences across them (p-values for pairwise comparisons are presented in 

Table S2). Performance was significantly lower in models A and B versus C, D, and E, 

indicating that syllable units reset is a crucial factor for accurate speech encoding, as it cancels 

out accumulated evidence about previous syllable before the processing of a new syllable 
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starts. Furthermore, when we compared models A and C versus B and E, we found that using 

theta triggers to reset gamma units (B and E) rather than local envelope minima triggers (A 

and C) also improved model’s performance. Interestingly, the increase in performance due to 

theta triggers is small (and non-significant) when the reset of syllable units was disabled (A vs 

B). In comparison, when syllable units were reset, the performance gain caused by theta 

triggers was around 30% and statistically significant (C vs E). The conclusion of these 

simulations is that the model performs best when gamma units are reset by theta oscillations, 

and when syllable units are endogenously reset after completion of each gamma-units 

sequence. This means both stimulus-driven information filtered by theta oscillations and reset 

of evidence accumulation are equally important.   

However, two different mechanisms can reset syllable units. In model variant D, syllable units 

are reset by syllable onsets as detected by the theta oscillation, whereas in model variant E 

syllable units are endogenously reset by the last gamma unit. Our simulations indicated that 

model variant E performed better than D, meaning that performance benefited from the 

combination of external, envelope driven syllable onsets, with endogenously generated 

syllable duration information. Figure S2 illustrates how each trigger impacts the internal 

dynamics of syllable and gamma units for different model architectures. The figure clearly 

shows that syllable onsets detected by the theta oscillation contribute to temporally organize 

gamma units, whereas explicit reset of syllable units results in clear peaks within syllable 

boundaries, hence in better recognition. Finally, the model variant depicted in Figure 3E, which 

combines theta detected syllable onsets and internal expectation about syllable durations to 

reset gamma and syllable units, respectively, yielded the least distorted gamma sequence 

activity (no breakdown of their orderly sequential activation) and clear winners within each 

syllable boundaries (Figure S2E). 

Overall, these results show that two processes positively influence online speech 

segmentation into distinct recognisable syllables. The first one pertains to the implementation 

of the coupling of theta/gamma processing levels: gamma units must be reset by syllable onset 

as detected by theta oscillations, while evidence accumulation by syllable units must be reset 

by gamma units upon syllable completion. The second one pertains to the ability of the model 

to combine stimulus driven information (theta triggered onsets) and endogenous temporal 

information (gamma-related syllable-specific duration). 
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Figure 3. Model variants and their performance. To assess the relative contribution of each source 
of temporal information, we tested 5 configurations of the model (top panel). The bar plot represents 
the median performance of each model configuration on the 30 sentences, with error bars showing the 
25% and 75% percentiles across the 30 sentences; the dashed horizontal line represents chance level. 
Pairwise comparisons were performed using the Wilcoxon signed rank test with false discovery rate to 
correct for multiple comparisons. 
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DISCUSSION 
We designed a hierarchical on-line speech recognition model, composed of a first level that 

receives as input the envelope and time-frequency decomposition of natural English 

sentences, and a second level that involves a theta-oscillation and a module containing a 

sound spectrogram. The role of the theta module is to parse the input sentence into syllable-

like segments by picking local minima in the speech envelope that correspond to syllable 

onsets. This information is then used to reset gamma-rate activity in the spectrotemporal 

module, ensuring that the latter aligns with syllable timing in the input. Gamma and syllable 

units dynamically generate the spectral content of syllables, and each syllable is encoded by 

the sequential activation of a bank of eight 25ms integration gamma units (Roß et al., 2000; 

Lakatos, 2005). Model simulations suggest that on-line syllable parsing and recognition 

requires an explicit reset of syllable units before the syllable starts or after it ends. The model’s 

performance is higher when this explicit reset is based on expected syllable duration rather 

than only on syllable onset information extracted by theta oscillations. However, the best 

model performance is obtained when 1) theta oscillations reset gamma units and 2) gamma 

units reset syllable units, a model architecture where theta oscillations produce an optimal 

alignment of top-down and bottom-up information flows. In summary, our simulation results 

suggest that on-line speech recognition works best when syllable onset information delivered 

by theta oscillations is used in combination with internal knowledge about syllable duration, 

and more generally when dynamic oscillation-based cues interact with continuous predictive 

processes. 

The proposed model was exapted from a speech recognition model (Yildiz, von Kriegstein and 

Kiebel, 2013), inspired by birdsong generation (Yildiz and Kiebel, 2011). While most 

simulations described in the 2013 article were performed on monosyllable words (digits), our 

proposed model extends the approach to natural continuous speech sequences made up of 

subunits (syllables in our case) whose order is not known a priori, an important step toward 

neurobiological realism of neurocomputational models of language processing. Indeed, 

speech is made of linguistic building blocks permitting (quasi)infinite combinatorial 

possibilities. We capture this combinatorial freedom by assuming that syllables can appear in 

any order, i.e. have an equal probability, which is not entirely true for natural speech. This 

place our model in a more challenging situation than when facing real speech statistics, which 

emphasizes our main results that the precise coordination of bottom-up and top-down 

information flow is critical for recognition, and that neural oscillations optimize this coordination 

by signalling syllable boundaries. In our model, the input is a sentence that can vary in duration 

from 6 to 23 syllables separated by gaps of different durations. The first and essential step the 

model has to achieve is therefore to retrieve correct syllable boundaries. This syllabification 

issue is non-trivial and is classically dealt with by off-line methods, e.g. Mermelstein algorithm 

(Mermelstein, 1975). Yet, a theta-range natural oscillator can achieve accurate on-line 

syllabification (Hyafil, Fontolan, et al., 2015). This is possible when the oscillator is weak, 

meaning that its intrinsic frequency can adapt, within limits, to that of an external stimulus. The 

theta oscillator in that case was built from reciprocal connections between excitatory and 

inhibitory leaky integrate-and-fire neurons. For the current model, we used a simplified version 

of this network that enabled online syllable onset detection based on envelope tracking. Note 

that a more biophysical theta oscillator flexibly driving integration windows in the gamma-unit 

bank would allow us to deal better with syllables of variable length, as they occur continuous 

natural speech. For the sake of parsimony, this was not implemented in the present work. 
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A critical aspect of the model is the coupling between theta and gamma modules. Many 

experimental studies show that neural theta and gamma activity interact (Lakatos et al., 2008; 

Luo and Poeppel, 2012; Lisman and Jensen, 2013; Hyafil, Giraud, et al., 2015; Lam et al., 

2016), and most likely that theta organizes gamma activity to align neural encoding timing with 

stimulus timing to preserve the hierarchy between phonemes and syllables (Giraud and 

Poeppel, 2012; Martin and Doumas, 2017). Although this is not the only possible option 

(Kösem et al., 2016), in our variant models B, D and E (Figure 3) we adopt the most 

straightforward view (Lakatos, 2005; Ghitza, 2011) that the slow oscillation controls the fast 

one, and implemented it via a reset of gamma units by theta triggers. The observation that 

theta triggers always performed better than local minima triggers (A and C versus B, D and 

E), shows that the theta module successfully filters out irrelevant acoustic troughs in the 

envelope, which is a challenge for envelope-based syllable boundary detection (Villing, Ward 

and Timoney, 2006). Comparing the performance of models A vs B and C vs E, further 

suggests that the temporal organization of gamma units by theta triggers results in better 

coordination of top-down and bottom-up information flows, than when all local minima are 

taken into account. The model also contains a gamma-theta interaction within the 

spectrotemporal module, where gamma units by themselves build their own theta rhythm. This 

implicit coupling provides an additional syllable parsing opportunity. 

Although important, the reset of gamma units by the theta module was not sufficient to ensure 

good performance. The latter remained modest, around 30% (i.e. 20% above chance level), 

in all models that did not further include explicit syllable units reset. If a syllable is recognized, 

the corresponding syllable unit is higher than the others and affects the processing of the next 

syllable. By incorporating a reset of the accumulated evidence about the previous syllable, 

performance increased by up to 50% (models A and B versus C, D and E, Figure 3). However, 

only model variant 3E, which combines envelope driven temporal information (theta triggers) 

with endogenous syllable duration information (gamma triggers) performed significantly higher 

than model variant D that only relies on theta triggers. There are two possible reasons for this 

difference. First, as theta triggers reset syllable units at the beginning of a syllable, and gamma 

triggers at the end, there could be a reset position effect on the model's performance. Second, 

the theta module can occasionally fail to detect some syllable onsets, thus failing to reset 

syllable units and preventing correct identification. To test this hypothesis, we re-ran 

simulations on these two architectures (D and E), with a modification. Instead of leaving the 

model detect syllable onsets from the envelope, we explicitly provided syllable onset 

information to the model. Figure 4 shows that the modified model correctly identifies all the 

syllables for both variants (theta triggers with or without gamma triggers). In sum, when all 

syllable onsets are ideally detected the model is always able to recognize syllables. Arguably 

in realistic listening conditions, when not all syllable onsets are detected (because of noise, 

cocktail-party situations etc), the brain might benefit from endogenous clocking mechanism - 

implemented here as a fixed gamma units sequence. Our results hence suggest that some 

processing redundancy might be necessary to cope with the various challenges posed by 

natural speech on-line recognition, and that on-line speech recognition heavily relies on a 

trade-off between adaptability to speech rate via flexible theta oscillations, and relatively fixed 

encoding rate via endogenous gamma. This observation concurs with our previous 

experimental findings that theta but not gamma oscillations flexibly track speech rate (Pefkou 

et al., 2017). 
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Figure 4. Explicit versus detected onsets.  Performance for configurations D and E depending on 
whether syllable onsets are detected by the theta-module (detected onsets) or when true syllable onsets 
are explicitly provided to the model (explicit onsets; ideal onset detection condition). For explicit (true) 
onsets, both model versions show very high performance, therefore whether the triggers to syllable 
units are provided at syllable onset (configuration D) or end (configuration E) is not the key element for 
the performance difference. As theta-onset detection is not perfect, especially when there is a big gap 
(more than 50-60 tp) between syllables, the configuration that relies on the endogenous syllable 
duration information performs better. 

 

Although the notion of top-down control is constitutively present in our predicting coding 

implementation, our model still lacks the notion that top-down processes occur preferentially 

at low-beta rate, as recently demonstrated (Bastos et al., 2012; Fontolan et al., 2014; Lewis 

et al., 2016; Sedley et al., 2016). The predictive coding model we used here works in a 

continuous inferential mode, which is discretized only by virtue of syllable timing. Yet, it seems 

that gamma bottom-up activity is modulated at low-beta rate (Fontolan et al., 2014; Bouton et 

al., 2018), which could offer top-down integration constants that are intermediate between 

syllables and gamma phonemic-range chunks, and whose advantage could be to smooth the 

decoding process by providing sequential priors at intermediate scale between phonemes and 

syllables. Alternatively, beta top-down rhythm could also be related to expected precision, thus 

encoding second order statistics (Friston and Kiebel, 2009). Expected precision weighs 

bottom-up prediction errors, hypothesized to work at gamma, and could control their impact 

on the evidence integration process. When the sensory input corresponding to a new syllable 

arrives, the large prediction error could decrease the estimated confidence in top-down 

prediction and boost that in bottom-up prediction error. If the relative weight of bottom-up and 

top-down information is carried by low beta activity, we would then expect an alternation with 

a theta rhythm, a finding that was experimentally observed (Fontolan et al., 2014). An 

important generalization for the model would thus consist in adopting a framework that 

estimates precisions (Friston, Trujillo-Barreto and Daunizeau, 2008; Friston et al., 2010). 

These proposals remain speculative, and neurocomputational modelling could be one way to 

address whether the principle of frequency and temporal division of bottom-up and top-down 
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processing is functionally interesting, and whether low-beta rate for top-down flow is optimal 

or merely a “just so” phenomenon.  

Although our goal was not to design a speech processing model that can compete with those 

used in the domain of automatic speech recognition (Li et al., 2014; Prabhavalkar et al., 2017; 

Sak et al., 2017), it turns out that the notion of neural oscillations could be relevant for the 

latter. Hyafil and Cernak (Hyafil and Cernak, 2015) demonstrated that a biophysically plausible 

theta oscillator which can syllabify speech on-line in a flexible manner makes a speech 

recognition system more resilient to noise and to variable speech rates. It is possible that 

introducing more oscillatory mechanisms in ASR could further improve performance and 

resilience to noise. This is possibly the case for using a basic sampling rate in the low-gamma 

range as implemented here instead of faster ones as commonly used (Hirsch, Hellwig and 

Dobler, 2001). Likewise, using oscillation-based top-down updating, which could deploy 

predictions about when events are expected to happen, something that most ASR systems 

do not yet do (Davis and Scharenborg, 2016). 

This theoretical work shows the interest of extending predictive coding approaches to the 

domain of neural oscillations, which permits i) to emulate a neurally plausible interface with 

the real world that is able to deal with the continuous nature of biological stimuli and the 

difficulty to parse them into elements with discrete representational value, and ii) to provide 

internal orchestration of the information flow that supply possible deficiencies of interfacing 

mechanisms.  
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METHODS 

Speech Input 
We used 30 recorded English sentences from the TIMIT database (Garofolo et al., 1993) for 

our simulations. The sentences were spoken by 3 different male speakers (10 sentences 

each). Overall, those 30 sentences include 389 syllables. Input to the model consisted of 1) a 

time-frequency representation of the sound wave and 2) the speech envelope. We used a 

biologically inspired model of the auditory periphery (Chi, Ru and Shamma, 2005) to obtain 

the time-frequency representation. By default, it transforms the auditory signal into 128 

logarithmically spaced frequency channels, spanning from 150 Hz up to 7 kHz. Then we 

normalized the spectrogram so that its values are between 0 and 1. After averaging the activity 

of neighboring channels, we reduced the number of channels to 6, covering the range of 

frequencies from 150 Hz to 5 kHz. To obtain the envelope, we applied the Hilbert transform 

on the waveform of each sentence (smoothed using Matlab’s (MATLAB 2014b, The 

MathWorks, Inc., Natick, Massachusetts, United States) default “smooth” function and 
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normalized to [0,1] interval). Each recorded sentence was therefore represented by seven 

information channels, the envelope (E(t)) plus 6 frequency bands (Ff(t); f= 1,… 6). 

Syllabification 
The model’s goal is to recognize syllables on-line, which requires defining syllables in the input 

to subsequently assess the model’s performance. The TIMIT corpus provides phonemic 

boundaries labeled by professional phoneticians. This information was passed to Tsylab2, a 

program that provides candidate syllable boundaries based on the TIMIT phonemic annotation 

and on English grammar rules (Fisher, 1996). In the model, we actually considered an 

alternative definition of the syllable based on the sound envelope. We used the notion that 

syllable onsets are located next to local minima of the envelope (Figure S3, dashed black lines 

on panel c) (Villing, Ward and Timoney, 2006). Most (but not all) local minima in the envelope 

correspond to moments when the speaker finished/started a speech segment such as a 

syllable or word. Therefore, we realigned the Tsylab2 boundaries to the closest local minimum 

on the envelope when the difference between Tsylab2 boundaries and local minimum was 

below 50 ms; otherwise the Tsylab2 boundaries were kept.  

Temporal normalization 

To keep the model as simple as possible, we normalized syllable duration. Every syllable was 

represented by 400 time points. The mean syllable duration in our sentence set was around 

200 ms; that is, each timepoint corresponds on average to about 0.5 ms. Gaps between 

syllables were not normalized and resulted in 76 gaps with durations from 7 to 237 timepoints 

(Figure S4). The resulting set of syllables and gaps was concatenated in the same order as 

they appeared in the original sentence. The input is, therefore, a sequence of normalized 

syllables with interleaved gaps of varying duration. 

Generative model 
We used a predictive coding model to parse and recognize individual syllables from the 

continuous acoustic waveform of spoken English sentences. The core of the predictive coding 

framework is a hierarchically structured generative model that represents the internal 

knowledge about the statistics and structure of the external world. During the inference 

process, the brain inverts the generative model and tries to infer the hidden causes of the 

sensory input. To invert the generative model, we used the Dynamic Expectation Maximization 

algorithm (Friston, Trujillo-Barreto and Daunizeau, 2008), which is based on top-down 

predictions and bottom-up prediction errors.  

We considered a generative model with two hierarchically related levels. At each level i in the 

hierarchy, dynamics are determined by local hidden states (denoted by x(i)) and causal states 

from the level above (denoted by v(i)). At the same time, each level generates causal states 

that pass information to the level below (v(i-1)). Hidden states are subject to dynamical 

equations while causal states are defined by static, generally nonlinear transformations of 

hidden states and causal states. Schematically 

Top level (i = 2)  

  (2) (2) (2) (2)( )x f x   [1] 

  (1) (2) (2) (2)( )v g x   [2] 

The dynamics at this level are only determined by hidden states x(2). v(1) is the output to the 

level below. The hidden states at this level include hidden states for a theta oscillator, the 
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speech envelope, syllable units and gamma units (see below for details). ε(i) and η(i) (i = 1, 2) 

stand for random fluctuations for hidden and causal states respectively (the same notation is 

used in the next sections); their precision determines how predictions errors are weighted 

(Friston, Trujillo-Barreto and Daunizeau, 2008). Causal states passing information to the 

bottom level include causal states for syllable units, gamma units and the envelope.  

Bottom level (i = 1)  

  (1) (1) (1) (1) (1)( , )x f x v   [3] 

  (0) (1) (1) (1) (1)( , )v g x v   [4] 

At this level, there are hidden and causal states related to the 6 frequency channels and a 

causal state for the envelope (which is relayed without modification from the top level).   

The output of the bottom level v(0) is then compared with the input Z(t): a vector containing the 

envelope and the reduced 6-channel auditory spectrogram.  

 (0) ( )v Z t   [5] 

In the following we write the explicit form of these equations. Figure S5 provides a schematic 

about all the variables used in the model. 

Top Level 
The top level has two modules; a theta module with envelope and theta oscillation units and 

a spectrotemporal module with gamma and syllable units. 

Theta Module 
The role of this module is twofold. First, it tracks the envelope in the input signal and detects 

the local minima on it. Second, theta oscillation filters detected local minima that are separated 

by at least a theta cycle. These are the model’s estimates of syllable onsets. 

The theta module tracks and low-pass filters the envelope in the input with the following pair 

of equations:  

   (2)0 A

dA

dt
  [6] 

 



  (2)

R

dR A R

dt
  [7] 

The perfect integrator (equation 6) tracks the amplitude fluctuations of the envelope. During 

inference, A generates an envelope signal that is compared with the input envelope (see 

Figure S5); precision weighted prediction errors in generalized coordinates drive equation 6 

and result in the variable A tracking the envelope (Figure 2C). A low-pass filtered version is 

then provided by equation 7.  

Then we wrote equations to extract filtered versions of the first and second order derivatives 

of the envelope:  

 





 

   

1

2

(2)1
2

(2)2
2 1

r

r

dr
r

dt

dr
R br cr

dt

  [8] 
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r2 is a filtered version of the first order derivative of R.  

We apply the same transformation to r2 to obtain r2,2, a filtered version of the second order 

derivative of the envelope:  

 





 

   

2,1

2 ,2

2,1 (2)
2,2

2,2 (2)
2 2,2 2,1

r

r

dr
r

dt

dr
r br cr

dt

  [9] 

 r2 and r2,2 will be used to define the “local minima” in the envelope below (equation 23). 

Additionally, in the theta module, there is a harmonic oscillator with fixed frequency ‘Ω’:  

 







 

  




1

2

(2)1
2

(2)2
1

2

2000

q

q

dq
kq

dt

dq
kq

dt

k

  [10] 

Where 2000 is the sampling rate and Ω = 5 Hz is the syllabic frequency. This ensures that the 

theta period corresponds to the normalized syllable duration.  

Spectrotemporal module 

Gamma Units 

Gamma units are modeled as a stable heteroclinic channel, which results in their sequential 

activation (Rabinovich et al., 2006) (for details see (Yildiz and Kiebel, 2011; Yildiz, von 

Kriegstein and Kiebel, 2013)). The duration of each gamma unit is fixed to 50 timepoints (tp), 

thus, it operates at a gamma scale (50 tp corresponds to around 25ms). There are 8 gamma 

units, and the whole sequence of 8 units has the same period as the normalized syllables. In 

other words, the model has intrinsic information about syllable duration associated with the 

sequence of the gamma units. 

In the model, gamma units provide processing windows for the syllable encoding process. The 

active unit determines which part of the syllable is encoded at each moment of time. For 

example, if the first gamma unit is active, then the first 1/8 part of the spectral content of a 

syllable is encoded, if the second gamma unit is active then the second 1/8 part is encoded 

and so on.  

The mathematical equations are adapted from Yildiz et al (Yildiz, von Kriegstein and Kiebel, 

2013).  

            (2)
2 0[ ( ) 1] ( ) z

dz
z S z z z T

dt
  [11] 

 


 


     (2)
,0

1

( )ji

i

N
zzi

i i i y
j

dy
e y e y y T

dt
  [12] 

Where  

 i represents the index of gamma unit and takes values from 1 to N = 8 
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 z is a vector of 8 units encoding the amplitude fluctuations of the gamma units, whereas 

the vector y shows the amplitude of the gamma units scaled to [0, 1] interval. 

 z0 and y0 represent the reset values of z and y, corresponding to the state when the 

first gamma unit is active (the start of the gamma sequence) 

 T stands for the trigger that gamma units receive from the theta module (Table 1) 

 β = 3 is a scaling factor to amplify triggers  

 S(z) = 1/(1+e-z) is applied component-wise. 

 ij  0 is the connectivity matrix, determining the inhibition strength from unit j to i. The 

values of the connectivity matrix  are defined as follows:  

 




 
 

 


0

1.5 1

0.5 1

1

ij

i j

j i

j i

otherwise

  [13] 

The first term on the right-hand side of both equations is taken from (Yildiz, von Kriegstein and 

Kiebel, 2013). The value of 2 was set so that the gamma sequence’s duration is 400 tp. We 

added the 2nd term on the right-hand side of both equations to reset the gamma units whenever 

a trigger about syllable onset arrives; the triggers ensure that irrespective of the current state 

of the network, the first unit is activated and the gamma sequence is deployed from the 

beginning whenever there is a trigger. When the trigger corresponds to a syllable onset, it 

ensures that the gamma sequence is properly aligned with the input and therefore that the 

spectrotemporal predictions temporally align with the input. Whenever a syllable starts, the 

first unit of the gamma sequence should be activated; otherwise the model would encode the 

spectral content of the wrong part of a syllable.  

Syllable units 

The last module of the top level contains the syllable units; they represent evidence that the 

associated syllables corresponds to the syllable in the input. The number of syllable units 

varies from sentence to sentence and corresponds to the number of syllables in the input 

sentence. The equations for syllable units are:  

  


      (2)

0( )
d

T
dt

  [14] 

Where T corresponds to triggers (Table 1) that reset the activation level of the syllable units. 

A trigger drives the activity level of all syllable units towards an equal value 0. As we will 

specify below, triggers originated either from the theta module, signalling estimated syllable 

onsets, or from the last gamma unit, signalling internal expectations about the end of a 

syllable. Between triggers syllable units act as evidence accumulators. The activation level of 

each unit determines its contribution to the generated auditory spectrogram (equations 16 and 

19). 

The causal states of the second level pass information to the bottom level:  

    (1) (2)y   [15] 

  
 


 



(1) (2)1

1 e
  [16] 
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   (1) (2)
A AA   [17] 

Equation 15 corresponds to the 8 scaled gamma units (equation 12); they activate sequentially 

and take values between 0 and 1. Equation 16 corresponds to the Nsyl syllable units; the 

corresponding causal states are obtained by applying a component-wise sigmoid function to 

the syllable hidden states (equation 14) so that they are bounded between 0 and 1. Since all 

the syllables in the input are present in the memory pool, prediction error (the difference 

between predicted and actual spectrotemporal patterns at the first level) will be minimized 

when the causal state of the corresponding syllable unit in the model is driven close to 1 while 

all others are driven close to 0. Finally, equation 17 sends information about the current 

estimate of the envelope.  

Bottom level 
The bottom level contains variables related to the amplitude fluctuations of the frequency 

channels as well as the envelope. 

The amplitude fluctuations of the frequency channels are modeled with a Hopfield attractor-

based neural network (Hopfield, 1982). The following equations were adapted from Yildiz et 

al (Yildiz, von Kriegstein and Kiebel, 2013).  

      
(1)

(1) (1) (1)
1[ tanh( ) ]

dx
Dx W x I

dt
  [18] 

 
  

 

 
 


8

(1) (1)

1 1

sylN

f fI P   [19] 

x(1) is a vector with 6 components (one per frequency channel), D is a diagonal self-

connectivity matrix and W is an asymmetric synaptic connectivity matrix; they were designed 

so that the Hopfield network has a global attractor whose location depends on vector I (Yildiz 

and Kiebel, 2011; Yildiz, von Kriegstein and Kiebel, 2013). In equation 19, (1) and (1) are 

the causal states for the gamma and syllable units from the top level (equations 15 and 16). 

Because of the sequential activation of gamma units during a syllable, I represents a vector 

for each of the gamma units. Pf is defined from the spectrotemporal patterns STf  

associated with each syllable as follows:  

   

 

  
6 6

1 1

tanh( )f fi i fi i
i i

P D ST W ST   [20] 

Syllable spectrotemporal patterns STf were calculated by averaging each of the 6 frequency 

channels (Ff(t)) within each of the eight 50tp windows () for each syllable (). As the syllables 

were normalized to 400 tp, and we used 6 frequency channels per syllable, the 

spectrotemporal patterns are matrices with 6 rows and 8 columns for each syllable () (Figure 

S1). 

Because the vector I determines the global attractor, sequential activation of the gamma units 

makes the global attractor change continuously over time and generate the pattern 

corresponding to syllable ‘ω’ when v(1)
ω = 1 and v(1)

not ω = 0 . 

The outputs of this level are the state of the Hopfield network, which predicts the activity of the 

frequency channels in the input, and the causal state associated with the envelope (relayed 

from the top level):  
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 

  

 

 

(0) (1) (1)

(0) (1) (1)

f f

A A A

x
  [21] 

Those quantities are compared with the envelope (E(t)) and frequency channels (Ff(t)) in the 

input signal:  

 








(0)

(0)

( )

( )

A

f f

E t

F t
  [22] 

The discrepancy between top-down predictions and sensory input is propagated back in the 

hierarchy to update hidden state and causal state estimates so that prediction errors are 

minimized. 

The values of all parameters used in the model, as well as precisions for hidden and causal 

states for both levels, are presented in tables 2 and 3 respectively. 

Resets/Triggers and Model Variants 
To ensure that predictions are temporally aligned with the input, the model needs to align the 

gamma network with syllable onsets. Moreover, ideally, evidence accumulation should be 

reset before or at syllable onset. In principle, both resets could be driven by prediction errors. 

However, our basic model also involves explicit resets.  

When present, the trigger to reset gamma units (denoted by T in equations 11 and 12) was 

driven either by local minima in the envelope, which we refer as local minima triggers Tlm, or 

by theta-filtered local minima (referred as theta triggers T).   

Local minima triggers Tlm were defined as the periods for which r2 ≈ 0 and r2,2 > 0 (equations 

8 and 9 and red trace in Figure 2B). These were defined as the product of a Gaussian on r2 

centered at zero and a sigmoid function on r2,2:  

 






 




2
2

2
1

1 2 ,2

2

[ 0.017]
1

r

lm r

e
T

e
  [23] 

We used a fixed positive threshold 0.017 to reduce false positives due to fluctuations on the 

envelope.  

Theta-triggers T: Not all local minima correspond to syllable onsets and the theta oscillation 

was used to select local minima that are separated by at least one theta cycle. Operationally, 

this was done by selecting only local minima that occurred in the vicinity of the theta oscillation 

minima, defined by phase eligibility windows T (red trace in Figure 2A)  

 







 


2
2

2
2

( 1)

2 2
2 2 2

1 2

,
nq

n

q
T e q

q q
  [24] 

The overlap between the local minimum trigger Tlm and the eligibility window T, defines the 

theta triggers T (red trace in Figure 2C):  

   lmT T T   [25] 
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When present, the reset to syllable units (Tω , equation 14) was driven by the theta triggers T 

(defined above) or by the model’s knowledge about syllable duration provided by the sequence 

of gamma units. Since the last (eighth) gamma unit signals the end of the syllable, it can define 

a trigger that we refer as the internal trigger (denoted as Tint and plotted as a thick line in figure 

2E):  

 int 8T y   [26] 

In summary, to reset gamma units the model uses envelope based estimates of syllable onset 

locations provided either by local minima or theta triggers (Tlm and T respectively), whereas 

to reset syllable units the model either uses theta triggers (T) or internal information about 

syllable duration - Tint. To explore the relative importance of each resetting mechanism for the 

overall performance of the model, we compared five different model variants (Figure 3, top 

panel); each with a different combination of triggers to reset the dynamics of syllable and 

gamma units (Table 1).  

Model Output 
The performance of the model was quantified by the proportion of correctly identified syllables. 

To define the syllables identified by the model, we considered the time average of the causal 

state (, equation 14) of each of the syllable units taken within the boundaries of each input 

syllable. The syllable unit with the highest causal state average over this window was 

considered the model’s choice.  

The temporal window is determined by the actual input syllable boundaries and not by the 

model’s estimates of syllable boundaries, since the latter changed across models. 

When the model’s choice corresponded to the syllable in the input, we considered it as 

successful recognition. For each sentence, we calculated the percentage of correctly identified 

syllables.   

Statistical analyses 
As described in the previous section, a single number (% correctly identified syllables) 

describes the performance of the model for each sentence. Simulations were run on 30 

sentences, and the performance of each model architecture is thus described by a vector of 

30 numbers. The non-parametric Wilcoxon signed-rank test for repeated measures was used 

to compare models’ performance. False discovery rate (Benjamini and Hochberg, 1995; 

Benjamini and Yekutieli, 2001) was used to control for multiple comparisons.  

Finally, chance level (around 8%) for the whole dataset was estimated by calculating the 

median of the distribution of the chance level across all sentences. The chance level of each 

sentence equals to 1/Nsyl., where Nsyl is the number of syllables in it. 

Table 1. Triggers for each model configuration 

 Gamma units Syllable units 

Model A T = Tlm T = 0 

Model B T = T T = 0 

Model C T = Tlm T = Tint 

Model D T = T T = T 

Model E T = T T = Tint 
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Table 2. Parameter values 

 Hidden states Causal states 

Top level 

 

 

 

 

 

Triggers 

 = 10 

b = 0.5, c = 0.04 

Ω = 4 

 = 0.125, 2 = 0.2625 

β = 3 

 

1 = 0.005, 2 = 0.075 

1 = 730 

 = 3 

Bottom level 1 = 2  

 

Table 3. Precisions 

 Hidden states Causal states 

Top level W = exp(15) 

W = exp(2) 

W = exp(30) 

WA = exp(30) 

WR = exp(10) 

Wr  = exp(15), r = (r1, r2, r2,1, r2,2) 

V  = exp(5) 

V = exp(5) 

VA = exp(30) 

Bottom level Wf = exp(8) Vf = exp(12) 

VA = exp(15) 
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