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Abstract: Current phylogenetic clustering approaches for identifying pathogen transmission 18 

clusters are centrally limited by their dependency on arbitrarily-defined genetic distance 19 

thresholds for within-cluster divergence.  Incomplete knowledge of a pathogen’s underlying 20 

dynamics often reduces the choice of distance threshold to an exploratory, ad-hoc exercise 21 

that is difficult to standardise across studies. Phydelity is a new tool for the identification of 22 

transmission clusters in pathogen phylogenies. It identifies groups of sequences that are more 23 

closely-related than the ensemble distribution of the phylogeny under a statistically-24 

principled and phylogeny-informed framework, without the introduction of arbitrary distance 25 

thresholds.  In simulated phylogenies, Phydelity achieves higher rates of correspondence to 26 

ground-truth clusters than current model-based methods, and comparable results to 27 

parametric methods without the need for parameter calibration.  28 

 29 

Availability and implementation: Phydelity is available at 30 

http://github.com/alvinxhan/Phydelity.  31 

 32 

  33 
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Introduction 34 

Recent advancements in high-throughput sequencing technologies have led to the widespread 35 

use of sequence data in infectious disease epidemiology (Gardy and Loman, 2017). In 36 

particular, phylogenetics is frequently used to infer genetic clusters underlying the structure 37 

of transmission networks (Ambrosioni et al., 2012; Bezemer et al., 2015; de Oliveira et al., 38 

2017). Current phylogenetic approaches for inferring transmission clusters (primarily 39 

‘cutpoint-based’ methods) are centrally limited by the need to define arbitrary, absolute 40 

cluster divergence thresholds (Ragonnet-Cronin et al., 2013; Prosperi et al., 2011). The lack 41 

of a consensus definition of a phylogenetic transmission cluster (Grabowski and Redd, 2014) 42 

coupled with incomplete knowledge of a pathogen’s underlying epidemiological dynamics 43 

often reduces the choice of cutpoints to an ad hoc exploratory exercise resulting in subjective 44 

cluster definitions. 45 

 46 

Phydelity is a new tool for inferring putative transmission clusters through the identification 47 

of groups of sequences that are more closely-related than the ensemble distribution under a 48 

statistically-principled framework. Notably, Phydelity only requires a phylogeny as input, 49 

negating the need to define arbitrary cluster divergence thresholds, and also only has a single 50 

parameter that can either be user defined or determined directly by Phydelity. Phydelity is 51 

freely available at http://github.com/alvinxhan/Phydelity.  52 

 53 
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 54 
Figure 1. (A) Phydelity algorithm pipeline. (B). Clustering correspondence metrics for clustering algorithms 55 
(Phydelity, WPGMA and MSBD) applied to phylogenies generated from simulations of HIV epidemics of 56 
hypothetical MSM sexual contact network types B and C, with inter-communities transmission rates weighted at 57 
50% of within-community rate (Villandre et al., 2016). (C) Clustering results of Phydelity on HIV-1 subtype A 58 
env sequences collected from the Rakai Community Cohort Study (Grabowski et al., 2014). Tips are coloured 59 
by Phydelity clusters and those marked with ● were phylogenetic clusters identified by Grabowski et al.      60 
 61 

Method 62 

Phydelity considers the input phylogeny as an ensemble of putative clusters, each consisting 63 

of an internal node i and the leaves it subtends. The within-cluster diversity of node i is 64 

measured by its mean pairwise patristic distance (𝜇#). Phydelity then determines the pairwise 65 

patristic distance distribution of closely-related tips, which comprises the pairwise distances 66 

of sequence j and its closest k-neighbouring tips, where the closest k-neighbours includes 67 

sequence j. The user can input the desired k parameter or Phydelity can automatically scale k 68 

BA Network type B; Inter-communities transmission rate weight = 50%

Network type C; Inter-communities transmission rate weight = 50%Determines pairwise patristic 
distance distribution of closely-

related tips

Calculates WCL

Distal dissociation

Integer Linear Programming 
(ILP) optimisation

Main objective: 
max 0.5(∑lj,i) – 0.5(∑ni)

Post-ILP clean-up

C
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to the value that yields the supremum distribution with the lowest overall divergence. All 69 

tests of Phydelity presented in this work were performed using the autoscaled value of k.  70 

 71 

Regardless of how the distance distribution of closely-related tips is determined, Phydelity 72 

uses this distribution to calculate the within-cluster divergence limit (WCL), an upper bound 73 

to 𝜇# of putative clusters:  74 

𝑊𝐶𝐿 = �̅� + 𝜎 75 

where �̅� is the median pairwise distance of the closely-related tips distance distribution and 𝜎 76 

is the corresponding robust estimator of scale without assuming symmetry about �̅�. 77 

 78 

This is followed by distal dissociation of distantly-related descendant subtrees/sequences to 79 

any ancestral node with 𝜇# > 𝑊𝐶𝐿, thereby facilitating identification of both monophyletic 80 

as well as nested, paraphyletic clusters (Han et al., 2018). Phydelity filters outlying tips from 81 

putative clusters under the assumption that viruses infecting individuals in a quick 82 

transmission chain are ultimately descended from the same source and are highly similar 83 

genetically. An outliers is defined by a node-to-tip distance more than three deviations from 84 

the median distance. An integer linear programming model is implemented and optimised 85 

under a blended objective of equal weights to maximise the number of sequences clustered 86 

within the lowest number of clusters. Lastly, clean-up steps are taken to remove any 87 

topologically outlying singletons that were spuriously clustered as described in Han et al. 88 

(2018).  The full algorithm description and mathematical formulation of Phydelity is detailed 89 

in Supplementary Materials. 90 

 91 

For computational performance, Phydelity can process a phylogeny of 1000 tips, on an 92 

Ubuntu 16.04 LTS operating system with an Intel Core i7-4790 3.60 GHz CPU, in ~3 93 

minutes using a single CPU core and 253 MB of peak memory usage.  94 

 95 

Results 96 

Phydelity was evaluated on phylogenetic trees derived from simulated HIV epidemics of two 97 

hypothetical MSM sexual contact network types (network types B & C) produced by 98 

Villandre et al. (2016), wherein quick transmission chains (i.e. transmission clusters) could 99 

be attributed to sexual contact among individuals belonging to the same community. Network 100 

type B, which corresponded best with the assumption of monophyletic clusters, consisted of a 101 
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main contact network of 60 individuals with single linkages to 25 disjoint subnetworks of 20 102 

subjects. Conversely, the more realistic network type C included 100 communities of sizes 103 

sampled from an empirical distribution obtained from the Swiss HIV Cohort Study. For both 104 

network types, inter-community transmission rates were weighted at 25%, 50%, 75% or 105 

100% of the within-community rate. These simulated datatsets were also tested by Barido-106 

Sottani et al using their multi-state birth-death (MSBD) method which infers transmission 107 

clusters by detecting significant changes in transmission rates (Barido-Sottani et al., 2018). 108 

More information on the simulated epidemics are included in Supplementary Materials. 109 

 110 

Clustering results from Phydelity were compared to those generated by the MSBD method 111 

and a cutpoint method based on the weighted pair-group method of analysis (WPGMA) 112 

(Villandre et al., 2016) (Figure 1B, Supplementary Fig. 1 and Supplementary Table 1). Both 113 

the adjusted rand index (ARI) and variation of information (VI) were calculated to quantify 114 

the correspondence between the actual network communities and clustering results. Villandre 115 

et al. (2016) assessed four different commonly used cutpoint-based methods, including 116 

arbitrarily varying patristic distance thresholds between any two tips (Brenner et al., 2007), 117 

ClusterPicker (varying standardised number of nucleotide changes; Ragonnet-Cronin et al., 118 

2013), PhyloPart (changing arbitrary percentile of pairwise patristic distance distribution; 119 

Prosperi et al., 2011) and agglomerative hierarchical clustering methods such as the 120 

WPGMA method. WPGMA methods achieved the best overall ARI. As such, only WPGMA 121 

clustering results derived from the optimal cutpoint parameter (i.e. maximum ARI) were 122 

compared.  123 

 124 

Owing to Phydelity’s definition of a closely-related neighbourhood, its distal dissociation 125 

approach and outlier detection, its mean coverage of sequences clustered ranges from 70.8–126 

80.0% for B networks and 87.5–87.9% for C networks. Phydelity (mean ARI = 0.90-0.91, 127 

mean VI = 0.17-0.18) consistently performed as well as optimised WPGMA (mean ARI = 128 

0.88-0.96, mean VI = 0.09-0.25) for B networks. Phydelity was the best performing method 129 

for C networks (Phydelity: mean ARI = 0.49-0.59, mean VI = 0.95-1.18; WPGMA: mean 130 

ARI = 0.44-0.56, mean VI = 1.07-1.33; MSBD: mean ARI = 0.19-0.22, mean VI = 1.80-2.02; 131 

Supplementary Table 1). Notably, even though results generated by WPGMA are comparable 132 

to those from Phydelity, this was only possible for WPGMA when the optimal cutpoint could 133 

be determined by calibration with the simulated ground-truth. However, ground truth 134 
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clustering is largely unavailable in epidemiological studies. Phydelity, on the other hand, 135 

does not require this calibration step.  136 

 137 

Phydelity was also tested on an empirical dataset of HIV-1 subtype A env sequences obtained 138 

from the Rakai Community Cohort Study (Grabowski et al., 2014). Grabowski et al. 139 

identified 35 clusters by phylogenetic analysis, of which 18 constituted individuals of the 140 

same community and 12 clusters were confirmed to be from the same household. As 141 

community and household information was blinded for privacy reasons, the available 142 

sequence data could not be matched for the exact clusters identified by Grabowski et al. 143 

However, the stringent cluster definitions used by Grabowski et al. (³90% bootstrap support 144 

(1000 iterations), median genetic pairwise distance £ 2.6%) restricts most of these clusters to 145 

pairs, with non-pair clusters made up of no more than 5 individuals. As such, we found the 146 

same number of clusters of similar size distribution through visual inspection when we 147 

recapitulated the phylogeny using the same methods (GTR+I+G substitution model, Garli) 148 

and cluster definition as Grabowski et al. Phydelity identified 33 out of the 35 149 

epidemiologically-identified clusters as distinct transmission clusters (Figure 1C).      150 

 151 

Conclusion  152 

Phydelity is a statistically-principled and phylogeny-informed tool capable of identifying 153 

putative transmission clusters in pathogen phylogenies without the introduction of arbitrary 154 

distance thresholds. It is fast, generalizable, and freely available at 155 

https://github.com/alvinxhan/Phydelity.  156 
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