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Abstract 

     Constraint-based multi-scale metabolic models are powerful tools to study complex 

biological systems like the human body, and to develop new treatment strategies for 

human diseases. They capture different scales of the system under study and provide the 

opportunity of understanding the interaction between multiple scales. In this paper, we 

have used our previously developed multi-scale whole body metabolism framework to 

establish a new approach to include multiple objectives of the human cells in 

computational analysis. The model has 3555 ordinary differential equations (ODEs) 

integrated with a genome-scale model of the hepatocyte, including 1826 biochemical 

reactions. The model has been solved for 74 objective functions simultaneously. 

Simulation results show that the integration algorithm has promise with respect to 

convergence, computational efficiency and response to perturbation. The results suggest 

that this method holds significant potential for the simulation of the range of metabolic 

phenotypes for mammalian cells where there are multiple objectives. 
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Introduction 

      Constraint-based metabolic modelling approach has been widely used in the 

biomedical and life sciences research community [1]. These models have been used to 

characterize the metabolism of human cells, identify drug targets [2], study the 

pathophysiology of cancer cells [3], and identify new biomarkers in inborn errors of 

metabolism [4].  

      Research has shown that in the majority of metabolic models that are based on the 

constraint-based modelling approach, a single function of the living organism has been 

considered in the simulation analysis [5, 6]. In other words, in the analysis, a single 

objective function is solved at a time [7, 8]. However, biomedical research and 

experimental evidence have shown that mammalian cells are capable of performing 

multiple tasks at the same time. For example, the human liver cells have five tissue 

systems, which are the vascular system, hepatocytes and hepatic lobule, hepatic 

sinusoidal cells, biliary system, and stroma. In addition, there are many different cell 

populations in the liver, which are hepatocytes, endothelial cells, Kupffer cells and hepatic 

stellate cells [9]. As a result, the organ can perform several functions simultaneously, 

including synthesis of plasma proteins, detoxification of ammonia [10], drug metabolism 

[11], poisonous substance elimination, and glucose and ethanol metabolism [12,13] as 

depicted in Figure 1. Moreover, the liver also plays a significant role in an innate immune 

system that protects hosts from environmental threats, such as invading microorganisms, 

and physical and chemical stimuli [9]. In addition, the liver cells receive oxygen, nutrients 

and chemicals supplied by the circulation. Also, the liver processes blood by breaking 

down the nutrients, breaking down chemicals into solutes that can be used by other 

organs (e.g., the brain, heart, and kidney), storing incoming substances such as glucose, 

and regulating the level of most chemicals in the blood such as cholesterol and glucose 

[14,15,16]. This evidence indicates that including multiple functions of mammalian cells 

in our computational analysis is very important, because, first, it helps enhance the 

accuracy of prediction results, and second; it helps us to have a better understanding of 

metabolism. 
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Figure 1: Liver functions. The liver plays a major role in metabolism with numerous 

functions in the human body, including detoxification of various metabolites, synthesis of 

protein, amino acid and cholesterol, help with the absorption of vitamins, and the 

production of enzymes.    

     In this paper, we have presented a new computational approach to include multiple 

functions of the human hepatocyte cells in the whole body metabolism framework. The 

algorithm is an extension of our previous study, presenting a multi-scale whole body 

metabolic model [5]. The computational efficiency of the integration algorithm has been 

demonstrated using several in silico studies. 
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Results and Discussion 

1. Model Simulation 

    To illustrate the computational efficiency and convergence of the multi-objective 

function framework, we have used the hepatocyte metabolic model developed by Gill et 

al. [12] as an example of human cells. In this network, cells can produce up to 74 

metabolites. Here, we have considered the maximum number of objective functions (i.e., 

74) for our analysis. To demonstrate the computational efficiency and convergence of the 

multi-objective framework, in silico analyses are performed for a limited simulation time. 

The model properties are presented in Tables A.1-A.3 in the Appendix. 

    Figure 2 demonstrates the concentration profiles for a number of consumed 

metabolites. As seen, metabolite concentrations converge to zero, because all the 

substrates are depleted after a period of time.  

 

Figure 2: Concentration profiles for a number of consumed metabolites. Metabolite 

concentrations converge to zero, because all the substrates are depleted after a period 

of time. 

   In addition, Figure 3 shows the concentrations of the produced metabolites converge to 

new steady-state conditions. 
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Figure 3: Concentration profiles for a number of produced metabolites. At steady-state 

conditions, the concentrations of the metabolites converge to new steady-state 

conditions. 

     The same analysis is conducted for metabolites that can be produced or consumed in 

the cell. As seen in Figure 4, the concentrations for the number of metabolites converge 

to zero (i.e., they are consumed by the cells), and concentration of two exchange 

metabolites reach new non-zero steady-state conditions (i.e., they are produced by the 

cells). 
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Figure 4: Concentration profiles for a number of both-direction metabolites. The results 

indicate that some of the metabolites are produced in the cells (i.e., metabolites with non-

zero concentration) and some of the metabolites are consumed by the cells (i.e., 

metabolites with zero concentration).  

 

2. Application to Glucose Blood Level 

    In the next simulation study, we evaluate the performance of the modelling framework 

in the presence of a disturbance. Generally speaking, the blood metabolite concentrations 

change due to a meal administration or an intravenous injection to the body. Here, in 

order to perform the robustness analysis, a single perturbation is introduced into the 

model during the simulation at a certain time. We have changed the blood glucose 

concentration I unit at time 40. 

    The simulation results illustrated in Figure 5 and Figure 6 show that once glucose 

concentration increases, the corresponding uptake flux increases as well (i.e., the 

absolute value of the glucose flux increases). In addition, the results indicate that glucose 

flux converges to zero once all glucose is depleted after a period of time (i.e., glucose is 

consumed by the cells). 
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Figure 5: Concentration of glucose during a perturbation test. The result shows that the 

integration algorithm is robust with respect to perturbation in blood metabolites. 

 

Figure 6: Corresponding glucose uptake rate during a perturbation test. The glucose 

uptake rate converges to zero because all glucose is consumed by the liver cell. 

    As seen, the developed framework is robust in the presence of perturbations in the 

blood metabolites. This opens up new opportunities to simulate multiple meal 
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administrations and multiple intravenous injections, which has an important application in 

study design related to various diseases such as diabetes and obesity. 

3. Application to Individual Metabolism Study 

In the last simulation study, to demonstrate the impact of between individual variability in 

liver metabolism, we have designed an in silico study. In this study, we have created 50 

subjects with different physiological properties (See Figure A.4). In addition, we have 

created 50 different sets of kinetic parameters associated with liver transport reactions 

indicating genetic variation between individual subjects (See Figures A.5 and A.6). In 

order to make a comparison for liver metabolism between individuals, we have simulated 

the model for certain time (i.e., 20 Minutes) and monitored the concentration of a 

consumed, produced and both-direction metabolite. In Figure 10, the simulation results 

are presented.  
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Figure 7: Time course of metabolite concentrations for 50 subjects. a) Consumed 

metabolite, b) produced metabolite, c) both-direction metabolite. The simulation results 

indicate that there is significant difference in blood metabolite concentration between 

individuals due to between individual variability (i.e., genetic and physiological 

differences). 

    As seen in Figure 7, although simulations start with the same initial conditions for all 

subjects, there is significant difference in metabolite blood concentration levels after 20 

minutes between subjects. This indicates the impact of genetic and physiological 
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variability (i.e., Michaelis–Menten parameters and physiological properties variability) on 

the liver metabolism. In fact, this in slico study demonstrates the significance of between 

subject variability in human metabolism which is very important problem in personalized 

nutrition research community.  

 Conclusion 

      In this paper, we have developed a new modelling framework to capture multiple 

functions of the hepatocyte cells based on our previous multi-scale whole body metabolic 

model with a single objective function. The proposed framework has 3555 ODEs, 

including 1826 biochemical reactions. To evaluate the performance of the new model, 

simulations have been conducted with 74 objective functions, representing 74 exchange 

metabolites that can be produced by the liver cells. The simulation results indicate that 

the proposed modelling framework has promise with respect to convergence, 

computational efficiency and robustness. The developed model has several potential 

applications. For instance, it can be used to predict the blood metabolite concentrations 

after administrating multiple meals, to investigate the effect of multiple metabolic 

disorders on human metabolism and to investigate multiple hypotheses in personalized 

nutrition. However, there are some challenges. For example, several experimental 

studies should be carried out to have a reasonable approximation of substrate distribution 

between objective functions. In addition, the identification of the number of objective 

functions is a crucial step that requires a deep understanding of study designs and human 

cell physiology.  

 

Materials and Methods 

   To establish the modelling framework, our previous multi-scale whole body metabolic 

model has been used. In this model, a whole body model (WBM) with 15 compartments, 

including the lung, brain, muscle, gut, pancreas, liver, stomach, spleen, heart, bone, 

adrenal, skin, adipose tissue, and blood has been integrated with a human hepatocyte 

genome-scale model. The integration was performed using the dynamic flux balance 

analysis technique [17]. In addition, the whole body model contains 273 human serum 
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metabolites. Therefore, the framework includes 3555 ordinary differential equations. The 

computational efficiency of the integration algorithm has been shown in our previous 

study [5]. Also, the applications of the modelling framework have been demonstrated to 

biomarker identification and blood alcohol concentration prediction in our previous studies 

[5, 6]. In both studies, a single objective function has been used in the parsimonious flux 

balance analysis problem to conduct the simulations. The mathematical representation 

of the multi-scale whole body metabolism with the dynamic flux balance analysis 

technique can be written as follows: 

max 𝑐𝑣 (1) 

𝑠𝑣 = 0 

𝑥̇ = 𝑓(𝑥, 𝑣., 𝑃) 

𝑣1.2 ≤ 𝑣 ≤ 𝑣145 

𝑣1.2,6 = 𝑅(𝑥,𝐾) 

   where 𝑆 represents the stoichiometric matrix of the liver cell, 𝑃 represents the model 

parameters, 𝑅 represents the kinetic model, 𝜈 represents reaction fluxes, 𝐾 represents 

kinetic parameters, 𝑥 represents metabolite concentrations and nonlinear function 𝑓 

represents the whole-body model. 

In order to incorporate the multiple objective functions in the multi-scale whole body 

metabolism framework, we have included an additional constraint in the mathematical 

model (1) as follows: 

 

;; 𝑤2,= = 1
?

=@A

B

2@A

 (2) 

    In Equation 2, 𝑁 is the number of available substrates (i.e., consumed metabolites) and 

𝑍 is the number of objective functions (for the specific model used here, Z=74). 𝑤2,= is the 

fraction of substrate 𝑛 that is used towards the objective function 𝑧. The interpretation of 

the added constraints is that the available substrates are divided based on the number of 
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objective functions. Here, we assume that there is an objective function corresponding to 

every product that is synthesized by the liver cells (See Figure 8). For example, in Figure 

8, we have two objective functions (i.e., P1 and P2) and one substrate (S). The consumed 

metabolite in this case is divided between each objective function with specific fractions, 

i.e., W1 and W2 such that W1+W2 becomes equal to WT. For this specific case, there were 

163 metabolites that were consumed in the model. 

 

Figure 8:  Interpretation of the constraint. In this example, the cell produces two 

metabolites (i.e., P1 and P2). The substrate (S) is available to make the products, and the 

substrate is divided between each objective function such that W1+W2 becomes equal to 

one.  W1 is a fraction of the substrate (S) that is available for P1, and W2 is a fraction of 

the substrate that is available for P2, and W1+W2 equals to WT. 

   The mathematical formulation of the new multi-scale whole human body metabolism 

with multiple objective functions is written as follows: 

max 𝑐𝑣 (3) 

𝑠𝑣 = 0 

𝑥̇ = 𝑓(𝑥, 𝑣., 𝑃) 

𝑣1.2 ≤ 𝑣 ≤ 𝑣145 

𝑣1.2,6 = 𝑅G𝑥, 𝐾, 𝑤.,6H 

;; 𝑤2,= = 1
?

=@A

B

2@A
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In fact, the fraction coefficients (i.e.,𝑤2,=) can be chosen with a specific distribution or 

using experimental evidence. If a uniform distribution of these fractions are assumed, 

then the entire range of metabolic potential of the liver model can be comprehensively 

explored. Also, the number of objective functions can be selected such that all objectives 

cover main functions of the mammalian cells. Here, Michaelis Menten kinetics was 

assumed for all the 163 substrate uptake rates. The parameters were chosen in ad-hoc 

way (Figure A.5) and will be shown in the Supplementary Information upon publication. 
 

    In order to implement the developed modelling framework, dynamic flux balance analysis 

[17] is used. Following this algorithm, the initial conditions of the WBM are used to estimate 

the reaction rates. Then, the reaction rates are set as constraints for the FBA problem. The 

available substrates are divided into the number of objective functions in the FBA problem. 

Solving the FBA problem for each objective function leads to calculating metabolic fluxes 

throughout the entire network. Here, we assume the number of objective functions is equal to 

the number cell products (i.e., produced metabolites). The number of times that FBA is called 

in each time step is equal to the number of objective functions. Once the FBAs are solved for 

all objective functions, we need to calculate the net flux for each exchange reaction (i.e., the 

net flux is equal to the summation of all changes resulting from all FBA solutions). In the last 

step, the metabolite concentrations in the WBM are updated using net exchange fluxes. In 

this algorithm, we assume that the net fluxes are constant during each time interval and they 

are updated at the beginning of each time step. In Figure 9, the summary of the algorithm is 

presented. At the next section, we demonstrate the computational efficiency of implemented 

algorithm. All simulations are conducted using MATLAB and COBRA software. 
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Figure 9:  The algorithm for solving the integrated whole body metabolism with multiple 

objective functions. In this algorithm, we assume that the net fluxes are constant over 

each time step. 
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Appendix 

 

 

Figure A.1: Corresponding flux profiles for a number of consumed metabolites. At steady-

state conditions, the uptake fluxes approach zero. 
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Figure A.2: Corresponding flux profiles for a number of produced metabolites. At the 

steady-state conditions, the fluxes converge to zero. 

 

 

Figure A.3: Corresponding flux profiles for a number of both-direction metabolites. The 

zero steady-state fluxes indicate the consistency between fluxes and concentrations. 
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Table A.1: Genome Scale Model of the Liver Cell 

Property Value 
Number of reactions 1826 
Number of metabolites 1360 
Number of exchange reactions 237 
Total number of objective functions 74 

 

Table A.2: Whole-Human Body Model 

Property Value 
Number of compartments 15 
Number of parameters 14 
Number of equations for organ volume 14 
Number of equations for organ cardiac flow 
rate 

14 

Number of ODEs 15 
 

 

 

Table A.3: Integrated Model 

Property Value 
Total number of compartments 15 
Total number of exchange metabolites 237 
Total number of parameters 3318 
Total number of ODEs  3555 
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Figure A.4: Physiological properties of the individual subjects 
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Figure A.5:  Km Michaelis–Menten parameter for 50 subjects. Here, the bar charts show 

the values for only 4 transport reactions, however there are 163 km values since the 

model includes 163 consumed metabolites.  
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Figure A.6:  Vm Michaelis–Menten parameter for 50 subjects. Here, the bar charts show 

the values for only 4 transport reactions, however there are 163 Vm values since the model 

includes 163 consumed metabolites.  
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