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Abstract
Due to the advent and utility of high-throughput sequencing, modern biomedical research

abounds with multivariate count data. Yet such sequence count data is often extremely sparse;
that is, much of the data is zero values. Such zero values are well known to cause problems for
statistical analyses. In this work we provide a systematic description of different processes that
can give rise to zero values as well as the types of methods for addressing zeros in sequence
count studies. Importantly, we systematically review how various models perform on each
type of zero generating process. Our results demonstrate that zero-inflated models can have
substantial biases in both simulated and real data settings. Additionally, we find that zeros
due to biological absences can, for many applications, be approximated as originating from
under sampling. Beyond these results, this work provides a paired categorization scheme for
models and zero generating processes to facilitate discussions and future research into the
analysis of sequence count data.

1 Introduction
Sequence counting refers to the use of high-throughput DNA sequencing to profile the abundance
of distinct DNA or RNA transcripts within a biological system. Such sequence counting is widely
used in biomedical research [1] including the investigation of host-associated microbial communities
(e.g., 16S rRNA sequencing) [2], gene expression in single (scRNA-seq) or groups of cells (RNA-
seq) [3, 4], lymphocyte populations [5], or even the interaction of nucleotide binding molecules with
DNA or RNA [6, 7]. Zero counts are highly prevalent in many high-throughput DNA sequencing
assays. For example, it is not uncommon to see microbiome or single cell RNA-seq data containing
over 70% zero values [4, 8, 9]. Importantly, zero values can pose problems for available modeling
approaches [10, 9, 11, 12]. Beyond the challenges of taking the log or dividing by zero, modeling
in the presence of zero values is challenging because there are multiple sources that generate zero
values . For example, zero values may arise due to abundances below the limits of detection,
technical biases such as batch effects, or complete absence of a transcript from the biological
system of interest [4, 13, 9].

While many models have been developed for the analysis of sequence count data, there remains
a gap in the current literature regarding how the assumptions made by different models effect
inference in the presence of zero values. Most notably, there have been no systematic investigations
of the impact of deviations from modeling assumptions on results with respect to different zero
generating processes. To address this current limitation, this work introduces a paired classification
system for zero generating processes and classes of models with respect to their handling of zero
values. By framing this classification system in terms of the processes that can generate zero
values, we are able to provide examples of each type of zero from a biological perspective. Most
importantly, this work elucidates the impact on inference of using each type of model in the presence
of each type of zero generating process. We demonstrate how mismatches between models and zero
generating processes can lead to spurious conclusions and provide guidance for how to avoid such
mismatches.
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transcripts to go unobserved.
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Class II: Technical Zeros
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data with a lognormal distribution. 

The Base model with an added 
batch specific bias term. 

The Base model with zero 
inflation added to the Poisson.

The Base model with zero 
inflation added to the lognormal.

Figure 1: An overview of the zero generating processes and models presented in this work. The
zero generating processes that each model accounts for are depicted with arrows.

To provide a framework for contextualizing zero values in sequence count data, we introduce
a classification scheme for zero values based on the generative processes that can introduce zeros
into data. This approach, classifying zero based on generative processes, is an extension of the
commonly discussed distinction between sampling zeros and structural zeros (i.e., rounded and
essential zeros) [14]. However, the distinction of sampling versus structural zeros is not refined
enough to describe the assumptions underlying many currently available models (e.g., zero-inflated
models). To extend this classification scheme, we define three classes of zeros: sampling zeros,
technical zeros, and biological zeros (Figure 1). Beyond providing a framework for discussing zero
generating processes, this classification scheme is designed to pair with a simple classification of
existing models.

Zero counts are often well mixed in sequence count data and cannot be easily removed by
filtering select transcripts or samples, thus a number of techniques have been developed for modeling
zeros in sequence count studies. Here we classify the most common methods for handing zero values
into four types. The simplest approach is to add a small positive number (e.g., 0.5 or 1), called
a pseudo-count, to all observed counts and then perform analyses on the resulting pseudo-count
augmented data (class 0 models) [9]. Other approaches rely on modeling zero values as resulting
from stochastic processes (class I-III models). Class I models use a variety of distributions such
as the Poisson [15], or negative binomial [3, 16] to model stochastic sampling. Class II models go
beyond modeling stochastic sampling by considering that zero values may arise due to secondary
sources. Class IIa models, such as the multinomial-Dirichlet [17, 11, 12] or multinomial-logistic
normal [18, 19, 20] based models represent sources of technical variation beyond stochastic sampling
that can introduce zeros into the data. In contrast, class IIb models such as zero inflated models
[18, 21, 22, 23] or hurdle models [24, 13], consider secondary sources of technical variation or bias
that specifically add zero values into observed data. Finally, class III models refer to those models
that consider zeros to potentially originate from true biological absences in addition to stochastic
sampling. While multiple methods are intended to model biological absences (notably [9] and [25])
these models instead exclude biological zeros from computations using either ad-hoc methods or
marginalization.

To systematically investigate the behavior of each model class on each type of zero generating
processes, we made use of both simulated and real data. We find that simpler sampling models
(e.g., class I models) are well equipped to perform inference in situations dominated by sampling
and biological zeros. In contrast, we find that zero-inflated models (an example of class IIa models)
tend to inflate parameter estimates in both simulated and real data settings due to inherent identi-
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fiability1 issues with such models. In fact, this parameter inflation can be so severe as to dominate
the results of a differential expression analysis on a previously published single-cell RNA-seq study.
Taken together our results and discussion present a framework for contextualizing zero values in
sequence count studies and suggest caution in the use of zero inflated models.

2 Zero Processes and Prototypical Analysis Methods
An overall goal of this work is to describe the interplay between processes that can give rise to
zero values and methods used for modeling in the presence of zero values. In service to this goal,
we provide a categorization scheme for zero generating processes in Section 2.1. In Section 2.2, we
introduce a categorization of zero modeling methods designed to parallel our characterization of
zero generating processes. Finally, in section 2.3 we extend this discussion to multivariate counting
models such as the multinomial.

2.1 Zero Processes
Here we classify processes that can introduce zero values into sequence count studies. Our catego-
rization scheme involves three classes of processes (sampling, technical, and biological), the second
of which we further subdivide into partial technical and complete technical. In brief, this cate-
gorization can be seen to extend the common rounded versus essential/structural classification of
zeros (i.e., zeros that do versus do not disappear with greater counting effort)[14]. In particular, we
identify rounded zeros with biological and partial technical zeros and essential zeros with complete
technical and biological zeros. The remainder of this section is dedicated to defining and giving
examples of each of these classes of zero generating process.

2.1.1 Class I: Sampling Zeros

Sequencing depth (the total number of transcripts counted in a given sample) is limited in that only
a small percentage of the total number of transcripts in a biological system of interest end up being
counted. Due to limited sequencing depth in combination with the stochastic nature of counting,
transcripts with low but non-zero abundance will occasionally go undetected thus introducing zero
values into sequence count data [9].

We consider sampling zeros to be the most fundamental type of zero in sequence count studies
as the process of counting itself guarantees such zeros are possible. In contrast, technical and
biological zero generating processes may only exist in real data if additional processes are present
in addition to sampling processes. For this reason, all the simulations we describe in Section 4 will
contain sampling zeros with some additionally containing secondary technical or biological zeros.

2.1.2 Class II: Technical Zeros

The experimental steps required to prepare a sample for sequencing can also introduce zero counts
into data by partially (class IIa) or completely (class IIb) reducing the amount of a DNA tran-
script available to be counted. As an example of partial technical zeros: the bacterial phylum
Actinobacteria may go unobserved due to a relative inability to lyse and extract DNA from these
cells [26]. As a result, the abundance of Actinobacterial DNA in processed samples will be lower
than comparable sampled processed without this bias. This can in turn lead to zero values in
sequence count data.

If, instead of a relative inability to lyse Actinobacteria there was a complete inability to lyse
Actinobacteria, we would refer to the process as a complete technical process. While the distinction
between partial and complete technical zeros may seem minute, consider that partial technical zeros
disappear with increasing sequencing depth whereas complete technical zeros do not. As discussed
in Section 2.2, this difference in their behavior with increasing sequencing depth also leads to
different models for handling partial versus complete technical zeros.

1A model is called identifiable if given data supports a single value for each parameter. In contrast, a model is
non-identifiable if multiple parameter values lead to the same model fit.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2018. ; https://doi.org/10.1101/477794doi: bioRxiv preprint 

https://doi.org/10.1101/477794
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.1.3 Class III: Biological Zeros

Zero counts can also arise from true absence of a transcript in a biological system. For example, the
absence of a gene within a cell or the absence of a bacterial species within an individual may both
introduce zero values into sequence count data. In contrast to sampling or technical processes which
reflect observed zeros from transcripts that have non-zero abundance, biological zeros represent
a transcript that is truly absent from a biological system. Seen another way, biological zeros are
most similar to sampling zeros in that they both represents a truly low relative abundance, not
a relative abundance that is artificially deflated as in technical zeros. Additionally, like complete
technical zeros, these zeros are present even with unlimited sequencing depth.

2.2 Five Prototypical Models
In this subsection we describe a categorization scheme of zero modeling methods designed to
parallel our characterization of zero generating processes in Section 2.1. These models are not
meant to reflect the full complexity of analyzing sequence count data but instead to serve as
illustrative tools. For this reason, here we consider only univariate Bayesian models where a single
entity is counted. In Section 2.3 we extend this discussion to multivariate models. Additionally,
to maintain a coherency between the example models, all models presented are based on the
hierarchical Poisson Log-Normal distribution. This hierarchical model is highly flexible and has
similarity to the negative binomial distribution which has been used frequently in the analysis
of sequence count data. Before describing the models we highlight several modeling principles
to provide intuition for the behavior of these models as well as basic notation that will be used
throughout this and subsequent sections.

The hierarchical models present can be thought of as having an ordering going from the like-
lihood (written at the top of a hierarchical model) to the prior (lower in a hierarchical model).
This ordering is of crucial importance in intuiting modeling results. Whereas methods that in-
troduce extra zeros (e.g., zeros from technical or biological processes beyond sampling zeros) at
the bottom of a model (as part of the prior) will act to deflate abundance estimates, methods
that introduce extra zeros at the top of a model (as part of the likelihood) will paradoxically act
to increase abundance estimates. This later feature is driven by the following logic: if an extra
process is present that introduces zeros because of technical artifact, the true abundance must be
higher than the observed data would suggest. In other words, a model that considers extra zero
generating processes at the top implicitly remove some zero observations as technical noise thus
estimating abundance based on the higher non-zero counts. This feature will present a recurring
theme in a number of models, most notably zero-inflated models.

In the following sections we will make use of the following notation. Let Y represent sequence
count data such that Yij represents the number of counts observed from biological entity j ∈
{1, ..., D} in sample i ∈ {1, ..., N}. Additionally, define zi ∈ {1, ...,K} as the biological specimen
(e.g., the person) which sample i originates and xi ∈ {1, ...,M} as the batch in which sample i was
processed. The following five models assume that each of the K biological specimens has a true
parameter λk that represents the abundance of a single transcript j.

2.2.1 Class 0: Fixed Zero Replacement Models

The first class of models we consider replaces zero values with a fixed non-zero value (e.g., a
pseudo-count) which we denote below as κ. As a prototype of this class, we consider a model in
which the logarithm of the pseudo-count augmented data are distributed as a normal with a mean
dependent on which biological specimen the sample came from. Here we place a normal prior on
the K mean parameters.

(yi + κ) ∼ LogNormal(λzi , σ
2) (1)

λk ∼ Normal(ρ, τ2) (2)

We will refer to the above example of a class 0 model as the pseudo-count (PC) model.
The primary purpose of models of this class is to avoid numerical issues often introduced when

taking the logarithm or diving by zeros. As we will demonstrate in Section 4, this class of models
ignores the count variation present in the data and can be extremely sensitive to the choice of
pseudo-count. In comparison to the other classes of models we will present, this class performs
poorly under all zero generating processes.
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2.2.2 Class I: Unadjusted Count Models

In this class we consider models based upon count distributions such as the Poisson or the negative
binomial2. As a prototype of this class we consider a simple Poisson model in which each of the
K biological specimens is modeled as having its own rate parameter λ which come from a shared
log-normal distribution.

yi ∼ Poisson(λzi) (3)

λk ∼ LogNormal(µ, σ2) (4)

µ ∼ Normal(ρ, τ2) (5)

Note that in this model, all zeros are introduced at the top of the model through the Poisson
counting process. We will refer to the above example of a class I model as the base model as it
will be the starting point for the remaining models we will introduce.

This class of models forms the foundation of many statistical methods for the analysis of
sequence count data. Popular methods such DESeq2 [3] are most similar to this class. This class
of models assumes that all zeros are sampling zeros (class I) and provides no mechanism to account
for potentially higher rates of zero values due to additional technical or biological processes. Yet,
as we will demonstrate in Section 4, this class of models performs well in the presence of sampling
and biological zeros. In contrast, in the presence of technical zeros these models have a tendency
to underestimate transcript abundance as this model provides no mechanism from excluding the
influence of these zero values in parameter estimates.

2.2.3 Class IIa: Partial Technical Bias Models

In this class we consider models that account for technical bias as seen in a partial technical
process. For example, consider a situation where DNA from a specified transcript is amplified
with different efficiency between batches (e.g., PCR bias differs between batches). For simplicity,
here we consider this bias to be unknown but a single batch (which we label as batch number 1)
is considered an unbiased gold standard. In this situation a prototypical model of class IIa may
appear as follows:

yi ∼ Poisson(λziηxi) (6)

ηm ∼ LogNormal(ν, ω2) (7)

λk ∼ LogNormal(µ, σ2) (8)

µ ∼ Normal(ρ, τ2) (9)

where ηm represents a multiplicative bias found in samples from batch m. To reflect our knowledge
that batch number 1 is the closest to unbiased we also impose the constraint η1 = 1. Note that
in this model, all zero values are introduced at the top of the model through the Poisson counting
process alone or through the Log-normal process on ηk which acts in concert with the Poisson
process to introduce zero values. We refer to the above example of a class IIa model as the
random intercept (RI) model as each batch is modeled as having its own random log-linear
intercept term.

While we present this class as a method of modeling zero counts, it is more commonly considered
as a method of modeling batch effects or other technical variation [27]. This model assumes that
all zeros are sampling zeros but that the poison rate may be altered by technical factors (e.g., PCR
bias) which may in turn leads to higher rates of zero values. As we will demonstrate in Section 4,
this class of models performs well in the presence of partial technical zeros yet adds little compared
to the base model (class I) in the presence of other types of zeros. Overall, models of this class
often require either strong prior knowledge regarding batch effects or technical replicate samples
to identify the parameters ηm.

2The negative binomial distribution can be thought of as a Poisson distribution where the rate parameter λ is
itself distributed according to the gamma distribution. While the resultant over-dispersion of the negative binomial
can produce higher rates of zero values compared to the Poisson distribution, we still consider it a zero unadjusted
count model as it does not explicitly model extra zero values as the random intercept, zero-inflated Poisson and
zero inflated log-normal models do do. In practice, such over dispersion may produce estimates that lie in between
those of class I and class III models.
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2.2.4 Class IIb: Complete Technical Bias Models

In this class we consider models that assume a distinct second stochastic process which may
introduce zero values into observed data. The most widely used models of this form are zero
inflated models [18, 21, 22, 23] and hurdle models [24, 13]. We focus on a zero inflated Poisson
(ZIP) model as a prototypical example of this type. In contrast to the base model (class I), this
model says that zero counts may arise through a sampling process (the Poisson distribution) or
a second zero inflation process (an example of a complete technical process). The zero inflation
process has the following narrative: for every Poisson count, flip a coin that has a probability θ
of coming up heads. If the coin shows a tail, keep the Poisson count; however, if the coin shows a
heads, replace the Poisson count with zero. Here for simplicity, we model θ as depending only on
the batch number and impose a beta prior on this quantity.

yi ∼ ZIP(λzi , θxi) (10)

λk ∼ LogNormal(µ, σ2) (11)
θm ∼ Beta(α, β) (12)

µ ∼ Normal(ρ, τ2) (13)

Here ZIP(λzi , θxi) is shorthand for the following:

yi ∼

{
δ0 if wi = 0

Poisson(λzi) if wi = 1
(14)

wi ∼ Bernoulli(θxi) (15)

where δ0 refers to the Dirac distribution which has positive density only at yi = 0 and is zero
otherwise3. Similar to the base and random intercept models, this model assumes that all zero
counts are introduced at the top of the model (e.g., due to technical sources). We will refer to this
model as the Zero-Inflated Poisson (ZIP) model.

This class of models has become increasingly popular and is widely used in tools such as ZINB-
WaVE [21]. This model assumes some zeros are from sampling while other are due to a complete
technical process. Notably, the presence of sampling zeros suggest that a transcript is at relatively
low abundance; in contrast, the presence of complete technical zeros suggest that a transcript is
potentially at high or low abundance. Yet, determining whether zeros come from a sampling or a
complete technical process is often impossible and as such these models are weakly identified. That
is, the model often cannot distinguish as to whether a zero is due to a high abundance transcript
that was censored or a low abundance transcript that may or may not have been censored. As
we will see in Sections 4 and 3 this uncertainty can lead to spurious conclusions. In particular,
while the ZIP model performs well in the presence of select complete technical processes, it can
substantially inflate inferred abundance in many other situations.

2.2.5 Class III: Biological Absence Models

In this class we consider models that, in addition to modeling sampling zeros model biological zeros
as part of the prior distribution. Here, to draw analogy to the base and ZIP models, we utilize
a zero-inflated log normal distribution (ZILN) [28]. We will model the parameters λk as either
coming from a distribution with a point mass at zero or from a log-normal distribution as before.
We introduce the parameter γk to represent the probability that λk = 0 analogously to θm used in
the ZIP model.

yi ∼ Poisson(λzi) (17)

λzi ∼ ZILN(µ, σ2, γzi) (18)
γk ∼ Beta(ζ, ξ) (19)

µ ∼ Normal(ρ, τ2). (20)

3Equivalently the probability mass function of the zero-inflated Poisson distribution can be written as

P(y | λ, θ) =
{
θ + (1− θ)e−λ if y = 0

(1− θ)λ
ye−λ

y!
if y > 0.

(16)
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Here ZILN(µ, σ2, γzi) is short for the following:

λi ∼

{
δ0 if wi = 0

LogNormal(µ, σ2) if wi = 1
(21)

wi ∼ Bernoulli(γzi). (22)

We will refer to the above example of a class III model as the Zero-Inflated Log-Normal (ZILN)
model.

While models of this type are infrequently discussed in terms of modeling zero values in sequence
count data, they are common in many other areas of statistics. For example, such models are
commonly used for variable selection and include the use of spike-and-slab, Laplace, and horseshoe
prior distributions [29]. This model assumes that some zeros are due to sampling while other are
due to biological absence. This later possibility, that zeros originate from a biological process, can
lead to overall deflation of estimates compared to the base model. Yet this deflation is seen only
rarely when nearly all counts are zero as even a single non-zero count makes it highly unlikely
that λk = 0. As we demonstrate in Section 4, this class of models performs similarly to the base
model in the presence of sampling, partial technical, and complete technical processes yet provides
a marginal improvement over the base model in the presence of biological processes.

2.3 Multivariate Count Models
For the sake of interpretability, our discussion of zero values to this point has focused on zero
generating processes and modeling approaches using univariate examples. Yet, sequence count
data is fundamentally a multivariate measurement [12, 10]. For the most part, the conceptual
tools introduced with respect to the univariate setting encompass much of the complexity of the
multivariate setting. Here we extend our discussion to the multivariate setting by discussing a
uniquely multivariate phenomena wherein zeros can be introduced in multivariate count data.

Zeros can be introduced into sequence count data through a competition-to-be-counted process
which has technical origins and is a type of partial technical process. Biological samples go through
many distinct steps, such as DNA extraction, PCR amplification, and library pooling, before they
are ultimately sequenced. Each of these involves a random sampling where a random subset of
DNA is sampled and carried over to subsequent processing steps. These random sampling events
introduce a negative correlation between transcripts due to transcripts competing to be counted
[30, 31]. That is, measuring more of one type of transcript decreases the chance that another
transcript will be measured. This is therefore a type of partial technical process (Class IIa) as
more of one transcript partially (not completely) inhibits our ability to measure another transcript.
This competition to be counted has been successfully measured using multinomial based models
[20, 18, 31]. As multinomial models model both this multivariate partial technical process (Class
IIa) and sampling zeros (Class I) we consider multinomial models to be a hybrid of Class IIa and
Class I models.

3 Real Data Example
To demonstrate that modeling different classes of zero values can lead to non-trivial differences in
conclusions in real data scenarios, we reanalyzed a single cell RNA-seq study originally published
by Pollen et al [32]. This data features measurements of gene expression from 301 single cells
from 11 populations within the developing cerebral cortex. This data was subsequently reanalyzed
to demonstrate the capabilities of ZINB-WaVE, a zero-inflated negative binomial linear model
designed for the analysis of single cell RNA-seq data [21]4.We chose to reanalyze this study with
ZINB-WaVE using the same data pre-processing and modeling steps used by Risso et al [21].
As in Risso et al [21] we analyze only the 100 most abundant genes in the dataset. We modify
this procedure in only two ways so as to investigate differential abundance between the biological
conditions NPC and GW21. First, we subset the sequenced cells to only contains cells from groups
NPC and GW21. Second, we include a binary covariate for NPC versus GW21 in the ZINB-WaVE
model to allow differential abundance to be estimated. As in the analysis of Risso et al [21], we

4In contrast, to the models discussed in Section 2.2 and 4 which made use of Bayesian posterior estimates,
ZINB-WaVE uses penalized maximum likelihood for inference. This analysis serves the dual goal of demonstrating
that the concepts we introduced in prior sections are not unique to the Bayesian models introduced in Section 2.2
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also include a binary covariate for the coverage depth in the linear model to account for potential
batch effects related to high versus low coverage.

The above model was applied to the data twice, once with and once without zero inflation to
investigate the effects of the zero inflation component of the model (Methods). In the absence of
zero-inflation this model, which we refer to as the NB model, considers zero values as coming only
from a sampling process (the negative binomial component) and a partial technical process (the
coverage depth predictor) processes. With the zero-inflation component this model, which we refer
to as the ZINB model, considers zero values as coming from sampling, partial technical, as well as
complete technical processes. Thus the NB model is most similar to the Base model presented in
Section 2.2.2 whereas the ZINB model is most similar to the zero-inflated Poisson model presented
in Section 2.2.4.

To identify inferences that differed between the NB and ZINB model, we looked at the 10 genes
that had the largest difference in log2 fold-change differential expression (DENB−DEZINB) between
the ZINB and NB models. Positive values of differential expression imply that the given gene is
higher in the NPC condition whereas negative values reflect that the gene is higher in the GW21
condition. The resulting 10 genes, are shown in the top half of Table 1 and their distribution is
shown in Figure S4. Notably, these 10 genes all contained a large number of zero values in one of
the two conditions. For the gene SHISA2, all observations save a single count of 1 is zero, whereas
only 1 value from the NPC condition is zero while the others are large and non-zero. Intuitively,
such a scenario would suggest that SHISA2 is almost completely absent from the NPC condition
but highly abundant in the GW21 condition (e.g., SHISA2 is highly deferentially expressed). As
expected, in the NB model, SHISA2 is estimated as the most highly expressed gene with a log2
differential expression value of 5.2. In contrast, in model ZINB, SHISA2 is estimated as the 28th
most deferentially expressed gene with a log2 differential expression value of 0.86. While we cannot
say which model is correct, it is clear that assumptions regarding which processes are introducing
zero values into the data can cause large discrepancies in modeling results. Overall these results
demonstrate that the inclusion of zero-inflation substantially alters modeling results.

To further identify differences between the ZINB and NB models we investigated the 10 genes
found to have conflicting signs of differential expression between the two models. These 10 genes
are shown in the bottom half of Table 1 and their distribution is shown in Figure S4. In contrast
to the 10 genes with the largest difference in differential expression, all 10 of these genes had
large non-zero counts in both NPC and GW21 conditions making it more plausible that these
zeros are due to a class IIb process. For example, gene USP47 had a mean of 614 and 448 in
the NPC and GW21 conditions respectively. This result includes zero values in the calculation
of the mean and is therefore analogous to inference using the NB model. However, the ordering
is reversed for gene USP47 when excluding zero values (means of 658 and 897 in the NPC and
GW21 conditions respectively). This result excludes zero values in the calculation of the mean
and is therefore analogous to inference using the ZINB model. Beyond further demonstrating that
zero inflation can substantially change modeling results, these results suggest the largely counter
intuitive behavior of such models. In changing the sign of differential abundance based on zero
counts, zero inflated models are implicitly assuming that any zeros originating form a complete
technical process are in fact as high abundance as the surrounding zero counts. Such behavior
is extremely intuitive. In fact, we expect most researchers would expect and believe that zero
counts represent either absent or low abundance transcripts, not transcripts that are high enough
abundance to flip the signs of differential expression.

In order to further demonstrate how the concepts from Sections 2.1 and 2.2 may provide insight
into the behavior of existing models on real data, we defined a quantity which we hypothesized
would correlate well with large discrepancies between differential expression as measured by these
two models. We refer to this quantity as the Zero Inclusion Ratio of Means which we define for

each gene g as ZIRMg = log2
xNPC
g

xGW21
g

− log2
xNPC
g/0

xGW21
g/0

where xNPC
g refers to the mean of the counts of

gene g in the NPC condition, and xGW21
g/0 refers to the mean of the counts of gene g in the GW21

condition excluding zero counts. The intuition behind this quantity is as follows: by considering
that zero values can be from a class IIb process, zero-inflated models essentially exclude some zero
values from contributing to the estimation of that gene’s abundance, instead relying more heavily
on the non-zero values. Thus we hypothesized that the log-ratio of the mean count value for a
gene excluding zero values would be an approximation to the inferred differential expression of that
gene from the ZINB model. Without this zero inflation component, the NB model uses all the zero
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Table 1: Differential expression (DE) estimates from a negative binomial (NB) and zero-inflated
negative binomial (ZINB) model can differ substantially. Differential expression was calculated in
log base 2 with higher values representing a gene that is more abundant in the NPC as compared to
GW21 condition. The first 10 genes represent the 10 genes that had the largest discrepancy between
the differential expression estimated from the NB vs. ZINB models. The last 10 genes represent
genes that were estimated as being differentially expressed but with opposing signs between the
two models. Ranked differential expression is given in parentheses.

Gene nZero
(NPC,GW21)

(
log2

NPC
GW21

)
NB

(
log2

NPC
GW21

)
ZINB DENB −DEZINB ZIRM

SHISA2 (0/30,15/16) 5.2 (1) 0.86 (28) 4.34 4.00
TGFBR1 (2/30,7/16) 4.2 (4) 1.4 (19) 2.80 0.73
TRIM59 (0/30,11/16) 4.6 (3) 1.8 (11) 2.80 1.68
BIRC5 (0/30,11/16) 3.6 (10) 0.93 (26) 2.67 1.68
CENPF (0/30,12/16) 3.9 (9) 1.5 (16) 2.40 2.00
SFRP1 (0/30,14/16) 4.1 (5) 1.7 (14) 2.40 3.00
KPNA2 (0/30,8/16) 4.6 (3) 2.3 (3) 2.30 1.00
NFIB (7/30,0/16) -5.4 (99) -3.5 (95) -1.90 -0.38
PDS5B (0/30,9/16) 4 (6) 2.2 (4) 1.80 1.19
FZD3 (0/30,8/16) 3.5 (11) 1.7 (14) 1.80 1.00
CDV3 (3/30,6/16) -0.68 (58) 0.12 (44) -0.80 0.53
SC5D (3/30,4/16) 1.1 (31) -0.03 (51) 1.13 0.26
SERINC5 (2/30,5/16) 0.85 (33) -0.07 (52) 0.92 0.44
IDH1 (2/30,3/16) -0.8 (59) 0.03 (47) -0.83 0.20
RELL1 (7/30,8/16) 0.58 (40) -0.16 (55) 0.74 0.62
USP47 (2/30,8/16) -0.17 (52) 0.63 (32) -0.80 0.90
MIER1 (1/30,6/16) -0.52 (56) 0.42 (38) -0.94 0.63
TMEM33 (0/30,1/16) -0.97 (63) 0.02 (49) -0.98 0.09
SKIL (2/30,4/16) -1.2 (66) 0.22 (41) -1.42 0.32
HACD3 (1/30,8/16) 0.66 (39) -0.35 (58) 1.01 0.95

values to inform the estimated abundance of the same gene and thus the log-ratio of the mean count
value for a gene including zero values would be a better approximation to the inferred differential
expression from the NB model. The difference in differential expression correlated strongly with
this ZIRM statistic over the 100 genes (Spearman ρ of 0.55, p-value of 3.4e−9, Figure S5). Thus
this intuitive statistic, based on estimating DE with or without zero values, predicts the difference
in DE between the NB and ZINB model in practice. This result further emphasizes that the
concepts and intuition introduced in prior sections provides a useful framework for understanding
results in real data scenarios.

4 Simulations
Motivated by the substantial and counter-intuitive impact of zero-inflation on modeling results in
Section 3, we created a series of simulation studies designed to investigate the behavior of each
model introduced in Section 2.2 on each zero generating process introduced in Section 2.1. We
present only univariate simulations for ease of interpretation. The base, ZIP (Zero-Inflated Pois-
son), and ZILN (Zero-Inflated Log-Normal) models were applied to all 5 datasets to demonstrate
the impact of mismatches between each zero generating processing and each model. In contrast,
the PC (Pseudo-Count) and RI (Random Intercept) models were only applied where applicable
or informative. For rhetorical purposes, hyper-parameter values were chosen to be applicable to
each of the five simulations. The chosen hyper-parameters are as follows: σ2 = 3, ρ = −1, τ2 = 5,
ν = 0, ω2 = 2, α = .5, β = .5, ζ = 1, and ξ = 1. A visual summary of the results of these 5
simulations is given in Figure 2.

All 5 of these simulations contain technical replicates in order to make the concepts discussed in
Sections 2.1 and 2.2 clear. While the collection of technical replicates is uncommon in sequencing
studies [30, 31], we felt inclusion of such replicates was the most straight forward way of identifying
these models without relying on further modeling assumptions.
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low abundance 
transcript. 

Model appropriate 
for only a subset of 
class IIb processes. 

Computational 
limitations can inhibit 
this model from 
estimating true zero 
abundance. 
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Cannot incorporate 
batch information. 

Cannot incorporate 
batch information. 

Figure 2: A visual summary of the behavior of different models on different zero generating pro-
cesses. This figure summarizes the simulations of Section 4. ‘+’ endorse and ‘–’ discourage the use
of a given model in the presence of a given zero generating process.

4.1 Simulation 1: Highlighting Sampling Zeros
The first simulation consists of 5 random draws from a Poisson distribution with a rate parameter
(λ) of 0.5. This simulation represents a single transcript within a single person measured with 5
technical replicates all processed in the same batch. The small value of λ ensured that the data
would contain a number of class I (sampling) zeros with high probability. We applied the PC, base,
ZIP, and ZILN models to this simulation. To demonstrate the impact of the choice of pseudo-count
on the PC model, we applied the PC model with three different pseudo-counts (1, .5, and .05). We
summarize and provide an intuitive explanation of the results (shown in Figure 3A) below:

PC model The PC model is quite sensitive to the choice of pseudo-count κ. Typical values for
κ used in the analysis of sequence count data include .5, .65, and 1, as there is no generally
optimal value that can be inferred from the observed data directly [33]. Here we found that
only a choice of κ = 0.05 provided a close correspondence between the posterior mean of λ
and the true simulated value of λ.

Base model The base model performs well, placing the posterior mean near the true simulated
value of λ.

ZIP model Surprisingly, while the ZIP model is capable of modeling pure sampling zeros (i.e., if
θ1 = 0) this model demonstrates substantial inflation of λ compared to its true value. This
occurs because the ZIP cannot distinguish as to whether zero values are due to a small value
of λ (low abundance) and a small value of θ (low zero inflation) or a large value of λ (high
abundance) and a large value of θ (high zero inflation). This interpretation is supported by
a strong positive correlation in the posterior distribution of λ and θ shown in Figure S1. In
addition, Figure S1 demonstrates that the regions of high posterior probability are spread
out over a large range of possible λ and θ values. This uncertainty also appears in the long
tails of the ZIP model’s posterior distribution for λ. These results demonstrates the weak
identifiability of zero-inflated models.

ZILN model The ZILN model performs nearly identical to the base model. To explain this
behavior note that the presence of non-zero counts makes it extremely unlikely that the true
value of λ is zero; if λ = 0 we would expect all counts to be zero. Therefore, the ZILN model
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Figure 3: Posterior distribution of λ from each model applied to simulated datasets. Dark red
vertical bar represents true value of λ. Posterior mean as well as the 66% and 95% credible intervals
are shown in black. (A) Simulation 1 (sampling zeros), (B) Simulation 2 (partial technical zeros),
(C) Simulation 3 (complete technical zeros) (D) Simulation 5 (biological zeros), (E) Person 2 from
Simulation 5 shown on a log scale. PC, Pseudo-Count Model; RI, Random Intercept Model; ZIP,
Zero-Inflated Poisson Model; ZILN, Zero-Inflated Log-Normal Model. Simulation 4 is a secondary
example of a complete technical process and is shown in Figure S3
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estimates that the true value of γ must be near zero. If γ ≈ 0 then the ZILN model reduces
to the base model thus explaining the similar behavior of these two models.

To investigate whether this notable behavior of the ZIP model could be due to small sample
size (few technical replicates) in simulation 1, we repeated this analysis at a variety of sample
size between 5 and 1280 each with the same rate parameters as above. For each sample size we
simulated 30 datasets. For each simulated dataset both the base and ZIP models were fit. The
distribution of the posterior means of each of these two models as a function of sample size is
shown in Figure S2. We find that with increased sample size the inflation of λ does decrease, but
even with 1280 samples per dataset, the ZIP model continues to demonstrate inflation of mean
estimate of λ. In contrast, with only 5-10 samples, model I estimates λ near its true value without
this bias.5 This result demonstrates that the zero-inflated models can demonstrate bias even for
extremely large sample sizes due to weak identifiability.

4.2 Simulation 2: Highlighting Partial Technical Zeros
The second simulation consists of 15 replicates samples split evenly into 3 batches with Poisson rate
parameters 1.4, 0.6, and 3.2 respectively. This simulation represents a situation where polymerized
chain reaction (PCR) efficiency varies by batch. We consider batch 1 to be derived from some gold
standard measurement device that has no bias. As the rate parameters for each batch are all small,
this dataset contains a mix of sampling and partial technical zeros. We summarize and provide an
intuitive explanation of the results (shown in Figure 3B) below:

Base model The base model cannot incorporate batch information and therefore naively esti-
mates that all 15 samples come from a distribution with a fixed rate parameter. In this
way, the base model essentially estimates the true rate parameter as the mean of the rate
parameters of the three batches. As this mean rate is higher than the true rate in batch 1,
the base model inflates its abundance estimate compared to the true value6.

RI model The RI model performs well in this simulation placing the posterior mean near the
true value of λ.

ZIP model The posterior mean of the ZIP model lies even higher than that of the base or ZILN
models. This may seem surprising given that the ZIP model can use batch information.
This result can be understood in two parts. First, the ZIP cannot detect a shift in the
overall Poisson rate parameter between batches, it can only detect differences in the rates of
zeros between batches. This limitation causes the ZIP model to view the data, and inflate
estimates, much as the base model does (based on the overall average rates between batches).
Second, just as in prior simulations, the zero inflation component of the ZIP model essentially
excludes some zero values from its estimates of λ and in doing so inflates the overall estimates
for λ. Combining these two parts, the ZIP results can be seen as inflation through a similar
mechanism as the base model plus even more inflation due to its the zero inflated component
of the model.

ZILN model Here the ZILN model behaves identically to the base model. As in simulation 1,
this occurs due to the presence of non-zero counts making it highly unlikely that the true
λ = 0.

4.3 Simulations 3 and 4: Highlighting Complete Technical Zeros
The third simulation consists of 15 replicate samples from a Poisson distribution with rate param-
eter (λ) of 1. This simulation represents the following hypothetical situation: a single transcript
is measured with technical replicates; however, each replicate has a 30% chance of catastrophic
error causing a complete inability to measure that transcript. As with prior simulations, the small
rate parameter ensures that the resulting simulated data contains sampling zeros in addition to

5That the ZIP model’s bias improves with increasing sample size at all is due to the model using the variation
of the non-zero counts to eventually approach the correct answer.

6Although the log-normal component of model I allow for over-dispersion compared to the Poisson distribution
alone, the bias here is systematic and poorly modeled by such stochastic over-dispersion. As a result we would
expect a negative binomial model to perform similarly to the RI model
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complete technical zeros. We summarize and provide an intuitive explanation of the results (shown
in Figure 3C) below:

Base model The base model underestimates the true simulated value of λ. This occurs because
the base model incorrectly assumes the complete technical zeros are really sampling zeros.
The excess zeros thus deflate the base models estimates of λ.

RI model Since all samples came from the same batch, there is no difference between the base
and RI models. Thus we see that like the base model, the RI model underestimates teh true
value of λ.

ZIP model The ZIP model performs well, placing the posterior mean of λ near its true simulated
value.

ZILN model As in simulations 1 and 2, the presence of non-zero counts makes it highly unlikely
that the true value of λ is near zero. Thus the non-zero counts force γ ≈ 0 and the ZILN
model reduces to the base model. This explains why the ZILN model performs identically to
the base model.

The above simulation may seem contrived as it is unclear what experimental process would
cause such a random but complete inability to measure a transcript within only select samples in
a batch. For this reason, a second dataset of class IIb zeros was simulated (simulation 4). This
simulation represents a single transcript measured in 15 replicate samples (5 replicates in each of 3
batches). However, due to the use of a different reagent or a missed experimental step, within batch
2 there is a complete lack of the transcript. We assume that no other bias is present in batches
1 or 3 which are represented as random draws from a Poisson distribution with rate parameter 1.
The results from simulation 4, which are shown in Figure S3, appear similar to those of simulation
3. The key difference is that here, the RI model performs better than the base or ZILN models but
still underestimates the true value of λ. Surprisingly, here the ZIP model slightly over estimates
the true simulated value of λ. These results of the RI and ZIP models again stem from each models
inability to distinguish between which zeros are due to a sampling process and which are due to
a technical process. Notably, these results demonstrate that the ZIP model performs well only in
a subset of complete technical processes (e.g., simulation 3) but many still cause over inflation of
parameter estimates in other complete technical processes (e.g., simulation 4).

4.4 Simulation 5: Highlighting Biological Zeros
The fifth simulation consists of 15 samples from three individuals (5 replicates each) with Poisson
rate parameters 1.4, 0, and 3.2 respectively. This simulates a situation where the abundance of a
single transcript is measured in three individuals of which two posses that transcript and one does
not (biological zeros). As in the previous simulations, the small rate parameters ensure that this
simulation contains sampling zeros as well as biological zeros. In addition, to simulate a situation
in which an analyst naively chooses to model biological zeros with zero inflation, we consider a
slight modification of equation (10) in the ZIP model where we replace θxi with θzi . This change
reflects a change of modeling zero-inflation by batch to modeling zero-inflation by individual. We
summarize and provide an intuitive explanation of the results (shown in Figure 3D and 3E) below:

PC model Unsurprisingly, the PC model performs poorly here, providing biased estimates in all
three people7.

Base model The base model performs quite well in this simulation. In the absence of any non-
zero counts in person 2, the base model places posterior estimates of λ2 on low values that
would be expected to produce large numbers of sampling zeros.

ZIP model Most notably, the ZIP model massively overestimates value of which was so high that
the posterior credible intervals were cropped in 3D to aid visualization of the other results.
This behavior of the ZIP model can be understood through the same mechanism that caused
the ZIP model to inflate parameter estimates in simulations 1, 2 and 4. Namely, the ZIP

7The PC model was included in this simulation to demonstrate how the inclusion of a fixed pseudo-count forces
the posterior estimates for λ2 to remain near the pseudo-count value without allowing the model to approach the
true value of λ2 = 0.
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model has difficulty distinguishing between high λ2 (high abundance) and high θ2 (high zero
inflation) versus low λ2 (low abundance) and low θ2 (low zero inflation). However, in contrast
to previous simulations, here the difficulty is far more severe as all replicates from person 2
are zero and thus the ZIP model has no information to identify this model. This conclusion is
supported by Figure S1 which demonstrates how the regions of highest posterior probability
span both very high and very low values of θ2 as the values of λ2 vary over nearly 10 orders
of magnitude. As we will show in Section 3, this feature of zero-inflated models can have
profound impacts on modeling results in real data situations.

ZILN model The ZILN model performs well in this simulation estimate the true value of λ near
its true value in all 3 people. To better understand the differences between the base and
ZILN model results, the estimates for λ2 are shown on a log scale in Figure 3E. Here the
complication of biological zeros is emphasized as on a log scale, the true value of λ2 is negative
infinity. Notably, neither model is able to estimate this true value due to numerical precision
limitations of computers in combination with our use of HMCMC which cannot handle a
latent Dirac distribution but instead requires an approximating truncated normal distribution
(Methods). Despite this, the zero inflation in the ZILN model does allow this model to
estimate values of λ2 approximately 2 orders of magnitude smaller than the base model. The
ZILN model achieves this by placing significant posterior probability on large values of γ2
which also gives this posterior estimate a distinctive bimodal shape. It is possible that had
the ZILN model been inferred with an algorithm that allowed a latent Dirac distribution
to be included (such as a Metropolis-within-Gibbs sampling scheme) the ZILN model would
actually place non-negligible probability mass exactly on λ2 = 0.

5 Discussion
Here we have argued that there are at least three types of zero values in sequence count data:
under-detection zeros (class I), technical zeros (class II), and biological zeros (class III). We also
argued that technical zeros could be subdivided based on whether they arise from partial (class
IIa) or complete (class IIb) depletion of a transcript during sample processing. Additionally, we
introduced a classification system of models intended to pair with our zero classification scheme.
In Section 3 we demonstrated that modeling results on real data may differ significantly depending
on the zero generating processes. Additionally, we demonstrated how the concepts of Section 2.1
and 2.2 enabled us to predict the ways in which the ZINB and NB models differed in terms of
their estimates of differential expression. In Section 4 we further explored all pairwise relationships
between the zero generating processes of Section 2.1 and the models of Section 2.2. Though these
simulations we demonstrated how pseudo-count based methods (class 0 models) can introduce
substantial biases into an analysis and can be sensitive to the choice of pseudo-count. We also
demonstrated that mismatches between the choice of models and the zero generating process
underlying the observed data can lead to spurious conclusions. In particular, we found that zero
inflated models tend to inflate parameter estimates in the absence of complete technical processes
and that this inflation remains even with sample sizes greater than 1000.

Of course, the degree to which different zero generating processes contribute to zero patterns
in sequence count data is likely problem specific. For example, humans maintain a complex but
consistent microbial community within their gut but with significant inter-individual variation in
taxa profiles. Therefore a longitudinal analysis of a single individual microbiota may involve fewer
class III zeros than a study investigating microbiota cross-sectionally over multiple individuals.
Similarly, an analysis of human microbiota at the Phylum level will likely involve fewer class I
zeros than a similar analysis conducted at the species level. As a final example, studies that use
consistent experimental protocols with samples analyzed in a single batch will likely involve fewer
class II zeros than a similar study where sample processing was conducted by different laboratories.

While the degree to which different zero generating processes are present in data is almost cer-
tainty problem specific, our results do suggest a number of potential pitfalls and recommendations
for modeling sequence count data. Most notably, our results suggest that caution be exercised
in the use of zero-inflated models. We demonstrated that these models can exhibit substantial
bias due to weak identifiability and can lead to counter intuitive results in real data situations.
While we cannot know whether these counter intuitive results are correct or not, we can instead
ask whether the processes modeled by such models are plausible. In short, we believe it highly
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unlikely that complete technical processes are occurring to any substantial degree in real data.
Most commonly zero-inflation models are used in single-cell RNA-seq studies to model so called
"dropout" events [34, 35]. Such dropout events are described as resulting from a combination of
stochastic sampling of low-abundance transcripts[34, 35]. This description of "dropouts" seems at
odds with the complete technical process modeled by zero inflation and in fact seem to describe
either a sampling or multivariate partial technical process (e.g., a competition to be counted).
Taken together we recommend extreme caution be exercised in using zero inflated models in the
analysis of sequence count data.

Beyond caution in the use of zero inflated models, our results suggest that biological zeros may
be well modeled by zero adjusted model such as the base model which considers such zeros as arising
due to a sampling process. Modeling biological absences as sampling zeros, relies on approximating
true biological absences with very low (rather than absolute zero) abundance estimates. Two
limitations of this approximation should be noted. First, such an approximation implicitly assumes
that model structure (e.g., the dependencies between genes or taxa) depends smoothly on transcript
abundances and does not display discontinuous behaviour based on presence/absence patterns. Yet
such such an assumption may not be valid. For example, within a cell, the presence or absence of a
given gene may disrupt regulatory pathways in a largely discontinuous manner. Second, modeling
biological zeros as sampling zeros may not be computationally stable if performed in log space as
a model flexible enough to allow inferred abundances to approach zero will equate to parameters
tending towards negative infinity in log space. In contrast, class III models, such as the ZILN
model, tend to be far more computationally intensive than unadjusted count model models (class
I) and may, for different reasons be computationally unstable. Taken together we recommend that,
in general, biological zeros be approximated as sampling zeros.

Overall we suggest that modeling a combination of sampling and partial technical zeros to
be the most widely applicable approach to the analysis of sequence count data. With respect to
partial technical zeros, we recommend models provide a means of accounting for batch variation and
multivariate competition to be counted. The later, a competition to be counted, is less commonly
addressed with modeling but may be accounted for though the use of multinomial based models.
In particular, we believe this approach, which makes use of a sampling approximation to biological
zeros, addresses the most common sources of zeros likely present in real data. Notable available
methods that meet these criteria include the multinomial logistic normal dynamic linear models
of Silverman et al. [30] and the multinomial logistic normal linear models of Grantham et al. [20]
and [19].

While we believe the concepts and classification systems that we have introduced provide a
useful framework for directing modeling choices and model inspection, two caveats should be
mentioned. First, we do not believe that our classification systems encompass the entire complexity
of zero generating processes nor modeling approaches. For example, in single cell RNA-seq not
only may there be a competition to be counted between transcripts, but zeros may arise due to a
competition to be counted between entire cells. While such a competition to be counted between
cells can be thought of in terms of a partial technical process, further discussion is needed to
fully appreciate the complexity of this type of zero generating process. Second, our prescriptive
recommendations should only be taken as loose recommendations as specific features of a given
study should ultimately drive modeling decisions. For example, while we generally recommend
against the use of zero-inflation in modeling sequence count data, such models may be called for
in select situations. Consider a single cell RNA-seq study focuses on a set of genes that are only
expressed at certain phase of the cell cycle. If the aim is to investigate the expression of this gene
when it is expressed, ignoring cases when it is not expressed, then the use of a zero-inflated model
may be appropriate even though this represents a zero value due to a biological process rather
than a complete technical process. Despite these caveats we believe that both our classification of
zero values and our classification of models will provide a useful framework for model design and
inspection.

Ultimately, the difficulty posed by zero values stems from the fact that zeros represent a lack
of information that require experimental advances to fully resolve. While a count of 100 represents
strong support for the presence of a transcript with an abundance between 99 and 101, a zero
count represents only that that transcript was not observed without informing as to the cause of
non-observation. Assumptions regarding the possible processes leading to non-observation can aid
in interpreting zero values. For example, assuming the presence of only sampling or biological
zero generating processes, a zero value may be interpreted as a value smaller than 1. In contrast,
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assuming the presence of both sampling and technical zero generating processes, a zero value could
represent a value greater or smaller than 1. Unfortunately, it is unlikely that the validity of such
assumptions can be assessed through the use of sequence counting alone; instead, such evaluation
will likely require external experimental validation. For example, in microbiome studies resolving
whether a zero value stems from a biological or a sampling / technical process may require selective
growth experiments or more targeted molecular assays designed specifically to evaluate presence
absence of a select taxa. In this way we believe that the problem of zero values represents a
fundamental experimental limitation that requires further experimental advances to resolve. In
the meantime, we believe that the handling of zero values should be driven by well described
assumptions regarding the possible processes generating zero values.

6 Methods

6.1 Data Simulation
For each simulation, data was generated as described in Section 4. Notably, to aid in interpretation
of model outputs, simulations that had low likelihood under the simulating model were repeated.
This procedures was performed to ensure that each simulated dataset contained the necessary
information for the true parameter values to be recovered. This was done for simulations in Figure
3 not for simulations in Figure S2.

6.2 Posterior Inference
For readability, all 5 models were implemented in the Stan modeling language which makes use of
Hamiltonian Monte Carlo (HMC) sampling [36]. Model inference was performed using 4 parallel
chains each with 1000 transitions for warmup and adaptation and 1000 iterations collected as
posterior samples. Convergence of chains was determined by by manual inspection of sampler
trace plots and through inspection of the split R̂ statistic.

Inference of the ZILN model was modified from the form given in Section 2.2.5 due to the
difficulty of representing the latent Dirac distribution using the Stan modeling language. Instead,
the Dirac distribution in the ZILN model was approximated with a truncated normal distribution
with mean 0 and variance 0.0001.

6.3 Analysis of Single Cell RNA-Seq Data
Data analysis was performed as described in Section 3. The ZINB model was differentiated from
the NB model using the parameter epsilon_min_logit. Briefly, larger values of this parameter
more strongly penalizes zero inflation in the model. The ZINB model used the default value for
epsilon_min_logit to allow zero inflation, whereas the NB model used a value of 1014 to ensure
no zero inflation would be used.

6.4 Code availability
All code necessary to recreate the analysis and figures in this work is available at:
https://github.com/jsilve24/zero_types_paper.
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Supplementary Material
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Figure S1: Posterior samples of λ and θ for the ZIP model applied to simulation 1 (sampling zeros)
and simulation 5 (biological zeros). For simulation 5, the posterior distribution is of λ2 and θ2. The
80%, 90%, and 95% highest posterior density regions for the log posterior probability are shown
in red.
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Figure S2: Distribution of posterior mean estimates of λ from the Base and ZIP models for 30
datasets simulated as in Simulation 1 (sampling zeros; Poisson with rate parameter of 1) but with
varying numbers of samples.
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Figure S3: Posterior distribution of λ from each model applied to simulation 4 (second example of
complete technical zeros). Dark red vertical bar represents true value of λ. Posterior mean as well
as the 66% and 95% credible intervals are shown in black.
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Figure S4: Kernel Density estimates for the distribution of counts of the 20 highlighted genes in
Table 1.
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Figure S5: The observed difference in differential expression estimates for each of the 100 genes
analyzed in section 3 correlates with the zero inclusion ratio of means statistic. The 10 genes
with the largest absolute difference in estimated differential expression between the ZINB and NB
models are shown in red and correspond to the first 10 genes in table 1. The 10 genes found to have
differing signs of estimated differential expression between the ZINB and NB models are shown in
blue and correspond to the last 10 genes in table 1.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2018. ; https://doi.org/10.1101/477794doi: bioRxiv preprint 

https://doi.org/10.1101/477794
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Zero Processes and Prototypical Analysis Methods
	Zero Processes
	Class I: Sampling Zeros
	Class II: Technical Zeros
	Class III: Biological Zeros

	Five Prototypical Models
	Class 0: Fixed Zero Replacement Models
	Class I: Unadjusted Count Models
	Class IIa: Partial Technical Bias Models
	Class IIb: Complete Technical Bias Models
	Class III: Biological Absence Models

	Multivariate Count Models

	Real Data Example
	Simulations
	Simulation 1: Highlighting Sampling Zeros
	Simulation 2: Highlighting Partial Technical Zeros
	Simulations 3 and 4: Highlighting Complete Technical Zeros
	Simulation 5: Highlighting Biological Zeros

	Discussion
	Methods
	Data Simulation
	Posterior Inference
	Analysis of Single Cell RNA-Seq Data
	Code availability


