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Québec, Canada
3Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
4Helsinki Institute for Information Technology HIIT and Department of Mathematics and

Statistics, University of Helsinki, Helsinki, Finland
5Department of Public Health, University of Helsinki, Helsinki, Finland

6www.wtccc.org.uk
7Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of

Oxford, Roosevelt Drive, Oxford, UK
8Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK

9Christ Church, University of Oxford, St Aldates, Oxford, UK
*Correspondence can be sent to holly.trochet@umontreal.ca

November 23, 2018

1

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2018. ; https://doi.org/10.1101/477828doi: bioRxiv preprint 

https://doi.org/10.1101/477828
http://creativecommons.org/licenses/by-nc/4.0/


Abstract

Genome-wide association studies (GWAS) are a powerful tool for understanding the

genetic basis of diseases and traits, but most studies have been conducted in isolation,

with a focus on either a single or a set of closely related phenotypes. We describe

MetABF, a simple Bayesian framework for performing integrative meta-analysis across

multiple GWAS using summary statistics. The approach is applicable across a wide

range of study designs and can increase the power by 50% compared to standard

frequentist tests when only a subset of studies have a true effect. We demonstrate its

utility in a meta-analysis of 20 diverse GWAS which were part of the Wellcome Trust

Case-Control Consortium 2. The novelty of the approach is its ability to explore, and

assess the evidence for, a range of possible true patterns of association across studies

in a computationally efficient framework.
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1 Introduction

In the past decade, a large number of genome-wide association studies (GWAS) have been

performed, and they have identified thousands of associations between genotypes and various

biological traits (Hindorff et al., n.d.). These associations expand our understanding of

both unique and shared molecular mechanisms across different phenotypes (Price, Spencer,

& Donnelly, 2015). With so much data available, there is now an increased interest in

combining these data in order to learn about regions of the genome that affect multiple

traits and, consequently, the shared biological pathways that underlie traits.

While the search for genetic associations shared between traits can be conducted using

individual-level genotype data from the participating GWAS (Ellinghaus et al., 2016), in

practice, most of the readily available data come in the form of summary statistics. While the

exact summary statistics reported vary from study to study, they usually include information

about the genetic variant (usually a single nucleotide polymorphism, SNP) and its estimated

effect on the phenotype under study. Information about the variant usually includes its

genomic location in a given build of the human genome, as well as its alleles, and sometimes

the frequencies of the alleles. Information about the association often includes the effect size

estimate, its standard error or a 95% confidence interval, and the p-value of the association

between the variant and the phenotype. The summary statistics information is typically

orders of magnitude smaller than the original genotype data files, and reduce the risk of

revealing personal information about study participants. For these reasons, a number of

methods have been introduced to combine GWAS summary statistics to find genetic loci

that influence multiple traits across the genome (Bhattacharjee et al., 2012; Cotsapas et al.,

2011; Flutre, Wen, Pritchard, & Stephens, 2013; Majumdar, Haldar, Bhattacharya, & Witte,

2018; Turley et al., 2018; Wen & Stephens, 2014a). These meta-analyses can also find novel

associations that were overlooked in individual GWAS.

In this paper we introduce MetABF, an approach to meta-analyse GWAS summary

statistics at a single SNP which is simple, efficient, and which can be easily programmed
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using any standard statistical package—we offer an implementation in R. We have found

similar methods to be useful in previous studies (Band et al., 2013; Bellenguez et al., 2012;

Gilchrist et al., 2018; Rautanen et al., 2016) and present a unified framework for others to

use to explore their data. Unlike most other methods available, ours allows for a direct

probabilistic assessment of different models of association across studies, given appropriate

prior assumptions. We demonstrate the broad applicability of the approach using simulations

of association studies, and by applying it to a diverse set of 20 GWAS that were performed

by the Wellcome Trust Case-Control Consortium 2 (WTCCC2, www.wtccc.org). The R

implementation is available at https://github.com/trochet/metabf.

2 The Method

Traditionally, meta-analysis of GWAS has focused on combining results of multiple studies

on the same or similar traits. Figure 1 illustrates the the inference problem. Given a set

of effect size estimates (β̂), and the uncertainty in these estimates (SEβ̂) what can we infer

about the true effect sizes, βi, underlying them?

Interpretation of the data depends on assumptions about the heterogeneity in effect

between studies. For example, an assessment of the data might be that there is little evidence

from studies 1, 2 and 3 because their confidence intervals overlap zero. Even if we were to

assume that all studies estimate the same effect, the inconsistency in observed effect sizes,

in particular for β2 and β4, means that we are unlikely to find strong evidence for a non-zero

effect. However, if we knew that the exact trait under examination in studies 1 and 2 was

slightly different to those in 3 and 4 then the strong evidence that β4 < 0 might suggest that

β3 < 0 as well, without necessarily suggesting the same for β1 and β2. Our framework aims

to make it easy to quantify the statistical evidence for these kinds of heterogeneous models

and to provide the corresponding effect size estimates.
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Figure 1: Statement of the problem. Given a set of observed effect sizes estimated from data in n = 4 studies,
we want to make inferences about the true effect sizes. Our joint estimate of the true effects depends on our
assumptions of the similarity between the β̂is being estimated, for example the similarity between traits being
studied. A key idea in our approach is to be able to easily assess the evidence for models with various assumptions
of similarity between the studies.

2.1 Bayesian approach

Our method uses a Bayesian approach that provides a natural way of capturing the reasoning

described above for Figure 1 in a statistical framework. To measure the evidence for asso-

ciation, we calculate Bayes factors, which consider the ratio of the posterior probabilities of

two models M1 (an alternative model) and M0 (the null model) given some data. By Bayes’

Theorem,

P (M1|data)

P (M0|data)︸ ︷︷ ︸
Posterior odds

=
P (data|M1)

P (data|M0)︸ ︷︷ ︸
Bayes factor

× P (M1)

P (M0)︸ ︷︷ ︸
Prior odds

. (1)

A Bayes factor greater than 1 suggests that the evidence from the data favors M1 over M0,

while a Bayes factor smaller than 1 suggests the opposite. Note that Bayes factors lie in the

range (0,∞) but when they are presented on a logarithmic scale, negative values are also

possible and correspond to the Bayes factors favoring the null model. The interpretation of

Bayes factors in the context of GWAS has been discussed earlier (Consortium, 2007; Stephens

5

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2018. ; https://doi.org/10.1101/477828doi: bioRxiv preprint 

https://doi.org/10.1101/477828
http://creativecommons.org/licenses/by-nc/4.0/


& Balding, 2009). Because Bayes factors calculate the probability of the data under the null

as well as under the alternative model, they naturally account for power to detect effects. In

GWAS, this means that Bayes factors can be easier to calibrate across varying study sizes

and minor allele frequencies than p-values which only consider the tail probabilities under

the null model (Wakefield, 2009). Bayes factors require a prior distribution on the model

parameters which can be used to describe different alternative models.

In practice, Bayes factors can be computationally expensive to calculate as they com-

monly involve an integration over the model parameters with respect to the prior distribution.

Often, there is no closed form solution of the necessary integrals, necessitating numerical pro-

cedures. In the context of GWAS, Jon Wakefield developed an approximate Bayes factor

(ABF) that can be calculated directly from GWAS summary statistics (Wakefield, 2007,

2009). Asymptotically, it gives similar results to a Laplace approximation of the integrals in

Bayes factor, and the study sizes required for a good approximation are of the order of hun-

dreds of participants (Wakefield, 2009). Here we describe our approach, using approximate

Bayes factors (ABFs) in genome-wide association studies (Wakefield, 2007, 2009) which is

similar to those applied elsewhere (for example, (Asimit et al., 2015; Pickrell et al., 2016;

Wen & Stephens, 2014b)). We compare our MetABF method to two other methods CPBayes

(Majumdar et al., 2018) and MTAG (Turley et al., 2018).

2.2 Statistical model

For each variant, a GWAS produces a point estimate, β̂, of the effect of a given allele on

a trait, typically adjusted for relevant covariates like age, sex, or ethnicity. In quantitative

traits, β̂ represents the direct effect on the phenotype measurement. In binary traits, β̂

estimates the natural logarithm of the odds ratio (OR) corresponding to each additional

copy of the effect allele, that is, exp
(
β̂
)

is the odds ratio estimate. Each β̂ comes with

a standard error, SEβ̂, which is estimated along with β̂ and, in most settings, is largely

determined by the sample size and variant frequency. Wakefield’s ABF assumes that given
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SEβ̂, β̂ captures the information in the study data about the true effect size, β such that

β̂ ∼ N
(
β, SE2

β̂

)
. (2)

For the large sample sizes found in most GWAS, equation 2 is expected to be a reasonable

approximation at all but rare variants (less than 1% frequency). Further discussion of this

can be found in section 3.1 of the supplementary material.

Like all Bayesian methods, Wakefield’s ABF includes a prior distribution, which en-

codes our beliefs about the true effect size β. The prior is determined by a single scaling

parameter σ that is set by the analyst,

β ∼ N
(
0,σ2

)
. (3)

Large σ corresponds to a belief that true effect sizes can be large, and analogously for small

σ. Values commonly used in the literature for disease studies are 0.2 and 0.4 (Marchini &

Band, n.d.; Stephens & Balding, 2009). The value σ = 0 encodes a belief that the variant

has no effect on the trait under investigation, and will be used as the null model, M0 in our

analysis.

For given β̂, SEβ̂, and prior σ, let f (x;m, s2) be the probability density of the Gaussian

distribution with mean m and variance s2, evaluated at x. Then Wakefield’s ABF is simply

ABF =
f
(
β̂; 0, SE2

β̂
+ σ2

)
f
(
β̂; 0, SE2

β̂

) . (4)

Because this is a ratio of normal densities, it has a closed form expression that can be

evaluated very quickly.

We note that the prior distribution on the true effect size, β, shown in Equation 3,

has most of its probability mass close to zero, which is where the null model has all of its

mass. Thus, the Bayes factor in equation 4 has a minimum, non-zero value at β̂ = 0, while
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the maximum value is unbounded. It will rarely provide strong evidence in favor of the

null (M0) as the alternative model includes very small effects close to zero. Other non-local

priors (where the prior density of the alternative model drops to zero near zero), have been

described (Johnson & Rossell, 2010). The lack of strong evidence in favour of the null reflects

the fact that, in the GWAS context, small effect sizes are difficult to rule out. Furthermore,

a GWAS typically aims to identify SNPs that show strong evidence (say, ABF > 1000) for

an association with a trait, rather than those that show strong evidence for no association.

2.3 Approximate Bayes factors for meta-analysis

We describe our multivariate extension of the ABF to meta-analysis. Instead of calculating

an ABF for an association between a given variant and a given trait measured in one GWAS,

we calculate an ABF for an association between a variant and an arbitrary number of traits,

n, measured in independent or (partially) overlapping studies. Recently, multivariate analysis

of GWAS summary statistics has been implemented by the MTAG approach (Turley et al.,

2018) and a framework involving Bayes factors to compare models of association has been

developed to help determine relevant tissues in eQTL data (Flutre et al., 2013). When

extending ABF to the multivariate case, β̂, that was a single effect size estimate from a

single GWAS, becomes β̂, an n-vector of effect size estimates from each of the n studies

included in the meta-analysis.

β̂ =
(
β̂1, . . . , β̂n

)T
.

Similarly, SEβ̂ is replaced by the study covariance matrix, Vβ̂, of dimension n× n,

Vβ̂ =



SE2
1 r1,2SE1SE2 · · · r1,nSE1SEn

r1,2SE1SE2 SE2
2 · · · r2,nSE2SEn

...
...

. . .
...

r1,nSE1SEn r2,nSE2SEn · · · SE2
n


. (5)
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If the studies are all independent—that is, they do not share samples—then the ri,j

terms in Vβ̂ are all 0, and Vβ̂ is simply a diagonal matrix of study-wise variances. If studies

are not independent, then some or all of the off-diagonal elements of Vβ̂ will be non-zero. If

the amount of overlap between studies is known, then the values of r can be calculated from

formulas provided by Zaykin and Kozbur (Zaykin & Kozbur, 2010) and Bhattacharjee et al.

(Bhattacharjee et al., 2012).

However, having information on exactly which samples were included in which consor-

tia and analyses is increasingly difficult, especially when dealing with summary statistics,

necessitating approaches that estimate the covariance between studies directly from the data.

The authors of the MTAG approach (Turley et al., 2018) used the intercept of the pairwise

LD score regression (B. K. Bulik-Sullivan et al., 2015) to create an analogous matrix. This

can be applied to our method as well. As we show later, it is also possible to get similar

estimates by simply calculating empirical correlations in a chosen subset of β̂s between the

two studies.

Next we consider a multivariate extension of σ, which we call Σ. As in the univariate

case, each study i ∈ {1, . . . ,n} has a prior parameter σi determining the expected effect

sizes. However, combining multiple studies introduces the possibility of correlated true

effects between the studies, which we capture in the terms ρi,j : i, j ∈ {1, . . . ,n}.

Σ =



σ2
1 ρ1,2σ1σ2 · · · ρ1,nσ1σn

ρ1,2σ1σ2 σ2
2 · · · ρ2,nσ2σn

...
...

. . .
...

ρ1,nσ1σn ρ2,nσ2σn · · · σ2
n


. (6)

This matrix has a similar role as the Ω matrix in the MTAG approach (Turley et al., 2018).

Thus, by writing f (x;m,V ) for the density of a multivariate normal distribution with mean

vector m and covariance matrix V , evaluated at x, Equation 4 becomes
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ABF =
f
(
β̂; 0,Vβ̂ + Σ

)
f
(
β̂; 0,Vβ̂

) . (7)

2.4 Choosing prior parameter values

Unlike Vβ̂, which is in theory can be defined by the data, Σ reflects the prior beliefs of

the researcher about the similarity of the effects between studies. One of the most common

ways to meta-analyze a set of GWAS summary statistics is the inverse-variance weighted

fixed-effects model. This model assumes that the underlying true effect of an associated

variant is the same in all cohorts, and the differences in the estimated effect sizes arise due

to statistical noise. Larger studies produce more accurate estimates of the underlying true

effect producing estimators with smaller variances. Thus, weighting by the inverse of the

variance gives a larger study a greater contribution to the meta-analyzed estimate than a

smaller one. In our framework, this fixed-effects model is encoded by setting all the ρi,j

terms of Σ equal to 1.

Another common meta-analysis method is the random-effects model. This assumes

heterogeneity in true effect sizes across studies. There are many ways of implementing this

assumption, many of which have inherently reduced power to detect effects compared to the

fixed effects approach (Han & Eskin, 2011). Our approach allows for a number of different

priors that allow for heterogeneity in effects found in different studies. They are summarized,

along with the fixed-effects prior, in Table 1.

The prior models described above allow us to quantify the evidence of association

through an ABF in which the alternative model can take a range of forms. The simplest

models assume that all studies draw their effects from the same marginal distribution and

are equally correlated with one another, such that the prior can be specified with just a

single σ and a single ρ parameter. When ρ < 1, the prior allows some studies to have large

effects while others can still have effects very close to zero since the prior on β is always

centered on zero. In this way, we expect an ABF which assumes all studies have an effect
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Variance of
effect size

Correlation
in effect

sizes Notes

Null model σ2 = 0 -
Assumes variant has no effect on the
phenotype.

Fixed effects σ2 > 0 ρ = 1

Equivalent to first applying an inverse-variance
weighted meta-analysis to estimates β̂i and
SEβ̂i , and then using these estimates as a single

study in equation (4).

Independent
effects σ2 > 0 ρ = 0

Equivalent to multiplying the single study
ABFs across studies, assuming the studies are
independent. Similar to Fisher’s method of
combining p-values.

Correlated effects σ2 > 0 0 < ρ < 1

Similar to a related-effects approach where the
effects are assumed to be correlated after being
drawn from a common distribution (see text).

Subset model

σ2i > 0 for i
in a subset

I ⊆
{1, . . . ,n}

0 ≤ ρij ≤ 1
for i, j ∈ I

Models heterogeneous patterns of effects, where
only a subset of the underlying parameters are
nonzero. May be most appropriate to model as
fixed, independent, or correlated within the set
of nonzero effects, depending on the setting.

Table 1: Different models of association across studies and their relation to parameters of the prior model. Here
σ and ρ are as defined in text and assumed to be the same across studies.

with 0 < ρ < 1 to show evidence for the alternative model, that is, ABF> 1, even when only

a subset of the studies have truly nonzero effects.

2.5 Subset exhaustive model averaging

In the analysis of a diverse set of phenotypes, it is natural to consider the possibility that

only a subset of studies have non-zero effects (σ2
i > 0) while the rest are null (σ2

i = 0). For

n studies and fixed values of ρ and σ, there are 2n possible subset models, including the null

model of no association. A natural Bayesian approach for detecting associations under these

assumptions is to apply model averaging over the subset models to obtain a single summary

of the evidence for models of association against the null model of no association. By storing

the ABF for each of the models, the analysis can also generate the full posterior distribution

over the models. These analyses require specifying a prior probability on each model. When

all studies are considered equally likely to have an effect, then possible prior distributions
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include:

Uniform prior: This assumes that every model of association is equally likely, and thus

has the prior probability p of

p =
1

2n
. (8)

Combinatorial prior: When calculating the total prior weight on the models with m asso-

ciated traits out of all possible n traits under the uniform prior, we see that the models

with n
2

traits (n
2
±0.5 if n is odd) have the largest prior weight since the number of these

models is the largest. The combinatorial prior forces the prior weights on the number

of associations to be the same. That is, for a model with a total of m associations, the

prior probability p on the model is

p =
m! (n−m)!

(n+ 1)!
. (9)

Binomial prior: Both the uniform prior and the combinatorial prior assume that a model

with no associations is equally likely as a model where all n traits are associated.

In reality, we might assume that each of the studies has some probability qi : i ∈

{1, . . . ,n} of having a true association with a variant. Alternatively, these qi can be

thought of as the proportion of SNPs with which the ith study is expected to be

associated. This is similar to π, the prior on the expected proportion of true effects

that Stephens and Balding (Stephens & Balding, 2009) discuss for the calculation of

the posterior probability of association. For a given model with subset K ⊆ {1, . . . ,n}

of studies showing associations with the variant and subset L = {1, . . . ,n}\K showing

no association, the prior probability of the model is

p =
∏
i∈K

qi
∏
j∈L

(1− qj) . (10)

The uniform prior can be recreated in this prior by setting all qi = 0.5.
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In practice, we do not recommend using the combinatorial prior, as it tends to result

in the highest ABF being associated with either the null model or the model with all traits

associated. This becomes more pronounced as the number of studies in the meta-analysis,

n, increases. This is because for all values of n > 1, there is exactly one null model and

one model where all n traits are associated, while the number of models with one to n − 1

associations increases with n, so the prior weight on any one of these models decreases with

n, which also decreases their relative weights compared to the null and n associated models.

Furthermore, in real world applications, it is unlikely that one would have an a priori belief in

the number of true underlying associations while being completely agnostic to which specific

traits are associated.

By making use of the generality of the prior covariance matrix Σ, a range of other

models can be defined based on particular assumptions on the relationship between traits.

Where it might be appropriate to assume that the marginal effect at a variant is represen-

tative of the genome average, the estimates of the genetic correlation between two studies

might be appropriate as prior information, and it has been shown that this can increase

power in some scenarios (Turley et al., 2018).

In practice, for analyses of large numbers of studies, we advocate selecting a relatively

small set of prior matrices which best represent possible models as a way to overcome the

exponentially growing model space and the fact that prior probability on any one subset

model becomes increasingly small with increasing number of studies. The rationale is similar

to the approach taken in the analysis of eQTL data (Flutre et al., 2013). We can average

across all of the ABFs calculated under the various priors to get a single quantity that

accounts for our uncertainty about the exact prior model.

It is also of interest to assess models in which effects are assumed to be negatively

correlated between some pairs of studies. A challenge is that the number of possible con-

figurations of positive and negative association grows even more quickly than the subset

models. Taking absolute values of the effect sizes changes the sampling distribution to the
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folded-Gaussian distributions which are difficult to work with. If negative correlations are

of interest, or should be entertained as possible, then assuming independent effects (ρ = 0)

is a practical option, although with the cost of losing the dependency information between

the effect sizes.

2.5.1 Shotgun stochastic search

If the number of studies in the meta-analysis is so large that an exhaustive search over all

subset models is not feasible for a given Σ, a shotgun stochastic search (SSS) (Hans, Dobra,

& West, 2007) can be performed to determine the most likely models of association. This

iterative method calculates the ABFs for the set of models in the “neighborhood” of the

current index model. This neighborhood contains models that (i) add an association to

the index model, (ii) remove an association from the index model, or (iii) replace exactly

one nonzero study from the index model with one that is zero in the index model. The

algorithm then chooses the next index model based on a probability distribution generated

from normalizing the ABFs of the models in the neighborhood of the index model. This type

of search has been used to fine-map genetic loci (Benner et al., 2016) and is well-suited to

our ABF analysis, as it quickly finds the models with high ABFs. In every scenario we have

investigated, in both real and simulated data, the distribution of ABFs has been unimodal,

meaning that the search is unlikely to miss the global maximum of the distribution due to

being caught in a local one.

2.6 Posterior distribution of effect sizes

Within the Bayesian framework described above, it is natural to compute the posterior on the

true effect sizes under different assumptions about the presence and size of an effect within a

study, and the correlation in effects across studies. Often when describing the interpretation

of a forest plot, like that illustrated in Figure 1, the analyst informally imposes these beliefs

in drawing conclusions. It is therefore of interest to assess formally the impact of these beliefs
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on our inference about the true effects.

Using standard results for the posterior distribution of the mean given a multivariate

normal likelihood and a normal prior:

β ∼MVN
(

(Σ−1 + V −1
β̂

)−1(V −1
β̂
β̂), (Σ−1 + V −1

β̂
)−1
)

(11)

A posterior forest plot can then be drawn with point estimates based on the posterior

mean, and with the marginal variance on the posterior effect size taken from the diagonal

elements of the posterior variance-covariance matrix. The impact of the prior matrices

described above on the posterior forest plot typically includes: shrinkage of effects towards

zero, when they are believed to be non-zero; increased certainty in the effect size estimates of

two studies with similar effects when they are assumed to be correlated, with the certainty

at its maximum when the studies are independent; and increased uncertainty in true effects

which are assumed to be correlated when the observed effects differ significantly. We note

that it would be possible model average the posterior distribution over models by numeric

evaluation. In this case, the marginal posterior distribution of effect size within a study is

no longer necessarily unimodal.

3 Results

3.1 Simulations and statistical properties

To understand the statistical properties of our method compared to standard approaches to

meta-analysis, we performed simulations of 5 independent genome-wide association studies

at a single variant. We found that, assuming sample sizes are moderate (> 1000 individuals)

and allele frequencies not too rare (> 0.01), it was possible to simulate effect sizes and

standard errors directly from the the model described above, where true effects can either

be fixed at a given value, or sampled from a prior distribution (see Supplementary Material
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6.3). The ability to efficiently simulate directly from the approximate model is useful for

assessing frequentist properties of the Bayesian approach.

As an illustrative example Figure 2 shows the estimated power of a standard inverse-

variance weighted fixed effects meta-analysis approach and Fisher’s method of combing p-

values, as well the power of a MetABF which assumes that all studies have an effect. Results

are shown for MetABFs that assume effects are uncorrelated (ρ = 0), or highly correlated

(ρ = 0.96). The MetABF with highly correlated effects performs well when there is an

effect in all 5 studies, although not quite as well as the fixed effects approach when the fixed

effects assumption is correct. However it has substantially more power when only a subset of

studies—for example 2 out of 5—have an effect in which case the highly correlated MetABF

has 50% more power than the fixed effects approach.

Number of truly associated traits
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Figure 2: Plot of power for two frequentist test and the ABF with two different prior parameter settings for the
assumed correlation between studies (ρ). Simulation were performed with a true effect (Odds ratio = 1.1) present
in a subset (y-axis) of 5 studies with 1500 cases and 1500 controls. Power was calculated using a significance
threshold α = 0.01. ABFs were calculated with σ = 0.2.

We used simulations under the null to estimate p-values for the ABF using priors which

assumed effects were present in all 5 studies (as in Figure 2), and the MetABF model that

explicitly averages over all possible subsets of true effects. We note that when the ABF is

based on a single variance-covariance matrix for the prior, i.e. it is not model averaged,

then it is possible to derive the distribution of ABF under the null, given a frequentist
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test statistic, see Supplementary Material 6.5. We performed simulations under a range

of different subset effects with different priors on effect sizes and correlations and compare

statistical power to two frequentist methods described above as well as a random effects

approach with a closed-form calculation (DerSimonian & Laird, 1986) .

Briefly, we found that the MetABF approach was similar in power to the best frequen-

tist tests, was more powerful when a subset of the traits in the meta-analysis were truly

associated. Of the three alternative approaches we tested, Fisher’s method came closest in

terms of power with the Bayes factor approaches when there are three or more studies with

associations to find. We also found that while MetABF sometimes loses power when the

prior correlation on the true effects is different from the true underlying correlation, the loss

is not large — the results of the MetABF analyses using different values of ρ (but the same

prior σ) tended to differ by less than 0.005. This suggests that the MetABF approach is

fairly robust to the choice of prior ρ.

3.2 Comparison to other methods

We compared our method to both CPBayes (Majumdar et al., 2018) and MTAG (Turley

et al., 2018) using simulated data. Section 7 in the supplement provides a more detailed

discussion of our findings. Briefly, at any given false positive rate (proportion of spurious

associations in the posterior model), CPBayes had the highest true positive (proportion of

true associations in the posterior model) rate of the three methods, while MetABF and

MTAG were very similar in performance. However, neither MTAG nor CPBayes allow the

user to explore the posterior probability space the way MetABF does. Additionally, the gain

in accuracy in CPBayes comes at a considerable time cost. It took roughly 8 minutes on

average to analyze a dataset of 60,000 SNPs with MetABF, while CPBayes took an average

of 2.3 days when studies were assumed to have no cryptic relatedness between them, and an

average of 6.6 days when they were not. Both CPBayes and MetABF are implemented as

R packages. MTAG, which is implementedin Python, was by far the fastest method, taking
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an average of 15 seconds on the full data; however, this does not include the time taken to

create the LD score reference panels.

3.3 Application to WTCCC2 data

To investigate the applicability of the approach across a large number of heterogeneous

GWAS, we applied it to summary statistic data from the following Wellcome Trust Case

Control Consortium 2 (WTCCC2) studies. These included

Autoimmune diseases: 1) ankylosing spondylitis (AS); 2) multiple sclerosis, UK cohort

(MS UK); 3) multiple sclerosis, non-UK European cohort (MS nonUK); 4) psoriasis

(PS); 5) ulcerative colitis (UC).

Infectious diseases: 6) bacteremia, all types (BS overall); 7) pneumococcal bacteremia

(BS pneumococcus); 8) visceral leishmaniasis, Indian cohort (VL India); 9) visceral

leishmaniasis, Brazilian cohort (VL Brazil).

Stroke cohorts: 10) ischemic stroke, large vessel subtype (IS TOAST 1); 11) ischemic

stroke, small vessel subtype (IS TOAST 2); 12) ischemic stroke, cardioembolic sub-

type (IS TOAST 3).

Reading and mathematics cohort: 13) reading scores (RM reading); 14) mathematics

scores (RM maths).

Psychiatric traits: 15) schizophrenia (SP); 16) psychosis endophenotypes (PE).

Studies of unique traits: 17) Parkinson’s disease (PD); 18) Barrett’s esophagus (BO);

19) metformin response (PR); 20) glaucoma (GL).

Studies were mainly conducted in European cohorts, but two studies (BS and VL) used

non-Europeans samples. Three different genotyping arrays were used, and four studies were

imputed to increase the number of SNPs in the dataset (see Supplementary Tables 7 and 8

for details). As a result, summary statistic data were typically available for only a subset

of studies at any given SNP. Our analysis included all SNPs for which there were summary

statistics in at least two of the studies. Before performing our analysis we harmonised the
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data using a pipeline to align the SNPs in each study to the forward strand, thus ensuring

that the “A” and “B” alleles of each SNP were the same across all studies, and corresponded

to the reference/alternative alleles in the 1000 Genomes database. Effect sizes were estimated

for the alternative allele. Details about the processing and availability of the data can be

found in Section 6.7.1 of the Supplementary Material.

To search for signals of association we calculated a model averaged ABF at each SNP

across the genome. To capture the range of possible patterns of association across studies,

we selected 12 models with different assumptions about the correlation structure of effect

sizes across studies. These are described in section 3.4 below. We found that subset models

that assumed an effect only within one study (and explicitly no effect in other studies) often

had low probability, presumably because conditional on one study showing a true effect, the

chance that no other study shows any effect becomes increasingly small (particularly for

related phenotypes), as the number of studies increases. We calculated the ABF for each of

these models with different values of σ (0.1,0.2 and 0.4). We then took the mean across all

resulting ABFs, assuming them to be equally likely a priori, to obtain a single summary of

the association evidence across all studies.

3.4 Prior matrices

Briefly, the 12 priors used in our analyses assume non-zero effects across all studies. They

differ in the presumed correlation structure, ranging from completely uncorrelated across all

studies (model 1), through to prior matrices where correlated effects only occur within a

subset of studies (for example IS, MS, BS and RM, models 5-7) or within study classes (for

example autoimmune disease; AS, PS, MS and UC: models 8-12). Figure 3 illustrates each

of the prior models used. The traits are listed in the order described at the start of Section

3.3, grouped by disease/trait class.
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Figure 3: Visualizations of the prior correlation matrices of WTCCC2 analyses. Dark red squares correspond to
ρ = 1, red squares correspond to ρ = 0.96, yellow-orange squares correspond to ρ = 0.5, light yellow squares
correspond to ρ = 0.1, and white squares correspond to ρ = 0. The traits are listed in the order at the start of
Section 3.3 and grouped by disease/trait class.
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3.5 Study matrix

Among the 20 WTCCC2 cohorts, nine of them used samples from a shared pool of controls.

Additionally, one of the bacteremia (BS) cohorts was a subset of the other, while the two

reading and mathematics cohorts (RM) comprised of two different phenotypes measured on

the same individuals. This introduced correlation in the effect size estimates due to shared

statistical noise, and therefore non-zero covariance terms between some of the studies in the

V = Vβ̂ matrix (see Equation 5), which we needed to estimate (Table 2).

When estimating the correlation directly from the genome-wide β̂-statistics, we used

several approaches: taking the intercept from LD score regression (LDSC) (B. Bulik-Sullivan

et al., 2015; B. K. Bulik-Sullivan et al., 2015; Turley et al., 2018), which provides an estimate

of trait covariance due to undetected shared controls; using all the available data and em-

pirical correlation of β̂-estimates over three subsets of the SNPs (all SNPs; thinning out the

SNPs by the recombination distance; and removing SNPs that had significant associations

with p < 5 × 10−8 as well as those in the MHC region). Broadly, the estimated correla-

tions were similar across approaches, however the removal of significant associations and the

MHC region tended to increase the estimated correlation, as did the LDSC analysis. These

observations suggest that strong association signals create additional variance in the effect

size estimates that can reduce the correlation if not accounted for.

For the analysis that follows, we assumed Vi,j,p = ri,jSEi,pSEj,p, where i and j indexed

the study pairs and p indexed the SNP. Because LD score regression was not able to run on

all of our data, due to small (<100,000) overlaps between the markers in software’s reference

panels and the markers in some of our cohorts, the pairwise correlations ri,j were based on

the genome-wide correlations in β̂ estimated after the removal of the MHC region and other

significant associations, and SEj,p were taken directly from the original association analysis.
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Table 2: Comparison of the 39 non-zero correlations calculated under the null between each pair of studies
using different methods: using the set of SNPs shared between the two phenotypes with genome-wide significant
SNPs and those in the MHC region removed (“Signals removed”), the set of SNPs shared between the two
phenotypes, thinned so that all SNPs are at least 0.25 centiMorgans apart (“Thinned”), the set of all SNPs
shared between the two phenotypes (“All”), and the intercept of the genetic covariance calculated by LD Score
regression B. Bulik-Sullivan et al. (2015); B. K. Bulik-Sullivan et al. (2015) (“LDSC”).

Trait 1 Trait 2

Signals

removed Thinned All LDSC

AS BO 0.192 0.162 0.177 0.196

AS IS TOAST 1 0.097 0.0946 0.0932 0.0939

AS IS TOAST 2 0.0995 0.0892 0.0868 0.0998

AS IS TOAST 3 0.0885 0.0817 0.0804 0.096

AS MS UK 0.184 0.143 0.147 0.199

AS PD 0.198 0.185 0.169 0.206

AS PS 0.198 0.147 0.152 0.206

AS UC 0.213 0.203 0.209 0.225

BO IS TOAST 1 0.122 0.134 0.122 0.127

BO IS TOAST 2 0.133 0.162 0.132 0.135

BO IS TOAST 3 0.113 0.121 0.113 0.126

BO MS UK 0.229 0.199 0.226 0.241

BO PD 0.237 0.227 0.237 0.236

BO PS 0.284 0.277 0.273 0.294

BO UC 0.244 0.251 0.244 0.268

BS overall BS pneumo. 0.619 0.623 0.619 NA

IS TOAST 1 IS TOAST 2 0.121 0.133 0.120 0.127

IS TOAST 1 IS TOAST 3 0.169 0.175 0.168 0.164

IS TOAST 1 MS UK 0.115 0.098 0.111 0.118

IS TOAST 1 PD 0.111 0.118 0.111 0.110

(Continued on next page)
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(continued from previous page)

Trait 1 Trait 2

Signals

removed Thinned All LDSC

IS TOAST 1 PS 0.129 0.119 0.124 0.127

IS TOAST 1 UC 0.114 0.112 0.115 NA

IS TOAST 2 IS TOAST 3 0.117 0.137 0.118 0.114

IS TOAST 2 MS UK 0.124 0.127 0.121 0.127

IS TOAST 2 PD 0.128 0.117 0.127 0.128

IS TOAST 2 PS 0.134 0.136 0.127 0.139

IS TOAST 2 UC 0.124 0.161 0.123 0.128

IS TOAST 3 MS UK 0.112 0.0866 0.11 0.116

IS TOAST 3 PD 0.112 0.102 0.112 0.104

IS TOAST 3 PS 0.113 0.108 0.107 0.122

IS TOAST 3 UC 0.109 0.131 0.109 NA

MS UK MS nonUK 0.0529 0.132 0.0927 0.0191

MS UK PD 0.243 0.245 0.242 0.252

MS UK PS 0.243 0.218 0.222 0.254

MS UK UC 0.233 0.224 0.231 0.244

PD PS 0.249 0.269 0.237 0.253

PD UC 0.24 0.251 0.239 0.246

PS UC 0.257 0.247 0.240 0.271

RM reading RM maths 0.535 0.535 0.535 0.543

Due to simplicity of the multivariate normal approximation, it is quick to simulate

effect size estimates and standard errors under the null for all 20 traits in our analyses.

Using these simulated data, we can calculate ABFs under a range of models, across all traits,
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and simultaneously accounting for the non-independence of the studies. It is then possible

to check, via a quantile-quantile comparison, whether the observed ABFs are distributed

as expected under the null at the majority of SNPs, which would provide confidence that

positive ABFs represent evidence for genuine departures from the null model, as opposed to

systematically mis-calibrated test statistic. Supplementary Figure 13 shows the result of the

simulations across the genome for each of the 12 prior models. The resulting quantiles are

closely matched at the majority of SNPs suggesting that the null model fits the data at the

majority of SNPs. As expected there is a deviation in the tail, where the observed ABFs are

bigger than expected, suggesting the alternative model is a better explanation for the data.

We caution that in the analysis of genome-wide association data, these simulations do not

account for the correlation between SNPs due to linkage disequilibrium.

3.6 Genome-wide analysis

The results of the genome-wide analysis in Figure 4 show the mean MetABF at each SNP

across all 36 combinations of 12 prior matrices and three values of σ (σ = {0.1, 0.2, 0.4}),

using the model that assumes an association in every trait. Additionally, we curated two lists:

one of SNPs reported in each WTCCC2 publication as being implicated by previous studies,

and the other of novel loci identified as genome-wide significant (often after replication) by

each publication. These are given in the Supplementary Material (Tables 9 and 10). Of

the 35 previously identified associations, 18 had a model averaged MetABF > 104 in our

analysis.

For regions showing a strong evidence of association (model-averaged MetABF > 104)

we further explored the patterns of association, examining all possible subset models across

all 12 prior correlation matrices and three values of prior effect size parameter σ. For markers

with information for at least 19 studies, we used a shotgun stochastic search (Hans et al.,

2007) to avoid making all 219 or 220 calculations. Because of the large number of possible

models, and because we assumed each to be equally likely a priori (Uniform prior), this
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Figure 4: MetABF analysis of genome-wide association analysis across 20 WTCCC2 studies. Adjacent chromo-
somes are coloured with different shades of blue with SNPs of interest colored as denoted in the legend. The
y-axis has a threshold at 20. We highlight the markers with the highest mean ABF in our analysis for each
non-MHC region with markers whose mean MetABFs were greater than 104. Yellow dots show markers that had
been established as loci associated with one or more of the WTCCC2 traits. Red dots highlight the SNPs with the
highest mean MetABF (for a given region) that show an association with at least one trait in the meta-analysis,
where the mean MetABF ≥ 104, and which are not genome-wide significant in any of the original WTCCC2
analyses.

approach imposes a strong prior belief in the models with an intermediate number of non-

zero effects. We show the marginal probability of the study being included (averaged across

all possible subset models) and the most likely model in Supplementary Figure 14. Outside

of the MHC region (the strong peak of association on chromosome 6), several loci stand out

as potentially having effects across a range of traits. To illustrate the impact of the ABF

analysis on the interpretation of the pattern of association we highlight three SNPs. The

forest plots of the original association summary statistics and the posterior distribution of

effects under the most likely model are shown in Figure 5. We discuss these illustrative

examples below.

• SLC44A2 locus - rs8106664. The analysis highlights a SNP near the gene SLC44A2

which shows strong association with MS, as well as associations with both psoriasis
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Figure 5: Bayesian forest plots of three SNPs highlighted in the genome-wide scan under the prior assumption for
the most likely posterior model. The dotted lines and open circles show the original effect size and 95% confidence
intervals in the WTCCC2 studies. The filled circles and the solid lines show the mean and 95% credible regions
from the posterior distribution under the top model (crosses indicate the SNP was missing). Posterior effects
at zero reflect that the top model assumed no effect in the study. Grey densities at the bottom show the prior
distribution on the effect size under the top model.

and ischemic stroke. The SNP was not identified in the 2011 multiple sclerosis analysis

(Sawcer et al., 2011), but is in strong LD (r2 = 0.9347 in 1000 Genomes EUR pop-

ulations) with a missense variant that was subsequently confirmed (Beecham et al.,

2013). Its prominence in this analysis is driven by the signals in other auto-immune

diseases which boost the signal in MS and increases the confidence in the effect size.

The most likely model also includes an effect in Parkinson’s disease, which under the

prior correlation matrix (prior model 12, which assumes high correlations among traits

from the same class, but no correlations otherwise) is independent of the other studies,

allowing it to have an effect in the opposite direction. SLC44A2 is upstream of LDLR,

a well known lipid locus, and downstream of TYK2, which has a complex association

with multiple auto-immune diseases. One possibility is that this SNP is linked to mul-

tiple signals of association and therefore is not necessarily causal one for every, or even
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any, of the traits showing association (see Supplementary Figure 15). In any case,

this analysis highlights a genetic variant that is a marker for susceptibility to multiple

traits.

• Chromosome 17 inversion - rs1981997. There is a large polymorphic inversion on

chromosome 17 (Stefansson et al., 2005; Tobin et al., 2008) which contains several

important genes, including the gene MAPT which shows a strong signal of association

with Parkinson’s disease (PD) (Skipper et al., 2004; Steinberg et al., 2012; Tobin et al.,

2008). A number of SNPs which tag the inversion show strong evidence of association

in our analysis. The size of the effect in PD leads to the top model having an effect size

prior with a variance of 0.22, which increases the plausibility of large effects in other

studies. Interestingly, the top models include associations in glaucoma in the opposite

direction to the PD risk, and Barrett’s oesophagus (BO) showing effects in the same

direction with PD.

• ERAP1 mutation - rs30187. The strongest signal of association outside of the MHC was

at rs30187, which was previously reported as being significantly associated with both

PS and AS, and these effects drive the evidence for association also in our analysis. The

variant is a missense change (Lys528Arg) with the effect allele associated with impaired

peptide trimming, which is more strongly protective in the presence of a pre-disposing

HLA allele (Evans et al., 2011). The top model identifies this effect as being specific

to AS and PS. This model also assumes effect sizes are strongly correlated between all

diseases that have an effect, with a prior variance of 0.22. These assumptions couple

the effect size estimates, marginally reducing the posterior estimates of the study-wise

standard errors for AS and PS, and increase the effect in PS to become more consistent

with AS.

The above examples highlight how the subset models can explicitly quantify the extent

to which that the data are consistent with no effect at all in a subset of studies, and assess

assumptions about the size and correlation in true effects across the remaining studies. The
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analysis explores the posterior probability on 220×12×3 = 37,748,736 models, and therefore

has substantial flexibility to reveal patterns from the data. An advantage of this analysis is

that any two models can be compared directly against each other to explore how well the

data support one model over the other.

4 Discussion

Here we have introduced MetABF, a method for searching for cross-trait associations us-

ing GWAS summary statistics. The Bayesian approach allows the expected relationships

between studies or traits to be encoded in the analysis. When effects are assumed to be

correlated between studies, a strong effect in one study in the meta-analysis automatically

adjusts the threshold of evidence required to discover extra associations among related stud-

ies. Because the calculations are fast, we can compare different models of association under

different priors directly to determine which fits the data best. This allows us to make prob-

abilistic statements about which studies showed true effects at a given marker.

This type of approach is attractive in its ability to combine a large number of hetero-

geneous GWAS, so to demonstrate how it can be applied, we jointly analyzed 20 different

traits across the WTCCC2 data. Our results highlighted loci that showed multiple associa-

tions across traits studied which did not achieve genome-wide significance in the individual

GWAS. Two different genotyping protocols were used across all the WTCCC2 studies, and

some studies contained imputed markers, meaning that there were data for all traits at fewer

than 5% of the markers in our meta-analysis. In general, our method would tend to favour a

SNP for which there is information on more studies over a SNP for which there is less data,

but which shows a slightly stronger effect in one of the studies.

Cross-trait analyses, including ours have limitations. Specifically, markers with appar-

ent cross-study associations may be tagging multiple distinct causal loci. This is a problem

inherent in GWAS in humans, where the typed marker is rarely the causal variant, but in
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linkage disequilibrium with it (Visscher, Brown, McCarthy, & Yang, 2012). Implicitly this

up-weights SNPs that tag multiple causal SNPs and complicates direct interpretation of the

patterns of associations across studies. Even when the same typed marker is significant for

multiple GWAS, the underlying causal markers may be different, and this may be exac-

erbated by differences in the patterns of linkage disequilibrium between population under

examination (Giambartolomei et al., 2014). Colocalization methods (Giambartolomei et al.,

2014; Hormozdiari et al., 2016; Wen, Pique-Regi, & Luca, 2017) may be employed to deter-

mine if multiple causal variants are likely for regions that show associations with multiple

traits.

An additional challenge is that for every study that is added, the number of possible

models of association doubles. In a large meta-analysis, it is computationally challenging to

fully explore the possible subset space, and to conceptualize their prior probability because

each model becomes more unlikely on its own. These challenges increase further if combi-

nations of both positive and negative correlations are explicitly considered. It is possible

that when the effect size estimates are precise (low SE), many of the subset models will

have almost zero probability. In this scenario, the subset configuration space might be more

efficiently explored by approaches such as Markov chain Monte Carlo (Smith & Roberts,

1993), or shotgun stochastic search (Hans et al., 2007). Here we have set parameters for the

appropriate prior distributions. There is however considerable scope for fitting or estimating

the parameters on the size and correlation of effects across models, and inferring the fraction

of SNPs that derive from each of these models across the genome.

The method of genome-wide association study has become standard approach to gain-

ing insights into the etiology of traits and disease—so common that it has be performed in

an automated manner on thousands of traits in the UK Biobank (Canela-Xandri, Rawlik,

& Tenesa, 2017; Howrigan, Abbott, Churchhouse, & Palmer, n.d.). As more biobanks are

gathered, and as researchers start to peruse them for genetic associations, MetABF is a use-

ful tool to determine cross-trait associations from GWAS. Its reliance on summary statistics

29

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2018. ; https://doi.org/10.1101/477828doi: bioRxiv preprint 

https://doi.org/10.1101/477828
http://creativecommons.org/licenses/by-nc/4.0/


means that access to the raw genetic data is not necessary. For a reasonable number of traits

it can be applied genome-wide, overcoming some of the limitations of a traditional phenome-

wide association study (PheWAS) (Cortes et al., 2017; Denny et al., 2010; Pendergrass et

al., 2011). We have found the approach to aid in the assessment of which models of true

associations are most consistent with the observed summary statistics at a variant.
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