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Abstract 
Motivation: Next generation sequencing techniques revolutionized the study of RNA expression by 

permitting whole transcriptome analysis. However, sequencing reads generated from nested and multi-

copy genes are often either misassigned or discarded, which greatly reduces both quantification accu-

racy and gene coverage. 

Results: Here we present CoCo, a read assignment pipeline that takes into account the multitude of 

overlapping and repetitive genes in the transcriptome of higher eukaryotes. CoCo uses a modified 

annotation file that highlights nested genes and proportionally distributes multimapped reads between 

repeated sequences. CoCo salvages over 15% of discarded aligned RNA-seq reads and significantly 

changes the abundance estimates for both coding and non-coding RNA as validated by PCR and bed-

graph comparisons. 

Availability: The CoCo software is an open source package written in Python and available from 

http://gitlabscottgroup.med.usherbrooke.ca/scott-group/coco. 
Contact: michelle.scott@usherbrooke.ca  

 

 

1 Introduction  

Detection and quantification of RNA transcripts is a critical step to under-

stand the mechanism of gene expression and its impact on cell function. 

Traditionally, transcript abundance has been evaluated using techniques 

that target one known RNA sequence at a time, as in the case of quantita-

tive RT-PCR. More recently, the development of RNA-sequencing tech-

niques (RNA-seq) revolutionized transcriptome analysis by providing the 

tools necessary to study, at least in theory, all RNA transcripts simultane-

ously. Diverse library preparation protocols exist, the most commonly 

used ones focusing on particular classes of RNA through enrichment 

steps. Such strategies include polyA enrichment, non-rRNA enrichment 

(e.g. rRNA depletion), small RNA enrichment and enrichment for RNAs 

bound to specific factors (Conesa, et al., 2016; Hrdlickova, et al., 2017; 

O'Neil, et al., 2013). All these protocols detect certain levels of non-coding 

RNA. Strategies that employ rRNA depletion are the best approaches to 

detect a wide range of different classes of both coding and non-coding 

RNAs including lncRNAs (long non-coding RNA), small nuclear RNAs 

(snRNAs) and 7SL RNA (Boivin, et al., 2018; Lai, et al., 2016). However, 

no matter how the sequencing library is created, the capacity to correctly 

quantify RNA abundance ultimately depends on the correct assignment of 

the sequencing reads, including those generated by non-coding RNA.  

 

Accurate RNA quantification is not easy to achieve since it depends on 

the quality of the transcriptome annotation used as a reference, the com-

plexity of the target RNA sequence and its genomic context. RNA quan-

tification is particularly difficult in the case of small and mid-size non-

coding RNA, which are often produced from multiple genes and/or nested 

in other genes (Boivin, et al., 2018; Luo and Li, 2007; Mohammed, et al., 

2014; Weber, 2006). According to Ensembl annotations (Yates, et al., 

2016), in human, 2596 genes, including miRNA, scaRNA (small Cajal-

body RNAs), snRNA, snoRNA (small nucleolar RNAs), tRNA (transfer 

RNAs) and lncRNA are located in introns and many overlap exons (Sup-

plementary Table 1). In total, 1838 protein-coding genes, lncRNA and 

pseudogenes host or overlap smaller non-coding RNA (Supplementary 

Table 2). While some non-coding RNA are expressed from independent 

promoters like tRNA (Paule and White, 2000) many others do not have 

independent promoters and are at least partially linked to the expression 

of their host gene (Boivin, et al., 2018; Filipowicz and Pogacic, 2002; 
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Matera, et al., 2007). Regardless of the mode of expression, correct iden-

tification of reads from nested and multi-copy genes is essential for the 

accurate quantification of both coding and non-coding RNA. 

 

Abundance estimation from RNA sequencing data generally requires a 

pipeline that aligns reads to a reference genome and then assigns them to 

annotated genes (Conesa, et al., 2016). In higher eukaryotes, mapping 

RNA reads to a genome requires a gapped alignment to avoid the DNA 

intronic sequences, which is accurately performed by standard software 

like the splice-aware aligners STAR (Dobin and Gingeras, 2016) and 

HISAT (Kim, et al., 2015). Once aligned, the sequencing reads must be 

assigned to genes, a task made challenging by overlapping genes and mul-

timapped reads. Indeed, many available tools and commonly used settings 

only quantify correctly genes generating uniquely mapped reads, and 

reads mapping to more than one locus are typically discarded (Fig. 1). 

Reads originating from non-coding RNAs overlapping exons (mainly re-

tained introns) of longer protein-coding RNA or lncRNA are either 

wrongly assigned to their host gene or labelled as ambiguous and dis-

carded (Fig. 1). In addition, reads originating from duplicated genes are 

often discarded by default and many such genes, that we term multi-

mapped genes, are under-represented in RNA-seq assigned counts. 

 

To increase the overall accuracy of RNA quantification and monitor the 

expression pattern of overlapping and repetitive genes, we developed a 

count corrector (CoCo) pipeline that rescues and correctly assigns other-

wise ambiguous sequencing reads. CoCo employs the read assignment 

function featureCounts from Subread (Liao, et al., 2013), providing it with 

a modified annotation file that highlights nested genes, while ensuring ap-

propriate distribution of multimapped reads. CoCo salvages and/or reas-

signs over 15% of aligned RNA-seq reads, significantly changing the 

abundance estimates for several classes of RNA and thus providing insight 

into the expression dynamics of often ignored classes of repetitive and 

overlapping genes. We investigated the performance of the main available 

read assignment pipelines, comparing their accuracy to digital PCR abun-

dance values and bedgraph estimates, showing that CoCo performs best 

using these metrics while requiring reasonable runtime and memory. 

2 Methods 

Sequencing datasets  

To ensure representative abundance of transcripts from nested and multi-

mapped genes, most of which are highly structured RNAs, we chose 

TGIRT (thermostable group II intron reverse transcriptase) sequencing da-

tasets. TGIRT displays high processivity and fidelity, providing an accu-

rate picture of the ribodepleted transcriptome (Boivin, et al., 2018; 

Nottingham, et al., 2016; Qin, et al., 2016). The samples considered are 

GSM2631741/GSM2631742 (fragmented) as well as GSM2631743/ 

GSM2631744 (not fragmented) from GEO series GSE99065. While frag-

mented datasets enable the study of the whole transcriptome, non-frag-

mented datasets emulate size-selecting short RNAs (Boivin, et al., 2018). 

Read alignment  

FastQC was used to check Fastq files for quality. Reads were trimmed 

using Cutadapt (Martin, 2011) (using parameters -g 

GATCGTCGGACTGTAGAACTCTGAACGTGTAGATCTCGGTGGT

CGCCGTATCATT -a AGATCGGAAGAGCACACGTCTGAACT 

CCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG --mini-

mum-length 2) and Trimmomatic (Bolger, et al., 2014) (with 

TRAILING:30) to remove adaptors and portions of reads of low quality, 

respectively. Read pairs were then aligned to the human genome build 

hg38 using an annotation file obtained from Ensembl (described below) 

with the splice-aware RNA-seq aligner STAR (Dobin and Gingeras, 2016) 

using the following parameters: --outSAMtype BAM SortedByCoordi-

nate, --outSAMprimaryFlag AllBestScore, --alignIntronMax 1250000, all 

other parameters at default values. Reads not aligned using STAR were 

aligned once again using Bowtie v2 (Langmead and Salzberg, 2012), 

which performs well for the alignment of shorter reads. Parameters used 

for Bowtie were the following: --local, -p 24, -q, -I 13. Read pairs success-

fully aligned by STAR or Bowtie were merged into a BAM file and sepa-

rated into two groups: those that align to one genomic position and those 

that align to more than one genomic position (Fig. 1F). 

 

Read assignment and corrections. 

The correct_count module from CoCo uses featureCounts (Liao, et al., 

2013) to assign aligned read pairs to their corresponding genes by their 

genomic coordinates using the given annotation file as reference (Fig. 1).  

The following featureCounts parameters are used by CoCo: (-C, --larg-

estOverlap, -p, -B, -s 1, --minOverlap 10, [-M]). The parameter -M is not 

specified when assigning uniquely mapped reads and is specified when 

assigning multimapped reads. CoCo uses a corrected annotation produced 

from Ensembl supplemented annotation (described below) by removing 

regions corresponding to nested genes from longer host genes (described 

below). 

Read pairs aligning to only one genomic location increase the alignment 

count by one for the genomic feature encoded at that location. By default, 

correct_count distributes the reads between their assigned genes according 

to their number of assigned uniquely mapped reads. If no singly mapped 

reads exist for any of the assigned genes, the reads are distributed uni-

formly. Total counts assigned to a gene correspond to the sum of the 

uniquely aligned read pairs and the proportion of multimapped read pairs 

assigned to the gene. The correct_count module also corrects for over-

attribution of reads to nested genes by subtracting the length normalized 

background counts attributed to the feature in which the nested gene is 

encoded, as described in Supplementary Fig. 1. 

 

Annotation supplementation 

An annotation file in gene transfer format (.gtf) was obtained from En-

sembl (Yates, et al., 2016) (hg38, v87). The annotation file was supple-

mented with 628 additional tRNA from GtRNAdb (Chan and Lowe, 2016) 

and with 20 snoRNA from Refseq (O'Leary, et al., 2016) that were missing 

from Ensembl annotations. In addition, 63 gene annotations were removed 

from the gtf file because they overlap another gene over more than 90% 

of their length and keeping them would result in reads aligning to them 

being labelled as ambiguous. These 63 redundant genes consist of 17 

snoRNAs, 43 miRNAs, 2 lincRNAs and 1 antisense RNA. Details of 

added and removed genes are given in Supplementary Data File 1. 

 

CoCo’s annotation correction 

The correct_annotation module of CoCo produces a modified annotation 

file in which any exon position overlapping a snoRNA, scaRNA, snRNA, 

tRNA or miRNA is removed, resulting in a gapped annotation file (Fig. 

1B). To do so, correct_annotation builds a list of gene coordinates corre-

sponding to the above biotypes and then seeks overlaps with exons from 

all transcripts of genes from other biotypes using Bedtools intersect 

(Quinlan and Hall, 2010). Exons overlapping a nested gene have their 

overlapping positions removed, effectively splitting the exon in two if the 

nested gene is fully within the exon, or truncating the exon if the nested 

gene overlaps its end. From this, two new .gtf annotation files are made, 

one containing all the genes and transcripts, the other one including only 
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the portion of the genes hosting a nested gene (respectively referred as 

“CoCo Full gtf” and “Introns gtf” in Fig. 1 and Supplementary Fig. 1) 

 

Conversion from counts to TPM 

The counts obtained from CoCo’s correct_count module were normalized 

by the length of the main transcript of the gene and the read count to give 

transcripts per million (TPM) as described further in (Boivin, et al., 2018): 

 𝑇𝑃𝑀 (𝑖) =  
𝑐𝑜𝑢𝑛𝑡(𝑖) 𝑙𝑒𝑛𝑔𝑡ℎ(𝑖)⁄

∑ (𝑐𝑜𝑢𝑛𝑡(𝑗) 𝑙𝑒𝑛𝑔𝑡ℎ(𝑗))⁄𝑗 ∈𝐽 
∗ 106 (1) 

where count(i) and length(i) represent respectively the number of read 

pairs aligning to gene i and the length of gene i, and J represents the set of 

all genes in the annotation. The final output of the correct_count module 

holds the raw read counts, the CPM and the TPM values associated to 

annotated genes. Supplementary Data File 2 gives average abundance 

values in TPM, estimated using the CoCo pipeline as well as all other read 

assignment tools considered, for all genes. 

 

Alignment Visualization 

BAM files were converted to Bedgraph files using CoCo’s correct_bed-

graph module (Supplementary Fig. 2) which uses pairedBamToBed12 

(https://github.com/Population-Transcriptomics/pairedBamToBed12) 

and bedtools genomecov (v2.25.0) to produce a bedgraph of the distribu-

tion of the reads of a paired-end dataset. The bedgraphs were visualized 

using the Integrative Genomics Viewer IGV (Robinson, et al., 2011) with 

the hg38 human genome build and the Ensembl annotation tracks. 

 

Gene biotype pooling 

Gene biotype groups “Protein_coding”, “Pseudogene” and 

“Long_noncoding” were pooled as recommended by Ensembl 

(http://ensembl.org/Help/Faq?id=468). The group “Other” corresponds to 

all other biotypes not listed. 

 

Comparison to other read assignment tools 

CoCo was compared to the following read assignment tools: feature-

Counts (Liao, et al., 2013), HTseq-count (Anders, et al., 2015), RSEM (Li, 

et al., 2010), Cufflinks (Trapnell, et al., 2012) and STAR (Dobin and 

Gingeras, 2016). The parameter values used for each tool are indicated in 

Supplementary Table 4. Throughout the text, featureCounts with typical 

parameter values is used as the standard read assignment pipeline.  
 

PCR 

Digital PCR was performed by the Université de Sherbrooke RNomics 

Platform (http://rnomics.med.usherbrooke.ca/). Droplet Digital PCR 

(ddPCR) reactions were prepared using 10ul of 2X QX200 ddPCR 

EvaGreen Supermix (Bio-Rad), 10 ng (3 µl) cDNA,100 nM final (2 µl) 

primer pair solutions and 5ul molecular grade sterile water (Wisent) for a 

20ul total reaction. Each reaction mix was converted to droplets with the 

QX200 droplet generator (Bio-Rad). Droplet-partitioned samples were 

then transferred to a 96-well plate, sealed and cycled in a C1000 deep well 

Thermocycler (Bio-Rad) under the following cycling protocol: 95°C for 5 

min (DNA polymerase activation), followed by 50 cycles of 95°C for 30 

s (denaturation), 59°C for 1 min (annealing) and 72°C for 30 s (extension) 

followed by post-cycling steps of 4°C for 5 min and 90°C for 5 min (Sig-

nal stabilization) and an infinite 12°C hold. The cycled plate was then read 

using the QX200 reader (Bio-Rad). The concentration reported is in cop-

ies/ul of the final 1x ddPCR reaction (using QuantaSoft software from 

Bio-Rad). All primer sequences are available in Supplementary Table 3. 

3 Results 

The CoCo correction for nested genes and multimapped reads 

Standard gene quantification programs assign reads according to the 

amount of overlap between the read and the feature being quantified. As 

a consequence, reads mapping with the same number of matches to a host 

gene and to a small non-coding RNA gene nested within its intron/exon 

Figure 1. CoCo read correction scheme for nested and multimapped genes. (A) Representation of a standard gene annotation used for depicting a genetic locus containing one host 

gene and three nested genes. The dashed lines indicate introns while the dark blue boxes indicate exons. (B) Representation of the gene annotation produced using the correct_annotation 

module of CoCo showing a gap in the retained intron over the first nested gene. (C) Examples of potential read pairs overlapping the different features and multimapped read pairs. (D) 

Comparison of the read pair assignment using standard and CoCo pipelines, for each of the read pairs illustrated in C. The reads that are differentially assigned by CoCo are highlighted 

in red. (E) Comparison of the read count estimates by the standard and the CoCo pipelines, based on the assignments listed in D. (F) Flow chart of the CoCo pipeline. Pre-processing and 

alignment steps are shown before the correct_count module application. The correct_count module then assigns reads with Subread’s featureCounts using the gapped CoCo annotation 

(built with the correct_annotation module). Read pairs resulting in multiple alignments are considered separately and distributed proportionally to the uniquely assigned read pairs. 
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are often considered ambiguous (e.g. Fig. 1 C,D, read pair A). In addition, 

reads from nested genes that exceed the annotations (which, in many 

cases, are not accurate (Deschamps-Francoeur, et al., 2014; Kishore, et al., 

2013)), by even only one nucleotide, are typically automatically assigned 

to the host gene (e.g. Fig. 1C,D, read pair C). To address these problems, 

we have developed the Count Corrector (CoCo) package, which consists 

of three main modules: 1) the correct_annotation module which generates 

gapped annotation files in which the regions of the host gene transcript 

features overlapping with nested genes are precisely removed (Fig. 1B), 

2) the correct_count module which recuperates the reads associated with 

nested and multimapped genes using the modified annotation (Fig. 1D and 

E), and 3) the correct_bedgraph annotation which produces accurate rep-

resentations of paired-end reads (Supplementary Fig. 2).  

To test the quantification accuracy of the CoCo pipeline, we examined its 

capacity to correctly assign and quantify sequencing reads using four 

RNA-seq datasets, and compared its quantification to those of the main 

read assignment pipelines available. All four samples were generated us-

ing a library preparation protocol that accurately detects both coding and 

non-coding RNA classes, thanks to the use of the TGIRT reverse tran-

scriptase and ribodepletion (Boivin, et al., 2018). Two of the samples were 

fragmented which enables the quantification of both long and short RNAs 

(for example nested genes and their host gene) while the other two samples 

were not fragmented, providing a deeper view of short RNAs, which is 

comparable to size selection RNA-seq. Following standard pre-processing 

steps, reads were mapped to the hg38 human genome using STAR, result-

ing in an average alignment rate of 90%. The 10% unaligned reads using 

STAR are mostly alignments deemed ‘too short’ by STAR and thus a sec-

ond alignment step using Bowtie was employed, resulting in an overall 

average alignment rate of 99% (Fig. 1F). Aligned reads were then as-

signed to annotated genes using the correct_count module of the CoCo 

pipeline and the annotation files provided by CoCo’s correct_annotation 

module. The correct_count module not only reattributes reads from host 

genes to nested genes but also corrects the reassignment considering the 

background read counts of the feature in which the gene is embedded 

(Supplementary Fig. 1), as discussed below. 

 

Impact of CoCo on the quantification of nested genes and 

comparison to other read assignment tools 

To evaluate the impact of CoCo on RNA detection and quantification, we 

compared the aligned read assignments obtained using the CoCo pipeline 

to values obtained using five currently available and commonly used read 

assignment pipelines, described in the Methods and in Supplementary 

Table 4. The pre-processing and alignment steps (described in the Meth-

ods and in Fig. 1F) were the same for all read assignment tools, except for 

RSEM which requires an alignment to the transcriptome instead of the 

genome (so STAR but not bowtie was used, with the additional parameter 

--quantMode TranscriptomeSAM). As indicated in Fig. 2 and Supple-

mentary Figs. 3-7, the CoCo pipeline performs well in the quantification 

of nested genes, both in fragmented and non-fragmented datasets, always 

obtaining raw read counts in close agreement with those estimated from 

the bedgraph, for all nested genes considered. In contrast, HTSeq-count, 

featureCounts with standard parameter values and STAR fail to detect 

Figure 2. Examples of bedgraphs illustrating the CoCo quantification correction for nested genes. Example of a host gene holding multiple intron-encoded snoRNAs. The 

ribosomal protein gene RPS8 harbours four box C/D snoRNAs in four separate introns, two of which are retained in certain RPS8 splice variants. A screenshot of the sequencing 

abundance tracks is shown for fragmented (A) and non-fragmented (B) datasets, below which is shown the annotation tracks including the original Ensembl annotations and the CoCo 

gapped annotation (C). Exons are represented as boxes, introns as lines with arrows and nested small RNA genes are highlighted with red dashed boxes. (D,E) Histogram showing the 

read pair raw counts given by CoCo and other read assignation tools for the snoRNA and host genes illustrated in A-C, for the fragmented (D) and non-fragmented (E) datasets. 
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many nested genes, in all datasets considered. Cufflinks was not consid-

ered for this comparison because it does not provide raw read counts that 

can be compared to bedgraph counts. Nested genes that are poorly or more 

often completely non-detected by HTSeq-count, featureCounts with 

standard parameter values and STAR include SNORD55, SNORD38B 

(Fig. 2), SNORD14D, SNORD14C (Supplementary Fig. 3), RNU5E-6P 

(Supplementary Fig. 4), SNORA58 (Supplementary Fig. 5), tRNA-

Gln-TTG-2-1 (Supplementary Fig. 6) and SCARNA15 (Supplementary 

Fig. 7), which all overlap, partially or completely, retained introns or ex-

ons of their host gene. Manual inspection of the alignment file and visual 

inspection of the bedgraphs confirm that all these nested genes have cor-

responding aligned reads and should thus be detected and quantified as 

expressed. RSEM and featureCounts with optimized parameter values 

perform better than HTSeq-count, STAR and featureCounts with standard 

parameter values, but still deviate more from bedgraph estimates than does 

CoCo (see for example Supplementary Figs. 3, 4, 6 and 7). In the pres-

ence of ambiguous reads (Fig. 1, read pair A), featureCounts_optimized 

splits the read counts equally between the nested gene and the host gene. 

For example, in the case of the PTCH2 gene locus (Supplementary Fig. 

4), a visual inspection of the bedgraph indicates that the great majority if 

not all read counts should be attributed to the nested gene RNU5E-6P 

while featureCounts_optimized splits the read counts equally between the 

two genes for the fragmented dataset. Interestingly, in this case, CoCo not 

only corrects the abundance values of the nested gene but also adjusts the 

counts given to the host gene, reassigning 89% of the counts (313 read 

pairs out of 350) from the host gene to the snRNA. Based on these results, 

we conclude that CoCo is capable of rescuing and properly assigning reads 

from the nested genes lost to several read assignment tools and generates 

quantification values that are most consistent with the bedgraph profiles. 

 

Background correction for nested genes 

In order to accurately quantify read counts from nested genes and distin-

guish their reads from the host gene reads, CoCo carries out a background 

correction. This is achieved by subtracting the average read count of the 

feature in which the nested gene is encoded from the read count assigned 

to the nested gene. This correction does not significantly change the final 

read counts of genes nested in host gene features (most often introns) that 

are expressed at low levels, (Supplementary Fig. 8). However, this cor-

rection has a major impact when the host gene feature encoding the nested 

gene is highly expressed. For example, in the case of the CH507-513H4.1 

locus which hosts miRNAs miR-3648 and miR-3687, the reads were orig-

inally attributed to the miRNA despite the absence of corresponding peaks 

in the bedgraph. This inappropriate assignment is no longer observed fol-

lowing background correction (Supplementary Fig. 9). 

 

Quantification of transcripts from duplicated genes 

A large number of genes, in particular those producing non-coding RNA, 

exist in more than one copy. The RNA produced from most of these dif-

ferent forms of repeated features cannot be quantified by standard read 

assignment modules due to their identical or near identical sequences that 

result in multimapping of sequencing reads (e.g. Fig. 1C, read pair K). 

The CoCo pipeline recuperates these otherwise lost reads by distributing 

the counts between all genes assigned according to the distribution of their 

uniquely mapped read pairs when possible. For small non-coding RNAs 

such as snoRNAs, uniquely mapped reads typically originate from flank-

ing genomic sequences that are seldom included in the transcripts. Longer 

genes are more likely to have longer proportions of unique sequences. For 

example, as indicated in Supplementary Fig. 10, the annotated mature 

forms of SNORD103A and SNORD103B are 100% identical. As a result, 

96% (2314/2401) of all read pairs aligning to these snoRNAs map equally 

well to both SNORD103A and SNORD103B and would thus be discarded 

without considering multimapped reads. Considering the distribution of 

the 87 uniquely aligned read pairs (to non-identical genomic flanking se-

quences for SNORD103A and SNORD103B), CoCo distributed the 2314 

multimapped read pairs proportionally to the uniquely mapped read pairs 

(Supplementary Fig. 10B). As a consequence, the sum of the read counts 

to the SNORD103 family increased by 25X passing from 87 (considering 

only uniquely mapped reads) to 2401 read pairs (using the CoCo’s cor-

rect_count module). Therefore, by using the uniquely mapped reads as a 

guide, CoCo rescues and re-distributes the multimapped reads to provide 

a realistic read distribution. Overall, the CoCo multimapped correction 

module increased the estimated abundance of 1443 multimapped genes, 

most of which are tRNAs and snoRNAs, by more than two-fold.  

 

Experimental validation of CoCo based quantification for 

nested and repeated genes  

To experimentally validate the accuracy of the CoCo based quantification, 

we chose nine overlapping or repeated genes and examined their abun-

dance using droplet digital PCR (ddPCR), comparing these values to se-

quencing abundance estimates.  These 9 genes include 7 snoRNAs over-

lapping with protein coding genes and 2 repeated gene families (RN7SK 

and RN7SL2). In the case of the multimapped genes RN7SK and 

RN7SL2, their abundance was estimated to be respectively 2 and 4 times 

higher respectively (Fig. 3) using the CoCo pipeline compared to feature-

Counts_standard estimates. When the ddPCR was compared to all read 

assignment tools considered (Fig. 3 and Supplementary Fig. 11), as for 

the bedgraph comparison, HTSeq, STAR and featureCounts using stand-

ard parameter values did not detect the nested genes while CoCo, RSEM 

and featureCounts with optimized parameter values agreed with ddPCR 

values, obtaining Pearson correlation values above 0.99. 

 

CoCo increases the number of sequencing reads considered 

and enhances the detection of non-coding RNA 

The capacity to detect transcripts from repeated and overlapping genes not 

only provides new information about the expression dynamics of these 

genes but may also alter the overall distribution of read counts. Accord-

ingly, we examined the impact of using CoCo on the overall distribution 

Figure 3. Comparison of read assignment tools with ddPCR abundance estimates. 

Scatter plots showing abundance values obtained by ddPCR compared with TPM esti-

mates of the fragmented datasets from read assignment tools considered. N/D: “Not De-

tected”. 
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of transcript estimates in the human genome. Comparison of the read as-

signments obtained using the CoCo pipeline or the standard featureCounts 

pipeline indicates that while 65.8% of the read pairs in fragmented datasets 

were assigned identically by both strategies and 18.6% were assigned by 

neither, more than 15% were only assigned by CoCo (Supplementary 

Fig. 12). Most of the read pairs correctly assigned by the standard pipeline 

originate from protein-coding genes (74%) and tRNAs (12%) (Supple-

mentary Fig. 12E left panel). Read pairs that were not assigned by either 

pipeline originate mostly (88%) from currently unannotated genomics re-

gions (Supplementary Fig. 13), as is the case for example for an intronic 

region in the AKAP6 gene in which >32000 read pairs align but no feature 

is annotated (Supplementary Fig. 14).  

Most of the read pairs uniquely assigned by CoCo (15.7%) originate from 

multimapped genes, representing 12.9% of all aligned read pairs (Supple-

mentary Fig. 12A). As expected, the rescued multimapped read pairs 

originate mainly from non-coding RNA including tRNAs (37%), 7SL 

(27%), snRNAs (14%) (Supplementary Fig. 12C). However, 13% of the 

reads aligned to protein-coding genes suggesting that there is a substantial 

number of protein-coding genes that contain repeated sequence (Supple-

mentary Fig. 12C). A small proportion of the read pairs uniquely as-

signed by CoCo (2.4%) were aligned to overlapping genes that are labelled 

as ambiguous by standard pipelines (Supplementary Fig. 12A right 

panel). Most of the overlapping gene counts originated from non-coding 

RNA including snoRNAs (40%), snRNAs (37%) and 7SK (18%) (Sup-

plementary Fig. 12D). In addition to the 15.3% of rescued ambiguous 

and multimapped read pairs, CoCo also reassigned a small proportion of 

reads (0.37%) that are misassigned by the standard pipeline (Fig. 1C-D 

read pair C and Supplementary Fig. 15). In all cases, misassignments by 

the standard pipeline result in erroneous association of reads to the host 

gene instead of the nested gene. SnoRNAs represent 94% of such reas-

signments (Supplementary Fig. 15). Together, these observations indi-

cate that CoCo greatly increases the percentage of usable read counts and 

reduces the number of misassignments. 

 

CoCo provides a more accurate depiction of the transcrip-

tome landscape 

As a consequence of the CoCo correction, the overall distribution of the 

human transcriptome was modified considerably. The proportion of all 

read counts attributed to protein-coding genes in fragmented datasets was 

reduced by 12%, representing 74% of all assigned reads using the standard 

pipeline but only 62% using CoCo (compare Supplementary Fig. 12E 

left and right panels). In contrast, non-coding RNA including tRNAs and 

snRNA gain 4% and 2% of the total read counts, respectively. The most 

dramatic changes in total read count distribution was observed with the 

highly redundant (multimapped) gene coding for the signal recognition 

particle RNA 7SL, which was increased from 2% using the standard pipe-

line to 6% using CoCo. Analyses of transcript abundance distribution, 

which take into consideration the transcript length, indicate that the big-

gest impact of CoCo is in adjusting the proportion of coding to non-coding 

RNA and increasing representation of RNA families with a strong preva-

lence of repeated genes. As indicated in Supplementary Fig. 12F, CoCo 

estimates of transcript abundance reduced the proportion of protein coding 

genes by 5% while tripling the proportion of the 7SL and increasing the 

proportion of snoRNA and snRNA by 2% each, when compared to the 

standard pipeline. 

The impact of CoCo on transcript quantification is most visible in cases 

where RNA abundance changes from completely undetected using stand-

ard pipelines to abundantly detected with the CoCo pipeline. (e.g. Fig. 2, 

3, Supplementary Figs. 3,4,6,7). The de novo detection of these genes 

gives a new view of an otherwise uncharted portion of the human tran-

scriptome. Accordingly, we counted the number and biotype distribution 

of genes only detected using CoCo as compared to a standard read assign-

ment pipeline to better understand their origin and contribution to the hu-

man transcriptome, using a fragmented dataset to consider the full RNA 

landscape. As shown in Fig. 4A, the most affected RNA family is the 

snoRNAs with 22% of genes (137 out of 628 expressed snoRNAs) de-

tected only with the CoCo pipeline. The distribution of the corrected abun-

dance of these 137 ‘invisible’ C/D and H/ACA box snoRNA genes is dis-

played in Supplementary Fig. 16. More than 50% of these snoRNAs 

(80/137) have a corrected abundance above 100 TPM, and are thus 

amongst the most abundant RNAs in the cell (indeed, only 1.8% of all 

expressed genes have cellular transcripts with abundance >100 TPM). Ten 

such snoRNAs are even detected with an abundance as high as >1000 

TPM (e.g. SNORD26, SNORD14C). These data clearly indicate that fail-

ure to detect snoRNAs using standard assignment methods is not restricted 

to rare or lowly expressed RNA. On the contrary, it is the highly expressed 

genes that are often missed, most likely due to the fact that highly ex-

pressed non-coding RNA tend to originate from more than one gene or to 

be embedded in highly transcribed genes. In addition to snoRNAs, a 

smaller but still significant proportion of each of the other main classes of 

non-coding RNA is not detected using standard techniques including 

>10% of scaRNA and as many as 27 snRNA genes, 27 tRNA genes and 

224 lncRNAs genes (Fig. 4A).  

A less obvious but equally important difference between the CoCo and 

standard pipelines lay in the accuracy of read assignments, especially to 

duplicated genes. For example, while both CoCo and the standard pipeline 

agree on tRNA being the most abundant transcript biotype (Supplemen-

tary Fig. 12F), this class of RNA features the largest number of genes 

with count corrections by CoCo. Indeed, 30% of tRNA genes more than 

doubled their abundance after using CoCo (Fig. 4B). Similarly, a great 

number of protein-coding genes (>50%) also increased in abundance, but 

Figure 4: Effect of the CoCo pipeline on gene quantification of fragmented da-

tasets by biotype. (A) The proportion of transcripts detected by either only the 

standard pipeline (light grey), both the standard and CoCo (intermediate grey) or 

only by the CoCo (dark grey) pipelines is shown as a bar graph. The number of 

genes only detected using CoCo is indicated at the top of the graph for each biotype 

considered. (B) Impact of CoCo on the read counts of different biotypes. Shown is a 

bar graph indicating the proportion of genes of each biotype displaying the indicated 

change in abundance following the CoCo correction. 
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unlike tRNA, the difference in read pair count was mostly modest with an 

average of 5% change in read counts (Fig. 4B). We therefore conclude 

that the correct counting and assignment of sequencing reads plays an im-

portant role not only in increasing the number of detected genes but in 

establishing the relative abundance of RNA within the transcriptome. 

 

Runtime and memory requirements 

CoCo can be run using multiple threads thus improving its running per-

formance. The runtime and memory required to use the different read as-

signment tools considered in this study is shown in Table 1. 

 

Table 1. Comparison of runtime and memory usage for available read 

assignment tools for a dataset of 41.5 M read pairs with a computer hav-

ing 32 GB of available RAM and 24 cores. 

 

Tool CPU time a Walltime a RAM (MB) Threads 

CoCo 1:40:08 0:49:26 6634 24 

rsem 20:30:37 3:50:13 30372 24 

featureCounts 

standard 
0:06:44 0:01:57 973 24 

featureCounts 

optimized 
0:07:15 0:01:15 606 24 

HTSeq-count b 4:51:14 3:10:46 173 24 & 1 

Cufflinks b 15:17:47 14:02:29 25432 24 
a CPU time and walltime are measured in hours:minutes:seconds.  
b Cufflinks and HTSeq require sorting before the read assignment can occur. The 

values given include sorting before the tool is run. 

4 Discussion 

Increasing sequencing depth and coverage is considered the obvious target 

for improving the quality of transcriptome analysis. However, in this 

study, we show that the precision, quality and depth of transcriptome anal-

ysis can be greatly enhanced by carefully choosing and tuning read assign-

ment tools using existing sequencing data. Modification of the read as-

signment pipeline for the analysis of a TGIRT-seq fragmented dataset, 

which provides an accurate view of the whole transcriptome (Boivin, et 

al., 2018) increased the proportion of assigned reads by 15% and modified 

the number of assigned reads for 50% of all expressed genes (Fig. 4, Sup-

plementary Fig.12). Indeed, more than 750 additional transcripts were 

detected simply by correcting read association for nested genes (Fig. 4A), 

while multimapping affects the quantification of 15,121 genes. The prob-

lem with overlapping genes was solved by introducing gaps corresponding 

to nested gene positions in the reference annotation files (Fig. 1,2 and 

Supplementary Figs.3-7). The gaps ensure that read pairs are not auto-

matically assigned to the host gene even if they slightly exceed the often 

inaccurate annotation of nested genes (Deschamps-Francoeur, et al., 2014; 

Kishore, et al., 2013). CoCo is not the only tool that can correctly address 

the quantification of nested genes, although CoCo provides abundance 

values that are most consistent with bedgraph estimates (examples shown 

in Fig. 2 and Supplementary Figs.3-7) and performs well when compared 

to ddPCR (Fig. 3). Multimapped reads were dealt with by distributing 

them proportionally to uniquely mapped reads, as first introduced by 

MuMRescue (Faulkner, et al., 2008) and ERANGE (Mortazavi, et al., 

2008). The corrections proposed in our study can be applied as a supple-

ment to any read-assignment tool as a feature. By applying the correction 

tool CoCo, most sequence analysis pipelines will benefit from increased 

transcriptome coverage and more accurate transcript quantification.  

Five different tools (one of which was run using two different settings) 

were chosen for comparison to the CoCo pipeline because they are widely 

used and easily implemented standalone pipelines. HTSeq-count, STAR, 

Cufflinks and featureCounts using standard parameter values performed 

poorly to quantify nested and multimapped genes, both according to com-

parisons to bedgraphs and comparison to ddPCR quantification. These 

four tools failed to detect many nested genes and did not accurately quan-

tify many multimapped genes. In contrast, CoCo, RSEM and feature-

Counts with optimized parameter values performed much better at quan-

tifying nested and multimapped genes, both according to bedgraph com-

parisons and ddPCR comparisons. RSEM’s greatest drawback is its long 

runtime and high memory usage while featureCounts with optimized pa-

rameter values does not assign ambiguous reads in an ideal manner as it 

simply splits the assignment counts equally for all features overlapping 

these reads. In addition, RSEM and featureCounts with optimized param-

eter values do not perform well when quantifying non-fragmented da-

tasets, generally attributing too many reads to host genes. They are thus 

not recommended for size-selection datasets often used to quantify miR-

NAs. In general, if any of these tools are chosen to quantify RNA-seq da-

tasets, we highly recommend the parameter values used in this study (see 

Supplementary Table 4) as using different parameter values can signifi-

cantly change the quantification and thus the accuracy (compare for ex-

ample the results obtained using featureCounts_standard and feature-

Counts_optimized). 

Accurately quantifying multimapped reads has been investigated in sev-

eral studies. featureCounts annotates such reads, making it easy for 

CoCo’s correct_count module to distribute them according to uniquely 

mapped reads. featureCounts itself provides an option to deal with multi-

mapped reads, by splitting them equally between all members of a multi-

mapped group (using the –M, --fraction options). However, a significant 

proportion of these members are likely not expressed, particularly in the 

large families of ncRNAs with tens or even hundreds of copies, making 

CoCo’s strategy (the proportional distribution of multimapped reads) 

more realistic. Evaluating the accuracy of multimapped read assignment 

is difficult since unlike mRNA, most non-coding RNA lack external 

unique sequences that could be used to differentiate between genes with 

shared sequences. In building our pipeline for the quantification of nested 

and multimapped genes, we opted for a computationally quick and simple 

solution that enables the evaluation of the overall abundance of RNA gen-

erated from genes with shared sequence. While we cannot guarantee the 

accuracy of the abundance for each individual gene from a repeated fam-

ily, the overall abundance of the RNA generated from these repeated fam-

ilies is accurately determined by CoCo as validated experimentally by 

ddPCR analysis and gene specific analyses (Fig. 3 and (Boivin, et al., 

2018)). 

One of the most surprising observations in the application of CoCo is how 

many genomic regions do not have proper annotation and how this mis- 

or lacking annotation may affect the overall interpretation of transcript 

distribution. Indeed, while CoCo was able to recuperate the ambiguous 

reads due to gene overlap with small non-coding RNAs and multimap-

ping, about 18.6% of all read pairs remained unassigned. Examination of 

these read pairs shows that the great majority align to unannotated regions 

in the genome (Supplementary Fig. 14), indicating that improving the 

annotations is now becoming essential to increase the coverage and the 

accuracy of RNA-seq quantification. 

The read assignment corrections shown here are essential steps for study-

ing the human transcriptome. Most of the multimapped and overlapping 

reads are generated from highly expressed genes and as such any changes 
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in the read assignment of these genes will significantly affect the overall 

distribution of the human transcriptome. In addition, accurate quantifica-

tion of nested and multimapped genes does not only enhance the detection 

of these types of RNA but also corrects the quantification of their of pro-

tein coding host genes. Thus any current sequence analysis pipeline that 

ignores or fails to accurately detect nested and multimapped genes would 

most likely result in significant changes in read count distribution and ul-

timately in incorrect expression estimates, for large proportions of the 

transcriptome. Indeed, as sequencing depth increases and the capacity to 

simultaneously detect both coding and non-coding RNA improves, read 

assignment tools like CoCo will become essential for any sequencing anal-

ysis pipeline. 

Acknowledgements 

The authors are grateful to members of their groups for useful discussions, 

to Mathieu Durand from the RNomics platform of the UdeS for ddPCR 

analyses, and to Leandro Fequino for technical support. MSS and SAE are 

members of the RNA group and the Centre de recherche du Centre hospi-

talier universitaire de Sherbrooke (CRCHUS). 

Funding 

This work was supported by a Natural Sciences and Engineering Research 

Council of Canada (NSERC) discovery grant [to MSS], a Canada Re-

search Chair in RNA Biology and Cancer Genomics [to SAE] and the 

Fonds de Recherche du Québec – Santé (FRQS) Research Scholar Junior 

2 Career Award [to MSS]. [GDF] was supported by a NSERC Masters 

scholarship. [VB] was supported by a Masters scholarship from the FRQS. 

Funding for open access charge: NSERC. 

 

Conflict of Interest: none declared. 

References 

Anders, S., Pyl, P.T. and Huber, W. (2015) HTSeq--a Python framework to work 

with high-throughput sequencing data, Bioinformatics, 31, 166-169. 

Boivin, V., et al. (2018) Simultaneous sequencing of coding and noncoding RNA 

reveals a human transcriptome dominated by a small number of highly expressed 

noncoding genes, RNA, 24, 950-965. 

Boivin, V., Deschamps-Francoeur, G. and Scott, M.S. (2018) Protein coding genes 

as hosts for noncoding RNA expression, Seminars in cell & developmental biology, 

75, 3-12. 

Bolger, A.M., Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for 

Illumina sequence data, Bioinformatics, 30, 2114-2120. 

Chan, P.P. and Lowe, T.M. (2016) GtRNAdb 2.0: an expanded database of transfer 

RNA genes identified in complete and draft genomes, Nucleic Acids Res, 44, D184-

189. 

Conesa, A., et al. (2016) A survey of best practices for RNA-seq data analysis, 

Genome Biol, 17, 13. 

Deschamps-Francoeur, G., et al. (2014) Identification of discrete classes of small 

nucleolar RNA featuring different ends and RNA binding protein dependency, 

Nucleic Acids Res, 42, 10073-10085. 

Dobin, A. and Gingeras, T.R. (2016) Optimizing RNA-Seq Mapping with STAR, 

Methods Mol Biol, 1415, 245-262. 

Faulkner, G.J., et al. (2008) A rescue strategy for multimapping short sequence tags 

refines surveys of transcriptional activity by CAGE, Genomics, 91, 281-288. 

Filipowicz, W. and Pogacic, V. (2002) Biogenesis of small nucleolar 

ribonucleoproteins, Current opinion in cell biology, 14, 319-327. 

Hrdlickova, R., Toloue, M. and Tian, B. (2017) RNA-Seq methods for transcriptome 

analysis, Wiley interdisciplinary reviews. RNA, 8. 

Kim, D., Langmead, B. and Salzberg, S.L. (2015) HISAT: a fast spliced aligner with 

low memory requirements, Nat Methods, 12, 357-360. 

Kishore, S., et al. (2013) Insights into snoRNA biogenesis and processing from PAR-

CLIP of snoRNA core proteins and small RNA sequencing, Genome Biol, 14, R45. 

Lai, F., Blumenthal, E. and Shiekhattar, R. (2016) Detection and Analysis of Long 

Noncoding RNAs, Methods in enzymology, 573, 421-444. 

Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2, 

Nat Methods, 9, 357-359. 

Li, B., et al. (2010) RNA-Seq gene expression estimation with read mapping 

uncertainty, Bioinformatics, 26, 493-500. 

Liao, Y., Smyth, G.K. and Shi, W. (2013) The Subread aligner: fast, accurate and 

scalable read mapping by seed-and-vote, Nucleic Acids Res, 41, e108. 

Luo, Y. and Li, S. (2007) Genome-wide analyses of retrogenes derived from the 

human box H/ACA snoRNAs, Nucleic Acids Res, 35, 559-571. 

Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput 

sequencing reads, EMBnew.journal, 17, 10-12. 

Matera, A.G., Terns, R.M. and Terns, M.P. (2007) Non-coding RNAs: lessons from 

the small nuclear and small nucleolar RNAs, Nat Rev Mol Cell Biol, 8, 209-220. 

Mohammed, J., Siepel, A. and Lai, E.C. (2014) Diverse modes of evolutionary 

emergence and flux of conserved microRNA clusters, RNA, 20, 1850-1863. 

Mortazavi, A., et al. (2008) Mapping and quantifying mammalian transcriptomes by 

RNA-Seq, Nat Methods, 5, 621-628. 

Nottingham, R.M., et al. (2016) RNA-seq of human reference RNA samples using a 

thermostable group II intron reverse transcriptase, RNA, 22, 597-613. 

O'Leary, N.A., et al. (2016) Reference sequence (RefSeq) database at NCBI: current 

status, taxonomic expansion, and functional annotation, Nucleic Acids Res, 44, 

D733-745. 

O'Neil, D., Glowatz, H. and Schlumpberger, M. (2013) Ribosomal RNA depletion 

for efficient use of RNA-seq capacity, Current protocols in molecular biology, 

Chapter 4, Unit 4 19. 

Paule, M.R. and White, R.J. (2000) Survey and summary: transcription by RNA 

polymerases I and III, Nucleic Acids Res, 28, 1283-1298. 

Qin, Y., et al. (2016) High-throughput sequencing of human plasma RNA by using 

thermostable group II intron reverse transcriptases, RNA, 22, 111-128. 

Quinlan, A.R. and Hall, I.M. (2010) BEDTools: a flexible suite of utilities for 

comparing genomic features, Bioinformatics, 26, 841-842. 

Robinson, J.T., et al. (2011) Integrative genomics viewer, Nat Biotechnol, 29, 24-26. 

Trapnell, C., et al. (2012) Differential gene and transcript expression analysis of 

RNA-seq experiments with TopHat and Cufflinks, Nat Protoc, 7, 562-578. 

Weber, M.J. (2006) Mammalian Small Nucleolar RNAs Are Mobile Genetic 

Elements, PLoS Genet, 2, e205. 

Yates, A., et al. (2016) Ensembl 2016, Nucleic Acids Res, 44, D710-716. 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/477869doi: bioRxiv preprint 

https://doi.org/10.1101/477869

