A mathematical model of calcium dynamics: Obesity and mitochondria-associated ER membranes

Jung Min Han^{1*}, Vipul Periwal¹,

1 Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America

* jungmin.han@nih.gov

Abstract

Multiple cellular organelles tightly orchestrate intracellular calcium (Ca^{2+}) dynamics to regulate cellular activities and maintain homeostasis. The interplay between the endoplasmic reticulum (ER), a major store of intracellular Ca^{2+} , and mitochondria, an important source of adenosine triphosphate (ATP), has been the subject of much research, as their dysfunctionality has been linked with metabolic diseases. Interestingly, through out the cell's cytosolic domain, these two organelles share common microdomains called mitochondria-associated ER membranes (MAMs), where their membranes are in close apposition. The role of MAMs is critical for intracellular Ca²⁺ dynamics as they provide hubs for direct Ca^{2+} exchange between the organelles. A recent experimental study reported correlation between obesity and MAM formation in mouse liver cells, and obesity-related cellular changes that are closely associated with the regulation of Ca^{2+} dynamics. We constructed a mathematical model to study the effects of MAM Ca²⁺ dynamics on global Ca²⁺ activities. Through a series of model simulations, we investigated cellular mechanisms underlying the altered Ca²⁺ dynamics in the cells under obesity. We found that the formation of MAMs is negatively correlated with the amplitude of cvtosolic Ca^{2+} activities, but positively correlated with that of mitochondrial Ca^{2+} dynamics and the overall frequency of Ca^{2+} oscillations. We

predict that, as the dosage of stimulus gradually increases, liver cells from obese mice will reach the state of saturated cytosolic Ca^{2+} concentration at a lower stimulus concentration, compared to cells from healthy mice.

Author summary

It is well known that intracellular Ca^{2+} oscillations carry encoded signals in their amplitude and frequency to regulate various cellular processes, and accumulating evidence supports the importance of the interplay between the ER and mitochondria in cellular Ca^{2+} homeostasis. Miscommunications between the organelles may be involved in the development of metabolic diseases. Based on a recent experimental study that spotlighted a correlation between obesity and physical interactions of the ER and mitochondria in mouse hepatic cells, we constructed a mathematical model as a probing tool that can be used to computationally investigate the effects of the cellular changes linked with obesity on global cellular Ca^{2+} dynamics. Our model successfully reproduced the experimental study that observed a positive correlation between the ER-mitochondrial junctions and the magnitude of mitochondrial Ca^{2+} responses. We postulate that hepatic cells from lean animals exhibit Ca^{2+} oscillations that are more robust under higher concentrations of stimulus, compared to cells from obese animals.

Introduction

In most multicellular organisms, calcium (Ca^{2+}) is a ubiquitous second messenger that controls a vast array of cellular activities spanning from cell birth to apoptosis [1]. The endoplasmic/sarcoplasmic reticulum (ER/SR) and mitochondria have been the center of attention in the study of intracellular Ca^{2+} dynamics, due to their role as internal Ca^{2+} stores. The SR is mostly found in muscle cells, which are not the subject of this paper, so we only refer to the ER. It has been suggested that dysfunction of Ca^{2+} regulation in the ER and/or mitochondria leads to disrupted cellular homeostasis, and is associated with pathological processes, including metabolic diseases and neurodegenerative diseases [2–7].

Upon agonist stimulation, almost all types of cells exhibit fluctuations in cytosolic

 Ca^{2+} concentration, phenomena often referred to as Ca^{2+} oscillations, with signals 12 encoded in oscillation frequencies and amplitudes. Among many cellular compartments, the ER, whose internal Ca^{2+} concentration is three to four orders of magnitude larger 14 than that of the cytosol in resting condition, is considered as the main contributor to 15 the generation of Ca^{2+} oscillations. The ER has several types of Ca^{2+} channels on the 16 membrane that release Ca^{2+} once activated. The most well-studied Ca^{2+} release 17 channels are inositol trisphosphate receptors (IPRs) and ryanodine receptors (RyRs). 18 As a high cytosolic Ca^{2+} concentration is toxic and often leads to cell death, released 19 Ca²⁺ is quickly pumped back into the ER lumen through sarco/endoplasmic reticulum 20 Ca^{2+} ATPase (SERCA) pumps, which consume energy to sequester Ca^{2+} against its 21 concentration gradient. Some Ca^{2+} released from the ER can be taken up by 22 mitochondria through the mitochondrial Ca^{2+} uniporter (MCU), and then released back 23 to the cytosol via the sodium/calcium exchanger (NCX). Thus, it is generally accepted that mitochondria have the ability to modulate oscillation frequencies and amplitudes. 25 and consequently, affect the progression of cellular activities [4].

Having a spatially extended membrane network, the ER is often positioned in close proximity with other cellular organelles and forms membrane contact sites. Such sites between the ER and mitochondria are called mitochondria-associated ER membranes (MAMs), and it has been suggested that they play a critical role in Ca^{2+} exchange between the organelles [4,5]. Since mitochondrial Ca^{2+} regulation is closely linked with adenosine triphosphate (ATP) synthesis and reactive oxygen species (ROS) production [8], understanding the mechanisms underlying the ER-mitochondrial Ca^{2+} crosstalk is of great scientific and physiological interest. A major advantage of MAM formation is that due to its minuscule size, even a small Ca^{2+} flux into the domain would be amplified, which is convenient for the MCUs which have a low Ca^{2+} affinity, i.e., they require a high concentration of Ca^{2+} in order to activate.

Arruda et al. [9] reported a positive correlation between obesity and the degree of MAM formation. They also found different expression levels of Ca^{2+} channels between liver cells of lean and obese mice. These findings indicate the possibility of obesity-induced changes in Ca^{2+} dynamics in MAMs, and consequently, in the ER as well as mitochondria. Indeed, liver cells from obese animals showed higher baselines of cytosolic Ca^{2+} concentration and mitochondrial Ca^{2+} concentration, compared to cells from lean mice. Furthermore, Ca^{2+} transients generated from ATP stimulation led to higher concentration peaks in obese mouse mitochondria. Interestingly, this observation was not accompanied by higher peaks in cytosolic Ca^{2+} concentration, i.e., cells from obese and lean mice exhibited similar ATP-induced rises in cytosolic Ca^{2+} concentration.

Computational models of experimental data have been a valuable tool for understanding the dynamics of intracellular Ca^{2+} . Most models have focused on either the ER Ca^{2+} handling [10–13] or mitochondrial Ca^{2+} dynamics [14–17] and only a handful of them have integrated the dynamics from both organelles [18, 19]. Recently, 52 there have been an increasing number of studies that combined both experimental and theoretical approaches to probe the cellular mechanisms underlying Ca²⁺ crosstalk between the ER and mitochondria. The model proposed by Szopa et al. [20] assumes that due to the minuscule volume of MAMs, the MCUs in MAMs sense Ca^{2+} concentration in the ER. Thus, the MCU Ca^{2+} flux in their model is essentially direct 57 Ca^{2+} flow from the ER. Using numerical methods, they investigated the effects of this flow on the shape (bursting) and period of Ca^{2+} oscillations, and observed that mitochondrial Ca^{2+} concentrations tend to a high level in some regions of parameter space. Another recent model by Qi et al. [21] considers a range of possible distances 61 between the IPRs and MCUs in MAMs, and expresses Ca^{2+} concentration in MAMs as a solution to a linearized reaction-diffusion equation. In this model, the concentration of 63 Ca^{2+} that is sensed by the MCUs in MAMs depends on the distance of the MCUs from 64 the point of source (a cluster of IPRs) and how fast Ca^{2+} diffuses in MAMs. The 65 authors showed that Ca²⁺ signals can be significantly modulated by the distance, and 66 determined an optimal distance between the IPRs and MCUs for effective Ca^{2+} exchange for the generation of Ca^{2+} oscillations. On the other hand, Wacquier et al. [22] published a model that associates Ca^{2+} oscillations with mitochondrial metabolism, and investigated the role of mitochondrial Ca^{2+} fluxes on the oscillation frequency. Their model modified one of the parameters that describes the Ca^{2+} 71 concentration for the activation of the MCUs to a lower concentration than the one originally suggested by Magnus and Keizer [16]. By doing so, they implicitly included 73 MAMs, with the following assumption: MCUs are activated at the average 74 concentration of Ca^{2+} in the whole cytosol (including MAMs). They found that 75 mitochondrial Ca^{2+} fluxes can modulate the frequency of Ca^{2+} oscillations.

Here, we construct a mathematical model to investigate the cellular mechanisms ⁷⁷ underlying the altered mitochondrial Ca^{2+} dynamics observed in obese mice. The model ⁷⁸ extends the model of Wacquier et al. [22], and explicitly includes Ca^{2+} dynamics in ⁷⁹ MAMs. We incorporated the model structure proposed by Penny et al. [23], wherein the ⁸⁰ cytosol is compartmentalized to two separate domains: the bulk cytosol and membrane ⁸¹ contact sites between organelles. Rather than expressing the Ca^{2+} concentration in ⁸² MAMs as an algebraic function of that of the cytosol, we model it as a dynamic variable ⁸³ that is determined by influxes and effluxes of the domain. We investigated how Ca^{2+} ⁸⁴ signals are affected by the obesity related changes in Ca^{2+} channel expression levels. ⁸⁵

Materials and Models

A better way of understanding the model structure is to consider the model as two sub-models that are coupled by common factors, Ca^{2+} and ATP. One of the sub-models describes intracellular Ca^{2+} dynamics, while the other models mitochondrial metabolic pathways and voltage.

Ca²⁺ dynamics

Jones et al. [24] observed vasopressin-induced Ca²⁺ oscillations in hepatocytes in Ca^{2+} -free environment. This experiment suggested that hepatocytes do not require Ca^{2+} influx from the extracellular space to trigger Ca^{2+} oscillations, and that their oscillations are primarily caused by the periodic release and re-uptake of Ca^{2+} by intracellular stores. During the experiment, the oscillations were sustained for about 15 96 minutes after the stimulation, with decreasing frequencies, most likely due to the 97 continuous loss of Ca^{2+} across the plasma membrane as, eventually, cells became completely depleted of Ca^{2+} . When modeling Ca^{2+} signals with these behaviors, it is useful to consider a closed-cell model, where it is assumed that the total intracellular 100 Ca^{2+} is fixed (i.e., a cell does not lose or gain Ca^{2+} through the plasma membrane). 101 Since the main focus of this study is on Ca^{2+} dynamics in liver cells, we approached the 102 problem with a closed-cell model. We first compartmentalized the cellular domain into 103 four separate regions: the ER, the bulk cytosol, a mitochondrion, and MAM, and 104

76

86

90

Fig 1. Schematic diagram of Ca²⁺ dynamics described by the model. The ER releases Ca²⁺ to the cytosol and MAM; the fluxes are denoted as J_{IPR} and J_{nIPR} , respectively. The cytosolic Ca²⁺ is pumped back into the ER lumen via SERCA (J_{SERCA}), and the Ca²⁺ in MAM are also pumped back into the ER (J_{nSERCA}). Mitochondria uptake Ca²⁺ from the cytosol (J_{MCU}) and MAM (J_{nMCU}), and mitochondrial Ca²⁺ is exchanged with Na⁺ in the cytosol (J_{NCX}) and MAM (J_{nNCX}). Ca²⁺ can freely diffuse between the cytosol and MAM (J_{diff}).

assumed that Ca^{2+} concentration within each region, denoted by C_{ER} , C_{cyt} , C_{mito} , and C_{MAM} , respectively, is determined by Ca^{2+} influxes and effluxes going in and out of that region. Fig. 1 shows a schematic diagram of the compartments and Ca^{2+} fluxes in the model. Since the model does not include Ca^{2+} fluxes across the plasma membrane, the total intracellular Ca^{2+} concentration, C_t , is written as:

$$C_{\rm t} = C_{cyt} + \frac{1}{R_{\rm V1}}C_{MAM} + \frac{1}{R_{\rm V2}}C_{mito} + \frac{1}{R_{\rm V3}}C_{ER}.$$

The $R_{\rm V}$'s account for compartment volume differences and are defined as:

$$R_{V1} = \frac{\text{total cytosolic volume}}{\text{total MAM volume}},$$
$$R_{V2} = \frac{\text{total cytosolic volume}}{\text{total ER volume}},$$
$$R_{V3} = \frac{\text{total cytosolic volume}}{\text{total mitochondrial volume}}.$$

Given that the mitochondrial outer membrane is freely permeable to small molecules, such as Ca^{2+} , through the voltage dependent anion channel (VDAC), we assume that Ca^{2+} concentration in the inter-membrane space is equivalent to that of the cytosol. Thus, there is one effective layer of impermeable boundary, the mitochondrial inner membrane, that separates cytosolic Ca^{2+} from mitochondrial Ca^{2+} .

The Ca²⁺ dynamics part of the model consists of the following ordinary differential

equations (ODEs):

$$\begin{aligned} \frac{d}{dt}C_{cyt} &= (1 - R_{\rm S1})(J_{\rm IPR} - J_{\rm SERCA} + J_{\rm leak}) + \frac{1 - R_{\rm S2}}{R_{\rm V3}}(J_{\rm NCX} - J_{\rm MCU}) + J_{\rm diff} \\ \frac{d}{dt}C_{MAM} &= R_{\rm V1}R_{\rm S1}(J_{\rm nIPR} - J_{\rm nSERCA} + J_{\rm nleak}) + \frac{R_{\rm V1}R_{\rm S2}}{R_{\rm V3}}(J_{\rm nNCX} - J_{\rm nMCU}) - R_{\rm V1}J_{\rm diff} \\ \frac{d}{dt}C_{mito} &= R_{\rm S2}(J_{\rm nMCU} - J_{\rm nNCX}) + (1 - R_{\rm S2})J_{\rm MCU} - J_{\rm NCX} \\ \frac{d}{dt}P &= \tau_p(P_{\rm s} - P) + \text{pulse} \end{aligned}$$
(1)
$$\begin{aligned} \frac{d}{dt}P_{MAM} &= D_p(P - P_{MAM}) \\ \frac{d}{dt}h_{42} &= \lambda_{h_{42}}(h_{42}^{\infty} - h_{42}) \\ \frac{d}{dt}h_{n42} &= \lambda_{h_{n42}}(h_{n42}^{\infty} - h_{n42}) \end{aligned}$$

P and P_{MAM} represent the concentrations of IP₃ in the bulk cytosol and the MAM, respectively. h_{42} and h_{n42} denote the activation variables of the IPRs in the bulk cytosol and the MAM, respectively. The $R_{\rm S}$'s are surface ratios, defined as

$$R_{S1} = \frac{\text{surface area of the ER that adjoins the MAM}}{\text{the total ER surface area}},$$

$$R_{S2} = \frac{\text{surface area of mitochondrion that adjoins the MAM}}{\text{the total mitochondrion surface area}}$$

see Table for their values. Short descriptions for the J_* Ca²⁺ fluxes are given below.

- J_{IPR} and J_{nIPR} : IPR Ca²⁺ flux into the bulk cytosol and MAMs from the ER 120
- J_{SERCA} and J_{nSERCA} : SERCA pump Ca²⁺ flux into the ER from the bulk cytosol 121 and MAMs 122
- J_{leak} and J_{nleak} : a small Ca²⁺ leak from the ER into the bulk cytosol and MAMs 123
- $J_{\rm NCX}$ and $J_{\rm nNCX}$: NCX Ca²⁺ flux from mitochondria into the bulk cytosol and MAMs 125
- $J_{\rm MCU}$ and $J_{\rm nMCU}$: MCU Ca²⁺ flux into mitochondria from the bulk cytosol and MAMs 127
- J_{diff} : Ca²⁺ diffusion between the bulk cytosol and MAMs

IPR model

We incorporated the IPR model proposed in Cao et al. [25], which assumes that the receptors are either in drive mode when they are mostly open, or in park mode when they are mostly closed. The drive mode has one open state (O_6) and one closed state (C_2) , while there is one closed state (C_4) in the park mode. The transition rates between the modes are denoted by q_{24} and q_{42} , and the rates between the states within the drive mode are q_{26} and q_{62} . The open probability of the drive mode is $q_{26}/(q_{26} + q_{62}) (\approx 70\%)$. q_{24} and q_{42} are given by 130

 $q_{24} = q_{24} + V_{24}(1 - m_{24}^{\infty}h_{24}^{\infty}),$ $q_{42} = a_{42} + V_{42}m_{42}^{\infty}h_{42}.$

The m's and h's are gating variables that govern the opening and closing kinetics of the 137 receptors, with the following quasi-equilibria: 138

$$\begin{split} m_{24}^{\infty} &= \frac{C_p^3}{C_p^3 + k_{24}^3}, \\ h_{24}^{\infty} &= \frac{k_{-24}^2}{C_p^2 + k_{-24}^2}, \\ m_{42}^{\infty} &= \frac{C_{cyt}^3}{C_{cyt}^3 + k_{24}^3}, \\ h_{42}^{\infty} &= \frac{k_{-42}^3}{C_{cyt}^3 + k_{-42}^3}. \end{split}$$

While m_{24} , m_{42} , and h_{24} are assumed to have reached their quasi-equilibria instantaneously, there is the rate at which h_{42} approaches its equilibrium, $\lambda_{h_{42}}$,

$$\lambda_{h_{42}} = (1 - D)L_{\rm IPR} + DH_{\rm IPR}$$

139

140

 $C_p = C_{p0}(C_{ER}/680)$ denotes the concentration of Ca²⁺ at the pore of a receptor. The expressions for the V's, *a*'s, and *k*'s are

$$V_{24} = 62 + 880/(P^2 + 4) \qquad a_{24} = 1 + 5/(P^2 + 0.25)$$

$$k_{24} = 0.35 \qquad k_{-24} = 80$$

$$V_{42} = 110P^2/(P^2 + 0.01) \qquad a_{42} = 1.8P^2/(P^2 + 0.34)$$

$$k_{42} = 0.49 + 0.543P^3/(P^3 + 64) \qquad k_{-42} = 0.41 + 25P^3/(P^3 + 274.6)$$

The open probability of the IPRs in the cytosol, $O_{\rm IPR}$ is defined as

$$O_{\rm IPR} = \frac{q_{42}}{q_{62} + q_{26}} D,$$

where D,

$$D = \frac{q_{42}(q_{62} + q_{26})}{q_{42}q_{62} + q_{42}q_{26} + q_{24}q_{62}},$$

represents the proportion of the IPRs that are in the drive mode. Then the IPR fluxes 143 are modeled as: 144

$$J_{\rm IPR} = k_{\rm IPR}O_{\rm IPR}(C_{ER} - C_{cyt}),$$

$$J_{\rm nIPR} = k_{\rm nIPR}O_{\rm nIPR}(C_{ER} - C_{MAM}),$$

where O_{nIPR} is in the same functional form as O_{IPR} , except that the composing functions are now expressed with C_{MAM} and P_{MAM} , instead of C_{cyt} and P.

The diffusion flux between the MAM and the cytosol is a linear function of the 147 concentration difference, 148

$$J_{\rm diff} = D_c (C_{MAM} - C_{cyt}).$$

Small leak fluxes across the ER membrane are given by

$$J_{\text{leak}} = k_{\text{leak}}(C_{ER} - C_{cyt}),$$
$$J_{\text{nleak}} = k_{\text{leak}}(C_{ER} - C_{MAM})$$

We follow Wacquier et al. [22] in modeling the SERCA, the MCU, and the NCX fluxes, 150

$$J_{\text{SERCA}} = V_{\text{SERCA}} \frac{C_{cyt}^2}{K_{\text{SERCA}}^2 + C_{cyt}^2} \frac{ATP_c}{K_e + ATP_c},$$

$$J_{\text{nSERCA}} = V_{\text{nSERCA}} \frac{C_{MAM}^2}{K_{\text{SERCA}}^2 + C_{MAM}^2} \frac{ATP_c}{K_e + ATP_c},$$

$$J_{\text{MCU}} = V_{\text{MCU}} \frac{\frac{C_{cyt}}{K_1} \left(1 + \frac{C_{cyt}}{K_1}\right)^3 e^{p_1 V_m}}{\left(1 + \frac{C_{cyt}}{K_1}\right)^4 + \frac{L_{\text{MCU}}}{\left(1 + \frac{C_{cyt}}{K_2}\right)^{2.8}},$$

$$J_{\text{nMCU}} = V_{\text{nMCU}} \frac{\frac{C_{MAM}}{K_1} \left(1 + \frac{C_{MAM}}{K_1}\right)^3 e^{p_1 V_m}}{\left(1 + \frac{C_{MAM}}{K_1}\right)^4 + \frac{L_{\text{MCU}}}{\left(1 + \frac{C_{MAM}}{K_2}\right)^{2.8}},$$

$$J_{\text{nMCX}} = V_{\text{nMCX}} \left(\frac{C_{mito}}{C_{cyt}}\right) e^{p_2 V_m},$$

$$J_{\text{nNCX}} = V_{\text{nNCX}} \left(\frac{C_{mito}}{C_{MAM}}\right) e^{p_2 V_m}.$$

They set the parameter K_1 to 6 μ M, but this represents the average level of Ca²⁺ in the ¹⁵¹ whole cytosol, including MAMs, when the concentration reaches a physiologically ¹⁵² reasonable level in MAMs. Since we consider MAMs explicitly in the model, we set K_1 ¹⁵³ to 19 μ M, as originally proposed by Magnus et al. [16]. ¹⁵⁴

IP_3 metabolism

A number of studies suggest Ca^{2+} oscillations in hepatocytes can occur at a constant level of IP₃. In particular, an experimental study reported oscillating Ca^{2+} 157

concentrations in the ER lumen in permeabilized hepatocytes, while the concentration 158 of IP₃ was clamped at a submaximal concentration [26]. Thus, we assumed that Ca^{2+} 159 oscillations are primarily generated by Ca^{2+} feedback on the opening and closing 160 kinetics of the IPR. For simplicity, we did not consider cellular formation or breakdown 161 of IP_3 that involves Ca^{2+} or protein kinase C (PKC). Instead, we model IP_3 dynamics 162 as a gradual increase from 0 μ M to its steady-state concentration, $P_{\rm s}$, at a rate of τ_p . 163 However, if hepatocytes were to exhibit IP_3 oscillations, it is possible to include positive 164 and/or negative Ca^{2+} feedback on IP₃ metabolism in the model to introduce IP₃ 165 oscillations as passive reflections of Ca^{2+} oscillations. 166

Apart from continuous stimulation, the model can be perturbed with a single167stimulation in a pulsatile manner. In such a case, cells would be exposed to a certain168amount of agonist for a short period of time. While continuous stimulation saturates169the concentration of IP₃ to its steady state, a pulse stimulation produces a sudden170increase in IP₃ concentration, followed by a natural decay at a rate of degradation. In171the model, a pulse of stimulation is described by172

$$pulse = MH(t - t_0)H(t_0 + \triangle - t), \qquad (2)$$

where ${\cal H}$ is the Heaviside function

$$H(t - t_0) = \begin{cases} 0 & \text{if } t \le t_0, \\ 1 & \text{if } t > t_0, \end{cases}$$

M is the pulse magnitude, t_0 is the time at which the pulse is given, and \triangle is the pulse under the pulse duration.

Mitochondrial metabolic pathway model

The main function of mitochondria is to create ATP by oxidative phosphorylation. Due to this particular role, mitochondria are the powerhouse of the cell. The mitochondrial metabolic pathway is initiated by the uptake of pyruvate, which is the end product of cytosolic glycolysis. Pyruvate in the mitochondrial matrix then enters the tricarboxylic acid (TCA) cycle, also known as the citric acid cycle or the Krebs cycle, to generate the

173

reducing agent NADH that has electrons with a high transfer potential. The 182 concentration of mitochondrial NADH can also be increased by the activity of the 183 malate-aspartate shuttle (MAS). NADH then goes through an electron transport chain 184 (ETC), where the electrons are separated and used to drive protons (H^+) across the 185 inner membrane and generate a proton gradient between the intermembrane space and 186 mitochondrial matrix. As protons accumulate in the intermembrane space, the gradient 187 across the inner membrane is used by the F1FO-ATPase to convert mitochondrial 188 adenosine diphosphate (ADP) to ATP via phosphorylation. The produced ATP is then 189 transported to the cytosol by adenine nucleotide translocases (ANT), which carry out 190 the exchange of cytosolic ADP and mitochondrial ATP across the inner mitochondrial 191 membrane. 192

 Ca^{2+} is an important component in mitochondrial metabolism, as it promotes the production of NADH. An increase in mitochondrial Ca^{2+} concentration upregulates the TCA cycle, and an increase in cytosolic Ca^{2+} concentration stimulates the aspartate-glutamate carrier (AGC), a protein involved in the MAS. We incorporated a part of the model in Wacquier et al. [22] to describe Ca^{2+} -stimulated mitochondrial metabolism. We combined the calcium model with a model of mitochondrial metabolic pathways proposed by Wacquier et al. [22]:

$$\frac{d}{dt}ADP_{c} = I_{\text{hyd}} - \frac{I_{\text{ant}}}{R_{\text{V2}}}$$

$$\frac{d}{dt}ADP_{m} = I_{\text{ant}} - I_{\text{F1FO}}$$

$$\frac{d}{dt}N = I_{\text{pdh}} - I_{\text{o}} + I_{\text{agc}}$$

$$\frac{d}{dt}V_{m} = \frac{1}{C_{p}}(a_{1}I_{\text{o}} - a_{2}I_{\text{F1FO}} - I_{\text{ant}} - I_{\text{Hleak}}$$

$$- (1 - R_{\text{S2}})(J_{\text{NCX}} + 2J_{\text{MCU}}) - R_{\text{S2}}(J_{\text{nNCX}} + 2J_{\text{nMCU}}) - I_{\text{agc}})$$
(3)

The variables ADP_c and ADP_m measure ADP concentrations in the cytosol and mitochondrion, while N is the concentration of mitochondrial NADH. V_m models the voltage difference across the inner mitochondrial membrane. The I_* rates are:

- $I_{\rm hyd}$: rate of ATP hydrolysis
- I_{ant} : rate of the ADP/ATP translocator

•	$I_{\rm F1FO}$: rate of ADP phosphorylation	198
•	$I_{\rm pdh}:$ the production rate of NADH by the pyruvate dehydrogenase	199
•	$I_{\rm o}$: rate of NADH oxidation	200
•	$I_{\rm agc}:$ the production rate of NADH from the MAS	201
•	$I_{\rm Hleak}$: the ohmic mitochondrial proton leak	202

Along with the conservation of the total intracellular Ca^{2+} concentration, C_t , the model 203 suggests the conservation of the following ion concentrations: total NADH (oxidized and 204 reduced), mitochondrial di- and trisphosphorylated adenine nucleotides, and cytosolic 205 di- and trisphosphorylated adenine nucleotides. Mathematically speaking, 206

> $N_{mito}^{\text{tot}} = N + NAD,$ $A_{mito}^{\text{tot}} = ADP_m + ATP_m,$ $A_{cyt}^{\text{tot}} = ADP_c + ATP_c.$

Other functions of the mitochondrial model are reproduced below for convenience. The 207 model parameters are in Table . For modeling purposes, some of the parameters are 208 modified from their original values as in Wacquier et al. [22]. We find these 209 modifications justifiable, as the original values were chosen by the authors to reproduce 210 their experimental data, and hence were not based on any physiological evidence. 211

$$\begin{split} I_{\text{hyd}} &= \frac{J_{\text{SERCA}} + J_{\text{nSERCA}}}{2} + V_{\text{hyd}} \frac{ATP_c}{ATP_c + K_{\text{hyd}}} \\ I_{\text{ant}} &= V_{\text{ant}} \frac{1 - \frac{\alpha_c ATP_c ADP_m}{\alpha_m ADP_c ATP_m} e^{\frac{FV_m}{RT}}}{\left(1 + \alpha_c \frac{ATP_c}{ADP_m} e^{-0.5 \frac{FV_m}{RT}}\right) \left(1 + \frac{ADP_m}{\alpha_m ATP_m}\right)} \\ I_{\text{F1FO}} &= V_{\text{F1FO}} \left(\frac{q_6}{q_6 + ATP_m}\right) \left(1 + e^{\frac{q_7 - V_m}{q_8}}\right)^{-1} \\ I_{\text{pdh}} &= k_{\text{gly}} \frac{1}{q_1 + \frac{N}{NAD}} \frac{C_{mito}}{q_2 + C_{mito}} \\ I_{\text{o}} &= k_{\text{o}} \frac{N}{q_3 + N} \left(1 + e^{\frac{V_m - q_4}{q_5}}\right)^{-1} \\ I_{\text{agc}} &= V_{\text{agc}} \frac{C_{cyt}}{K_{\text{agc}} + C_{cyt}} \frac{q_2}{q_2 + C_{mito}} e^{p_4 V_m} \\ I_{\text{Heak}} &= q_9 V_m + q_{10} \end{split}$$

Table 1. Parameter values of the model. The parameters with * are modified from their suggested values as in Wacquier et al. [22].

Parameter	Value (Unit) Description		
Parameters	for the Ca^{2+} and IP_3	concentration equations	
R_{V1}	2000 the volume ratio between the cytosol and MAN		
$R_{\rm V2}$	10	the volume ratio between the cytosol and the ER	
R_{V3}	15	the volume ratio between the cytosol and mitochon-	
		dria	
R_{S1}	0.2	the proportion of the ER membrane surface that	
		adjoins the MAM	
R_{S2}	0.1	the proportion of mitochondrial membrane surface	
		that adjoins the MAM	
C_{t}	$50 \; (\mu M)$	the total intracellular Ca^{2+} concentration	
D_c	0.1	intracellular Ca^{2+} diffusion rate	
D_p	1	intracellular IP_3 diffusion rate	
k_{leak}	$0.001 \ (s^{-1})$	leak Ca ²⁺ flux coefficient coefficient of the IPR flux entering the bulk cytosol	
k_{IPR}	$0.3 \ (s^{-1})$		
$k_{\rm nIPR}$ 0.3 (s ⁻¹) coefficient of the IPR flux entering the		coefficient of the IPR flux entering the MAM	

$V_{\rm SERCA}$	$30 \; (\mu M \; s^{-1})$	coefficient of the SERCA flux from the bulk cytosol	
$V_{\rm nSERCA}$	$20 \; (\mu M \; s^{-1})$	coefficient of the SERCA flux from the MAM	
$K_{\rm SERCA}$	$0.35~(\mu M)$	half-maximal activating cytosolic Ca^{2+} concentration	
		of SERCA	
$K_{\rm e}$	$0.05~(\mu M)$	dissociation constant of ATP from SERCA	
$V_{\rm MCU}$ 0.00005 ($\mu {\rm M~s^{-1}}$) coefficient		befficient of the MCU flux from the bulk cytosol	
$V_{\rm nMCU}$	0.00005 ($\mu M \ s^{-1}$)	coefficient of the MCU flux from the MAM	
$V_{ m NCX}$	$0.5 \; (\mu M \; s^{-1})$	coefficient of the NCX flux entering the bulk cytosol	
$V_{\rm nNCX}$	$0.5 \; (\mu M \; s^{-1})$	coefficient of the NCX flux entering the MAM	
K_1	19 (μ M)	dissociation constant for Ca^{2+} translocation by the	
		MCU	
K_2	$0.38~(\mu M)$	dissociation constant for MCU activation by $\rm Ca^{2+}$	
p_1	$0.1 \; (mV^{-1})$	coefficient of MCU activity dependence on voltage	
p_2	$0.016 \ (mV^{-1})$	coefficient of NCX activity dependence on voltage	
Parameters	for the IPR model equ	uations	
q_{26}	$10500 \ (s^{-1})$	transition rate from C_2 to O_6	
q_{26} q_{62}	$10500 (s^{-1})$ $4010 (s^{-1})$	transition rate from C_2 to O_6 transition rate from O_6 to C_2	
q_{62}	$4010 (s^{-1})$	transition rate from O_6 to C_2	
q_{62}	$4010 (s^{-1})$	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria,	
q_{62} $L_{ m IPR}$	$4010 (s^{-1}) \\ 0.2 (s^{-1})$	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in C_4	
q_{62} $L_{ m IPR}$	$4010 (s^{-1}) \\ 0.2 (s^{-1})$	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in C_4 the rate at which h_{42} and h_{n42} reach their equilibria,	
q_{62} $L_{\rm IPR}$ $H_{\rm IPR}$ C_{p0}	4010 (s ⁻¹) 0.2 (s ⁻¹) 10 (s ⁻¹) 700 (μ M)	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in C_4 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in the drive mode	
q_{62} $L_{\rm IPR}$ $H_{\rm IPR}$ C_{p0}	4010 (s ⁻¹) 0.2 (s ⁻¹) 10 (s ⁻¹) 700 (μ M)	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in C_4 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in the drive mode Ca^{2+} concentration at the pore of an open IPR	
q_{62} L_{IPR} H_{IPR} C_{p0} Parameters	4010 (s ⁻¹) 0.2 (s ⁻¹) 10 (s ⁻¹) 700 (μ M) for the mitochondrial	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in C_4 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in the drive mode Ca^{2+} concentration at the pore of an open IPR metabolic pathway equations	
q_{62} L_{IPR} H_{IPR} C_{p0} Parameters	4010 (s ⁻¹) 0.2 (s ⁻¹) 10 (s ⁻¹) 700 (μ M) for the mitochondrial	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in C_4 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in the drive mode Ca^{2+} concentration at the pore of an open IPR metabolic pathway equations the total mitochondrial pyridine nucleotide concen-	
q_{62} $L_{\rm IPR}$ $H_{\rm IPR}$ C_{p0} Parameters $N_{mito}^{\rm tot}$	$\begin{array}{c} 4010 \ (\text{s}^{-1}) \\ 0.2 \ (\text{s}^{-1}) \\ 10 \ (\text{s}^{-1}) \\ 700 \ (\mu\text{M}) \\ \hline \text{for the mitochondrial} \\ 250 \ (\mu\text{M}) \end{array}$	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in C_4 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in the drive mode Ca^{2+} concentration at the pore of an open IPR metabolic pathway equations the total mitochondrial pyridine nucleotide concen- tration	
q_{62} $L_{\rm IPR}$ $H_{\rm IPR}$ C_{p0} Parameters $N_{mito}^{\rm tot}$	$\begin{array}{c} 4010 \ (\text{s}^{-1}) \\ 0.2 \ (\text{s}^{-1}) \\ 10 \ (\text{s}^{-1}) \\ 700 \ (\mu\text{M}) \\ \hline \text{for the mitochondrial} \\ 250 \ (\mu\text{M}) \end{array}$	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in C_4 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in the drive mode Ca^{2+} concentration at the pore of an open IPR metabolic pathway equations the total mitochondrial pyridine nucleotide concen- tration the total mitochondrial adenine nucleotide concentra-	
q_{62} L_{IPR} H_{IPR} C_{p0} Parameters N_{mito}^{tot} A_{mito}^{tot}	$\begin{array}{c} 4010 \ (\mathrm{s}^{-1}) \\ 0.2 \ (\mathrm{s}^{-1}) \\ 10 \ (\mathrm{s}^{-1}) \\ 700 \ (\mu \mathrm{M}) \\ \end{array}$ for the mitochondrial $\begin{array}{c} 250 \ (\mu \mathrm{M}) \\ 15000 \ (\mu \mathrm{M}) \end{array}$	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in C_4 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in the drive mode Ca^{2+} concentration at the pore of an open IPR metabolic pathway equations the total mitochondrial pyridine nucleotide concen- tration the total mitochondrial adenine nucleotide concentra- tion	
q_{62} L_{IPR} H_{IPR} C_{p0} Parameters N_{mito}^{tot} A_{mito}^{tot}	4010 (s ⁻¹) 0.2 (s ⁻¹) 10 (s ⁻¹) 700 (μ M) for the mitochondrial 250 (μ M) 15000 (μ M) 2500 (μ M)	transition rate from O_6 to C_2 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in C_4 the rate at which h_{42} and h_{n42} reach their equilibria, if the channel is in the drive mode Ca^{2+} concentration at the pore of an open IPR metabolic pathway equations the total mitochondrial pyridine nucleotide concen- tration the total mitochondrial adenine nucleotide concentra- tion the total cytosolic adenine nucleotide concentration	

a_1^*	10	scaling factor between NADH oxidation and change	
		in mitochondrial membrane voltage	
a_2	3.43	scaling factor between ADP phosphorylation and	
		change in mitochondrial membrane voltage	
$V_{ m hyd}*$	150 ($\mu M \ s^{-1}$)	maximum rate of ATP hydrolysis	
$K_{ m hyd}$	$1000 \; (\mu M)$	half-maximal activating cytosolic ATP concentration	
		of ATP hydrolysis	
$V_{\rm ant}$	5000 ($\mu M \ s^{-1}$)	rate coefficient of the adenine nucleotide translocator	
α_c	0.111	cytosolic ADP and ATP buffering coefficient	
α_m	0.139	mitochondrial ADP and ATP buffering coefficient	
F	96480 (C mol ⁻¹)	Faraday constant	
R	$8315 (mJ mol^{-1})$	perfect gas constant	
	K^{-1})		
T	310.16 (K)	temperature	
$V_{\rm F1FO}$	35000 $(\mu {\rm M~s^{-1}})$	rate coefficient of the $\rm F_{1}F_{O}\text{-}ATPase$	
$k_{ m gly}$	450 ($\mu M \ s^{-1}$)	rate coefficient of glycolysis	
$k_{ m o}$	$600 \ (\mu M \ s^{-1})$	rate coefficient of NADH oxidation by ETC	
$V_{ m agc}{}^*$	$180 \; (\mu M \; s^{-1})$	rate coefficient of NADH production	
$K_{ m agc}$	$0.14~(\mu M)$	dissociation constant of cytosolic Ca^{2+} from AGC	
p_4	$0.01 \ (mV^{-1})$	coefficient of AGC activity dependence on voltage	
q_1	1	Michaelis-Menten-like constant for NAD $^+$ consump-	
		tion by the TCA	
q_2	$0.1 \; (\mu M)$	half-maximal activating mitochondrial Ca^{2+} concen-	
		tration of the TCA	
q_3	100 (mV)	Michaelis-Menten constant for NADH consumption	
		by the ETC	
q_4	177 (mV)	coefficient of ETC activity dependence on voltage	
q_5	5 (mV)	coefficient of ETC activity dependence on voltage	
q_6	$10000~(\mu M)$	inhibition constant of ATPase activity by ATP	
q_7	190 (mV)	coefficient of ATPase activity dependence on voltage	
q_8	8.5 (mV)	coefficient of ATPase activity dependence on voltage	

q_9	$2~(\mu {\rm M~s^{-1}~mV^{-1}})$	proton leak dependence on voltage	
q_{10}	$-30 \; (\mu M \; s^{-1})$	rate coefficient of voltage-independent proton leak	

Numerical simulations

All the numerical simulations presented in this paper were computed with XPPAUT [27].

Results

Up-regulation of MAMs and mitochondrial Ca²⁺ activities

Due to the morphology of MAMs, where the ER and mitochondria are in close contact, 217 it is generally accepted that there is direct Ca^{2+} exchange between the organelles at 218 such sites. Based on this notion, it is reasonable to expect that an increase in the degree 219 of MAM formation up-regulates mitochondrial Ca²⁺ intake via MAMs, and 220 consequently induces larger amplitudes of mitochondrial Ca²⁺ signals. In fact, Arruda et 221 al. [9] used synthetic linkers to mechanically induced more MAMs in hepatocyte-derived 222 mouse Hepa1-6 cells, and observed higher ATP-stimulated mitochondrial Ca²⁺ peaks, 223 compared to the cells without the linkers. This experiment revealed a correlation 224 between mitochondrial Ca^{2+} activity and ER-mitochondrial interactions. Through the 225 following model simulations, we confirmed that the model behaves in this manner. 226

To determine whether the model can reproduce the experimental observations of 227 Arruda et al. [9], we performed model simulations using two different sets of values for 228 the $R_{\rm S}$ parameters, the portions of the ER and mitochondrial membranes that face each 229 other. The model with $(R_{S1}, R_{S2}) = (0.2, 0.1)$ was stimulated with a pulse of IP₃, 230 generated from Eq. 2 with M = 0.5, $t_0 = 4$, and $\Delta = 0.5$. Then the same stimulation 231 was applied to the model with $(R_{S1}, R_{S2}) = (0.3, 0.15)$, which mimics the up-regulation 232 of MAMs induced by the synthetic linkers. The cytosolic Ca²⁺ transient was not 233 affected by the parameter increases, however, the mitochondrial Ca^{2+} transient 234 exhibited a larger amplitude (Fig. 2A and Fig. 2C). These results are compatible with 235 the experimental observation. Given that the MCU has a low Ca^{2+} affinity, i.e., it 236

212

213

214

215

requires high concentrations of Ca^{2+} for channel activation, increasing the 237 mitochondrial surface portion that faces MAMs, and thus exposing more MCUs to 238 higher concentrations of Ca^{2+} , would lead to augmented MCU Ca^{2+} flux, and 239 consequently, induce larger amplitudes of mitochondrial Ca^{2+} activities. 240

We also studied model behavior under continuous stimulation. Instead of producing ²⁴¹ IP₃ in a pulsatile manner, we modeled the concentration of IP₃ to gradually increase ²⁴² until it reaches a steady state, P_s . The model exhibited stable oscillations in cytosolic ²⁴³ and mitochondrial Ca²⁺ concentrations (Fig. 2B and Fig. 2D). The increases of the R_s ²⁴⁴ ratios were followed by an increased amplitude in mitochondrial oscillations, while the ²⁴⁵ amplitude change in the cytosolic Ca²⁺ oscillations was negligible. ²⁴⁶

Fig 2. Effects of increased MAMs on amplitudes of cytosolic (top) and mitochondrial (bottom) Ca^{2+} activities.

(A and C) We stimulated the model with a pulse of IP₃, Eq. 2 with M = 0.5, $t_0 = 4$, and $\Delta = 0.5$, shown by the inset graph in (A). The blue solid spikes were simulated with $(R_{S1}, R_{S2}) = (0.2, 0.1)$, while the red dashed spikes were generated with the increased MAM surface ratios, $(R_{S1}, R_{S2}) = (0.3, 0.15)$. The green dashed lines indicate the onset of the pulse. (B and D) The model was given continuous stimulation from IP₃, which had a saturating concentration at $P_s = 0.3$, shown by the inset graph in (B). The blue oscillations were generated with the control parameters. Again, when we generated the red oscillations, R_{S1} and R_{S2} were increased by 50%.

Ca^{2+} activities in MAMs

Experimental observations suggest that Ca^{2+} concentration in MAMs is about 10-fold 248 higher than that of the cytosol, and about 10-fold lower than that in the ER 249 lumen [28,29]. We examined whether the model reproduces these phenomena. The 250 model was continuously stimulated with a constant IP_3 concentration at its steady state 251 $P_{\rm s} = 0.3 \ \mu {\rm M}$ to generate stable oscillations in all three compartments (Fig. 3A). The 252 model simulated the expected order differences in the Ca^{2+} concentrations between the 253 domains. We note that this model behavior is solely induced from the model 254 assumption of a significantly large volume difference between the cytosol and MAMs. 255 Since the portion of the ER membrane that faces the cytosol is larger than the other 256 section juxtaposing MAMs, it is not surprising to see the larger cytosolic IPR Ca^{2+} flux 257 (Fig. 3B and Fig. 3C). Nonetheless, the model simulated MAM Ca²⁺ oscillations with 258 higher peaks, despite the relatively smaller MAM IPR Ca²⁺ fluxes. 259

Fig 3. Ca^{2+} oscillations generated from the model exhibit varying orders of magnitude in different compartments.

(A) The model was given continuous stimulation of IP₃ with $P_{\rm s} = 0.3 \ \mu {\rm M}$. From the top, the panels show Ca²⁺ oscillations in the ER, the MAM, and the bulk cytosol. (B and C) The magnitudes of IPR Ca²⁺ fluxes from the ER to the bulk cytosol and the MAM, respectively, during the oscillations shown in (A).

Comparing Ca²⁺ oscillations: Control vs. obesity

Arruda et al. [9] reported the effects of obesity on the morphology of hepatic ER and 261 mitochondria. Their study involved lean mice and two different groups of obese mice, 262 one that had been on high-fat diet (HFD) for 16 weeks, and the other, genetically obese 263 (ob/ob) mice. One of their main findings was that both groups of obese mice had a 264 greater proportion of MAMs in liver cells. The authors also examined the expression 265 levels of ER and mitochondrial proteins in liver lysates from the mice. Their western 266 blot analysis showed that the obese mice had a higher expression of the IPR and 267 PACS-2, an ER-mitochondrial tether protein. Interestingly, the expression level of MCU 268 was higher in the ob/ob mice, while the difference between the lean and the HFD mice 269 was negligible. This suggests that the change in the expression of MCU may not occur 270 at the early stages of obesity, although it is likely to be associated with obesity in the 271 long-term. 272

Another part of their study traced intracellular Ca^{2+} activities, both in the cytosol 273 and mitochondrial lumen. Liver cells from lean and obese mice were stimulated with 274 ATP to induce subsequent Ca^{2+} releases from the ER. The results showed higher peaks 275 of mitochondrial Ca^{2+} concentration in cells from obese mice, and similar increases in 276 cytosolic Ca^{2+} concentrations. From this, the authors speculated that the higher 277 mitochondrial Ca^{2+} peaks observed under obesity are related to having more 278 ER-mitochondrial interactions in the cells, and consequently, increased direct Ca²⁺ 279 transport through MAMs. 280

We do not know the exact population of Ca^{2+} channels in mouse hepatocytes. 281 However, the experimental data provide some guidelines for the relative expression 282 levels between the control (lean) group and the obese group. The parameters shown in 283 Table are control values, and when we simulated the model with this parameter set, 284 which will be referred to as the *control model* from here on, model outcomes were 285 regarded as the baseline behaviors for later comparison. Based on the experimental 286

results discussed above, we modified some of the parameters to reflect cellular changes that are associated with obesity. Table 2 shows the parameter modifications. The model with the modified parameters will be referred to as the *obesity model*. We compared behaviors of the obesity model to those of the control model to confirm that the models correctly capture the gap between Ca^{2+} activities observed in hepatocytes from lean and obese mice. 292

Parameter	control model	obesity model
R_{S1}	0.2	0.3
R_{S2}	0.1	0.15
$k_{ m IPR}$	$0.3 \ {\rm s}^{-1}$	$0.36 \ {\rm s}^{-1}$
$k_{ m nIPR}$	$0.3 \ {\rm s}^{-1}$	$0.36 \ {\rm s}^{-1}$
$V_{\rm MCU}$	$0.00005~\mu{\rm M~s^{-1}}$	$0.0001 \ \mu {\rm M \ s^{-1}}$
$\mathrm{V}_{\mathrm{nMCU}}$	$0.00005~\mu{\rm M~s^{-1}}$	$0.0001 \ \mu {\rm M \ s^{-1}}$

 Table 2. Modified parameters for the obesity model simulations.

The panels in Fig. 4 show Ca^{2+} oscillations generated from the control and obesity 293 models with the same magnitude of stimulation. The simulations suggest that 294 hepatocytes from obese mice may exhibit faster Ca^{2+} oscillations with a higher 295 amplitude of mitochondrial Ca^{2+} , compared to cells from lean mice. In fact, the 296 amplitude in the cytosol showed a relatively small change ($\approx 5\%$), compared to the 297 mitochondrial Ca^{2+} amplitude, which was increased by 126%. From the experimental 298 data, we cannot distinguish which cellular changes are responsible for which effects, and 299 to what degree. Using our Ca^{2+} model, we investigated how Ca^{2+} oscillations are 300 modulated by each cellular change associated with obesity. Model results are discussed 301 in the following subsections. 302

Fig 4. Effects of the cellular changes associated with obesity on Ca^{2+} oscillations.

Oscillations of (A) cytosolic and (B) mitochondrial Ca²⁺ concentrations. The blue oscillations were generated from the model with the control parameters. When simulating the red oscillations, some of the parameters were modified as in Table 2. Throughout the simulation, IP₃ concentration was held constant at 0.3 μ M.

Increased MAM formation

We have previously discussed that a possible mechanism underlying the amplitude 304 change in mitochondrial Ca²⁺ activities associated with the enhancement of MAM 305 formation is a synergistic process that comes from the MCU's low Ca²⁺ affinity and the 306 small volume of MAMs. The increase in the amplitude of mitochondrial Ca²⁺ 307 oscillations induced from the increased degree of MAM formation is already evident in 308 Fig. 2. Interestingly, expressing more MAMs in the model slightly increased the 309 oscillation frequency. Table 3 shows the quantified effects of 20%, 50% and 100%310 increase in MAM formation on the amplitudes and frequency of cytosolic and 311 mitochondrial Ca²⁺ oscillations. The parameter adjustments induced a trend of 312 negative effects on the amplitude of cytosolic Ca^{2+} oscillations, while having positive 313 effects on that of mitochondrial oscillations. As stated in the introduction, cells tightly 314 regulate frequencies and amplitudes of Ca²⁺ oscillations to orchestrate many cellular 315 activities. Thus, although the magnitude of the frequency change is small, its effect on 316 cellular homeostasis may be significant. 317

in the amplitudes of cytosone and intochondrial Ca oscillations and the oscillation nequen			
\triangle in MAMs	\triangle in C_{cyt} amplitude	\triangle in C_{mito} amplitude	\triangle in oscillation freq.
20%	-0.56%	10%	0.5%
50%	-1.3%	26%	0.8%
100%	-2.4%	55%	0.8%
\triangle in $k_{\rm IPR}, k_{\rm nIPR}$			
20%	17%	42%	30%
50%	39%	99%	61%
100%	68%	181%	84%
\triangle in $V_{ m MCU}, V_{ m nMCU}$			
20%	-1.4%	14%	-0.7%
50%	-3.2%	33%	-1.6%
100%	-6%	61%	-2.9%
200%	-11%	104%	-4.4%

Table 3. Effects of increasing the degree of MAM formation, IPR activity, and MCU activity on the amplitudes of cytosolic and mitochondrial Ca^{2+} oscillations and the oscillation frequency.

Increased IPR activity

Secondly, we looked at the effects of increased IPR activity on Ca^{2+} oscillations, by 319 increasing k_{IPR} and k_{nIPR} , the rate constants for the IPR Ca²⁺ fluxes. These 320 adjustments lead to an increase in the magnitude of total Ca^{2+} flux through the IPR, 321 either from an increased number of channels or an increase in the maximum strength of 322 each channel. Since the model is a deterministic model that incorporates all-or-none 323 activation of IPRs, we intuitively expected the increased IPR parameters to generate 324 Ca²⁺ oscillations with larger amplitudes in both the cytosol and mitochondria. The 325 model was stimulated with $P_{\rm s} = 0.3 \ \mu {\rm M}$ to produce the stable oscillations in Fig. 5. At 326 t = 25 s, only $k_{\rm IPR}$ and $k_{\rm nIPR}$ were increased by 20%, while other parameters were kept 327 the same. The parameter adjustments induced increases in the amplitudes of cytosolic 328 and mitochondrial Ca^{2+} oscillations by 17% and 42%, respectively, as expected. The 329 model simulations also showed a 30% increase in the oscillation frequency. With the 330 increased IPR channel activity, it takes less time for cytosolic Ca²⁺ concentration to 331 reach the threshold concentration for spiking. However, this also means that the 332 channels have a shorter refractory time, the period of time that it takes for the IPR to 333 recover its state between spikes, and hence, at the time of spiking, the receptors would 334 have a lower open probability. Fig. 5C and Fig. 5D confirm this conjecture. 335

Fig 5. Effects of increased IPR activity on Ca^{2+} oscillations and IPR open probabilities.

(A and B) Oscillations in cytosolic and mitochondrial Ca²⁺ concentrations, respectively. The blue oscillations are generated from the control model, while the red oscillations are generated with increased $k_{\rm IPR}$ and $k_{\rm nIPR}$. The model was given continuous stimulation of IP₃ with $P_{\rm s} = 0.3 \ \mu$ M. (C and D) Corresponding open probabilities of the bulk cytosol IPR and the MAM IPR, respectively.

We further increased $k_{\rm IPR}$ and $k_{\rm nIPR}$ by 50%, and then by 100%, to affirm the positive correlation between the parameters and the oscillation amplitudes and frequency (Table 3). It is evident that the corresponding parameter modifications had strong positive effects on all three properties of oscillations that were of interest.

Increased MCU activity

Lastly, we simulated the effects of an increase in MCU activity level on cytosolic and $_{341}$ mitochondrial Ca²⁺ oscillations. Following the same steps as the previous simulations, $_{342}$

340

Fig 6. Effects of increased MCU activity on Ca^{2+} oscillations.

Oscillations of (A) cytosolic and (B) mitochondrial Ca²⁺ concentrations generated from the control model, in blue, and with increased $V_{\rm MCU}$ and $V_{\rm nMCU}$, in red. The model was given continuous stimulation of IP₃ with $P_{\rm s} = 0.3 \ \mu {\rm M}$.

the model was given continuous stimulation with $P_{\rm s} = 0.3 \ \mu {\rm M}$, which gave rise to the 343 stable oscillations shown in the panels of Fig. 6. At t = 25 s, V_{MCU} and V_{nMCU} were 344 increased by 100%, and the model continued to exhibit oscillations shown in the figures. 345 The increased parameters had a negative effect on the amplitude of cytosolic Ca^{2+} 346 oscillations and the oscillation frequency, whereas the amplitude of mitochondrial Ca^{2+} 347 oscillations was increased. The relative magnitudes of these changes are quantified in 348 Table 3. The most obvious explanation for the amplitude changes is that the enhanced 349 activity of MCUs transports a larger amount of Ca²⁺ from the cytosol to mitochondria, 350 and the magnitude of change is more substantial in mitochondria than in the cytosol 351 due to the compartments' volume difference. We also examined the changes under 20%, 352 50%, and 200% increase of the parameters, to verify the overall trend of the effects. 353

As mentioned above, no significant difference was reported between the expression 354 levels of MCU in liver cells from the lean and the HFD mice. However, cells from ob/ob 355 mice had a marked increase in MCU expression level. These experimental data suggest 356 that the increase in the MCU expression level may not be a direct response to the onset 357 of obesity. We have shown that both increases of MAM formation and IPR channel 358 density, the cellular changes that were observed in the HFD mice, and thus are early 359 events associated with obesity, induce higher peaks in mitochondrial Ca²⁺. 364

Model prediction

We postulate that liver cells from different health conditions have varying thresholds for 362 the breaking point of their Ca^{2+} oscillations. In order to test this, we studied model 363 behaviors under three different sets of parameters: one is without any modification, 364 which represents the healthy case, another one is with increased $R_{\rm S}$'s, $k_{\rm IPR}$ and $k_{\rm nIPR}$, 365 which corresponds to the cell condition associated with HFD, and the last set is with 366 additional parameter increases of $V_{\rm MCU}$ and $V_{\rm nMCU}$, which refers to cells from ob/ob367 animals. For each parameter set, the model was given continuous stimulation with five 368 distinct regimes where $P_{\rm s}$ is incrementally adjusted, as shown in the panels of Fig. 7. It 369

is clearly shown that the model representing the ob/ob condition reached the breaking point for Ca²⁺ oscillations at a lower concentration of IP₃, compared to the HFD and healthy conditions. The control model exhibited Ca²⁺ oscillations that are robust to higher concentrations of IP₃.

To verify these predictions, we suggest measuring Ca^{2+} responses in liver cells with each of the three conditions to a wide range of IP₃ concentration, and see if the average IP₃ oscillatory range was decreased in the *ob/ob* condition. However, one of the challenges of this experiment is that, due to cell-to-cell variability, it is critical to measure responses from a myriad of cells before drawing a conclusion.

Fig 7. Robustness of Ca²⁺ oscillations under different model conditions. We perturbed the model with gradually increasing stimulation, under three model conditions: (A) control, (B) HFD, and (C) *ob/ob*. Initially, $P_{\rm s}$ was at 0.6 μ M, then was increased to 0.75 μ M, 0.9 μ M, 1 μ M, and then to 1.2 μ M at t = 20 s, 40 s, 60 s, and 80 s, respectively. The cytosolic Ca²⁺ concentrations are shown in blue, with the scale on the left y-axis. The green timeseries represent the cytosolic IP₃ concentration, with the scale on the right y-axis.

Discussion

We have presented a mathematical model for Ca^{2+} dynamics in mouse hepatocytes. 380 Based on experimental data that showed oscillatory Ca^{2+} signals in hepatocytes in 381 Ca^{2+} -free media, the model is the closed-cell type, wherein the total intracellular Ca^{2+} 382 concentration is assumed to be conserved (i.e., there is no Ca^{2+} flux across the plasma 383 membrane). To our knowledge, this model is the first mathematical model to explicitly 384 express Ca²⁺ concentration in MAMs as a dynamical variable and also show MAM 385 Ca^{2+} levels to be within reasonable proportions of the Ca^{2+} levels in the other domains. 386 The first aim of the model was to reproduced the data reported by Arruda et al. where 387 hepatocytes with more MAMs exhibited ATP-induced Ca^{2+} transient with higher peaks 388 in mitochondrial Ca^{2+} concentration [9]. We assumed that the IPRs, MCUs and NCXs 389 are uniformly expressed on the residing membranes, while the SERCA pumps are 390 predominant on the cytosolic side of the ER membrane. 391

Arruda et al. [9] also compared hepatic cellular characteristics between different $_{392}$ groups of mice. They had a group of lean mice as their control, and two groups of mice, $_{393}$ one that had been under high fat diet (HFD) and the other genetically obese (ob/ob) $_{394}$

mice, for mouse models of obesity. The *ob/ob* mouse cells showed higher expression³⁹⁵ levels of IPR and MCU, as well as a higher degree of MAM formation. The HFD mouse³⁹⁶ cells also had more MAMs and a higher IPR channel density than the lean group, but³⁹⁷ the groups' MCU expression levels did not differ. We interpreted the morphological³⁹⁸ change of MAMs and and the increase in IPR channel density as the traits of obesity in³⁹⁹ early stages, while considering the increase in MCU channel density as an effect that⁴⁰⁰ appears in later stages.⁴⁰¹

We used the model to study how Ca^{2+} signals are altered by each cellular change 402 associated with obesity. According to model simulations, an increase of MAM 403 proportion speeds up Ca^{2+} oscillations and increases mitochondrial Ca^{2+} amplitudes, 404 while decreasing the amplitude of cytosolic Ca^{2+} . An increase in IPR channel activity 405 level induces faster Ca²⁺ oscillations with higher amplitudes in both cytosol and 406 mitochondria. Furthermore, an increase in the level of MCU activity increases 407 mitochondrial Ca^{2+} amplitude and oscillation period. We found that the cellular 408 changes observed in the HFD mouse cells have a positive effect on oscillation frequency, 409 while the additional change that only appeared in the ob/ob has the opposite effect. 410 Thus, we postulate that the increase of MCU channel density observed in the ob/ob411 mouse cells is a secondary effect of obesity that counteracts other cellular changes that 412 occur in the HFD mouse cells. 413

Metabolic flexibility refers to the ability of the organism to adapt its fuel source, 414 depending on availability and need [30], and emerging evidence suggests the involvement 415 of MAMs in metabolic flexibility [31]. Interestingly, Rieusset et al. [32] reported a link 416 between the disruption of ER-mitochondrial Ca^{2+} exchange and hepatic insulin 417 resistance in their mouse model. As we have shown in this paper, hepatic cellular 418 changes associated with HFD and obesity affect Ca²⁺ oscillation frequencies and 419 amplitudes. However, the question of whether the altered Ca^{2+} dynamics plays a causal 420 role in the development of hepatic insulin resistance and metabolic diseases remains to 421 be explored. We eagerly anticipate that our model can be one of stepping stones 422 addressing such conundrum. 423

Mitochondrial Ca²⁺ oscillations and ROS

There are many studies that associate mitochondrial Ca^{2+} dynamics with the 425 generation of ROS [8, 33, 34]. It has been suggested that mitochondrial Ca²⁺ 426 up-regulates ETC, which in turn increases the generation of mitochondrial superoxide, 427 one of the main forms of ROS. As a counter mechanism, Ca^{2+} also activates enzymes 428 that scavenge superoxide. The optimal feedback mechanisms between mitochondrial 429 Ca^{2+} and ROS would keep ROS at a tolerable level to avoid ROS-induced apoptosis. 430 Achieving this state requires a balance between the production and degradation of ROS. 431 and most likely in a time-delay manner. We have shown that the cellular changes 432 associated with HFD induce faster Ca^{2+} oscillations in mitochondria, which potentially 433 leads to a faster rate of ROS production. If the process of ROS degradation cannot keep 434 up with the increased level of ROS, it would cause the accumulation of ROS in 435 mitochondria and consequently, apoptosis. However, according to the model simulations, 436 oscillation frequencies can be decreased by an increase of MCU channel density, another 437 cellular change associated with obesity. Unfortunately, this reaction potentially leads to 438 mitochondrial Ca^{2+} overload, which is a deleterious phenomenon for cells. There are 439 many studies that discuss links between mitochondrial Ca^{2+} overload and oxidative 440 stress and ER stress, which are the hallmark of apoptosis [3,35–38]. Nonetheless, liver 441 cells from the ob/ob mice have an increased expression level of MCU, which aggravates 442 mitochondrial Ca^{2+} overload. The fact that the cells increase their MCU channels on 443 top of the other cellular changes is an interesting and physiologically counterintuitive 444 behavior. Why would they push themselves in an adverse direction and worsen their 445 condition? Based on our model simulations, we conjecture that the MCU expression 446 level change is a counter response to the other cellular changes. The increases in MAM 447 formation and IPR channel density both accelerated the oscillations, while the increase 448 in MCU channel density had an opposite effect on the oscillations. Thus, we suggest 449 that cells increase their MCU expression level in an attempt to adjust their oscillation 450 frequency to a sustainable level. Of course, this mechanism has to be finely controlled. 451 as there are other problems, such as mitochondrial Ca^{2+} overload, that come with it. 452

Other Ca^{2+} fluxes

As discussed before, we presented a closed-cell model, and did not include Ca^{2+} fluxes 454 across the plasma membrane, such as the ones via store-operated Ca^{2+} channels 455 (SOCCs), receptor-operated Ca²⁺ channels (ROCCs), and plasma membrane 456 Ca^{2+} -ATPase (PMCA) pumps. SOCCs draw Ca^{2+} from the extracellular space when 457 Ca^{2+} stores (ER/SR) get depleted. ROCCs, which also carry Ca^{2+} into the cytosol, are 458 activated by agonists binding on G-protein-coupled receptors. PMCA pumps remove 459 Ca^{2+} from the cytosol. The fluxes through these channels also modulate intracellular 460 Ca^{2+} dynamic, and thus could be added in the model. In particular, experimental 461 evidence suggests that mitochondrial Ca^{2+} regulate SOCCs [39–41]. When 462 mitochondria sequester a substantial amount of Ca^{2+} from the cytosol and the ER, the 463 level of Ca²⁺ concentration in the ER could get sufficiently low and activate SOCCs. 464

The model proposed by Wacquier et al. [22] includes a bidirectional Ca²⁺ flux 465 between the cytosol and mitochondria. They suggested that this flux could represent 466 the mitochondrial permeability transition pore (PTP) in the low conductance mode. It 467 would be interesting to see how our model behaves in the presence of the bidirectional 469 flux, and compare the models. 469

Model reduction

Due to the high dimensionality of the model, which is a system of 11 ODEs, numerical 471 integration can be computationally expensive. In an attempt to simplify the model, we 472 applied quasi-steady state reduction and assumed that the activation variables of the 473 IPRs, h_{42} and h_{n42} , instantaneously reached their quasi-equilibria. However, this 474 reduction destroyed the desired order differences between the magnitudes of Ca^{2+} 475 transients in the cytosol, the ER, and MAMs. This implies that the kinetics of IPR 476 activation is an important factor for modeling the 10-fold difference in the amplitudes of 477 cytosolic and MAMs Ca^{2+} activities, shown in Fig. 3. 478

Supporting information

S1 .ode file. The model's .ode file that runs on XPPAUT [27].

453

470

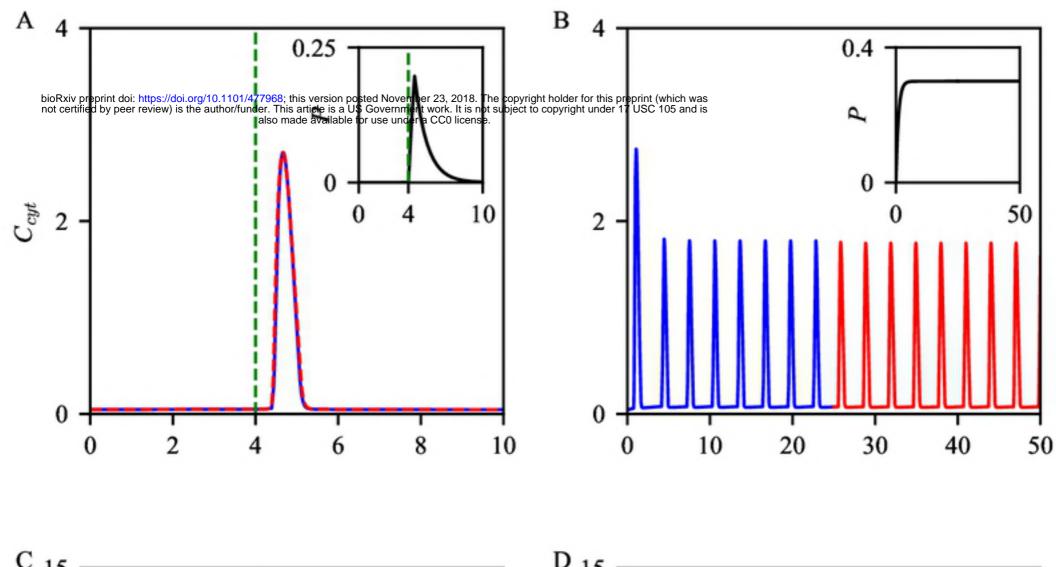
479

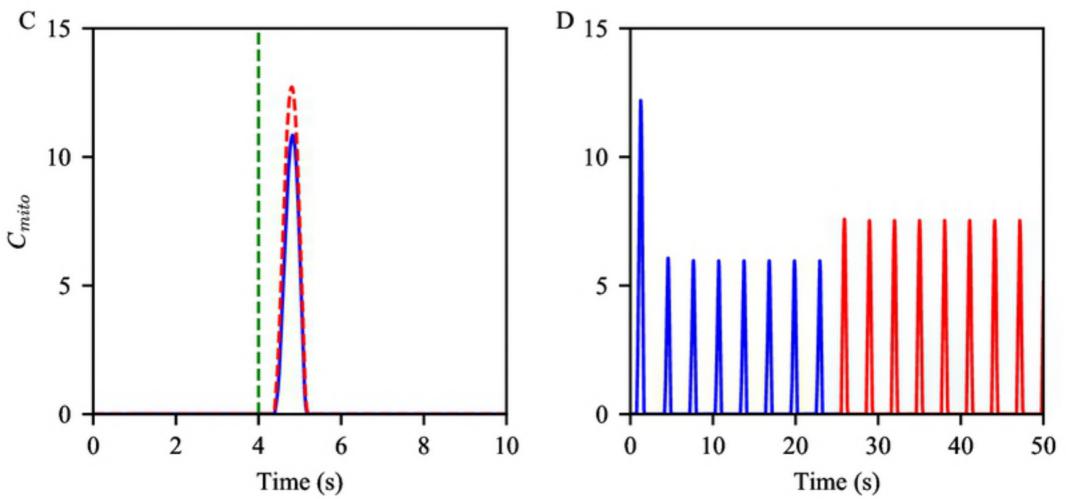
Acknowledgments

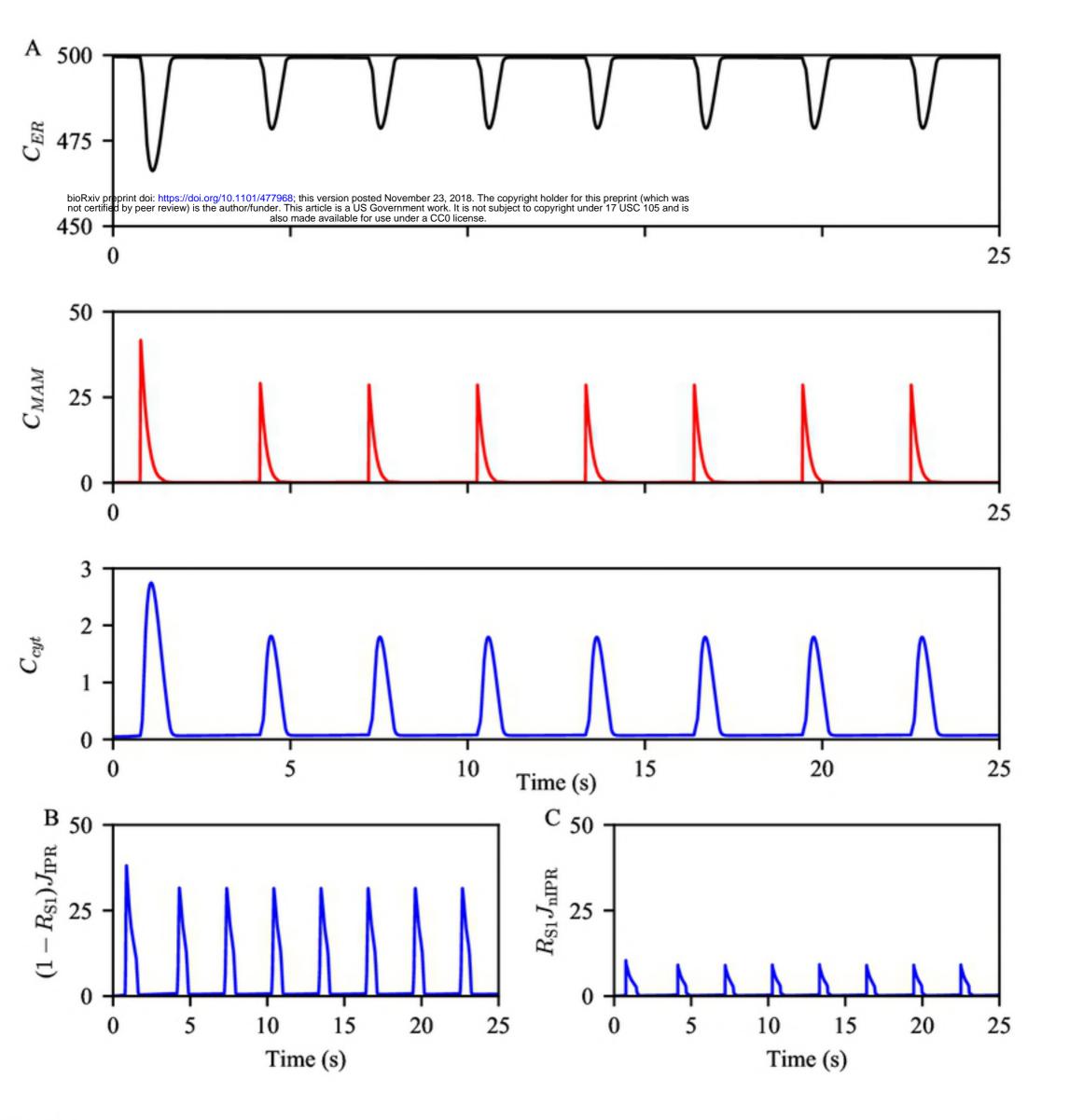
We thank James Sneyd at University of Auckland, New Zealand, and Arthur Sherman, our lab chief, for their helpful discussions during the course of this work.

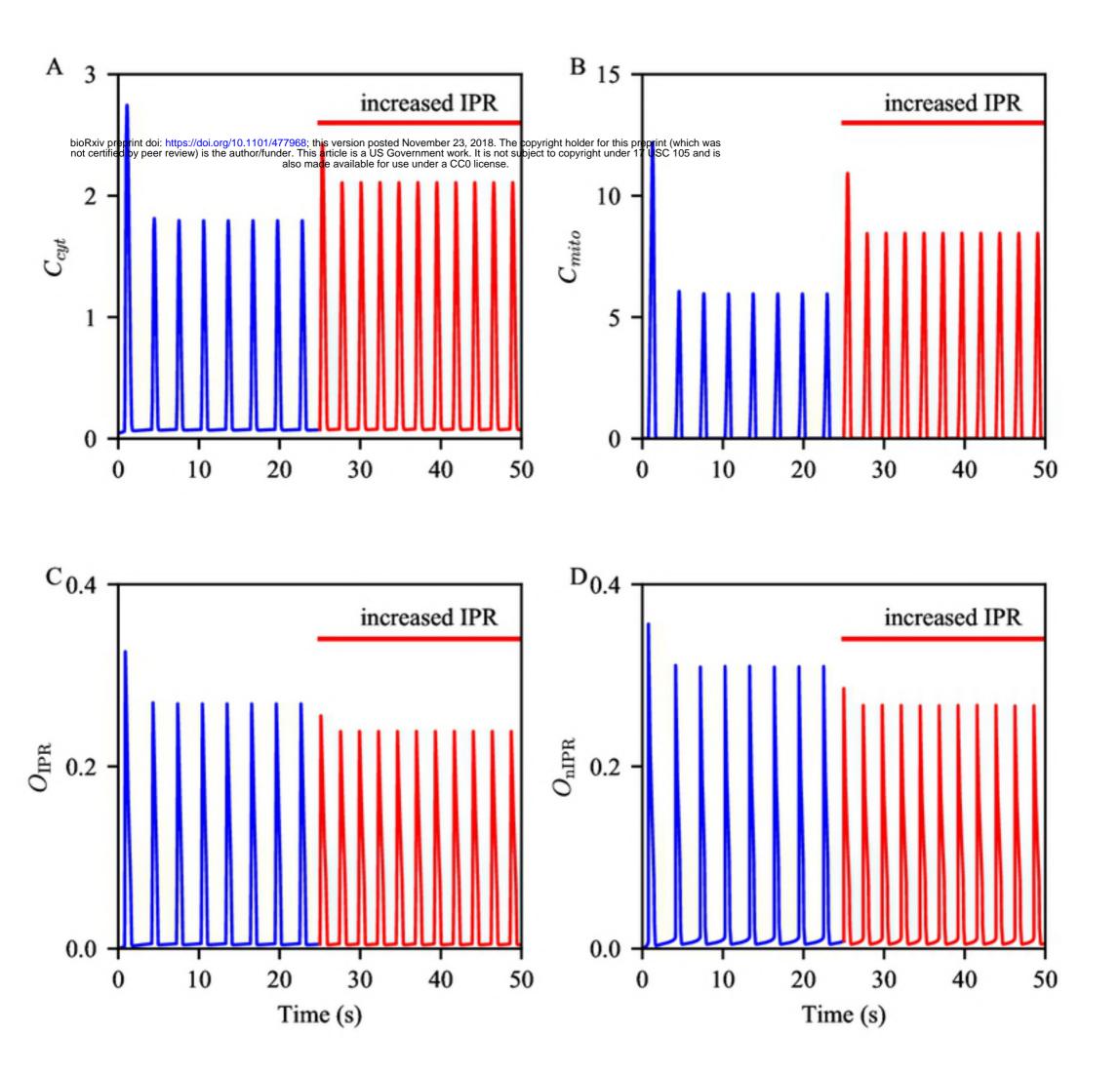
References

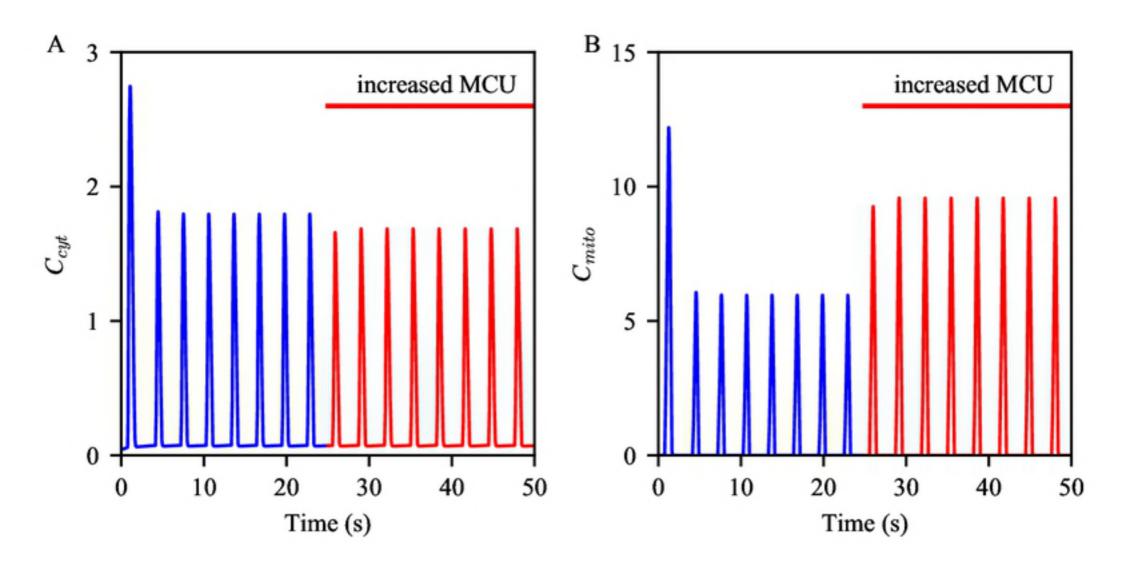
- Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21.
- 2. Arruda AP, Hotamisligil GS. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 2015;22(3):381–397.
- Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol. 2015;6:260–271.
- Patergnani S, et al. Calcium signaling around Mitochondria associated membranes (MAMs). Cell Commun Signal. 2011;9:19.
- Cárdenas-Pérez RE, Camancho A. Roles of calcium and mitochondria-associated membranes in the development of obesity and diabetes. Medicina Universitaria. 2016;18(70):23–33.
- Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol. 2011;3(6):a004317. doi:10.1101/cshperspect.a004317.
- Krols M, van Isterdael G, Asselbergh B, Kremer A, Lippens S, Timmerman V, et al. Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol. 2016;131:505–523. doi:10.1007/s00401-015-1528-7.
- Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol, Cell Physiol. 2004;287:C817–C833. doi:10.1152/ajpcell.00139.2004.
- Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 2014;20(12):1427–1435.


- Li YX, Rinzel J. Equations for InsP₃ receptor-mediated [Ca²⁺] oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol. 1994;166:461–473.
- De Young GW, Keizer J. A single-pool inositol 1,4,5-trisphosphatereceptor-based model for agonist-stimulated oscillations in Ca²⁺ concentration. Proc Natl Acad Sci USA. 1992;89:9895–9899.
- Shuai JW, Jung P. Stochastic properties of Ca²⁺ release of inositol 1,4,5-trisphosphate receptor clusters. Biophys J. 2002;87(1):87–97.
- Dupont G, Goldbeter A. One-pool model for Ca²⁺ oscillations involving Ca²⁺ and inositol 1,4,5-trisphosphate as co-agonist for Ca²⁺ release. Cell Calcium. 1993;14:311–322.
- Cortassa S, Aon MA, Marbán E, Winslow RL, O'Rouke B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J. 2003;84(4):2734–2755.
- Bertram R, Gram Pedersen M, Luciani DS, Sherman A. A simplified model for mitochondrial ATP production. J Theor Biol. 2006;243:575–586.
- 16. Magnus G, Keizer J. Minimal model of β -cell mitochondrial Ca²⁺ handling. Am J Physiol. 1997;273(2 Pt 1):C717–C733.
- Nguyen MHT, Jafri MS. Mitochondrial calcium signaling and energy metabolism. Ann N Y Acad Sci. 2005;1047:127–137. doi:10.1196/annals.1341.012.
- Fall CP, Keizer JE. Mitochondrial modulation of intracellular Ca²⁺ signaling. J Theor Biol. 2001;210:151–165.
- Patterson M, Sneyd J, Friel DD. Depolarization-induced calcium responses in Sympathetic Neurons: Relative Contributions from Ca²⁺ Entry, Extrusion, ER/Mitochondrial Ca²⁺ Uptake and Release, and Ca²⁺ Buffering. J Gen Physiol. 2007;129(1):29–56. doi:10.1085/jgp.200609660.
- Szopa P, Dyzma M, Kaźmierczak B. Membrane associated complexes in calcium dynamics modelling. Phys Biol. 2013;10(3):035004.


- Qi H, Li L, Shuai J. Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca²⁺ oscillations. Sci Rep. 2015;5:7984. doi:10.1038/srep07984.
- Wacquier B, Combettes L, Tran Van Nhieu G, Dupont G. Interplay between intracellular Ca²⁺ oscillations and Ca²⁺-stimulated mitochondrial metabolism. Sci Rep. 2016;6:19316. doi:10.1038/srep19316.
- Penny CJ, Kilpatrick BS, Han JM, Sneyd J, Patel S. A computational model of lysosome-ER Ca²⁺ microdomains. J Cell Sci. 2014;127:2934–2943.
- Jones BF, Boyles RR, Hwang S, Bird GS, Putney JW. Calcium influx mechanisms underlying calcium oscillations in rat hepatocytes. Hepatology. 2008;48(4):1273–1281.
- Cao P, Tan X, Donovan G, Sanderson MJ, Sneyd J. A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells. PLoS Comput Biol. 2014;10(8):e1003783.
- Hajnóczky G, Thomas AP. Minimal requirements for calcium oscillations driven by the IP₃ receptor. EMBO J. 1997;16(12):3533–3543.
- Ermentrout B. Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. SIAM Reviews. 2003;45(1):150–152.
- 28. Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, et al. Ca²⁺ Hot Spots on the Mitochondrial Surface AreGenerated by Ca²⁺ Mobilization from Stores, but Not by Activation of Store-Operated Ca²⁺ Channels. Mol Cel. 2010;38(2):280–290. doi:10.1016/j.molcel.2010.04.003.
- 29. Tang S, Wong HC, Wang ZM, Huang Y, Zou J, Zhuo Y, et al. Design and application of a class of sensors to monitor Ca²⁺ dynamics in high Ca²⁺ concentration cellular compartments. Proc Natl Acad Sci USA. 2011;108(39):16265–16270. doi:10.1073/pnas.1103015108.
- Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab. 2008;295(5):E1009–E1017. doi:10.1152/ajpendo.90558.2008.


- Theurey P, Rieusset J. Mitochondria-associated membranes response to nutrient availability and role in metabolic diseases. Trends in Endocrinology & Metabolism. 2017;28(1):32–45. doi:https://doi.org/10.1016/j.tem.2016.09.002.
- 32. Rieusset J, Fauconnier J, Paillard M, Belaidi E, Tubbs E, Chauvin M, et al. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia. 2016;59(3):614–623. doi:https://doi.org/10.1007/s00125-015-3829-8.
- Adam-Vizi V, Starkov AA. Calcium and Mitochondrial Reactive Oxygen Species Generation: How to Read the Facts. J Alzheimers Dis. 2010;20:S413–S426. doi:10.3233/JAD-2010-100465.
- 34. Csordás G, Hajnóczky G. SR/ER-mitochondrial local communication: Calcium and ROS. Biochim Biophys Acta. 2009;1787:1352–1362. doi:10.1016/j.bbabio.2009.06.004.
- Hajnóczky G, Davies E, Madesh M. Calcium signaling and apoptosis. Biochem Biophys Res Commun. 2003;304(3):445–454. doi:10.1016/S0006-291X(03)00616-8.
- 36. Pinton P, Ferrari D, Rapizza E, Di Virgilio F, Pozzan T, Rizzuto R. A role for calcium in Bcl-2 action? Biochimie. 2002;84(2–3):195–201. doi:10.1016/S0300-9084(02)01373-1.
- 37. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca²⁺ transfer in the control of apoptosis. Oncogene. 2008;27(50):6407–6418. doi:10.1038/onc.2008.308.
- 38. Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol. 2011;3:a004424. doi:10.1101/cshperspect.a004424.
- Hoth M, Fanger CM, Lewis RS. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol. 1997;137(3):633. doi:10.1083/jcb.137.3.633.
- Glitsch MD, Bakowski D, Parekh AB. Store-operated Ca²⁺ entry depends on mitochondrial Ca²⁺ uptake. EMBO J. 2002;21(24):6744–6754.


41. Parekh AB, Putney JW. Store-operated calcium channels. Physiol Rev.


2005;85(2):757-810. doi:10.1152/physrev.00057.2003.

