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Abstract 
Background:  Blood-based methods using cell-free DNA (cfDNA) are under development as an 

alternative to existing screening tests. However, early-stage detection of cancer using tumor-
derived cfDNA has proven challenging because of the small proportion of cfDNA derived from 
tumor tissue in early-stage disease. A machine learning approach to discover signatures in 
cfDNA, potentially reflective of both tumor and non-tumor contributions, may represent a 
promising direction for the early detection of cancer. 

Methods: Whole-genome sequencing was performed on cfDNA extracted from plasma samples 

(N=546 colorectal cancer and 271 non-cancer controls). Reads aligning to protein-coding gene 
bodies were extracted, and read counts were normalized. cfDNA tumor fraction was estimated 
using IchorCNA. Machine learning models were trained using k-fold cross-validation and 
confounder-based cross-validation to assess generalization performance. 

Results: In a colorectal cancer cohort heavily weighted towards early-stage cancer (80% stage 

I/II), we achieved a mean AUC of 0.92 (95% CI 0.91-0.93) with a mean sensitivity of 85% (95% 
CI 83-86%) at 85% specificity. Sensitivity generally increased with tumor stage and increasing 
tumor fraction. Stratification by age, sequencing batch, and institution demonstrated the impact 
of these confounders and provided a more accurate assessment of generalization performance.  

Conclusions: A machine learning approach using cfDNA achieved high sensitivity and specificity 

in a large, predominantly early-stage, colorectal cancer cohort. The possibility of systematic 
technical and institution-specific biases warrants similar confounder analyses in other studies. 
Prospective validation of this machine learning method and evaluation of a multi-analyte 
approach are underway. 
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Introduction 
 
Despite the public health emphasis on population-level cancer screening in recent decades, 
adherence remains lower than desired [1], and cancer is often detected too late for successful 
treatment. For example, nearly 60% of colorectal cancer (CRC) cases, and approximately 80% 
of pancreatic cancer cases, are detected after regional or distant metastases [2]. Current cancer 
screening methods are often invasive, inconvenient, expensive, and/or have suboptimal clinical 
performance (i.e., sensitivity or specificity), particularly for early-stage disease and precancerous 
lesions [3].  

 
Recently, blood-based screening tests for cancer have been proposed in an effort to address 
some of the aforementioned challenges. One key area of both academic and commercial interest 
is circulating cell-free DNA (cfDNA), which includes both tumor-derived DNA (so-called 
“circulating tumor DNA”, or ctDNA) and DNA derived from non-tumor cells, such as 
hematopoietic and stromal cells, to supplement or replace existing cancer screening methods.  
 
Different screening approaches using cfDNA are being explored, and some have hypothesized 
that ctDNA-only based “liquid biopsies” may enable sensitive and specific early detection of 
cancer ([4–7]. ctDNA has unique characteristics of tumor DNA, such as cancer-associated 
mutations, translocations, and/or large chromosomal copy number variants (CNVs), not typically 
present in the cfDNA of healthy patients [8]. In addition, ctDNA fragments appear to be shorter 
on average than cfDNA found in healthy subjects [9]. However, others have questioned whether 
such an approach is feasible for routine screening, given biological (e.g., clonal hematopoiesis 
of indeterminate potential (CHIP)), technical (e.g., limits of detection and variable levels of tumor 
fraction (TF) observed in cancer patients), and practical (e.g., blood volume requirements and 
cost) considerations [10–12]. In patients with cancer, ctDNA generally represents a small fraction 
of all cfDNA, ranging from ≥5-10% in late-stage disease to ≤0.01-1.0% in early-stage disease, 
and even lower in premalignant conditions [13]. These limitations are particularly important in 
early-stage cancer when the tumor is small and the shedding of DNA into the blood may be 
minimal. Indeed, many previous cfDNA studies have had stage distributions meaningfully 
different from those seen in screening populations [14–16]. 
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An alternative to detection based solely on ctDNA is to look more broadly at cfDNA—both tumor 
derived and non-tumor derived—and changes that early-stage cancer may induce in blood. 
There is growing evidence of interactions between cancerous cells and other cells, including 
fibroblasts, platelets, and immune cells, especially within the tumor microenvironment. These 
include findings of “tumor education”, such as changes in gene expression that may reflect 
interaction with a tumor and/or ingestion of tumor-related molecules [17]. For example, platelets 
in patients with cancer harbor different patterns of messenger RNA (mRNA) than platelets in 
healthy individuals [18]. There are also reports of changes in immune-cell apoptosis patterns in 
patients with cancer [19], suggesting global changes in hematopoietic cell populations that may 
reflect altered physiological states. For instance, low relative levels of circulating lymphocytes 
versus monocytes may be correlated with poor cancer prognosis [20]. It is possible to detect 
such changes in cell populations from cfDNA because cfDNA fragmentation and methylation 
patterns can recapitulate expected cellular epigenetic states [15,16,21–23]. 
 
Because it is still unknown to what extent circulating cells in patients with early-stage cancer are 
educated by the tumor microenvironment (i.e., how changes in cellular state are explicitly 
reflected in the billions of base pairs of cfDNA), the ability to identify disease-relevant patterns in 
cfDNA requires unbiased methods that can identify patterns in high-dimensional space. Given a 
large enough sample size, machine learning (ML) may provide a toolset by which to learn 
disease-related patterns from whole-genome signals directly from patients with and without 
early-stage cancer. However, the primary challenge in an assay with many measured variables 
is to identify relevant, low-dimensional features that generalize to the screening population 
[24,25]. As a corollary, it is necessary to mitigate potential confounding variables, defined as 
variables that are correlated with the clinical label which in this case is the disease label. For 
example, batch effects or institutional processing effects can be a significant variable that 
correlates with non-cancerous and cancerous samples.  
 

Here we develop and implement a computational approach for representing and learning 
associations between cfDNA profiles and cancer status, with a focus on the importance of 
accounting for known confounding variables. Using this approach, we report classification 
results for a large cohort of non-cancer controls and early-stage CRC patients. 
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Materials and Methods 
 
Sample collection 
 
Human EDTA plasma samples were acquired from 546 patients diagnosed with CRC (Table 1). 

As controls, plasma samples from 271 unique patients without a current CRC diagnosis were 
also acquired. In total, 817 de-identified plasma samples were collected from institutions and 
commercial biobanks from Europe and the United States. Patient age, gender, and cancer stage 
(where available) were obtained for each sample. Samples were included in the intended use (IU) 
age range analysis for CRC only if the patient’s age at time of collection was known to be 
between 50 and 84, inclusive. Plasma was stored at –80°C. 
 
Laboratory processing, bioinformatics, and featurization 
 
Detailed descriptions of laboratory processing and sequencing, bioinformatics analysis, data 
preprocessing, classifier training, and validation methods (including measuring and controlling 
for confounding factors) are provided in the Supplemental Methods. 
  
Briefly, cfDNA was extracted from 250 µl plasma using the MagMAX cfDNA Isolation Kit (Applied 
Biosystems), converted into libraries using the NEBNext Ultra II DNA Library Prep Kit (New 

England Biolabs), and paired-end sequenced on the Illumina platform. Reads were aligned to 
the human genome using BWA-MEM 0.7.15 [26]; all datasets passing quality control (based on 
acceptable GC bias, sufficient number of reads, and no evidence of contamination or sample 
swaps) continued to featurization. Aligned reads were transformed into per-sample feature 
vectors by counting the number of fragments appearing in protein-coding genes. Features were 
normalized per-sample by dividing by the trimmed mean (excluding top and bottom 10% of 
counts) over all features and applying Loess GC bias correction [27]. Categorical features used 
in certain experiments (binned age, sex, and institution) were featurized using a one-hot 
encoding. TF was estimated in each sample using IchorCNA [28] from read counts in 1-
Megabase (Mb) bins across the entire genome. 
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Model training 
 
ML models were trained and evaluated using cross-validation (CV) procedures as follows. Each 
feature, which is a preprocessed read count, was standardized by subtracting the mean and 
dividing by the standard deviation after large outliers were replaced with 99th percentile value. 
Dimension-reduction methods including principal component analysis (PCA) and truncated 
singular-value decomposition (SVD) were then optionally applied to the standardized data. Two 
classification methods were considered for training (logistic regression and support vector 
machine (SVM)) with hyperparameters chosen based on random search. The best model was 
selected based on k-fold CV, and the methods were subsequently applied to other CV 
procedures. All methods were implemented by Scikit-learn [29]. 
 
Validation and confounder control 
 
Five different CV schemes were used to obtain estimates of model performance. All CV 
procedures shared in common the partitioning of the data into multiple independent subsets, or 
“folds,” with individual folds held out and used to assess the performance of models trained on 
the remaining data. The principal difference among CV procedures was how individual samples 
were partitioned into folds. The procedures included k-fold, in which samples were partitioned 
at random (stratified by class label of cancer or not cancer); binned-age, in which partitions were 
defined based on age; k-batch, in which partitions were defined by processing batch; balanced 
k-batch, in which partitions were defined by processing batch with additional downsampling to 
stratify by institutional source; and ordered k-batch, in which samples were partitioned by date 
of laboratory processing. Further explanation of each method is provided in the Supplemental 
Methods.  
 
Five folds (k=5) were used for CV of all models except for binned-age (which has a fixed number 
of bins). Reported performance metrics are mean area under the receiver operating characteristic 
curve (AUC) and mean sensitivity at 85% specificity, each calculated across all test folds. 
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Results 
 

Paired-end whole-genome sequencing (WGS) was performed on plasma cfDNA obtained from 
271 non-cancer control subjects and 546 CRC patients (Table 1). The patient population was 
approximately equally split by gender (55% female, 45% male), and consisted of 80% early-
stage (stages I and II) patients. The non-cancer control population skewed younger (median age 
= 60; interquartile range [IQR] = 53-67) than the cancer population (median age = 71; IQR = 63-
80, p<0.01, Mann-Whitney U-test) (Table 1B). 
 
WGS data were converted into input features for the classification model by counting the number 
of fragments overlapping each annotated protein-coding gene (i.e., each gene corresponded to 
a single bin) and then normalizing to account for feature length, mappability, read depth, and 
sequence-content biases. The gene-based featurization was designed to simultaneously capture 
both copy number changes as well as epigenetic signals reflected in cfDNA fragmentation 
patterns across genes [15]. 
 
Before assessing classification performance, models were trained using confounding variables 
as inputs to validate our CV stratification methods. In k-fold CV, binned age, batch, processing 
date, and institution confounders achieved mean AUCs of 0.71, 0.72, 0.69, and 0.87, 
respectively, when tested individually as the only input features to the classification model (Table 
2, Supplemental Figure 1). When evaluated using CV methods tailored specifically to address 
them, these same input features (i.e., confounder variables) gave at-chance predictive 
performance (i.e., mean AUC = 0.50), demonstrating that binned-age, k-batch, balanced-k-
batch, and ordered k-batch CV effectively control for their respective confounder variables (Table 
2, Supplemental Figure 1). 
 
After initial model selection via k-fold CV performance, we additionally applied each previously 
introduced CV procedure to the same methods to estimate the generalizability of performance 
when controlling for particular confounder variables individually (Table 3). The method selected 
by k-fold CV performance was no dimensionality reduction and SVM classification. Evaluation 
by standard k-fold CV achieved a mean AUC of 0.92 (95% bootstrap confidence interval (CI) of 
0.91-0.93) with a mean sensitivity of 85% (95% CI = 83-86%) at 85% nominal specificity. Using 
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binned-age CV to control for age achieved mean AUC of 0.91 (95% CI = 0.89 - 0.94) with a mean 
sensitivity of 79% (95% CI = 73-87%) at 85% specificity. We controlled batch-to-batch technical 
variability using k-batch CV and process variability using ordered k-batch CV, which achieved 
mean AUC of 0.91 (95% CI = 0.88 - 0.94) and 0.90 (95% CI = 0.83 - 0.94) and sensitivity at 85% 
specificity of 85% (95% CI = 80 - 89%) and 73% (95% CI = 53 - 88%), respectively. The larger 
variance observed in ordered k-batch may be attributed (at least in part) to higher standard 
deviation in test fold sizes (80.8) when compared to standard deviation of test folds of k-batch 
(35.0) (Supplementary Table 1). Finally, we applied balanced k-batch CV to control for possible 
institution-specific differences in population or sample handling. Despite training on a 
significantly reduced dataset (average of 263.6 samples per fold in training versus 653.6 samples 
per fold with k-fold or k-batch as seen in Supplementary Table 1), the balanced k-batch CRC 
model achieved a mean AUC of 0.83 (95% CI = 0.79 - 0.86) with a mean sensitivity of 71% (95% 
CI = 63-76%) at 85% specificity (Table 3). Figure 2 shows ROC curves for each CV procedure. 
 
Additionally, we investigated the sensitivity of our method, trained using each CV procedure, to 
relevant clinical parameters. Figure 3A illustrates sensitivity as a function of clinical stage. All 
validation methods achieved similar distributions of sensitivity across stages I through III, and 
consistently classified stage IV cancer correctly. Stage II samples, which represent the majority 
of our data, performed consistently well. We also evaluated age, which is a known confounder. 
The AUC performance increased with age in nearly all validations (Figure 3B). Taken as a whole, 
the results are consistent with the general notion that cancer is an age-related disease. 
Performance for males and females was comparable across validation types (Figure 3C), even 
in spite of the observed imbalance in non-cancer controls (Table 1). 
 
Tumor fraction (TF), defined as the fraction of cfDNA originating from tumor cells, has been 
implicated as a critical parameter for the design of blood-based cancer screens [4,6,12,30,31]. 
As high-depth mutation detection information is not available in our data, we estimated TF from 

observed copy number variation using IchorCNA [28]. The majority of control samples (98%) 
were estimated to have a TF below 3%, which is consistent with IchorCNA’s estimated limit of 
detection (Supplementary Figure 2).  
 
Figure 3D displays our CRC model’s AUC as a function of IchorCNA-estimated TF. Observed 
performance declined with decreasing TF, which is consistent with the hypothesis that an ML-
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based method may be able to detect tumor-derived signal; however, performance remained 
better than chance even in the lowest TF bin. To investigate whether the ML model may detect 
signal beyond tumor-derived CNVs, we used IchorCNA-estimated TF alone to predict cancer. 
This method achieved AUC of 0.62 in the IU age range, lower than results from the ML model 
under any analyzed CV scheme (Table 3), consistent with the possibility that the ML model used 
non-tumor-derived signal (i.e., beyond IchorCNA-detectable CNVs) (Supplementary Figure 3). 
 
To address decreased classifier performance due to smaller sample sizes in training (i.e., 
balanced k-batch), the CRC dataset was downsampled. Supplemental Figure 4 illustrates the 
non-linear relationship between the total number of samples used for training and the measured 
sensitivity. These results suggest that the lower performance observed using balanced k-batch 
is explained, at least in part, by the smaller size of the training dataset. 

 

Discussion 
 
Our results show promising preliminary performance for early-stage (i.e., stages I and II) CRC 
detection using blood. To our knowledge, this multicenter, international study represents the 
largest study to date using only cfDNA WGS in patients for the early detection of CRC. We have 
demonstrated that it is possible to take an ML-based approach to learn the relationship between 
a patient’s cfDNA profile and cancer diagnosis, with 85% sensitivity at 85% specificity in CRC 
using standard k-fold cross-validation; application of other rigorous and novel CV strategies 
specifically designed to control for known confounding variables yielded 71-85% sensitivity at 
85% specificity. 
 
In this work, we focused our approach on cfDNA count profiles across the whole human genome 
(~3200 Mb) at relatively low depth (~9X), as opposed to existing liquid biopsy approaches that 
assess small regions (<2 Mb) of the genome at very high depth (~60,000X) to detect tumor-
derived mutations. In particular, we applied ML methods to perform unbiased discovery of 
signals of varying origin that may inform on the presence of a tumor (including both tumor-
derived CNVs as well as potentially non-tumor-derived signals such as changes in the epigenetic 
states of circulating immune cells) vis-à-vis focusing on only tumor-derived mutations. This 
parallels previous research in non-invasive prenatal testing (NIPT): Kim et al. demonstrated that 
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an ML-based regression algorithm operating on genome-wide count data was able to accurately 
estimate fetal fraction in the cfDNA of pregnant women, without the detection of single-
nucleotide polymorphism differences between mother and fetus [32]. Additionally, unlike liquid 
biopsy approaches using ultra-high-depth sequencing, the use of relatively low depth 
meaningfully decreases the cost of testing and permits the use of reasonable blood volumes, 
both of which will ultimately be required for population-level screening [12]. Finally, approaches 
focused on mutation detection alone can miss certain types of tumor-derived signals (e.g., 
genome-wide CNVs and epigenetic modifications), which are by definition most scarce in early-
stage (i.e., non-metastatic) disease and pre-cancerous lesions, the detection of which is the goal 
of cancer screening programs.  
 
While we have not yet directly determined the exact contributions to classifier performance from 
tumor- versus non-tumor-derived sources, several lines of evidence suggest that both may be 
present. First, while the observed relationship between AUC and inferred TF (Figure 3D) indicates 
that at least some of the classification power is likely attributable to the ability of the model to 
identify samples with abundant ctDNA, the ability to correctly classify samples with lower TF 
and/or early-stage disease suggests that ctDNA alone cannot fully account for classification 
performance. Second, a CRC classification model based solely on IchorCNA-estimated TF 
(inferred from CNV calls) performs relatively poorly, with an AUC lower than all tested CV results 
for the ML method, suggesting that non-CNV sources may contribute to our ML-based classifier. 
Future research will focus on better understanding the underlying biology of the classifier, as 
well as assessing potential improvements in model performance from the addition of other 
analytes and ML method development, including confounder mitigation. 
 
In the presence of inadequately controlled confounders, ML methods are prone to learn irrelevant 
associations; this poses a critical challenge for the use of ML for biomarker discovery [33–36]. 
Certain confounders can be mitigated “up front” through experimental design (e.g., demographic 

biases and institution bias) or operational quality control (e.g., identification of known parameter 
drift). This can help minimize the dependence between class label and any potential noise-
inducing variable but incurs an additional cost in time and/or operational expense. However, 
perfect control of confounders at the design stage is not realistic: Some variables may be 
intrinsically confounding in the population of interest (e.g., cancer incidence increases with age), 
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and there are modes of variation which may exist but which may not be known a priori and 
therefore mitigated post hoc (e.g., batch-to-batch variability in sequencing). 
 
A key contribution of this work is the presentation and analysis of cross-validation techniques 
specifically tailored to go beyond traditional k-fold validation to measure and mitigate a number 
of pervasive confounding effects in biomarker discovery: k-batch and ordered k-batch for 
different scales of process variability in time, respectively, and balanced k-batch for institution-
specific biases. We found that standard k-fold CV can have higher performance than 
confounder-controlled CV methods, consistent with the historical difficulty in reproducing 
discovery studies. We believe that explicit stratification for technical and biological confounders 
may be used as standard practice to better evaluate the generalizability of early discovery 
results. 
 
The current study has a number of potential limitations. First, because samples were obtained 
retrospectively, breaks in the chain of custody may have led to sample and labelling errors, which 
would impede the ability of an ML method to adequately learn. Additionally, the presence of 
CNVs in a small number of control samples (Supplemental Figure 2) has been previously 
observed in other cohorts and may be due to malignant or benign causes [5,14,37]; further follow 
up was not possible in this cohort. Another limitation of our study is that TF was estimated using 
copy-number inference from moderate-coverage whole-genome sequencing, which has a limit 
of detection of 3% for TF [28]; by contrast, targeted mutation detection would allow more 
sensitive characterization of TF. Furthermore, the presented cross-validation procedures control 
for individual confounders, but not for multiple simultaneous confounders; generalization of 
these procedures to multi-confounder control is an area for future work. Prospective studies are 
underway to validate classifier performance and verify generalization predictions from 
confounder-controlled CV. 
 

Although this study focused on CRC, this study approach is directly applicable to other cancers 
and indeed to other pathological and physiological conditions. Our approach extracts signals 
from certain biological states and can apply them to better understand others; however, full 
development and validation of classifiers to address different clinical and non-clinical 
applications will require additional samples in those specific populations. Unlike targeted 
mutation approaches which require identification of disease-specific targets, this whole genome 
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approach allows for the unbiased discovery of signals which are not disease-specific and could 
even be extended to the assessment and monitoring of non-disease states. Additionally, this 
approach should be able to detect unique epigenetic patterns for other diseases, thereby 
providing specificity by differentiating CRC from other cancers [38]. Efforts are currently 
underway to evaluate these hypotheses. 
 
In summary, this study presents a novel representation of cfDNA and an analysis framework that 
demonstrates promising initial results for the detection of early-stage CRC based on a minimally 
invasive blood test. Prospective validation of this approach is currently underway, as is the 
incorporation of other cell-free, blood-based analytes (e.g., proteins) that may contribute 
orthogonal signals to further improve classifier performance. 
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Abbreviations 
 

AUC: area under the curve 
cfDNA: cell-free DNA 

CHIP: Clonal hematopoiesis of indeterminate potential 
CNV: copy number variant 

CRC: colorectal cancer 
ctDNA: circulating tumor DNA 

CV: cross-validation 
DNA: deoxyribonucleic acid 

IU: intended use 
ML: machine learning 

RNA: ribonucleic acid 
SVM: support vector machine 

TF: tumor fraction 
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Figure 1A/B: Model training overview and CV procedures.  

 
A 

  
 

A) All methods were trained on k-fold, and the best performing method was chosen to train 

models for the other cross-validation procedures. Diagram describes individual steps in common 
to all methods. Models are trained on a given dataset and set of methods (i.e., dimension 
reduction and classification) and then evaluated, resulting in a performance estimate. 
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B 

 

 

 

B) Illustration of CV procedures for k-fold, k-batch, ordered k-batch, and balanced k-batch. Each 

square represents a single sample, with the fill color indicating class label, the border color 
representing a confounding factor like institution, and the number indicating processing batch. 
Each column represents a possible fold constructed for the given CV procedure. The dashed 
line separates the test set of samples held out from the training set. 
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Figure 2: Colorectal cancer classification performance (ROC curves) by each cross-validation 
method. Average of all folds drawn in solid blue; random chance is represented as dashed red; 
ROCs for each fold drawn behind. A) k-fold, B) binned age, C) k-batch, D) ordered k-batch, and 
E) balanced k-batch 
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Figure 3: Classification performance for colorectal cancer within the IU age range across all 
validation methods. N is number of samples, [cancer, controls]. 

A. Sensitivity at 85% nominal specificity by CRC stage across all CV procedures 
B. AUC by age bins across all CV procedures 
C. AUC by gender across all CV procedures 
D. AUC by IchorCNA-estimated TF across all CV procedures 
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 CRC 

N=546 

Control 

N=271 

Total 

Samples 

N=817 

Gender 

Female N, (%) 264 (48%) 182 (67%) 

 

446 (55%) 

Male N, (%)  282 (52%) 
 

84 (31%) 
 

366 (45%) 

Unknown 0  5 (2%) 5 (<1%) 

Stage 

I 172 (32%) 

N/A 
 

      N/A 
 

II 266 (49%) 

III 98 (18%) 

IV 6 (1%) 

Unknown 4 (<1%) 

Age 

(yrs) 
Median (IQR) 71 (63 - 80) 60 (53 - 67) 68 (59 - 77) 

 

Table 1: Clinical characteristic and demographics of CRC patients and non-cancer controls 
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Confounder 
k-fold AUC 

(95% CI) 

k-fold Sensitivity 

at 85% 

Specificity   

(95% CI) 

Cross-validation 

method 

CV AUC   

(95% CI) 

Age 
 0.71 

(0.64 - 0.77) 
44% 

(29% - 57%) 
binned-age 

0.50 
(0.50 - 0.50) 

Batch 
0.72 

(0.69 - 0.75) 
43% 

(31% - 53%) 
k-batch 

0.50 
(0.50 - 0.50) 

Processing Date 
0.69 

(0.64 - 0.74) 
38% 

(25% - 49%) 
Ordered k-batch 

0.48 
(0.43 - 0.52) 

Institution 
0.87 

(0.84 - 0.90) 
74% 

(72% - 77%) 
Balanced k-batch 

0.51 
(0.28 - 0.74) 

 

Table 2: Performance evaluation of known confounders alone to predict cancer with either k-
fold or the CV procedure designed to control for the confounder. Confidence intervals are 
calculated from bootstrapped distributions of the metric across folds. 
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Validation 
Mean AUC        

(95% CI) 

Mean Sensitivity at 85% Specificity 

(95% CI)  

k-fold 
0.92 

(0.91-0.93) 
85% 

(83-86%) 

Binned-age 
0.91 

(0.89-0.94) 
79% 

 (73-87%) 

k-batch 
0.91 

(0.88-0.94) 
85% 

 (80-89%) 

Ordered k-batch 
0.90 

(0.83-0.94) 
73% 

 (53-88%) 

Balanced k-batch 
0.83 

(0.79-0.86) 
71% 

 (63-76%) 

 

Table 3: CRC performance by cross-validation procedure in 50-84 year-old patients. Confidence 
intervals are calculated from bootstrapped distributions of the metric across folds. 
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