
Multi-sample SPIM image acquisition, processing and analysis of vascular growth in 
zebrafish 
 
Running title: Unravelling vascular growth 
 
 
Authors: Stephan Daetwyler, Ulrik Günther, Carl D. Modes, Kyle Harrington*, Jan Huisken* 
*Co-corresponding authors 
 
Key words 
multi-sample imaging, light sheet microscopy, zebrafish, SPIM, vasculature, segmentation, 
growth models 
 
Summary statement (15-30 words) 
 
We present a dedicated multi-sample light sheet imaging, processing and analysis platform 
and demonstrate its value for studies of vascular growth in zebrafish. 
 
Abstract 
 
To quantitatively understand biological processes that occur over many hours or days, it is 
desirable to image multiple samples simultaneously and automatically process and analyze 
the resulting datasets. Here, we present a complete multi-sample preparation, imaging, 
processing, and analysis workflow to determine the development of the vascular volume in 
zebrafish. Up to five live embryos were mounted and imaged simultaneously over several days 
using selective plane illumination microscopy (SPIM). The resulting large imagery dataset of 
several terabytes was processed in an automated manner on a high-performance computer 
cluster and segmented with a novel segmentation approach that uses images of red blood 
cells as training data. This analysis yielded a precise quantification of growth characteristics of 
the whole vascular network, head vasculature, and tail vasculature over development. Our 
multi-sample platform demonstrates effective upgrades to conventional single-sample 
imaging platforms and paves the way for diverse quantitative long-term imaging studies. 
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Introduction 
 
The cardiovascular system is among the earliest functional organs to be formed during 
vertebrate development. From a few individual mesodermal precursor cells, a complex 
network of vessels forms through a variety of morphogenetic processes (Ellertsdottir et al., 
2010; Gore et al., 2012). While many molecular actors involved in its formation have been 
identified (Adams and Alitalo, 2007; Gore et al., 2012; Hogan and Schulte-Merker, 2017), much 
remains unknown about how this intricate network comes into shape on the whole embryo 
level. A particularly exciting open question is how the volume of the vascular system changes 
over development. Vascular volume is a strong proxy for overall vascular system size and 
consequently its development provides insight into fundamental aspects of tissue 
development and whole embryo morphogenesis. Furthermore, as the vasculature is a closed 
system, its volume is closely linked to blood pressure and flow characteristics. Changes in 
volume might therefore be involved in regulation of crucial steps of vascular formation. Here, 
we show how a combination of dedicated multi-sample preparation, comprehensive imaging 
and data processing, a novel segmentation approach, and growth data analysis provides a 
precise and quantitative characterization of embryonic vascular volume development. 
 
The zebrafish has become an especially valuable tool to understand vascular formation on the 
whole embryo level, with many available vascular transgenic lines (Chávez et al., 2016). 
Compared to other vertebrate model organisms such as mice, the development of zebrafish 
is fast, outside of the mother, and the optical translucency of zebrafish embryos provides an 
ideal setting for long-term in-vivo time-lapse imaging experiments (Kimmel et al., 1995).  
 
For long-term live imaging of zebrafish embryos and larvae, light sheet microscopy (Huisken 
et al., 2004; Keller, 2013) has become the method of choice due to its illumination and 
detection scheme that provides minimal photo-bleaching and phototoxicity (Daetwyler and 
Huisken, 2016; Icha et al., 2017; Power and Huisken, 2017). Moreover, light sheet microscopy 
offers sample rotation in the microscope for multi-view imaging and tiling for full embryo 
coverage (Weber and Huisken, 2012), which is a necessity for imaging the entire vascular 
system. In addition, imaging zebrafish embryos over several days requires a sample 
embedding technique that provides mechanical constraints to ensure proper sample 
orientation but does not limit oxygen access or restrict growth. For single samples, an 
embedding method using fluorinated polypropylene (FEP) tubes (Kaufmann et al., 2012) has 
been widely accepted. However, to quantitatively analyze the observed processes, more than 
one sample needs to be imaged. Ideally, several samples are imaged in one experiment 
simultaneously, which is especially important and efficient if the experiment takes several 
days to complete. Therefore, multi-sample imaging is highly desired for long-term imaging 
studies.  
 
The number of samples during imaging can be increased either by delivering samples with 
flow (Gualda et al., 2015; Regmi et al., 2013; Regmi et al., 2014; Wu et al., 2013) or by 
embedding multiple samples at the same time (de Luis Balaguer et al., 2016; Schmid et al., 
2013). Delivering samples by flow does not offer the precise control of sample orientation 
needed for optimal image quality and comparison of different time points. Therefore, multi-
sample embedding solutions are more promising for long-term imaging studies. However, 
existing multi-sample embedding solutions are currently only suitable for embryos still in their 
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protective envelope, the chorion, (Schmid et al., 2013) but not for growing zebrafish larvae. 
Sample holders for several plants have been designed to allow plant growth in near 
physiological condition (de Luis Balaguer et al., 2016) but do not provide sample rotation 
during imaging to access the entire samples. Therefore, the challenge is to develop a multi-
sample embedding technique that allows for multi-view imaging.  
 
A further complication arises when imaging several embryos simultaneously as data handling 
becomes more challenging, with datasets easily exceeding several terabytes in size. 
Furthermore, such datasets are comprised of many acquisition volumes, angles, and time 
points over multiple samples. It is consequently not possible to load an entire experiment into 
computer memory to inspect the data and apply conventional data processing and 
visualization workflows. Therefore, custom data processing tools are needed to automatically 
generate 3D stitched datasets for further analysis, and the visualization thereof for easy 
inspection of acquired data.   
 
Next, for an accurate description of vascular volume changes, visual inspections and 
qualitative analysis are not sufficient. Quantitative measurement of the vascular volume 
requires segmentation. Most segmentation approaches in developmental biology focus on 
analyzing nuclei and cytoplasmic content (Amat et al., 2014), but segmentation of the 
vasculature is more challenging due to the variety of vessel sizes, intensity changes over vessel 
walls and, most importantly, due to the hollow-tube structure of vessels. Therefore, no 
reliable segmentation approach of endothelial signal over long time periods has yet been 
established. To help with segmentation, micro-angiography (Isogai et al., 2001) is often used, 
in which a fluorescent dye is injected into the vasculature. However, at early developmental 
stages, the vasculature is not completely closed and dye rapidly leaks into the surrounding 
tissue, rendering microangiography not applicable for long-term imaging studies. A novel 
strategy of vascular segmentation is thus required to extract quantitative growth 
measurements of the whole vasculature. 
 
To interpret the quantitative measurements resulting from the complete multi-sample 
imaging and processing platform, there are many established mathematical growth models 
available (Hernandez-Llamas and Ratkowsky, 2004; Tsoularis and Wallace, 2002). They 
broadly fall into two groups, namely deterministic models originating from integration of a 
(partial) differential growth equation and stochastic models. However, none of these models 
were capable of sufficiently capturing or describing our data. We therefore suggest a new class 
of stochastic growth models based on logarithmic rescaling of time to describe embryonic 
vascular development. 
 
RESULTS 
 
Multi sample preparation for long-term time-lapse imaging 
 
Successful vascular imaging relies on immobilization of the sample and mechanically 
constraining it to the field of view through embedding. In contrast to the widely established 
zebrafish embedding protocol (Kaufmann et al., 2012), we abstained from using tricaine. 
Instead, to immobilize the embryos, we injected them with a-bungarotoxin RNA (Swinburne 
et al., 2015) at the one cell stage. To embed several samples for simultaneous long-term 
imaging, we adapted the established protocol of single embryo embedding. We first 
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embedded individual zebrafish embryos in 0.1% agarose inside of FEP tubes for long-term 
imaging as described (Kaufmann et al., 2012) (Fig. 1A). These FEP tubes were cut to a length 
of about 8 mm and several of them were attached with other larger FEP tubes as connectors 
(Fig. 1B). Holes in these connectors ensured exchange of oxygen and liquids during imaging. A 
tight fit was ensured by using FEP’s elastic properties that allow specification of the inner 
diameter of the connector slightly smaller than that of the outer diameter of the tube 
containing the fish. This embedding technique was readily available, flexible, and provided 
stable embedding of up to five fish for long-term imaging in one tube assembly with a length 
of about 6 cm. A detailed step-by-step protocol for multi-sample embedding can be found in 
the supplementary material (S1).  
 

 
Figure 1: Multi-sample embedding and necessary microscope modifications 
(A) Schematic of embedding of one zebrafish embryo in fluorinated polypropylene (FEP) tube using 
2% low melting (LM) agarose as plug, 0.1% agarose in E3 as medium and 3% methylcellulose (MC) 
as coating of the FEP tube as described by (Kaufmann et al., 2012). (B) Schematic (top) and picture 
(middle) of 5 mounted zebrafish (white arrowheads) in FEP tube pieces assembled with FEP 
connectors. The enlarged region (bottom) shows details of the embedding: zebrafish mounted in 
the FEP tubes rested on a 2% LM agarose plug and were embedded in E3 medium containing 0.1% 
agarose. FEP tubes containing a single zebrafish embryo were attached with FEP connectors 
containing a hole. Scale bar: 1 cm. (C) Growth curve of freely swimming fish (blue, n=8), single 
embedded samples (red, n=10), and samples embedded in the multi-sample tube (green, n=9) with 
the 0.95 confidence interval of Loess interpolation in gray. (D) The new translational stage design of 
the multi-sample imaging platform ensured a vertical travel range of 10 cm (red arrows) and was 
built with custom parts, e.g. adapter of the rotational stage [R] onto the translational stage platform 
(pink), adapter of horizontal translational stages [TH1, TH2] onto the vertical translational stage (TV, 
orange), and a stage mount (purple). Spacer S, sample chamber C. (E) Comparison of a traditional 
one-sample SPIM chamber with the new 3D-printed sample chamber and a picture of the new 
sample chamber connected to a perfusion system with inflow (red arrow) and outflow (dark blue 
arrow), the two illumination objectives for dual-sided illumination (light blue arrows), a window for 
transmission (T) and a detection objective (D) in the back.   
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To ensure that the multi-sample embedding did not compromise growth, we measured the 
overall body length of freely swimming zebrafish, single-sample and multiple-sample 
preparations over time and compared their growth curves (Fig. 1C). Until 24 hours after 
embedding (48 hours post fertilization [hpf]), no growth difference was detected (ANOVA 
analysis, p-value 0.1721). This changed at 72 hpf (ANOVA analysis, p-value 0.0013), when the 
embedded fish were 5% smaller after 2 days of embedding than the freely swimming fish. 
However, the data provided no evidence that there was a growth impairment of the multi-
sample embedded fish compared to the established one-sample embedding technique (two-
sided t-test between one-sample and multi-sample embedding: p-value 0.06 at 72 hpf, 0.93 
at 96 hpf, and 0.98 at 120 hpf). Moreover, no additional growth defects such as edemas were 
detected by visual inspection (Fig. S4).  
 
Hardware adaptations for multi-sample imaging 
 
The new 6 cm long tube assembly containing the embedded zebrafish embryos did not fit on 
our custom and other commercially available light sheet implementations. Therefore, we 
decided to upgrade an existing custom three-lens mSPIM (Huisken and Stainier, 2007) that 
has been successfully applied in long-term imaging studies (Lenard et al., 2015). The existing 
mSPIM was equipped with two illumination and one orthogonal detection arms. Furthermore, 
its rotational stage enabled sample rotation so that zebrafish embryos could be oriented to 
image them for ideal penetration and coverage. To upgrade this custom system, we designed 
a new translational stage system (Fig. 1D) with larger travel ranges to move every one of the 
five samples into the microscope’s field of view. Furthermore, the depth and height of the 
sample chamber (Fig. 1E) was increased to provide enough space for the tube assembly. The 
taller chamber was 3D-printed (Fig. 1E), making the chamber a cost-effective and easily 
adaptable unit. We incorporated in- and outlets for a perfusion system into the sample 
chamber to allow for temperature control of medium and sample.  
 
Multi-sample imaging of several zebrafish embryos 
 
To study the development of the vascular volume, we simultaneously imaged five zebrafish 
embryos expressing a green fluorescent vascular endothelial marker, Tg(kdrl:EGFP) (Jin et al., 
2005), and a red blood cell marker, Tg(GATA1a:dsRed) (Traver et al., 2003). The green 
fluorescent marker labelled the vessel walls and thus the outlines of the vascular system. The 
red blood cell marker labelled erythrocytes and thus provided information about the inside of 
the vasculature.  
 
To achieve optimal coverage of the entire vascular system, we chose three optimal angles for 
imaging (Fig. S5): To capture a good view on the head vasculature, we imaged the embryos 
with dual-sided illumination and the detection oriented dorsally. To achieve a good whole-
embryo view, we imaged the zebrafish from two opposite angles ±60 degrees rotated from 
the sagittal plane with single-sided illumination.  
 
The EMCCD acquisition cameras only had a chip size of 960x960 pixels corresponding to 
1.097x1.097 mm field of view. As the embryos grew to a size of about 3.5 to 4 mm at 5 dpf, 
several acquisition volumes were required to reconstruct the whole embryos. Together with 
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an overlap of about 30% for reliable data stitching, five acquisition volumes were needed to 
image one whole embryo from one angle. Therefore, for imaging five embryos from three 
angles, 75 acquisition volumes were required. To capture the total 3D volume, we imaged 
every acquisition volume with at least 200 z-planes separated by 4 µm. 
 
To image the development of the vascular volume over time, we began imaging at around 17 
hpf when the cells started to fuse to larger vessels by in-situ aggregation of angioblasts 
(Ellertsdottir et al., 2010). To understand the overall vascular volume changes rather than 
obtaining a movie of the behavior of one individual vessel, we imaged the entire developing 
vasculature every 20 min over a time period of at least three days. With these settings (75 
acquisition volumes, dual-color, 200 planes/acquisition volume, time step of 20 min), the 
corresponding data generation rate amounted to approximately 3.5 TB / day.  
 
Microscope software adaptations for multi-sample imaging 
 
The high data rate from our multi-sample imaging SPIM instrument posed a considerable 
challenge as hard-drives available at the microscope had a total capacity of only 6 TB, making 
a three-day timelapse experiment impossible. We therefore decided to copy the accumulated 
data from every time point to a large, central storage in-between acquisitions (material and 
methods, Fig. S6). This approach also eliminated the usual time-consuming data transfer at 
the end of an experiment, which prevents the immediate start of the following experiment. 
Copying data during an experiment thus also increased the overall throughput of the 
microscope. 
 
We further implemented an automated mosaic generation tool as manually configuring a high 
number of individual acquisition volumes for each experiment is very time consuming and 
error prone. Given a starting position, e.g. the head of the fish, the other acquisition volume’s 
positions were automatically determined with a 30% overlap, ensuring reliable stitching 
during data processing. The overall number of acquisition volumes was selected based on the 
expected growth of the zebrafish over the course of the time-lapse at the start of the 
experiment.  
 
Dedicated processing pipeline 
 
Multi-sample acquisition over three days as described above resulted in large datasets of over 
10 TB with a convoluted data structure comprising of many acquisition volumes, several 
angles and fish, and two channels. Using custom modular ImageJ / Fiji plugins  (Schindelin et 
al., 2012), we  transformed this imagery dataset into a dataset that contained one stitched 3D 
stack per timepoint, channel, angle and fish (Fig. S7). Furthermore, to visually check the data 
quality, we generated maximum intensity projections that also enabled a qualitative 
description of the formation of the vasculature (Movie 1, Movie 2). We adapted the plugins 
for use on a high-performance cluster for fast processing (S5). Using the microscope stage 
parameters, we also automated all processing steps so that only the folder of the experiment 
had to be indicated for processing and visualization. The code for all processing plugins is 
freely available at: 
https://github.com/DaetwylerStephan/multi_sample_SPIM. 
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Figure 2: Segmentation of the vascular data 
(A) Maximum intensity projection of a zebrafish expressing the endothelial marker Tg(kdrl:EGFP) in 
green and the red blood cell marker Tg(GATA1a:dsRED) in red with boxes depicting selected regions 
shown in (C-F).  Scale bar: 500 µm. (B) Schematic of the segmentation process. (C) Features extracted 
from the endothelial marker Tg(kdrl:EGFP), with the raw signal (feature 1), the gradient x (feature 
2), gradient y (feature 3), gradient z (feature 4), total gradient (feature 5) and the inverse gradient 
weighted raw image (feature 6). Scale bar: 150 µm. (D) Single plane of a 3D stack of the red blood 
cell marker Tg(GATA1a:dsRED) (top). As the red blood cells circulate in the vasculature, the interior 
of vessels was also filled with fluorescent signal (white arrowhead). Therefore, filtering and 
thresholding of the red blood cell marker raw signal (top) provided a ground truth (bottom, red) of 
signal inside the vasculature from which the segmentation parameters could be calculated. Scale 
bar: 150 µm.  (E) Single plane of a 3D stack of the endothelial marker (left) highlighting the challenges 
of vascular segmentation: hollow tubes (arrow), intensity differences (asterisk), small vessels next 
to large vessel (arrow head). With our segmentation approach (right), even fine structures of the 
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vasculature were segmented correctly (arrowheads). Scale bar: 150 µm. (F) 3D-rendering of the 
selected region with the segmentation in green color. (G) 3D-rendering of the segmentations at 
different time points over development. 
 

Segmentation of the vascular data 
 
To quantitatively measure the vascular volume changes over time, a segmentation of the 
vasculature was required. Vessel segmentation is challenging due to vessel geometry and 
characteristics of the fluorescent marker (Fig. 2A,E). Blood vessels are hollow tubes of widely 
varying diameters, often in very close proximity to each other. Additionally, the endothelial 
marker showed heterogeneous densities across the vessel walls, e.g. with higher intensities 
around nuclei. Therefore, classical approaches such as filter-based approaches (Sato et al., 
1998) or simple thresholding did not result in good segmentations (data not shown).  
 
To provide an effective segmentation, we designed a novel approach by complementing the 
signal of the endothelial marker with the signal from the red blood cells Tg(gata1a:DsRed).  
Red blood cells are inherent proxies for luminal markers as they circulate inside the 
vasculature. Consequently, we used a segmentation of the red blood cells as training data for 
a machine-learning based approach of vessel segmentation on the endothelial signal. 
Segmentations were performed by computing a set of feature images based upon gradients 
of the Tg(kdrl:EGFP) channel, and solving for weights of the feature images that predicted the 
locations of red blood cells based on the Tg(GATA1a:dsRed) channel. The calculated weights 
were then applied on the whole 3D stack to obtain a segmentation of the vascular volume 
(see methods for details). 
 
We implemented our efficient and fully-automated image segmentation pipeline in 
FunImageJ (Harrington et al., 2018). FunImageJ was used with a standard distribution of Fiji 
(Schindelin et al., 2012), and as a standalone program on a high-performance computing 
cluster to enable parallel processing of whole datasets.  
 
Table 1 Fitting parameters for volume growth of log-normal (LN) and log-logistic (LL) growth models 

Model Region A  (mm3) VL (mm-3) µ [LN]   
a (min) [LL] 

s [LN]  
b [LL] 

RSS ± STD   
*10-4 (mm6) 

LN Whole vasculature  0.0019  11.36  7.309 1.013 8.1 ± 0.7  
LL Whole vasculature 0.0004 10.87  1519 1.533 8.6 ± 0.7  
LN Tail vasculature 0.0008 30.61 7.132 0.781 2.0 ± 0.2  
LL Tail vasculature 0.0003 29.51 1271 2.006 2.1 ± 0.2  
LN Head vasculature 0.0023 27.86 7.216 0.921 2.3 ± 0.2 
LL  Head vasculature 0.0017 26.75 1380 1.696 2.3 ± 0.2 
Gompertz Whole vasculature 

Not applicable 

11.3 ± 0.9 
Richards Whole vasculature 11.3 ± 0.9 
Logistic Whole vasculature 42.7 ± 3.4 
Weibull Whole vasculature 10.8 ± 0.9 

 
 
Vascular growth curve rates 
 
With the segmentation in hand (Fig. 3A), quantifying the overall growth of the vascular system 
was a straightforward process of counting the number of segmented voxels in isotropic 3D 
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stacks. To temporally align the volume measurements of different fish, we selected the 
anastomosis of the left and right primordial hindbrain channel (PHBC) as reference points.  
 
The resulting quantitative data revealed that the growth of the vascular volume was well 
described by a group of models relying on logarithmic rescaling of time including the 
cumulative log-logistic and the cumulative log-normal growth model (Fig. 3B). To account for 
a limited time window of observation, a scaling parameter and an offset were introduced in 
both models. The offset A described the lower asymptote i.e. the vascular volume already 
formed at the start of an imaging experiment. The scaling factor VL described the upper 
asymptote i.e. the maximum volume reached during the observed development. For the log-
normal growth model, two parameters µ (mean) and s (standard deviation), which define the 
cumulative log-normal distribution function, were required to describe volume growth  
(Fig. 3C). For the log-logistic model, the scale parameter a and the shape parameter b were 
required (Fig. S10). Consequently, in total only 4 parameters were required to model the 
development of the vascular volume over time. We used non-linear minimization to obtain 
the fitting parameters for both models (Table 1).  
 
We compared the cumulative log-normal and cumulative log-logistic growth model with other 
established growth models by calculating the residual sum of squares (RSS). A small RSS 
indicates a good fit to the data. The comparison of the RSS values revealed that the cumulative 
log-normal growth model and the log-logistic model of the whole vasculature volume growth 
exceeded other established growth models such as the Gompertz Model, logistic growth, 
Janoscheck and Weibull Model, or the Richard’s model (Table 1, Fig. S9). Moreover, in 
comparison to these models, visual inspection of the residuals of the cumulative log-normal 
and growth model indicated that the log-normal model indeed fit best (Fig. S9). 
 
To understand whether the overall growth characteristics of the whole vasculature are 
reflected in the growth of its subnetworks such as the head or tail vasculature, we established 
a manually-curated annotation of the vasculature (Movie 3). The volume changes of the 
differently annotated regions were determined by counting the segmented voxels with the 
corresponding annotation label in isotropic 3D stacks. The analysis of vascular volume 
development of the head and tail vasculature (Fig. 3C) revealed that they were also well 
described by the cumulative log-logistic and log-normal models. The fitting parameters for 
both models were obtained by linear minimization and revealed a good fit (Table 1). 
 
We inserted the above obtained parameters into the scaled log-normal function on which the 
cumulative log-normal model was based (Fig. 3B). The scaled log-normal function was the 
derivative of the cumulative log-normal model and thereby revealed the growth rate of the 
vascular volume (Fig. 3D). The maximal growth rate was obtained to be around 26 hpf for the 
whole vasculature, 27 hpf for the head and 28 hpf for the tail vasculature. Before this, the 
growth rate rapidly increased while after reaching the maximum, the growth rate slowly 
decreased. Inserting the parameters of the cumulative log-logistic model into its derivative 
revealed the same values for whole vasculature and head vasculature, and 29 hpf for the tail 
vasculature. 
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Figure 3: Vascular volume growth characteristics of zebrafish 
(A) Segmentation of the vasculature at seven different time points labelled with the annotation of 
the head (orange) and tail (turquoise) with its caudalveinplexus (light-turquoise) and rest (grey). (B) 
Equations of the cumulative log-logistic and log-normal growth models describing the volume V(t) 
and change of volume dV/dt over time t with offset A, scaling factor VL, mean and standard deviation 
of log-normal distribution µ, s and F cumulative distribution function (cdf) of the standard normal 
distribution, and log-logistic scale parameter a and shape parameter b. (C) Experimental 
measurements of the volume over time of the whole vasculature (gray), the head (brown) and tail 
(turquoise) vasculature. The mean of the measurements is depicted with a solid line and the 95% 
confidence interval (t-statistics, n=7) as a ribbon in the corresponding color. The black line depicts 
the approximation of the volume by the log-normal growth model. The same panel for the log-
logistic model is in the supplementary (Fig. S10A). (D) The volume growth rate of the whole 
vasculature (gray), head (brown) and tail (turquoise) was calculated by inserting the parameters 
obtained from the approximation into the change of volume equation of the log-normal growth 
model. The same panel for the log-logistic model is in the supplementary (Fig. S10B). 

 
 
DISCUSSION 
 
We have presented a dedicated and complete workflow of multi-sample preparation, multi-
sample imaging, data processing and quantitative analysis of the vascular volume. Several key 
innovations in all those disciplines were necessary: We introduced a new multi-sample 
embedding protocol, an upgraded light sheet microscope, a comprehensive library of data 
processing plugins, a novel vascular segmentation approach using inherent biological markers 
and new growth models relying on logarithmic rescaling of time for describing the 
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development of embryonic vascular volume. The presented tools will further open the door 
for many other long-term imaging studies in fields such as developmental biology or xenograft 
models in cancer biology.  
 
Growth of the vasculature 
 
With our multi-sample imaging and analysis platform, we obtained a high-quality data set 
describing the growth of the vascular volume over time. Descriptive features of the observed 
time course include a slow growth at the beginning, a maximum volume growth rate at around 
26-29 hpf and then a decline of the growth rate resulting in a saturating growth process. To 
describe this growth, we fit well-established growth models (Fig. S9) that have been used for 
saturating growth processes such as the logistic function (Table 1) and found that they did not 
reproduce the first hours of vascular development well. In searching for an alternative growth 
model, we found that the best growth models to explain the data all include an effective, 
logarithmic rescaling of time. Log-normal-like dynamics and log-logistic growth fit best and are 
clearly distinguishable from other, non-logarithmic growth models, but not from one another. 
To our knowledge, this is the first time that such models have been shown to be applicable to 
biological growth data.  
 
Logarithmic behavior often comes into play when proportional effects are driving the 
underlying processes, i.e. when a quantity Xt at time t is a proportion et of its size Xt-1 at a 
previous time t-1 such that Xt = Xt-1 + et Xt-1   (Graham et al., 2003). In vasculature development, 
we speculate that factors such as (i) nutrient availability or (ii) gene expression can introduce 
proportionality and thereby explain the observed logarithmic rescaling behavior. (i) A limited 
store of nutrients is deposited by the mother and remains the predominant source of 
nutrients over the first days of development. Assuming an exponential usage of nutrients out 
of this store, the available remaining nutrients are proportional to the original amount 
deposited as development progresses. In such a scenario, the growth steps over time would 
be linked to the decay and thereby become logarithmically rescaled. (ii) Also gene expression 
could introduce similar proportionality effects. Here, feedback loops in gene expression 
patterns would enforce dependence on the pattern at a previous time point. 
 
Blood flow and vascular volume development 
 
Interestingly, the maximum volume growth rate at around 26-29 hpf corresponded to the 
onset of blood flow in the whole network. Blood flow might therefore be involved in a global 
change of vascular growth characteristics such as gene expression patterns. Indeed, it is well 
known that endothelial cells can sense blood flow (Franco et al., 2016), and that blood flow 
plays a role in vascular plexus remodeling (Lenard et al., 2015). On a global level, flow might 
induce two regimes of vascular growth: a first phase independent of flow with high growth 
rate and a second phase with reduced growth rates where flow plays a crucial role. To further 
investigate flow dependence of the network, our quantitative volume measurements will 
pave the way for new accurate data-driven computer simulations as they provide complete 
vessel boundaries and volume measurements for the whole embryo. This will enable 
simulations of shear stresses and blood velocity over the whole vasculature given a certain 
heartrate, and consequently reveal correlations between shear stresses and vascular 
remodeling. To validate the simulations, the already acquired red blood cell data could be 
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used to extract blood flow velocities at different parts of the vasculature and compare it to 
the simulation’s predictions. 
 
 
Growth of vascular subnetworks 
 
The volume measurements of large subnetworks of the vasculature such as the head and the 
tail vasculature were also well described by a cumulative log-normal function. This indicates 
that also those large subnetworks were subject to the same growth constraints as the whole 
vasculature and explain in parts the fractal nature of vasculature.  However, these constraints 
might not apply to smaller subnetworks as they can draw from and release resources to 
neighboring parts of the network, e.g. by cell migration. Therefore, those smaller subnetworks 
might show different growth behaviors. Indeed, the caudalveinplexus located in the tail of the 
vasculature first expanded, then remodeled and after 73 hpf decreased in size (Fig. S11) and 
therefore did not follow a log-normal growth rate.  
 
Multi-sample capacity is desired and important 
 
Simultaneous imaging of several samples offers higher efficiency, shorter overall experimental 
time and thus lower costs than sequential image acquisition. Furthermore, it enables the study 
of embryos from the same parents, growing in the exact same conditions. This is especially 
important for imaging mutant fish lines. Homozygous mutant fish are often not viable (Kim et 
al., 2011), and therefore heterozygous fish lines are grown. However, only one quarter of their 
progeny are homozygous for the mutation of interest and exhibit the phenotype. To observe 
its establishment, fish are ideally selected before a phenotype is observable. Consequently, 
multi-sample imaging is essential for studying mutant fish lines with high spatial and temporal 
resolution. Moreover, with the multi-sample platform, new studies will be possible to 
understand variation and robustness of a biological structures. Indeed, the vasculature of 
zebrafish also shows variation (Fig. S12). Our long-term time-lapse platform will reveal how 
such patterns of variation are established, maintained and/or remodeled.  
 
The ability to image many samples is also important for experiments that are time consuming 
in preparation and/or rely on the short-term availability of rare, restricted, or otherwise 
difficult to obtain samples. Such samples include patient-derived samples, 
xenotransplantation studies, observations of induced cancer cells or small-scale screens of 
selected compounds. Our multi-sample platform will provide the required sample capacity to 
tackle such projects. 
 
Integration is critical 
 
The power of our multi-sample imaging platform lies in the integration of all of the important 
steps of multi-sample imaging: sample preparations, imaging, data processing and data 
analysis into a single dedicated pipeline to obtain quantitative data (Fig. 4). For example, the 
data analysis benefits from the right choice of sample. Only by using the red blood cells as a 
luminal marker, we obtained a good training data to solve for the segmentation parameters. 
In a further example, imaging and data processing are interlinked as the acquisition 
parameters, here the translational stage positions, are crucial for reliable stitching. As all of 
our processing and analysis code is freely available, other researchers might adapt parts of 
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the whole pipeline to their dedicated research question. Moreover, our suggested upgrade 
for multi-sample imaging might be easily incorporated into other custom-built systems, 
together with the here in-detail described embedding protocol. Hence, this toolset will help 
current imaging strategies move from qualitative descriptions of single observations to 
quantitative analysis over multiple samples.  
 

 
 
 
  

 
Figure 4: A dedicated imaging, processing and analysis platform for multi-sample 
imaging 
Integration of important steps of multi-sample imaging such as sample preparation, imaging, data 
processing or data analysis facilitates the individual steps and enables multi-sample imaging.  
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MATERIALS AND METHODS 
 
Ethics Statement 
 
The animal experiments were performed in accordance with the European Union (EU) 
directive 2011/63/EU as well as the German Animal Welfare Act.  
 
Zebrafish sample preparation 
 
Zebrafish (Danio rerio) adults and embryos were kept at 28.5 °C and were handled according 
to established protocols (Nüsslein-Volhard and Dahm, 2002; Westerfield, 2000).  
 
To understand vascular growth in zebrafish, we compared Tg(fli1a:EGFP) (Lawson and 
Weinstein, 2002) and Tg(kdrl:EGFP) (Jin et al., 2005). As the marker Tg(fli1a:EGFP) was 
expressed not only in the head vasculature but more broadly in the head (data not shown), 
we decided to use Tg(kdrl:EGFP) and crossed this fish line into a casper (White et al., 2008) 
background to suppress formation of pigmentation. The Tg(kdrl:EGFP) casper fish line was 
crossed with the line Tg(GATA1a:dsRed) (Traver et al., 2003) expressing a fluorescent red 
blood cell marker. For time-lapse experiments, zebrafish embryos were injected at the one-
cells stage with 30 pg of a-bungarotoxin RNA (Swinburne et al., 2015) to ensure 
immobilization during the time-lapse. 
 
A detailed step-by-step protocol for embedding the embryos for imaging is in the 
supplementary (S1). 
 
Growth measurement 
 
Freely swimming zebrafish, single-sample and multiple-sample preparations were set up at  
24 hpf. Freely swimming zebrafish (n=8), single-sample (n=10) and multi-sample (n=9) 
preparations were then imaged using an AVT stingray camera connected to an Olympus SZX16 
stereo microscope at 24, 48, 72, 96 and 120 hpf. To calibrate the length measurement, a 
PYSER-SGI stage micrometer (10 mm/0.1 mm) was imaged together with the zebrafish 
embryo. Fiji (Schindelin et al., 2012) was used to first calibrate and then measure the length 
of the zebrafish embryo. 
 
In vivo Time-Lapse Imaging  
 
Long-term time-lapse imaging was performed on a home-built multidirectional SPIM (mSPIM) 
setup (Huisken and Stainier, 2007) upgraded to multi-sample capacity (result section). The 
microscope was equipped with two Zeiss 10x/0.2 NA illumination objectives and an UMPlanFL 
N 10x/0.3 NA Olympus detection objective. Two Coherent Sapphire 488 nm -100 CW / 561 nm 
– 100 CW lasers were used to illuminate the sample. The images were recorded with two 
Andor DV885 iXon EM-CCD cameras. The embryos were imaged at least every 25 min for up 
to 4 days starting around 17 hpf.  
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Design of the translational stage system 
 
The translational stage system of the microscope required high precision as it positioned the 
sample and scanned it through the light sheet. Therefore, a precise, translational stage with a 
longer travel range had to replace the existing vertical translational stage unit (Fig. 1D). We 
chose the M-404.4PD precision translation stage (Physik Instrumente) as it offered a 
unidirectional repeatability of 0.5 µm equal to half a pixel on the camera, and an overall travel 
range of 100 mm, which was sufficient for imaging several samples. To integrate the larger 
stage, we designed custom parts to connect the M-404.4PD stage to two M-111.1DG 
translational stages (Physik Instrumente) for lateral and axial scanning. We further added a 
solid metal block to stabilize the translational stage system and avoid vibrations caused by 
translational movements.  
 
Data copying in-between timepoints 
 
As copy tool we used the Windows command line executable Robocopy that was started right 
after the acquisition of every 3D stack and copied data until just before a new stack acquisition 
was started. Robocopy was integrated into Labview, the microscope control software, by their 
executable interface framework. This ensured robust data transfer as Robocopy only removed 
old data once the integrity of the file at the new server location was checked.  
 
Data processing 
 
Custom-made data processing tools in Fiji (Schindelin et al., 2012) were written to process the 
data from the microscope automatically. For visualization, the acquired fluorescence images 
were projected using maximum intensity projections. The resulting projections were stitched 
and fused with linear blending using custom code adapted from the Fiji stitching plugin by 
Stephan Preibisch et al.  (Preibisch et al., 2009) that relies on phase correlation (Kuglin and 
Hines, 1975). For successful stitching (Fig. S8), we initialized the stitching with the translational 
stage positions. As the translational stages were very precise, the stitching was robust and 
determined globally for all timepoints. The stitching parameters of the maximum intensity 
projections were also applied to the 3D data to generate one 3D fused stack per timepoint, 
angle, fish and channel. While the different channels were already aligned optically, we used 
a manual GUI interface to obtain a precise fine alignment of the different channels using rigid 
registration. To reduce the amount of data for storage to about half the size, the data was 
compressed by zipping.  
 
Code of the custom-made processing steps is available freely at: 
https://github.com/DaetwylerStephan/multi_sample_SPIM  
 
Segmentation 
 
The image segmentation software was developed using FunImageJ (Harrington et al., 2018), 
a Lisp-based interface for ImageJ. Code is freely available at:  
https://github.com/kephale/virtualfish-segmentation 
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The segmentation parameters were determined for each individual 3D stack by applying a 
machine-based learning approach. Candidate locations for sampling training data were 
selected by taking the conjunction of the thresholded red blood cell and vasculature channels. 
Sample points were chosen by randomly sampling candidate coordinates and collecting the 
first N positive points and first N negative points without replacement (N=5,000).  
 
The sample points were used as a target for the parameter fitting procedure. Feature vectors 
were computed for each sample point using first-order moments calculated with ImgLib2 
(Pietzsch et al., 2012). The features encoded the original image, X, Y, and Z gradients of the 
vasculature channel, the total gradient magnitude, and an inverse-gradient weighted version 
of the original image. The feature vectors for all sample points were then composed as a 
matrix and a target vector was generated, representing the positive/negative labels of training 
points as 1 and 0, respectively. Singular value decomposition was then used to solve for a set 
of feature weights that maximized predictions of the target vector value. 
 
The vector of feature weights obtained by solving the linear fitting procedure was then used 
to compute an image of segmentation scores. Images were segmented by first using the fitted 
feature weights to compute a linear combination of the feature maps. The resulting image 
encoded the segmentation score for each voxel. The optimization procedure did not 
guarantee that the resulting outputs were restricted to [0,1], therefore it was not a probability 
map. The segmentation score image was then thresholded using the Triangle algorithm (Zack 
et al., 1977) resulting in a binary labeling of the image. A morphological erosion followed by a 
dilation filtered out single-pixel fragments. Meshes were generated for visualization from 
binary segmentations using the marching cubes algorithm from ImageJ2 (Rueden et al., 2017).  
 
Visualization of segmentation 
 
To visually check the quality of the segmentation (Fig. 2E), we overlaid the segmented images 
with the raw signal at selected timepoints. We further visually inspected all segmentations 
over the whole time-lapse course by maximum intensity projections of them, and by 3D 
rendering (Fig. 2F,G, Movie 3) the segmentation and the annotations using SciView (available 
at  https://github.com/scenerygraphics/sciview). 
 
Quantification of vascular growth 
 
For quantification of the segmentation, we rescaled each segmented 3D stack of a time-lapse 
series to isotropic resolution and then counted the number of segmented voxels. We 
quantified only the two opposite angles rotated by ±60 degrees from the sagittal plane. Those 
two angles provided the best resolution of the whole embryo zebrafish vasculature. To obtain 
the vascular volume growth curves for one fish, the quantification result of both angles was 
averaged. 
 
Annotation of the segmented vasculature 
 
For the annotation, we used the maximum intensity projections of the endothelial signal over 
time. We first selected manually a region of interest such as the caudalveinplexus, the head 
or the tail vasculature (including the caudalveinplexus) at the last timepoint of a time series. 
To automatically track this region of interest over time, we sequentially determined the region 
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of interest at time t-1 given the region of interest at time t. For this, the boundary of the region 
of interest was discretized by points and for each point of the boundary the corresponding 
point at time t-1 was determined. Assuming that only small-scale changes were present, the 
computation for each point was reduced by only considering a subregion of the image at time 
t-1 (140x140 pixels) as search image for the template which was a small crop of the image at 
time t (70 x 70 pixels concentric around point). Within the search image, smaller images of the 
size of the template were created and compared against the template using image correlation. 
The position with the highest similarity was the new place for the boundary point. To increase 
robustness of the method, the shift vectors (new position at time (t-1) – position at time t) for 
each point were determined and the median over the seven neighboring boundary points 
calculated and assigned as effective shift. Furthermore, if two boundary points were assigned 
to the same or neighboring pixel, one of them was removed from the computation. To ensure 
the quality of the annotation, we visually inspected and curated the annotation.  
 
Analysis of volume growth 
 
The resulting volume measurements were analyzed using the software package R (R Core 
Team, 2018) using the dyplr library package (Wickham et al., 2018) for data handling. 
Parameters for different growth models were optimized using non-linear regression of the 
sum of squared differences between the actual values and the predicted value of the growth 
model given the parameters. As optimization algorithm, we applied a non-linear least squares 
approach (nls function in R).  In case nls failed, we applied the Levenberg-Marquardt algorithm 
(nlsLM function in R, (Elzhov et al., 2016)). Plots were generated using the ggplot library 
(Wickham, 2016) and the gridExtra package (Auguie, 2017).  
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