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Abstract 
Thymic crosstalk, a set of reciprocal regulations between thymocytes and thymic 

environment, is relevant for orchestrating the appropriate development of thymocytes as 

well as the recovery of the thymus from various exogenous insults. Nevertheless, the 

dynamic and regulatory aspects of the thymic crosstalk have not yet been clarified. In 

this work, we inferred the interactions shaping the thymic crosstalk and its resultant 

dynamics between the thymocytes and the thymic epithelial cells (TECs) by quantitative 

analysis and modelling of the recovery dynamics induced by irradiation. The analysis 

identified regulatory interactions consistent with the known molecular evidence and 

revealed their dynamic roles in the recovery process. Moreover, the analysis also 

predicted, and a subsequent experiment verified a new regulation of CD4+CD8+ double 

positive (DP) thymocytes, which temporarily increases their proliferation rate upon the 

decrease in their population size. Our model established the pivotal step towards a 

dynamic understanding of the thymic crosstalk as a regulatory network system. 

Main text 

The thymus is an organ responsible for producing a large part of T cells with 

appropriate repertoires [1]. Nevertheless, it is relatively sensitive to insults by stress, 

virus infection, radiation, and other extra stimuli [2, 3]. While a thymus in a healthy 

animal can be normally recovered from these damages, a relatively prolonged process 

of the thymic recovery may impair T cell-mediated immunity due to a reduced 

replenishment of naïve T cell repertoire during the recovery period [3, 4].  

Sub-lethal dose radiation on mice has been utilized as an experimental model of the 

thymic regeneration after insults [5, 6]. Ionizing irradiation is also broadly used for 

hematopoietic transplantation and cancer therapy [7, 8], and total body irradiation 

causes an acute thymic injury and slow recovery of thymopoiesis. Several studies 

showed that irradiation reduces cellularity not only of thymocytes but also of thymic 

epithelial cells (TECs), which are major constituents of the thymic environment [5, 9, 
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10]. Because the thymopoiesis is supported by interactions between the thymocytes and 

the TECs [11], understanding thymic recovery requires a characterization of the 

reciprocal regulations between the thymocytes and the TECs.  

Concomitantly, various techniques to trace, perturb, and quantify the cells involved in 

the events have enabled us to characterize their kinetics and dynamics quantitatively 

[12-15]. By combining mathematical models with such quantitative data, dynamic 

aspects of thymopoiesis have been distilled in the forms of more detailed kinetic 

information, e.g., rates of proliferation, death, and differentiation [12, 16]. Mehr et al. 

[17] had developed the first kinetic model of the thymocyte development using ordinary 

differential equations (ODEs) [18]. Since this pioneering work, kinetic models of the 

thymopoiesis have been progressively refined by taking into account of the detailed 

cellularity and developmental states of the thymocytes and by incorporating different 

experimental conditions [19-23]. 

Nevertheless, the previous works have focused only on the thymocytes. Thymic 

development as well as the thymic recovery are not thymocyte-autonomous but 

supported by the thymic environment. In the last decade, we have accumulating 

molecular-biological evidences that the thymic environment itself is homeostatically 

maintained by the thymic crosstalk, bidirectional interactions between the thymocytes 

and the thymic environment [11, 24, 25]. Among several cells comprising the thymic 

environment, cortical and medullary thymic epithelial cells (cTECs and mTECs) play 

integral roles to induce and control proliferation, apoptosis, lineage commitments of 

thymocytes [11, 26-30]. Thymocytes, in turn, also regulate the TECs by modulating 

their maturation and proliferations [5, 31-33]. 

Despite the evident relevance and importance of the thymic crosstalk for the 

thymopoiesis and the thymic recovery, the kinetic aspects of the reciprocal regulations 

between the thymocytes and the TECs have not yet been clarified. Thus, we investigate 

the joint dynamics of the thymocytes and the TECs by combining a mathematical model 

with a quantitative measurement of the number of the thymocytes and the TECs during 
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the recovery. 

 

Result

 
Figure 1: Recovery dynamics of the thymocytes and the TECs after sub-lethal 

irradiation. (a) A schematic diagram of the perturbation experiment and a table of the 

number of the sampled mice. (b) The left panel shows trajectories of the counts of the 

thymocytes (DN:red, DP:blue, SP4:light green) and the TECs (cTEC: cyan, mTEC: 

orange) after the irradiation. Points correspond to the experimental counts of the cells, 

and the solid curves are linear interpolations of the average counts at each time point. 

Dark and light gray curves represent the total numbers of thymocytes and TECs, 

respectively. The right panel is violin plots of the numbers of the thymocytes and the 

TECs without perturbation. (c) Typical flow cytometric profiles of thymocytes after the 

sub-lethal dose radiation. Thymocytes were analyzed by staining with anti-CD4 and 

anti-CD8α. Percentage of each fraction is shown in the panels. (d) Typical flow 
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cytometric profiles of TECs after the sub-lethal dose radiation. TECs (EpCAM+CD45–

TER119–) were analyzed by staining with a combination of UEA-1 lectin and anti-

CD80. Percentages of UEA-1+ cells (mTECs) and UEA-1– cells (cTECs) are shown in 

the panels. 

 

Quantification of recovery dynamics of thymocytes and TECs 

To quantitatively investigate how the thymocytes and the TECs are kinetically related 

and how the thymic recovery is established, we artificially perturbed the populations of 

the thymocytes and the TECs in thymi by using sub-lethal 4.5 Gy irradiation, and 

measured the dynamic changes in the population sizes of the thymocytes and the TECs 

after the irradiation over three weeks (Fig.1 (a)). Figure 1 (b) summarizes the changes in 

the numbers of cells, which were sorted based on conventional markers of the 

thymocytes (Fig.1 (c) and Fig. S1) and the TECs (Fig.1 (d) and Fig. S1). Figure 1 (b) 

shows that all types of the thymocytes and the TECs investigated decreased 

exponentially in number at different rates immediately after the irradiation. Then, both 

thymocytes and TECs started recovering at the longest within 10 days; the DN 

thymocytes and cTECs took only less than 5 days whereas the CD4+ SP thymocytes 

and the mTECs required longer intervals, which nicely reflects the temporal order of the 

thymocyte development from the DN to the SP cells through the interactions from the 

cTECs to the mTECs. 

Upon the recoveries, the population sizes of all but the SP cells overshot around 15 

days, and eventually returned to the stationary numbers, which are almost equivalent to 

or at least half of the original population sizes before the irradiation. Such overshooting 

behaviors suggest that the numbers of the thymocytes and TECs are dynamically and 

mutual regulated via reciprocal interactions. 
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Figure 2: A schematic diagram, trajectories, and estimated parameter distributions of the 

mathematical model inferred from the quantitative data. (a) A schematic diagram of the 

inter cellular interactions inferred from the experimental data and implemented in Eq. 

(1). (b) Trajectories of the numbers of the thymocytes and the TECs obtained by 

simulating Eq. (1) with the optimized parameter set. The curves represent simulated 

trajectories, and the points are the same experimental data as in Fig. 1 (b). (c) 

Trajectories obtained in the bootstrap parameter estimation. The trajectories in different 

panels with the same color correspond to the trajectories obtained from the optimal 

parameter estimated from bootstrapped samples. The trajectories of 100 randomly 

selected samples are shown in the panels. (d) The variations of parameters estimated by 

the bootstrap parameter estimation. The colors of histograms designate the related cell 

types to the parameters. The variations of other parameters are shown in Fig. S2. 

 

Mathematical model can reproduce the recovery dynamics 
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In order to infer such regulatory interactions behind the dynamics, we constructed a 

mathematical model for the population dynamics of the thymocytes and the TECs by 

ordinary differential equations (ODEs), which explicitly include five cell types: 
𝑖 ∈

{𝐷𝑁,𝐷𝑃, 𝑆𝑃4, 𝑐𝑇𝐸𝐶,𝑚𝑇𝐸𝐶} . In order to take into account of the acute influence of 

the irradiation to the dynamics, the number of the 𝑖-th cell type at time 𝑡 (day) is 

decomposed into two parts; 𝑛23(𝑡)  is that of the exponentially dying cells by the 

irradiation, and the other, 𝑛2(𝑡), is that of the cells had survived from or were newly 

generated after the irradiation. 𝑛23(𝑡) is assumed to decrease exponentially at a 

constant rate, 𝜔2(1/day), as 𝑛23(𝑡) = 𝑛23(0)𝑒:;<=, and we modelled the dynamics of 

𝑛2(𝑡) with ODEs. Therefore, the total number of the 𝑖-th cell type, 𝑛2>?>, which we 

observed experimentally, is described as  

𝑛2>?>(𝑡) = 𝑛23(𝑡) + 𝑛2(𝑡). 

The temporal change in 𝑛2(𝑡) is driven by the imbalance among influx, proliferation, 

death, and outflux of the 𝑖-th cells. While the influx can be independent of the number 

of the 𝑖-th cells, the other should, in nature, depend on the number of the existing 𝑖-th 

cells, 𝑛2(𝑡). This allows us to generally represent the ODEs for the dynamics of 𝑛2(𝑡) 

as 

d𝑛2(𝑡)
d𝑡 = 𝜙2C𝒏(𝑡)E + 𝑓2C𝒏(𝑡)E𝑛2(𝑡),

 

where the influx should be non-negative, 𝜙2C𝒏(𝑡)E ≥ 0, whereas the marginalized rate 

of proliferation, death, and outflux 𝑓2(𝒏(𝑡)) can be either positive or negative. The 

actual value of 𝑓2(𝒏(𝑡)) is determined by the balance among the proliferation, the cell 

death, and the outflux of the 𝑖-th cells. In order to obtain a minimal model with a 

minimal complexity, we assume that both 𝜙2C𝒏(𝑡)E and 𝑓2(𝒏(𝑡)) are at most linear 

with respect to 𝒏(𝑡) with possible constant time delays.  

Therefore, our ODE model as a whole has at most quadratic nonlinearity. Even only 

with the quadratic nonlinearity, the fitting of the ODEs to data ends up with a non-
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convex and thereby hard nonlinear optimization problem, which makes an automatic 

parameter fitting and selection infeasible. To circumvent this difficulty, we firstly 

analyzed the equation only for the 𝑖-th cell by replacing the effects of the other cells by 

the actual experimental data, and narrowed down candidates of the interaction terms 

that appear in 𝜙2C𝒏(𝑡)E and 𝑓2(𝒏(𝑡)) as well as their parameter values. Then, we 

concatenated all the candidate equations to have the following whole model: 

d𝑛HI(𝑡)
d𝑡 = 𝜙J + (𝛿J − 𝜇J𝑛NOPQ(𝑡))𝑛HI(t)	

d𝑛HT(𝑡)
d𝑡 = 𝜇J𝑟J𝑛NOPQ(𝑡)𝑛HI(𝑡) + {𝜃W X1 −

𝑛HT(𝑡)
𝐾W

[ − 𝜇W𝑛NOPQ(𝑡 − 𝜏W)}𝑛HT(𝑡) 

d]^_`a(=)
d=

= 𝜙N + C−𝛿N + 𝜇N𝑛HI(𝑡)E𝑛NOPQ(t)	                            …(1)	

d𝑛bTc(𝑡)
d𝑡 = 𝜇W𝑟Wc𝑛NOPQ(𝑡 − 𝜏W)𝑛HT(𝑡) − 𝜇c𝑛dOPQ(𝑡)𝑛bTc(t)	

d]e_`a(=)
d=

= 𝜙d + 𝜙dc𝑛bTc(𝑡) + {𝑟d(1 −
]e_`a(=)

fe
) − 𝛾dh𝑛HT(𝑡 − 𝜏d)}𝑛dOPQ(t)    

a diagrammatic representation of which is shown in Fig. 2 (a). Based on this model with 

the candidate parameter values as an initial condition, we conducted a nonlinear least 

square estimation of the parameter values so that the whole model can reproduce the 

experimental data (Fig. 2 (b) and Table 1). Moreover, in order to reevaluate the 

importance of several parameters, we statistically estimated the potential variability of 

the estimated values by conducting a bootstrap parameter estimation (Fig. 2 (c,d) and 

Table S1). As shown in Fig. 2 (b), our model, Eq.(1), nicely reproduced the recovery 

dynamics observed experimentally, demonstrating that the interactions depicted in Fig.2 

(a) are sufficient to account for the dynamics.  

 

DN thymocytes and cTECs form a negative feedback 

Our estimated model indicates that the DN thymocytes and the cTECs form a negative 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 26, 2018. ; https://doi.org/10.1101/478164doi: bioRxiv preprint 

https://doi.org/10.1101/478164


 9 

feedback, in which the DN cells positively regulate the cTECs whereas the cTECs 

effectively inhibit the increase in the DN cells (Fig. 2 (a)). This negative feedback is the 

source of the overshooting behaviors in the recovery dynamics, and can account for the 

lag in the onset of the cTECs recovery by few days behind that of the DN cells.  

These interactions inferred from the quantitative recovery data are also consistent with 

molecular evidences identified previously. On the one hand, the positive interaction 

from the DN thymocytes to the cTECs may be interpreted as the induction of the cTEC 

proliferation by the DN cells, which was evidenced by the fact that the number of the 

mature cTECs decreases if the DN differentiation is blocked at early stages [31, 34]. On 

the other hand, our model suggests that the cTECs down-regulate the number of the DN 

cells. This negative regulation is a marginal effect of induced cell death, induced 

differentiation from the DN to the DP stages, and inhibition of DN proliferation by the 

cTECs. This negative regulation of the DN cells by the cTECs is quite consistent with 

the Notch1-Delta-like4-dependent lineage commitment of the DN cells to the DP stage 

mediated by the cTECs [27, 28]. It should be noted however that our model does not 

exclude other possibilities of additional molecular interactions as long as their marginal 

influences are consistent with the diagram in Fig. 2 (a). 

 

DP recovery is achieved by temporal up-regulation of proliferation 

The kinetic component characteristic to the DP dynamics is its much faster recovery 

than that of the DN cells (Fig. 1 (b)), which strongly suggest that the DP recovery is 

achieved by a self-proliferation rather than the influx from the DN population. 

However, we have inconsistent evidences on the self-proliferation ability of the DP cells 

and its speed, which might depend on strains [35]; some of which showed that the DP 

cells proliferate little [22, 36] whereas others suggest the DP cells can proliferate faster 

than the other types of the thymocytes [35, 37]. Our model coordinates these properties 

by an auto-inhibitory regulation of the DP proliferation represented by the logistic term 
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in Eq.1, which can realize a fast proliferation during the recovery period and its 

slowdown at the steady state. Nevertheless, such auto-inhibitory regulation in the DP 

proliferation has not yet been reported.  

To experimentally verify this prediction by our model, we estimated the fraction of 

proliferating DP cells under the same condition as in Fig. 1(a) by staining the DP cells 

with a proliferation marker Ki67 (Fig. 3(a)). We observed that the fraction of the 

proliferating DP cells transiently increased and peaked at Days 7 after the irradiation, 

which perfectly coincides with the timing of the exponential increase in the DP cells 

during the recovery. The self-proliferation ceased as the number of the DP cells had 

recovered to the normal population size before the irradiation. This result strongly 

supports that the number of the DP cells is negatively regulated by its total population 

size to maintain its homeostasis. In addition, this autoregulatory mechanism is 

consistent with the previous observations that the DP cells proliferate little when they 

are at the steady state number [36].  

While the autoregulatory proliferation of the DP cells is necessary for reproducing the 

fast recovery, it alone cannot account for the overshooting behavior of the DP cells, 

which suggests other regulations of the DP cells by other cells. Supported by the well-

established evidences that the cTECs engage in the positive selection of the DP cells, 

our model includes a negative regulation of the DP cells by the cTECs with a time-

delay, which can nicely reproduce the overshoot of the DP cell count. This negative 

regulation can be interpreted as the marginal effect of an induced apoptosis of the DP 

cells with non-functional TCRs and the differentiation of the DP cells into the single 

positive cells upon the rescue of the apoptosis.  

Our model estimates that the fraction of the rescued DP cells that differentiated into 

CD4 SP, 𝑟Wc, is about 11%, which is within the range of the previous estimates that 

0.02~65% of DP cells survive and differentiate into CD4 SP via positive selection 

(Table 1). We should note that the estimated ratio of the rescued DP cells varies in the 

previous studies; mostly because the apoptosis rate cannot be estimated directly only 
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from the dynamics of the population sizes, including our case. To partially circumvent 

this problem, we also estimate that the stable rate of the DP cells to differentiate into 

CD4 SP, 𝑟Wc𝜇W𝑛NOPQ∗  is 1.10×10-1 (1/day), which is closer to the range of the previous 

estimates from 1.2×10-2 to 9.9×10-2 (1/day) (Table 1).  

 

DP and CD4 SP thymocytes incoherently regulate mTEC recovery 

Compared with the other thymocytes and the TECs, the CD4 SP cells showed a much 

slower recovery with a less pronounced overshooting (Fig. 1(b)). This slow recovery of 

the CD4 SP cells is consistent with the lack of a proliferation capacity of the CD4 SP 

cells [13, 35], which leads to a prolonged recovery. The CD4 SP dynamics can be 

reproduced by no proliferation and mTEC-dependent death and outflux that represent 

the negative selection of the SP cells by the mTECs (Fig. 2(a)).  

In contrast, the mTEC recovery was initiated almost concurrently with that of the 

cTECs (Fig. 1(b)). While interactions with the CD4 SP cells have been proven to be 

essential for the maturation of the mTECs [38] , the prolonged CD4 SP recovery is not 

sufficient for reproducing the earlier onset of the mTEC recovery. Our model 

incorporates an auto-inhibitory regulation of the mTEC proliferation and its negative 

regulation by the DP cells with a time delay as in Eq. (1). The auto-inhibitory regulation 

is necessary because we obtained biologically inconsistent parameter values in the 

mTEC dynamics without the regulation (Fig. 4 (a) (e)). The negative regulation by the 

DP cells is also responsible for the overshoot of the mTECs. These mechanisms are 

supported by preceding experimental investigations [5, 39]. The percentage of the 

Ki67hi mTECs was shown to increase only after the depletion of the mTECs in [39], 

which suggests the existence of the auto-inhibitory regulation. In [5], the DP cells were 

suggested to negatively regulate the TECs proliferation via an IL22 dependent manner 

by using a depletion experiment of the DP cells. The DP-dependent regulation was not 

the only interaction that could explain the early onset of the mTEC recovery. We had 
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also found that a DN-dependent regulation could reproduce it (Fig. 4 (b) (f)). However, 

this possibility was excluded in our model because we lack molecular evidence that can 

support the long-range interaction from the DN cells to the mTECs, which reside in 

spatially segregated areas of a thymus. 

Along with the regulated proliferation, our model assumes reciprocal regulations 

between the mTECs and the CD4 SP cells in order to account for the evidences that the 

mTEC maturation is also related with the CD4 SP cells . According to [33], the mTECs 

express a ligand CD80 and CD86 and a receptor CD40, the corresponding receptor and 

ligand of which are respectively CD28 and CD40L mainly in the CD4 SP T cells. A 

knock-out of CD80, CD86 and CD40 was shown to decrease the number of the mTECs 

and double the number of the CD4 SP cells. We substituted smaller values of 𝜇c and 

𝜙dc than the estimated values to reproduce the experiment in [33] by assuming that the 

KO of CD80, CD86 and CD40 corresponds to this substitution. The result qualitatively 

reproduced the KO mutant result in [33]; the stable number of CD4 SP cells became 

twice whereas the number of the mTECs became about half as in Fig. 3 (b). 

Figure 3: Validations of the model prediction by proliferation assay of DP cells and in 

silico evaluation of impact from the disturbed crosstalk between SP4 thymocytes and 

mTECs. (a) Percentages of Ki67 positive DP cells 0, 4, 11, 13,17, and 19 days after the 

irradiation. Points are experimental counts of the cells, and the shaded lines are linear 

interpolations of the average counts. (b) Simulated trajectories of the SP4 thymocytes 

and the mTECs (Thick solid curves) with the parameter values mimicking the 
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experimental condition in [33], 𝛾c = 8.0 × 10:m and 𝜙dc = 0. The thin dashing 

curves are those obtained with the optimal parameter values used in Fig. 2 (b). 

 

Figure 4: Possible regulatory mechanisms that can also reproduce the recovery 

dynamics of the data, but are biologically less relevant than our proposed model in Fig. 

2(a). Each model incorporates the following different interactions from the model in 

Fig. 2(a): (a) This model excludes autoinhibitory regulation of mTEC, whereas the 

model in (b) includes an upregulation from DN to mTEC instead of the downregulation 

from DP in Fig. 2(a). The model in (c) assumes an upregulation from cTEC to DP rather 

than the downregulation, and that in (d) includes an upregulation from DP to cTEC. (e), 

(a)
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(f), (g), and (h) show the corresponding trajectories of the models in (a), (b), (c), and 

(d), respectively. 

Discussion 
From a quantitative time-series data of the thymocyte and the TEC recoveries after a X-

ray perturbation, we constructed a mathematical model for the recovery dynamics of the 

thymocytes and the TECs. The model fairly well reproduces the transient dynamics of 

the population sizes of the cells, and most of the interactions identified by the modeling 

are consistent with known molecular evidences.  

Since previous works on quantitative characterizations of the thymocyte development 

using mathematical models focused only on the dynamics of the thymocyte, our work, 

which additionally includes both the dynamics of and the interactions with the TECs, 

can be viewed as an extended model of those works [17, 19-21, 40, 41]. We validated 

that the estimated parameter values of our model are mostly consistent with those 

estimated in the previous works (Table 1). Few mismatches of the parameter values 

might be attributed to the differences in the experimental setting and conditions. 

The thymic crosstalk includes various signaling pathways, which indicates the complex 

regulations behind the population size control of the thymocytes and the TECs. Because 

of this complexity, our model may contain missing interactions or other possibility of 

different regulations, part of which were tested in the process of the model 

identification. For example, the cTECs rescue the DP thymocytes from the apoptosis via 

the positive selection, which leads to the increase in the DP population size. 

Concurrently, the positive selection also induces the differentiation of the DP cells to the 

SP stage, which decreases the DP population size. These contradictory interactions 

introduce the possibility that the cTECs upregulate the DP thymocytes rather than 

inhibition as being assumed in our model. We examined the possible upregulations on 

the DP thymocytes by the cTECs and concluded that the downregulation, which our 

model assumed, is more valid because of the upregulation resulted in much higher 
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parameter values than expected from the previous works (Fig. 4 (c) (g)). We also 

investigated a model in which the DP thymocytes contribute to the recovery not only of 

the mTECs but also of the cTECs [5]. We found that the estimated parameter for the 

interaction from the DP cells to the cTECs was almost 0 (Fig. 4 (d) (h)), which does not 

support a major contribution of the DP cells to the cTEC recovery under our 

experimental condition. 

Our model can also provide explanations of the mechanisms how specific dynamics 

appear in the recovery dynamics and their potential biological functions; the overshoots 

of the DN thymocytes and the cTECs may originate from the negative feedback 

between them and may contribute to a prompt recovery from various perturbations 

affecting the numbers of the thymocytes and the TECs. Similarly, the disinhibition of 

the DP proliferation upon the decrease in the DP population size facilitates the swift 

recovery of the DP cells, which could not be achieved only by the influx of the DN 

cells, the population size of which is much smaller than that of the DP cells. Our model 

provides an integrative view on the thymic crosstalk as a regulatory network, and serves 

as a starting point for a comprehensive understanding on homeostasis of thymic 

development. 

Nevertheless, our model still has rooms for future improvement by 

accommodating the more detailed information on the cellularity of the thymic resident 

cells, such as B cells, dendritic cells, and thymic endothelial cells. These cells may have 

different roles in the dynamic regulation of thymic homeostasis than thymocytes and 

TECs, although we did not explicitly include them by presuming that their effects to the 

number of the thymocytes or the TECs are relatively small or constant, which was 

implicitly modeled by the constant parameters in our model. Actually, BMP4 production 

by the endothelial cells after irradiation, which can contribute to the recovery of the 

TECs, was reported to be constant when normalized by the size of thymus [42]. An 

explicit incorporation of these cells can be crucial for extending our model to other 

experimental setting than ours and also for deriving a more integrative and 
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comprehensive model of the thymic development and homeostasis.  Among others, the 

repertoires of the thymocytes are of particular relevance. The TECs are not only 

responsible for controlling the number of the thymocytes but also for selecting the 

thymocytes with appropriate repertoires. Upcoming challenges may be an integrative 

modeling and analysis of the thymic homeostasis in both the number and the repertoire 

of the cells by combining quantitative measurement and high-throughput sequencing 

[43]. 

 

Methods 
Ethics statement 

Animals used in the present study were maintained in accordance with the “Guiding 

Principles for Care and Use of Animals in the Field of Physiological Science” set by the 

Physiological Society of Japan. All animal experiments were approved by the Animal 

Research Committees of RIKEN.  

 

Mice, X-ray irradiation, and Flow Cytometory 

Balb/cA mice were purchased from CLEA Japan. Mice (7 weeks-old) received X-ray 

radiation (4.5 Gy). At each sampling point after the irradiation, the mice were sacrificed, 

and their thymi were used for a flow cytometric analysis. Each thymus was cut and 

gently agitated in 2 ml of RPMI-1640 (Sigma-Aldrich, St. Louis, MO, U.S.A.) to 

release thymocytes for the flow cytometric analysis. The days of measurement and the 

number of the sampled mice are shown in Fig. 1 (a). The rest of the thymic tissue was 

digested using Liberase in RPMI1640 (Wako) at 37 degree for 30 min. The thymic 

stroma rich-fraction was analyzed by flow cytometry to detect the TEC populations. For 

the flow cytometric staining, cells were pre-treated with anti-CD16 and CD32 

(Biolegend) for 20 min and subsequently stained with fluorescence-labeled antibodies 
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in phosphate buffered saline containing 3% fetal bovine serum. The stained cells were 

analyzed by Canto II (BD). The total thymic cell numbers were evaluated by adding cell 

numbers of the thymic stroma-rich fraction and the thymocyte fraction. Since the DN 

population contains other minor populations of cells such as dendritic cells, the cell 

numbers of these fractions were subtracted from the DN cell number in the 

mathematical modeling based on the average percentage of these cells (16.6%) in the 

DN fraction under a steady condition. The TECs were defined as CD45-TER119-

EpCAM+ cells. The mTECs and the cTECs were separated with UEA-1 staining. 

PECy7-anti-CD4, APCCy7-anti-CD8, APCCy7-anti-CD45, APCCy7-anti-TER119, 

FITC-anti-EpCAM, PE-anti-CD80 and Streptavidin-PECy7 were purchased from 

Biolegnd. UEA-biotin was from Vector laboratories (Burlingame, CA).  

 

Estimation of proliferating DP cells 

Thymocytes were pre-treated with anti-CD16 and CD32 (Biolegend) and subsequently 

stained with anti-CD4 and anti-CD8 antibodies in phosphate buffered saline containing 

3% FBS. The cells were fixed and permeabilized with Foxp3/Transcription Factor 

Staining Buffer Set (eBioscience) according to the manufacturer’s protocol. After the 

fixation and the permeabilization, the cells were stained with a PE-labeled anti-Ki67 

antibody (Biolegend) and subsequently analyzed by Canto II (BD).   

 

Mathematical Modeling of Thymocyte and TEC dynamics 

We assume that the total number of the type 𝑖 cells, 𝑛2=n=, is the sum of dying cells by 

the irradiation 𝑛23 and survived or newly generated cells 𝑛2: 

𝑛2=n=(𝑡) = 𝑛23(𝑡) + 𝑛2(𝑡)	

𝑖 ∈ 𝐶 ≔ {𝐷𝑁,𝐷𝑃, 𝑆𝑃4, 𝑐𝑇𝐸𝐶,𝑚𝑇𝐸𝐶} 

where 𝐶 is defined as the set of the cell types. 
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We describe the decrease in the irradiated cells by an exponential decay, which assumes 

that cells die at a constant rate 𝜔2 after the irradiation: 

𝑛23(𝑡) = 𝑛23(0)𝑒:;<= 

In the modeling, 𝑛2=n=(0) represents the initial population size of the 𝑖th cells and 𝑝2 

is assumed to be the fraction of the survived cells at 𝑡 ≤ 0 as 

𝑛2(𝑡) = r
𝑛2=n=(0)									(𝑡 < 0)
𝑝2𝑛2=n=(0)					(𝑡 = 0)

	

𝑛2
3(t) = u

0																														(𝑡 < 0)
(1 − 𝑝2)𝑛2=n=(0)				(𝑡 = 0) 

Given these initial conditions, the model of Eq (1) was implemented on MATLAB 

(R2016b; The MathWorks, Natick, MA) and numerically simulated by ‘dde23’ function 

or on Mathematica (version 11.2; Wolfram research, Champaign, Illinois) and simulated 

by ‘NDSolve’ function.  

 

Parameter estimation 

In the parameter estimation, all the parameters that appear in Eq (1) and 𝜔2, 𝑛2=n=(0), 

and 𝑝2 were estimated simultaneously. The parameters were estimated by minimizing 

the sum of the squares of difference between the logarithm of the observed data and the 

simulated values of the model. More specifically, for the observed time points 𝑡∗ =

[𝑡J,⋯ , 𝑡d] and the corresponding data points  𝑁2C𝑡yE for all 𝑖 ∈ 𝐶, the estimated 

parameter set 𝜽{ was obtained by solving 

𝜽{ = 𝑎𝑟𝑔min
𝜽
��Cln(𝑛2=n=(𝑡y, 𝜽)E − ln(𝑁2C𝑡yE))W

2∈Q

d

y

	 

To solve this minimization, we used ‘lsqnolin’ function in MATLAB Optimization 

Toolbox in which the parameters were estimated by Trust Region Reflective method. 

The initial values of the parameters in the estimation were given so that the result 
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converges to moderate values considering the results of related previous works. The 

searching range of each parameter except 𝑝2, 𝑟J and 𝑟Wc was set between 100 times 

and 0.01 times of the initial value. Since 𝑝2, 𝑟J and 𝑟Wc represent fractions, their 

searching ranges were set between 0 and 1. The symbols, the descriptions, and the 

estimated values of the parameters are listed in Table. S1. 

 

Confidence Interval by bootstrap 

We calculated the confidence interval of the estimated parameter values by a bootstrap 

method [44].  

First, for the 𝑖th type of the cells, we modeled the statistical variation of the data points 

by a Gaussian random variable 𝜀2 ∼ 𝒩(0, 𝜎2W) with mean 0 and variance 𝜎2W as  

lnC𝑁2(𝑡)E = ln �𝑛2=n=C𝑡, 𝜽{E� + 𝜀2. 

We estimated 𝜎2W by the sample variance as 

𝜎�2 =
J

d:J
∑ (ln𝑁2C𝑡yE − ln 𝑛2=n=C𝑡y, 𝜽{E)Wd
y�J . 

We obtained the 𝑘th bootstrapped sample 𝑁2
��(𝑡∗) by using a random number 𝜀2 ∼

𝒩(0, 𝜎�2W) as  

ln𝑁2
��(𝑡∗) = ln 𝑛2=n=C𝑡∗, 𝜽{E +	𝜀2. 

The 𝑘th bootstrapped parameter set 𝜽{�� was obtained by solving the same 

optimization problem of the previous section by replacing the data with the 𝑘th 

bootstrapped sample 𝑁2
��(𝑡∗) as 

𝜽{�� = argmin
𝜽
���ln �𝑛2=n=C𝑡y, 𝜽E� − ln �𝑁2

��C𝑡yE��
W

2∈Q

d

y

 

The total number of the bootstrapped samples generated was 𝐵 = 1000. The two 
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sided 𝛼 ∗ 100% confidence interval of the 𝑙th parameter was calculated as 

[𝜃��
��(���)� �

, 𝜃��
(��/W)] where  𝜃��

(3) is the 𝑥th smallest value of the 𝑙th parameter 

obtained from the bootstrapped samples. The confidence interval of each parameter is 

shown in Table S1. A pairwise scatter plot of the bootstrap estimated values is shown in 

Fig. S3. The trajectories of the cells obtained from 100 samples of the bootstrap 

parameter sets are shown in Fig. 2 (c). 

Data and code availability 

All data and codes used in this paper are provided upon a request to the authors. 
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Tables 
Table 1: A comparison of the estimated kinetic rates with those from previous 

studies 

Term Value CI Previous Study 

Inflow rate to DN [Cells/Day] 3.30 × 104  [3.0 × 103, 5.9 × 104]  2.0 × 104 [20] 1.3 × 104 [26] 

DN apparent proliferation rate 

[/Day] 1.50 × 10-1  [-2.3 × 10-2, 2.9 × 10-1] 

 2.3 × 10-1 [20] 6.2 × 10-4 [26] 

3.6 × 10-1 [21] 

DN differentiation rate [/Day] 
1.60 × 10-1  [1.7 × 10-5, 3.0 × 10-1] 

 2.4 × 10-1 [20] 2.8 × 10-2 [26] 

3.4 × 10-1 [21] 4.5 × 10-1 [27] 

DN residence time [Hour] 1.50 × 102  [8.0 × 101, 1.4 × 106]  4.2 × 102 [20] 3.5 × 102 [21] 

DP apparent proliferation rate 

[/Day] 1.00 × 10-1  [8.9 × 10-2, 8.4 × 10-1] 

 1.5 × 10-2 [20] -3.7× 10-1 [22] 

-1.6 × 10-1 [27]-9.0× 10-3 [26] 

DP differentiation rate to SP4 

[/Day] 1.10 × 10-1  [9.1 × 10-2, 8.4 × 10-1] 

 2.1× 10-2 [20] 1.2× 10-2 [22] 

3.0× 10-2 [27]9.9× 10-2  [26] 

DP residence time [Hour] 2.20 × 102  [2.8 × 101, 2.6 × 102]  9.4× 101 [20] 7.6× 101 [22] 

Ratio of DP to SP4 in DP export 

[%] 11 [9.6, 75] 

6.0 [20], 0.016[22],8.1[27], 

65 [26] 

SP4 apparent export rate [/Day] 
5.30 × 10-1  [4.9 × 10-1, 1.5 × 101] 

 2.0× 10-2[20]  9.0× 10-2[22] 

1.4× 10-1[27]1.7× 10-1[26] 

Table 1 footnote: (CI: Confidence interval) The value of each term is estimated 

in our model by the following equations of the parameters evaluated at the 

steady state 𝑛2∗, : 
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Inflow rate to DN thymocytes: 𝜙J 

DN apparent proliferation rate : 𝛿J − 𝜇J(1 − 𝑟J)𝑛NOPQ∗  

DN differentiation rate : 𝜇J𝑟J𝑛NOPQ∗  

DN residence time : 24/(𝜇J𝑟J𝑛NOPQ∗ ) 

DP apparent proliferation rate : 𝜃W(1 − 𝑛HT∗ /𝐾W) − (1 − 𝑟Wc)𝜇W𝑛NOPQ∗  

DP differentiation rate to SP4 : 𝑟Wc𝜇W𝑛NOPQ∗  

DP residence time : 24/(𝑟Wc𝜇W𝑛NOPQ∗ ) 

Ratio of DP to SP4 in DP export : 𝑟Wc 

SP4 apparent export rate : 𝜇c𝑛dOPQ∗  
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