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Abstract 
 

Plasma and serum are rich sources of information 

regarding an individual’s health state and protein 

tests inform medical decision making. Despite major 

investments, few new biomarkers have reached the 

clinic. Mass spectrometry (MS)-based proteomics 

now allows highly specific and quantitative read-out 

of the plasma proteome. Here we employ Plasma 

Proteome Profiling to define contamination marker 

panels to assess plasma samples and the likelihood 

that suggested biomarkers are instead artifacts 

related to sample handling and processing. We 

acquire deep reference proteomes of erythrocytes, 

platelets, plasma and whole blood of 20 individuals 

(>6000 proteins), and compare serum and plasma 

proteomes. Based on spike-in experiments we 

determine contamination-associated proteins, many 

of which have been reported as biomarker 

candidates as revealed by a comprehensive 

literature survey. We provide sample preparation 

guidelines and an online resource 

(www.plasmaproteomeprofiling.org) to assess 

overall sample-related bias in clinical studies and to 

prevent costly miss-assignment of biomarker 

candidates. 

 
 
 

Introduction 
 

Protein levels determined in blood-based laboratory 

tests can be useful proxies of diseases. These 

biomarkers   assess   normal   physiological   status,  

 

 

 
pathogenic processes, or a response to an 

exposure or intervention (1). Proteins and enzymes 

constitute the largest proportion of laboratory tests, 

reflecting the importance of the plasma proteome in 

clinical diagnostics (2). Typical protein biomarkers 

such as the enzymes aspartate aminotransferase 

(ASAT) and alanine aminotransferase (ALAT) for 

the diagnosis of liver diseases or cardiac troponins 

indicating myocardial infarction are used routinely in 

clinical decision making. Enzymatic activity or 

antibody-based laboratory tests are performed in 

high-throughput and at relatively low costs, as the 

standard of health care. However, specific 

biomarkers are only available for a very limited 

number of conditions and most have been 

introduced decades ago (3). There is thus a critical 

need to make the biomarker discovery process 

more efficient. 

 

Protein-binder assays quantifying many plasma 

proteins in parallel have become available (4, 5), 

resulting in large scale biomarker mining efforts (6-

8). Orthogonal to those technologies, mass 

spectrometry (MS)-based proteomics has become 

increasingly powerful in all domains of protein 

research (9-11). MS measures the mass and 

fragmentation spectra of tryptic peptides derived 

from the sample with very high accuracy. Because  
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these peptide and fragment masses are unique, 

proteomics is inherently specific, which can be an 

advantage over enzyme tests and immunoassays 

(12). Within its` limit of detection, MS-based 

proteomics can analyze all proteins in a system and 

is unbiased and hypothesis free in this sense.  

 

The proteomics community has developed 

guidelines for the development, specificity and 

potential clinical application of biomarkers. These 

discuss quality standards and emphasize the 

importance of selecting cohorts that are appropriate 

in size, thus ensuring the statistical significance of 

potential findings (2, 13-16). That being said, there 

are no systematic procedures in place to assess the 

proteome-wide effects of pre-analytical handling of 

blood-based samples. Considering that plasma 

samples are often collected during daily clinical 

routine and variably processed, sample collection 

and processing clearly have the potential to 

negatively influence clinical studies, making it 

difficult to uncover true biomarkers, meanwhile 

potentially contributing incorrect ones. Especially in 

case-control studies, any difference in the collection 

and processing of samples may result in systematic 

bias. So far, relatively little attention has been paid 

to this crucial aspect on a proteome-wide scale (17-

21).  

 

Recently, we developed ‘Plasma Proteome 

Profiling’, an automated MS-based pipeline for 

high-throughput screening of plasma samples (22). 

In this article, we apply this technology to 

systematically assess the quality of individual 

samples and clinical studies with the aim to identify 

generally applicable contamination marker panels. 

Blood collection and subsequent errors in 

preparation are likely sources of plasma 

contamination. To address this issue, we construct 

proteomic catalogs of contaminating cell types as 

well as proteomic changes that may be induced 

during processing. This results in three panels of 

contaminating proteins, recommendations for 

assessing the quality of plasma samples and for 

consistent sample processing. We develop an 

online tool for biomarker studies and test the 

applicability of the panels on a recent investigation 

on the effects of weight loss on the plasma 

proteome (23). A comprehensive literature review 

of plasma proteome studies highlights that about 

half of them potentially suffer from limitations 

related to sample processing. 

 

Results 
Erythrocyte and platelet proteins in the plasma 

proteome 

During the development of our Plasma Proteome 

Profiling pipeline and its optimization for high-

throughput screening of human cohorts (22), we 

repeatedly observed proteins that tended to emerge 

as groups of statistically significant outliers but 

appeared to be independent of the particular study. 

We hypothesized that they reflected sample quality 

issues. Manual and bioinformatic inspection 

revealed three classes of origin: erythrocytes, 

platelets and the blood coagulation system. 

Consequently, we designed experiments to 

systematically characterize these main sources of 

contamination of the plasma proteome.  

 

First, we acquired reference proteomes of 

erythrocytes and platelets, which are by far the most 

abundant cellular components (5 x 106 and 3 x 105 

cells per µl). We harvested these cellular 

components from ten healthy females and males to 

obtain representative erythrocytes, platelets and 

pure (platelet-free) plasma and further collected 

platelet-rich plasma and whole blood (Fig. 1A; see 

Material and Methods). Cell counting confirmed the 

purity of the samples (Supplemental Table S1). All 

five blood fractions were separately prepared for 

each individual by our automated proteomic sample 

preparation pipeline, followed by liquid 

chromatography coupled to high resolution mass 

spectrometry (LC-MS/MS). To create reference 

proteomes, we generated a very deep library from 

pooled samples by analyzing extensively pre-

fractionated peptides (24) (see Materials and 

Methods). A total of 6130 different proteins were 

identified  from  61,654  sequence-unique  peptides 
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Fig. 1: Identification of blood cell markers. (A) Study outline and proteomics workflow. Erythrocytes, thrombocytes, platelet-rich and platelet-

free plasma were harvested from ten healthy female and male individuals by differential centrifugation and successive purification steps. In order 

to generate reference proteomes for each of the blood compartments, the respective protein samples of the 20 study participates were digested 

to peptides. (B) Number of proteins and (C) peptides identified for platelets, erythrocytes, platelet-rich and platelet-free plasma. (D) Selection of 

the most suitable quality marker proteins for platelet contamination (blue dots) and (E) erythrocyte contamination (red dots) based on their 

abundance, the platelet/erythrocyte to plasma ratio and the coefficient of variation.  

 

 

(Fig. 1B/C). The platelet proteome was the most 

extensive (5793 proteins), whereas we detected 

2069 proteins in erythrocytes, 1682 in platelet-rich 

plasma and 912 in platelet-free plasma. The 

comparison of platelet-rich plasma to platelet-free 

plasma (84% additional proteins) demonstrates the 

extent of proteins that can be introduced by 

platelets.  

 

Next, we investigated purified samples for all 20 

study participants individually. The average 

numbers of identified proteins and peptides were 

very consistent in all individuals (Supplemental Fig. 

S1). To construct panels of easily detectable and 

robust contamination markers, we calculated the 

average protein intensities and the coefficient of 

variation (CV) across the study participants. As a 

prerequisite, we required that the proteins should 

be substantially more abundant in erythrocytes as 

well as platelets rather than in plasma. According to 

these criteria, we selected the 30 most abundant 

proteins with CVs below 30% and at least a 10-fold 

higher expression level in the contaminating cell 

type than in plasma (Fig. 1D/E). NIF3-like protein 1 

(NIF3L1), a low abundant erythrocyte specific 

protein was excluded, because it was inconsistently 

identified as was the platelet-bound coagulation 

factor F13A1, whose function makes it an 

unsuitable platelet marker. The remaining proteins 

represent our cellular contamination marker panels 

(Supplemental Table S2). They overlap by just two 

proteins (actin/ACTB and glyceraldehyde-3-

phosphate dehydrogenase/GPDH) and their 

quantities did not correlate with each other 

(Supplemental Fig. S2). Thus they are specific and 

independent indicators for the origin of plasma 

contamination. 

 

Comparing median expression values of proteins 

shared between the blood components revealed 
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that plasma proteins do correlate with whole blood 

(Pearson correlation coefficient R = 0.43), as 

expected. In contrast, there was no correlation 

between the platelet, erythrocyte and plasma 

proteomes (Supplemental Fig. S2). This indicates 

that the levels of cellular proteins in plasma are not 

a constant fraction of those in the cellular 

proteomes. The platelet panel was enriched in 

platelet-rich plasma compared to normal (platelet-

free) plasma. Both panels are depleted in pure 

plasma compared to whole blood, however the 

erythrocyte panel even more strongly decreased as 

centrifugation removes erythrocytes more efficiently 

than platelets. A histogram of both panels over the 

abundance range visualizes their distribution in the 

different blood compartments (Supplemental Fig. 

S2). Erythrocytes are ten-fold more abundant and 

four-fold larger than platelets and indeed the 

corresponding panel proteins have a 42-fold 

difference in whole blood. In plasma, however, their 

ratio was nearly one to one, again pinpointing a 

more efficient removal of erythrocytes compared to 

platelets in standard sample preparation. The fact 

that several proteins of both panels were still 

detectable in pure plasma indicates a baseline level 

of contaminants due to imperfect depletion or the 

life cycle of these cells. The four most abundant 

erythrocyte proteins, HBA1, HBB, CA1 and HBD 

were present in pure plasma of almost all 

individuals, whereas lower abundant proteins were 

only sporadically identified. In contrast, platelet 

proteins were quantified over a larger abundance 

range and some of them were found in every 

individual.  

 

In addition to the sum of panel protein abundances, 

we calculated their correlation to the standard 

reference panel defined by the 20 participants to 

several hundred plasma samples. A distinct 

contamination of erythrocyte proteins seems to be 

a part of the plasma proteome as the erythrocyte 

panel has in general a relative high correlation 

between the reference cohort erythrocyte levels 

and the study plasma samples. In contrast, in many 

plasma samples there was no correlation 

detectable between the reference cohort platelet 

levels and the plasma samples in the study. In 

practice, a correlation greater than 0.5, indicated 

that the proteins are present as a result of 

contamination (Supplemental Fig. S3A,B,C). Note 

that an apparent contaminant protein could still be 

applied as a biomarker – however, in this case its 

abundance value should be different from the 

pattern in the reference contamination panel.  

 

Spike-in experiments validate the erythrocyte 

and platelet contamination panels  

To determine if the two protein panels correctly 

quantify contamination in plasma, we generated 

four pools of erythrocytes and platelets from five 

study participants at a time. These pools were 

diluted in nine steps into platelet-free plasma for a 

total range of 107, followed by cell counting and 

proteomic analysis (Fig. 2A). This resulted in an 

expected decrease in the cellular proteome ratio to 

plasma (Fig. 2B, C). All but two of the panel proteins 

were consistently quantified over the dilution range. 

 

As the protein within each panel have the same 

origin, we defined a single variable for each cell type 

by summing their intensities and dividing by the 

summed intensities of all quantified plasma 

proteins. This yielded two remarkably robust 

‘contamination indices’ that turned out to be linear 

with respect to the cell numbers determined by cell 

cytometry (Supplemental Table S3) (R = 0.98 and 

0.99, Fig. 2D, E). Spiked-in contaminations of 1:100 

could readily be detected, which corresponds to a 

concentration of 70,000 erythrocytes or 30,000 

platelets per µl plasma. 

 

Contamination panel for blood coagulation  

In addition to contamination due to cellular 

constituents, partial and variable coagulation could 

contribute to systematic bias in biomarker studies. 

Indeed, we had found coagulation-related proteins 

to be connected to sample handling from finger 

pricks  while   developing   our   Plasma   Proteomics  
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 Fig. 2: Spike-in of erythrocyte and platelet fractions into pure 

plasma. (A) Dilution and analysis scheme. (B) Z-scored protein 

intensities of the 29 contamination markers of erythrocytes and (C) of 

the 29 platelet contamination markers as a function of their spike-in 

proportion to plasma. Whiskers indicate 10-90 percentiles and 

horizontal lines denote the mean. (D) Correlation of erythrocyte count 

to the ‘contamination index’ for the erythrocyte marker panel. (E) 

Correlation of platelet count to contamination index for the platelet 

marker panel. 

 

 

Pipeline (22). In clinical practice, an anticoagulant 

is pre-added to commercially available containers 

so that it is combined with blood upon withdrawal. 

Prompt shaking mixes the anticoagulant with the 

blood, yielding pure plasma after centrifugation 

(Fig. 3A). Any delay in adding or mixing could cause 

partial coagulation – in the most extreme case of 

missing anti-coagulant and waiting for 30 min, one 

would obtain serum instead of plasma.  

 

To generate a panel for assessing blood 

coagulation, we systematically compared 72 

plasma vs. 72 serum samples (4 individuals, 18 

aliquots). From a total of 2099 quantified proteins, 

299 were significantly altered (Fig. 3B). The most 

significantly decreased proteins after clotting were 

typical constituents of the coagulation cascade 

such as fibrinogen chains alpha (FGA), beta (FGB), 

gamma (FGG) (p < 10-130, > 40-fold), whereas the 

platelet-associated coagulation factor F13A1 and 

antithrombin-III (SERPINC1) decreased by more 

than half. Interestingly, the strongest elevated 

proteins in serum were all connected to platelets: 

platelet basic protein (PPBP), platelet glycoprotein 

Ib alpha chain (GP1BA), thrombospondin 1 

(THBS1) and platelet glycoprotein V (GP5) (p < 10-

10; 2 to 5-fold increase). In total, 208 proteins 

increased and 91 decreased due to coagulation. 

The former set of proteins were also quantitatively 

enriched within the higher abundant proteins in the 

platelet proteome (p < 10-5; median rank 699 of 

3150 proteins), indicating coagulation-induced 

activation of platelets. 

 

To define a robust panel of contamination markers 

assaying the extent of coagulation, we first selected 

the 30 most significantly altered proteins between 

serum and plasma. Although not among the top 30, 

we added the platelet factor 4 variant 1 (PF4v1) (p 

< 10-11, 2.2-fold up in serum), because it was an 

excellent indicator of coagulation in our studies and 

has already been reported in the context of pre-

analytical variation (21). 

 

In contrast to the erythrocyte and platelet panels, 

proteins of the coagulation panel increase or 

decrease due to blood clotting and the fold-changes 

vary strongly between them. Because fold-changes 

are greatest for the decreasing proteins, we 

calculated the coagulation contamination ratio only 

from them (sum of all plasma proteins divided by 

sum of plasma-elevated coagulation proteins). This 

ratio was very robust when comparing serum and 

plasma, clearly separating them with median 

contamination ratios of 9 and 120 for these distinct 

sample  types (Fig. 3C). Of  the  coagulation  marker  
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Fig. 3: Contamination marker panel for blood coagulation. (A) Preparation of plasma and serum samples. EDTA was used as anti-coagulation 

agent and incubation and centrifugation values are indicated. (B) Volcano plot comparing 72 plasma vs. 72 serum proteomes. Proteins highlighted 

in yellow were chosen according to their p-value as markers for coagulation. Only the plasma enriched proteins (compared to serum) were used 

in the calculation of the coagulation contamination index. (C) Ratio of the summed intensities of all plasma or serum proteins to the sum of the 

plasma-enriched panel proteins are plotted for all samples. Whiskers indicate the 10-90 percentile. (D) Overlap of the three quality marker panels. 

 

 

 

panel, only F13A1, PPBP and THBS1 were in 

common with the platelet panel and none with the 

erythrocyte panels (Fig. 3D). The low overlap 

observed for the three quality marker panels should 

make them highly specific tools to elucidate the 

presence and origin of sample related bias. 

 

Application of the contamination marker panels 

to a biomarker study  

The above defined marker panels can assess 

sample-related issues at three levels: the quality of 

each sample in a clinical cohort, potential 

systematic bias in the entire study and the likelihood 

that individual biomarker candidates belong to the 

contaminant proteomes.  

 

We recently investigated changes in the plasma 

proteome upon weight loss (22, 23). Briefly, caloric 

restriction in 52 individuals for two months was 

followed by weight maintenance for a year. Plasma 

Proteome Profiling of seven longitudinal samples 

revealed significant changes in the profile of 

apolipoproteins, a decrease in inflammatory 

proteins and markers correlating with insulin 

sensitivity. Given that protein abundance changes 

of less than 20% were often highly significant, we 

expected that overall sample quality was high, 

making this study suitable for testing the practical 

applicability of the contamination marker panels.  

 

First, we assessed the quality of each sample 

separately by calculating the three contamination 

indices and plotting their distribution in the total of 

318 measurements. For each index, we initially 

defined potentially contaminated samples as those 

with a value more than two standard deviations 

above the mean (red lines in Fig. 4A). This flagged 

12 samples, six with platelet contamination, one 

with increased erythrocyte levels, and five with 

signs of partial coagulation. Resolving the three 

quality marker panels to the levels of individual 

proteins resulted in almost perfectly parallel 

trajectories (Supplemental Fig. S4A-C). 

Accordingly, the correlations to the reference 

contamination panels were substantial (R > 0.77). 

Overall, the variation of the contamination indices 

was highest for the platelets also visible by a 

contamination index difference (max/min ratio) of a 

factor 182 between the least and the most 

contaminated sample, followed by erythrocytes 

(max/min 23) and lowest for coagulation (max/min 

5). The platelet proteins talin-1 (TLN1), myosin-9 

(MYH9) and alpha-actinin-1 (ACTN1) had the 

largest variations, all with maximal changes greater 
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than 5000-fold. Catalase (CAT), carbonic 

anhydrase 1 and 2 (CA1, CA2) from the erythrocyte 

index varied maximally by more than 500-fold. The 

three fibrinogens in the coagulation panel changed 

by up to 20-fold, indicating that only partial 

coagulation events took place (Fig. 4A).  

 

Note that evaluating individual sample quality 

based on the standard deviation of all samples, as 

done here, has the benefit of being independent of 

the specific proteomic method used to measure 

protein amounts. However, this requires that most 

samples have low levels of contamination, so that 

outliers of the statistical distribution are clearly 

apparent. If this is not the case, we propose using 

general, study-independent cut-off values to 

differentiate between samples of high and poor 

quality in such studies.  

 

To assess potential systematic bias for groups of 

samples such as cases and controls or different 

time points, we applied a volcano plot. This 

revealed that the statistically significantly 

upregulated proteins of time point 4 of our study 

mainly due to the platelet panel (Fig. 4B). With this 

information in hand, we contacted our collaboration 

partners, who tracked down the platelet 

contamination to a switch of the blood taking 

equipment due to low supplies.  

 

In practice, such sample issues will occasionally 

happen in a clinical study, and our contamination 

marker panels would allow elimination of the 

affected samples. However, if contaminating 

proteins can reliably be distinguished from relevant 

biomarker candidates, the data could still be used. 

In our example, six of the eight significant outliers 

were from the platelet panel, and the other two 

proteins – GP1BA and NRP1 – could still be of 

interest. To investigate this further, we inspected 

the global correlation map of all proteins, time points 

and participants (25). In this hierarchical clustering 

analysis, proteins that are co-regulated have a high 

correlation to each other and appear in groups, 

visualized as red patches (Fig. 4C). Here, the 

platelet cluster was the second largest one with 38 

proteins (R = 0.69). All quantified platelet panel 

proteins were in this cluster, as was GP1BA, 

flagging them as likely contaminants (Fig. 4C and 

inset). Interestingly, NRP1, a receptor involved in 

angiogenesis did not group with the platelet 

proteins, suggesting a potential biological role. This 

is supported by the fact that NRP1, was significantly 

regulated over all time points compared to the 

baseline, in contrast to the platelet cluster proteins. 

  

The other two quality marker panels are also readily 

apparent in the global correlation map. Ten 

members of the erythrocyte panel cluster tightly as 

do the three fibrinogen chains (Supplemental Fig. 

S5). However, in this study the fibrinogens group 

with proteins involved in low-grade inflammation, 

reduction of which was one of the main findings of 

our study (Supplemental Fig. S5). In contrast, the 

coagulation marker PF4v1, which is also a highly 

abundant protein in platelets, clustered in the 

platelet group in this analysis, indicating that it 

varied as a result of sample preparation.  

 

To make the above described analysis readily 

available, we created an online platform at 

www.plasmaproteomeprofiling.org. It provides a 

toolbox for the interactive assessment of the quality 

of plasma proteomics data. Lists of protein 

abundances can be uploaded by drag-and-drop 

and the system automatically generates the three 

contamination index values as shown in Figure 4A. 

If the user indicates cases and controls, the dataset 

will be analyzed for systematic bias as visualized in 

a volcano plot (Fig. 4B). The global correlation map 

is also displayed with the clusters of the 

contamination panels (Fig. 4C). The website is 

designed in the Dash data visualization framework, 

which allows further interactive analysis of the data 

(see Materials and Methods). Potential biomarker 

candidates in the volcano plot can be selected and 

displayed in the global correlation map to check if 

the   protein    falls    into    or    near    one    of    the 
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contamination marker clusters. 

 

Revisiting results of published biomarker 

studies  

Having examined one study in detail, we set out to 

survey the extent to which probably contamination 

proteins are reported as biomarker candidates in 

the literature. To this end, we performed a 

comprehensive PubMed search requiring the terms 

`proteomics`, `proteome`, `plasma OR serum`, 

`biomarker` and `mass spectrometry` spanning the 

time frame from 2002 to April 2018. We excluded 

review papers, purely technological publications 

without biomarker candidates, animal studies and 

publications without proteins as qualitative or 

quantitative variables. From the resulting 210 

publications, we manually extracted the lists of the 

biomarker candidates that were reported as 

‘significantly altered proteins’ by the authors. Gene 

and protein names were mapped to the 

corresponding protein identifiers in our reference 

panels and analyzed for their frequencies.  

 

Remarkably, 113 studies (54%) reported at least 

one potential contamination marker as a biomarker 

candidate or as a statistically significant association 

(Fig. 4D). As the total contamination panel consists 

of 84 proteins and the median number of candidates 

per clinical study was seven, a certain overlap is not 

entirely unexpected. However, the candidates in 

question almost always were near the top of most 

abundant proteins of the contamination panels, 

making it highly likely that they are indeed 

contaminants. Furthermore, while an individual 

protein could still be a genuine biomarker 

candidate, the fact that 22 studies (11%) reported  

 

 

 

 

 

 

 

two of them, and a further 23 studies (11%) three or 

more, again makes contamination the likely 

explanation.  

 

The majority of these studies reported proteins as 

potential biomarkers or as significant outliers of the 

coagulation panel, followed by the erythrocyte and 

platelet panels (Fig. 4E). The most frequent one 

was clusterin (CLU; 27 times), followed by the 

fibrinogen (alpha, beta and gamma; 22, 10, 15 

times), prothrombin (F2; 17 times), kininogen 

(KNG1; 15 times), antithrombin-III (SERPINC1, 13 

times) and platelet basic protein (PPBP, 10 times). 

It is worth noting that proteins related to erythrocyte 

leakage may falsely be taken to indicate activation 

of oxidative pathways. For example, the 

hemoglobin subunits (e.g. HBA1, HBB, HBD, listed 

1, 6 and 1 times), carbonic anhydrases (CA1, CA2, 

6 and 6 times), fructose-bisphosphate aldolase 

(ALDOA, 5 times), peroxiredoxin 2 (PRDX2, 3 

times) and superoxide dismutase (SOD1; 2 times) 

are annotated with keywords linked to oxidation. To 

illustrate this, a recent publication connected 

plasma proteome alterations in Type 1 diabetes to 

oxidative stress. This may be a spurious link 

because the reported proteins were mostly 

members of the erythrocyte contamination panel 

(26). Although platelet panel proteins are not 

prominent in the biomarker literature yet, we expect 

that they – along with lower abundant erythrocyte 

specific proteins – will play an increasing role as 

technological progress enables higher plasma 

proteome coverage. We caution that platelet 

proteins already found in the biomarker literature 

such as PPBP, THBS1 and PF4 are often linked to 

coagulation events.  

 

 

 

 

 

 

 

 

Fig. 4: Quality marker panels in a weight loss study and literature study. (A) Assessment of individual sample quality with respect to the three 

contamination indices using the online tool at www.plasmaproteomeprofiling.org. Samples with indices that are more than two standard deviations 

from the mean (horizontal red lines) are flagged as potentially contaminated (red bars and sample numbers). (B) Volcano plot of the proteome 

comparison of time point 1 vs 4. Proteins of the platelet panel are highlighted in blue and two additional significantly regulated proteins in red. (C) 

Global correlation map on the left with an inset of the platelet cluster on the right. The two significant outliers of the volcano plot in (B) are marked 

in red. Platelet panel proteins are highlighted in blue in the inset. Red patches in the global correlation map indicate positive and blue patches 

negative correlations. (D) Literature analysis of 210 publications using MS-based plasma proteomics to identify new biomarkers. The number of 

quality markers reported as biomarker candidates in these studies is indicated. (E) Distribution of the reported quality markers according to the 

three types of likely contaminations. The distribution is shown across studies that report one, two or three proteins of the same contamination 

panel. 
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Table 1: Practical considerations to minimize systematic bias 

General instructions 

 Avoid pooling of samples 

 Use plasma or serum exclusively, not a combination 

 

Sample collection 

 Standardize blood collection and pre-analytical procedures 

(preferably same person collecting blood, centrifuge, sampling 

container, storage temperature and time) 

 Centrifuge blood to generate plasma immediately 

 Centrifuge according to manufacturer’s instruction  

 Harvest plasma immediately after centrifugation 

 Harvest the plasma starting from the top of the container, and 

pool it before aliquotting 

 Discard the last 500 µl of plasma to avoid contamination with 

platelets or use a second centrifugation step to generate 

platelet-poor plasma 

 Freeze study samples immediately after harvesting  

 

Principal assessment of study sample quality  

 When working with a new batch of samples from 

collaborators: run at least ten test samples of each study 

group by mass spectrometry 

 Use quality marker panels to check for any indication of 

contamination 

 

Main study 

 Continuously assess quality during the project to detect and 

avoid systematic bias (pre-analytics, mass-spectrometric 

analyses)  

 Overall quality: Report the number of contaminated samples 

 Systematic bias: Report potential systematic bias 

 Check if biomarker candidates are contained in the quality 

marker panels  

 Identification of several quality markers as biomarker 

candidates may be indicative of a study vector 

 If a quality marker is among the biomarker candidates, 

thorough validation required 

 

 

Recommendations for future proteomics 

studies 

Based on our experience with the above defined 

three quality marker panels (Supplemental Table 

S2) and analysis of thousands of plasma 

proteomes, we devised a general guideline for 

minimizing and detecting biases related to sample 

taking and processing (Table 1). The centrifugation 

device itself plays the largest role in causing platelet 

contamination and the blood taking equipment must 

be kept the same throughout a study. We 

recommend to not collect the lowest layer of the 

plasma above the platelet bed after centrifugation 

as this can strongly contribute to contamination 

(Supplemental Fig. S6). Furthermore, any delay 

from centrifugation to plasma harvest has a high 

potential to induce platelet protein contamination. 

The above factors mainly influence the platelet 

rather than the erythrocyte contamination index, 

indicating that proteins from the platelet proteome 

are the most likely cause of erroneous assignment 

of biomarker candidates. 

 

Discussion  
Blood plasma remains the predominant biological 

matrix to assess health and disease in clinical 

settings. Around the world, every day hundreds of 

thousands of samples are analyzed to determine 

the levels of individual proteins. Likewise, blood 

plasma is directly or indirectly assessed in most 

clinical trials. Protein levels in plasma can readily be 

affected by cellular contamination or handling-

related issues and in clinical practice this is partially 

addressed by simple tests such as those for 

hemoglobin contamination. However, these tests 

are not systematic or quantitative and they can only 

be used to exclude clearly contaminated samples. 

 

Because of its high specificity and unbiased nature, 

MS-based proteomics is ideally suited to 

characterize the quality of blood plasma and it 

requires less than one µl of material. So far, 

research on sample quality involving MS has mainly 

been restricted to the stability of internal standards 

in targeted assays and has rarely addressed overall 

sample quality (14, 17, 18). To our knowledge, there 

has been no systematic effort to examine the 

common sources of plasma proteome 

contamination using proteomics. Employing this 

technology on a systematic basis, we found that 

platelets, erythrocytes and coagulation are by far 

the most important causes of plasma 

contamination. We acquired very deep reference 

proteomes for these cell types and blood 

compartments, which we provide to the community 

to evaluate the possible origin of proteins emerging 
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from biomarker studies. We defined three panels of 

about 30 proteins each that can serve as 

contamination indices (Supplemental Table S2). 

Using the example of a longitudinal Plasma 

Proteome Profiling study of weight loss and our 

online resource, we illustrated how the 

contamination indices can flag individual, suspect 

samples and systematic biases. Furthermore, 

correlation analysis reveals whether or not potential 

biomarkers emerging from a given study are likely 

to be associated with contamination-related 

proteome changes instead. Conversely this 

procedure can ‘rescue’ genuine biomarker 

candidates that are part of the contamination 

proteomes.  

 

The clinical potential of the plasma proteome has 

long been realized and is also emphasized by the 

fact that more than 50 FDA-approved biomarkers 

can be quantified even in relatively shallow 

proteomics measurements of plasma (22). If there 

are as many new biomarkers among the less 

abundant proteins, there should be a diagnostic 

treasure trove still to be discovered (2). Millions of 

plasma samples are stored in biobanks worldwide, 

representing an immense untapped resource that 

could be analyzed by MS-based proteomics or 

large-scale affinity based methods. Despite initial 

enthusiasm and community efforts such as the 

Human Proteome Organization’s plasma 

proteomics initiative (27, 28), few if any new protein 

biomarkers have entered the clinic in recent 

decades. This is probably at least partially due to 

technological limitations to characterize the vast 

dynamic range of the plasma proteome, which in 

turn has led to underpowered study designs (2). 

While many of these challenges are already being 

addressed, we suspected that problems with 

sample quality represent another important reason 

for the paucity of new biomarkers and even more 

seriously, for incorrect biomarkers being used. 

Examining our own data as well as the scientific 

literature, we here show that sample quality issues 

indeed have an impact on reported results. Nearly 

half of the reviewed studies reported at least one 

potential biomarker that is in our contamination 

panels, and many had two or more, making sample 

contamination very likely. While coagulation related 

issues are currently most prominent, increasing 

depth of plasma proteome coverage may replace 

platelet contamination as the most important source 

of error in the future. A corollary of the very large 

abundance variation of proteins introduced by 

contamination is that it should further discourage 

pooling of samples. While this increases 

throughput, even a single contaminated sample can 

readily skew an entire batch.  

 

Systematic bias introduced by imperfect sample 

handling or processing may lead to reporting 

incorrect biomarkers. Conversely, randomly 

distributed samples with poor quality will diminish 

overall statistical quality and may obscure true 

biomarker candidates.  

 

We here provide general considerations for 

minimizing sample-related issues, ranging from 

immediate harvest of the plasma after 

centrifugation to discarding the lowest layer of 

plasma to avoid recontamination with platelets 

(Table 1). These recommendations update and 

extend general good laboratory practices as well as 

HUPO guidelines (20, 27). We also advocate that 

plasma samples are quality-checked by MS-based 

proteomics, at least for a representative subset. 

This is especially important for clinical studies but 

also for targeted, single analyte measurements, 

which by their nature are blind to the overall 

composition of the sample. Although it would be 

possible to determine contamination indices by 

multiplexed affinity-based methods, we recommend 

MS for this purpose because of its very high 

specificity and its unbiased nature. Furthermore, 

the proteomics depth needed to assess 

contamination is easily achievable even rapid and 

economical measurements.  
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The concepts and methods put forward in this study 

could readily be adapted to other body fluids such 

as urine, saliva or cerebrospinal fluid. This would 

require developing the appropriate contamination 

indices. Furthermore, the three contamination 

categories are the largest but not the only ones. For 

instance, we imagine that similar experiments can 

be performed to gauge the effect of storage duration 

and temperature on the plasma proteome as it 

influences MS-based proteomics.  

 

In conclusion, sample-related quality issues are 

clearly a concern for biomarker studies. However, 

we show here that they can be addressed rigorously 

and comprehensively by MS-based proteomics. As 

this technology continues to improve in throughput, 

depth and robustness, we envision that it will be 

employed in routine clinical practice. Biomarker 

panels instead of single markers will be measured 

by MS-based proteomics as this takes advantage of 

its inherently multiplexed nature and allows the 

characterization of clinical conditions more 

comprehensively. These biomarker panels could 

routinely be extended with contamination panels as 

introduced here, helping to establish biomarker 

guided decisions in a wide variety of clinically 

important areas.  
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Materials and Methods 
Samples for defining the three contamination 

marker panels 

Whole blood was harvested by venipuncture of ten 

females and ten males into commercial EDTA 

containing sampling containers. All participants 

gave written informed consent for their participation 

in the Munich Study on Biomarker Reference 

Values (MyRef), which is registered under the local 

ethic number 11-16. The blood was centrifuged at 

200 g for 10 min and both the pellet and the 

supernatant were kept for further processing steps. 

The bottom layer of 500 µl plasma was discarded to 

avoid contamination of the platelet-rich plasma 

fraction with erythrocytes. The pellet was 

centrifuged at 2000 g for 15 min and the top layer 

containing plasma, the buffy coat and 1 ml of 

erythrocytes were discarded. After adding 4 ml PBS 

containing 1.6 mg/ml EDTA, the suspension was 

centrifuged at 2000 g for 15 min and the 

supernatant was discarded together with 500 µl of 

the top layer of the erythrocytes. This step was 

repeated and the pure erythrocyte fraction was 

harvested. We centrifuged the supernatant from the 

first centrifugation step containing plasma and 

platelets a second time at 200 g for 10 min and 

harvested the supernatant, which constitutes the 

platelet-rich plasma. This step was repeated and we 

collected the supernatant and the platelet after 

centrifugation at 2000 g for 15 min. The supernatant 

was centrifuged a second time at 2000 g for 15 min 

to harvest platelet-free plasma by sampling only top 

layer of the supernatant, but discarding the bottom 

layer of 500 µl. The platelets were washed twice by 

adding 4 ml PBS containing 1.6 mg/ml EDTA and 

centrifugation at 2000 g for 15 min. The supernatant 

was discarded and the pure platelet fraction was 

harvested. 

 

For the serum and plasma comparison, blood 

samples from two females and two males were split 

into 18 samples each and serum and plasma were 

harvested after centrifugation at 2000 g for 15 min.  

 

To evaluate the platelet contamination in different 

layers of plasma after centrifugation, blood was 

collected in two different 9 ml S-Monovette EDTA 

containing sampling containers (Sarstedt). The 

blood of one container was transferred to a 15 ml 

centrifugation tube without separation gel. Both 

container were centrifuged at 2000 g for 15 min. 

Plasma was harvested in nine volume fractions 

starting from the top layer in 500 µl steps to the top 

of the buffy coat. The buffy coat itself was not 

touched and a small amount of plasma (~200 µl) 

remained on top. 

 

High abundant protein depletion for building a 

matching library 

We created a matching library and applied a 

consecutive depletion strategy, in which the top 6 

and top 14 most abundant plasma proteins were 

depleted by using a combination of two 

immunodepletion kits, as described in ref. (22). 

Briefly, the Agilent Multiple Affinity Removal Spin 

Cartridge was used for the depletion of the top six 

highest abundant proteins (albumin, IgG, IgA, 

antitrypsin, transferrin, haptoglobin), followed by 

Seppro Human 14 Sigma immunodepletion for the 

14 highest abundant proteins (Albumin, IgG, IgA, 

IgM, IgD, transferrin, fibrinogen, α2-macroglobulin, 

α1-antitrypsin, haptoglobin, α1-acid glycoprotein, 

ceruloplasmin, apolipoprotein A-I, apolipoprotein A-

II, apolipoprotein B, complement C1q, complement 

C3, complement C4, plasminogen, prealbumin). 
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Following depletion, we fractionated our samples 

using the high-pH reversed-phase “Spider 

fractionator” into 24 fractions as described 

previously (24). 

 

Sample preparation: Protein digestion and in-

StageTip purification 

Sample preparation was carried out according to 

our Plasma Proteome Profiling pipeline as 

described in (22, 23) with an automated set-up on 

an Agilent Bravo liquid handling platform. In brief, 

plasma samples were diluted 1:10 with ddH2O and 

10 µl of the sample were mixed with 10 µl PreOmics 

lysis buffer (P.O. 00001, PreOmics GmbH) for 

reduction of disulfide bridges, cysteine alkylation 

and protein denaturation at 95°C for 10 min (29). 

Trypsin and LysC were added to the mixture after a 

5 min cooling step at room temperature, at a ratio of 

1:100 micrograms of enzyme to micrograms of 

protein. Digestion was performed at 37 °C for 1 h. 

An amount of 20 µg of peptides was loaded on two 

14-gauge StageTip plugs, followed by consecutive 

purification steps according to the PreOmics iST 

protocol (www.preomics.com). The StageTips were 

centrifuged using an in-house 3D-printed StageTip 

centrifugal device at 1500 g. The collected material 

was completely dried using a SpeedVac centrifuge 

at 60 °C (Eppendorf, Concentrator plus). Peptides 

were suspended in buffer A* (2% acetonitrile (v/v), 

0.1% formic acid (v/v)) and sonicated (Branson 

Ultrasonics, Ultrasonic Cleaner Model 2510). Pools 

for each of the five sample types (whole blood, 

erythrocytes, platelets, plasma and platelet-free 

plasma) were generated from the 20 individuals and 

prepared according to the procedure above. The 

peptides were fractionated using the high-pH 

reversed-phase “Spider fractionator” into 24 

fractions as described previously to generate deep 

proteomes (24). 

 

Ultra-high pressure liquid chromatography and 

mass spectrometry 

Samples were measured using LC-MS 

instrumentation consisting of an EASY-nLC 1000 or 

1200 ultra-high pressure system (Thermo Fisher 

Scientific), which was coupled to a Q Exactive HF 

Orbitrap (Thermo Fisher Scientific) using a nano-

electrospray ion source (Thermo Fisher Scientific). 

Purified peptides were separated on 40 cm HPLC-

columns (ID: 75 µm; in-house packed into the tip 

with ReproSil-Pur C18-AQ 1.9 µm resin (Dr. Maisch 

GmbH)). For each LC-MS/MS analysis about 0.5 µg 

peptides were used for 45 min runs and for each 

fraction of the deep plasma data set. 

 

Peptides were loaded in buffer A (0.1% formic acid, 

5% DMSO (v/v)) and eluted with a linear 35 min 

gradient of 3-30% of buffer B (0.1% formic acid, 5% 

DMSO, 80% (v/v) acetonitrile), followed stepwise by 

a 7 min increase to 75% of buffer B and a 1 min 

increase to 98% of buffer B, followed by a 2 min 

wash of 98% buffer B at a flow rate of 450 nl/min. 

Column temperature was kept at 60 °C by an in-

house-developed oven containing an Peltier 

element, and parameters were monitored in real 

time by the SprayQC software (30). MS data was 

acquired with a Top15 data-dependent MS/MS 

scan method for the construction of the library and 

BoxCar scans (31) for the study samples. Target 

values for the full scan MS spectra were 3 x 106 

charges in the 300-1650 m/z range with a maximum 

injection time of 55 ms and a resolution of 60,000 at 

m/z 200. Fragmentation of precursor ions was 

performed by higher-energy C-trap dissociation 

(HCD) with a normalized collision energy of 27 eV. 

MS/MS scans were performed at a resolution of 

30,000 at m/z 200 with an ion target value of 1 x 105 

and a maximum injection time of 120 ms. Dynamic 

exclusion was set to 30 s to avoid repeated 

sequencing of identical peptides. 

 

Data analysis 

MS raw files were analyzed by MaxQuant software, 

version 1.5.6.8, (32) and peptide lists were 

searched against the human Uniprot FASTA 

database. A contaminant database generated by 

the Andromeda search engine (33) was configured 

with cysteine carbamidomethylation as a fixed 

modification and N-terminal acetylation and 

methionine oxidation as variable modifications. We 
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set the false discovery rate (FDR) to 0.01 for protein 

and peptide levels with a minimum length of 7 

amino acids for peptides and the FDR was 

determined by searching a reverse database. 

Enzyme specificity was set as C-terminal to arginine 

and lysine as expected using trypsin and LysC as 

proteases. A maximum of two missed cleavages 

were allowed. Peptide identification was performed 

with an initial precursor mass deviation up to 7 ppm 

and a fragment mass deviation of 20 ppm. The 

‘match between run algorithm’ in the MaxQuant 

quantification (34) was enabled after constructing a 

matching library consistent of depleted and all the 

undepleted plasma samples. All proteins and 

peptides matching to the reversed database were 

filtered out. Label-free protein quantitation (LFQ) 

was performed with a minimum ratio count of 2 (35). 

 

Bioinformatics analysis 

All bioinformatics analyses were performed with the 

Perseus software of the MaxQuant computational 

platform (32, 36). For the global correlation 

analysis, proteins were filtered for at least 50% valid 

values in the weight loss study and the hierarchical 

clustering was performed using Euclidean distance. 

The weight loss study contained in total 28 proteins 

of the platelet panel, but after sorting for 50% valid 

values only 24 were left and all of them clustered in 

the platelet panel. 

 

Online platform for automated analysis of 

clinical studies 

Our online portal is equipped with a user-friendly 

graphical interface that supports the most common 

web browsers, such as Google Chrome, Firefox and 

Internet Explorer. For the front-end development, a 

Dash framework was used (version 0.27.0), which 

consists of a Flask server (1.0.2) that 

communicates with front-end React.js components 

using JSON, or JavaScript Object Notation, packets 

(a minimal, readable format for structuring data) 

over HTTP, or Hypertext Transfer Protocol, 

requests that work as request-response protocols 

between a client and server. Taking advantage of 

the full power of Cascading Style Sheets (CSS), 

every graphical element was customized: the 

sizing, the positioning, the colors, and the fonts.  

 

The platform takes the results of the MS data 

processed by the popular MaxQuant software (32) 

integrated with the Andromeda search engine (33), 

which is a so called ProteinGroups table (to be 

extended to other formats). During the data 

uploading, the input file is verified through a 

combination of preliminary tests. To build a complex 

data structure using general Python libraries, such 

as NumPy, Pandas and SciPy, we used three 

panels of markers for platelet contamination, 

erythrocyte contamination and coagulation events 

in plasma samples, respectively, to identify samples 

affected by quality issues. Samples having at least 

50% ‘valid values’ (i.e. those with quantification 

results), are preprocessed by cleaning the data and 

prepare them for the subsequent visualization step. 

 

Data and materials availability: The MS-based 

proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE 

partner repository and are available via 

ProteomeXchange with identifier PXD011749. 
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Supplemental Figures 
 

 
Fig. S1: Number of identified proteins per sample type for the 20 study participants. The number of identified proteins is shown for all 

individuals. The whiskers indicate the standard deviation (SD) and the mean is also indicated. 

 

 

 

 

 

 
Fig. S2: Correlation of the main blood fractions. Correlation of the median proteomes of whole blood, erythrocytes, platelets, platelet-rich 

plasma and platelet-free plasma from 20 individuals. The 30 highest abundant proteins of erythrocytes and platelets are highlighted in red and 

blue, respectively. Proteins highlighted in yellow overlap between the top 30 proteins in erythrocytes and platelets.  The histograms show the 

distribution of both marker panels over the abundance range of the plasma, platelet, erythrocyte, blood and platelet-rich plasma proteome, 

respectively.
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Fig. S3: Correlation of the contamination panels to plasma protein levels in the weight loss study. Histogram of Pearson correlation 

coefficients calculated between the reference cohort and the plasma samples in the weight loss study for the erythrocyte contamination panel (23). 

Distribution of the Pearson correlation coefficients for the platelet panel. (C) Exemplified correlations for the erythrocyte panel in three samples. 
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Fig. S4: Example trajectories for the top four proteins of each panel across all samples in the weight loss study. (A) Intensities of the four 

highest abundant erythrocyte specific proteins for all samples. (B) Intensities of the four highest abundant platelet proteins. (C) Intensities of the 

four most significantly regulated coagulation markers. 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 30, 2018. ; https://doi.org/10.1101/478305doi: bioRxiv preprint 

https://doi.org/10.1101/478305


RESEARCH RESOURCE                                                                   Plasma proteomics detects biases in biomarker studies 

Page | 20                                                                                         Plasma Proteome Profiling 

 
Fig. S5: Erythrocyte and coagulation marker in the global correlation map. The global correlation map is shown on the left and the magnified 

inset shows three clusters of correlating proteins. The erythrocyte panel and the fibrinogens are highlighted in red. The color-code for the Pearson 

correlation coefficient is indicated. 
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Fig. S6: Distribution of platelet proteins in different plasma volume fractions after centrifugation. (A) Plasma from nine different layers 

were harvested starting from the top after centrifugation to the top above the buffy coat in 500 µl steps. (B) The boxplots indicate the Z-scores of 

27 of the top 30 platelet proteins that were quantified with at least 50% valid values in this experiment for the volume fractions 1-9 and the pool of 

all layers. The whiskers indicate the 10-90% quartile and the horizontal line within the boxplots is the median. (C-E) Examples for three platelet 

proteins for the three plasma collection protocols with intensity values, illustrating the changes within protocol and the volume fractions. Data 

points of the centrifugation container with and without a gel plug are color coded in blue and beige, respectively. 
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Fig. S7: Distribution of erythrocyte proteins in different plasma volume fractions after centrifugation. (A) Volume fractions 1-9 and the pool 

of all layers for three different plasma collection protocols.  The boxplots indicate the Z-scores of 7 of the top 30 erythrocyte proteins that were 

quantified with at least 50% valid values in this experiment. The whiskers indicate the 10-90% quartile and the horizontal line within the boxplots 

is the median. (C-E) Examples for three erythrocyte proteins for the three plasma collection protocols with intensity values, illustrating the changes 

within protocol and the volume fractions. The color code is according to panel B indicating the three protocols. 
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