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Liquid neural networks (or “liquid brains”) are a widespread class of cognitive living networks
characterised by a common feature: the agents (ants or immune cells, for example) move in space.
Thus, no fixed, long-term agent-agent connections are maintained, in contrast with standard neural
systems. How is this class of systems capable of displaying cognitive abilities, from learning to
decision-making? In this paper, the collective dynamics, memory and learning properties of liquid
brains is explored under the perspective of statistical physics. Using a comparative approach, we
review the generic properties of three large classes of systems, namely: standard neural networks
(“solid brains”), ant colonies and the immune system. It is shown that, despite their intrinsic
physical differences, these systems share key properties with standard neural systems in terms of
formal descriptions, but strongly depart in other ways. On one hand, the attractors found in liquid
brains are not always based on connection weights but instead on population abundances. However,
some liquid systems use fluctuations in ways similar to those found in cortical networks, suggesting
a relevant role of criticality as a way of rapidly reacting to external signals.

PACS numbers: Brains, collective intelligence, criticality, phase transitions, evolution.
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I. INTRODUCTION

As pointed out by physicist John Hopfield, biology
is different from physics in one fundamental way: bio-
logical systems perform computations, (Hopfield 1994).
Within the context of evolution, a crucial ingredient for
the emergence of biological complexity required the de-
velopment of information-processing systems at multi-
ple scales (Baluška & Levin 2015). Adaptation to a
dynamic environment deeply benefited from non-genetic
processes that allowed response mechanisms to short-
term changes. Thus, biological computation is an intrin-
sic part of our current understanding of cell phenotypes
(Benenson 2012) and not surprisingly the molecular webs
of interactions connecting genes, proteins and metabo-
lites has been often represented in terms of computations
(Bray 1999).

Once fast-responding molecular signalling mechanisms
were in place, a whole range of possibilities became avail-
able: individuals could not only respond to environmen-
tal cues, but they could also start to interact with other
individuals prompting a higher-order cognitive network
(Jablonka & Lamb 2006). Such transition took place in
a diverse range of ways. It included the development of
the first brain-like structures (Rose 2006, Pagan 2018) as
well as societies formed by relatively simple agents (ants,
termites or bees) capable of performing complex cogni-
tive actions at the collective level (Oster & Wilson 1978;
Solé & Goodwin 2001). Ant colonies have been compared
to brains as both exhibit emergent collective phenomena
(dynamical and structural patterns of organisation and
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FIG. 1: Network interactions in liquid versus solid brains. The three case studies analysed in this paper are shown,
with examples of the agents involved in each case. Standard neural networks (a) involve spatially localized cells connected
through synaptic weights. In contrast with this architecture, liquid brains, including (b) the immune system and (c) ant
colonies include mobile agents (or cell subsets) interacting in space and time with no fixed pairwise weights. The schematic
representation ofr each case study is outlined in the right column. Standard neural networks are defined in terms of connected
excitable elements that can be roughly classified in active (firing) and inactive (quiescent) neurons, here indicated as filled and
open circles, respectively (d). The wiring matrix remains basically the same in terms of topology (who is connected with whom)
but will be modified in strength due to experience. By contrast, ant colonies must be represented by disconnected graphs (e)
where interactions are possible within a given spatial range, here indicated by means of the grey circle. The immune system
allows several representations of the interactions, but in many cases it is the molecular interaction between epitopes (strings of
symbols in (f)) what truly represents the underlying liquid brain dynamics.

behaviour that cannot be reduced to the properties of sin-
gle ants) and display cognition on a large scale beyond
that of the individual components (Gordon 1999, 2010).
These two examples represent two distinguishable large
classes of networks. Along with ant colonies, immune
systems also share traits characteristic of the metazoan
nerve nets yet they strongly depart from them in the fluid
nature of cell-cell interactions.

The previous three examples are displayed in Figure
1. Here coupled neurons (a), interacting ants (b) or im-
mune cells responding to novel challenges (c) are shown,
along with minimal representations of the underlying
networks (d-f). Here the classical picture of a neural
network involves a topological structure (a graph) with
neurons occupying the nodes and interneuronal links be-
coming the edges (d). Two types of nodes are shown,
open and closed, associated to inactive or active neu-
rons, respectively. Ant colonies, on the other hand, also
involve collectives of interacting individuals which phys-
ical locations change over time: the colony is “liquid”.
Thus, interactions are now limited to local neighboring
agents, which constrains the system in a non-trivial man-
ner. Within the liquid realm we can still characterize two
paradigms: given their relative mobility and signal trans-
mitivity (see below) inesct colonies are strongly affected

by the locality of their interactions, whereas immune sys-
tems are highly mobile, such that a well-mixed approach
might accurately represent their overall dynamics.

Other types of organisms, such as the slime mould
Physarum, solve some classes of optimisation problems
by utilizing a different form of fluid organisation (Tero
et al. 2007) although in this case there is no neural sub-
strate. This class of systems are able to solve minimiza-
tion problems on a network (Adamatzky 2010).

Upon the transition to multicellularity, cell types ca-
pable of sensing and responding to signals appeared and
permitted the emergence of a novel class of systems: webs
of connected cells. These expanded the landscape of com-
putations, including processing the information in non-
trivial (aneural) ways (Baluška & Levin 2015). Such
primitive networks provided a reliable way of dealing
with complex decisions, integrating and storing mem-
ory and creating the conditions for increasing behavioral
complexity. Simple organisms such as hydra and pla-
narian flatworms provide good illustrations of the early
steps in this direction (Pagan 2018). To some extent,
all these systems can be modelled as networks of neu-
rons that are connected in a stable way over time. Each
pair of connected cells will remain linked over a given
time scale and changes will take place at the level of the
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Brain Immune System Insect Colonies

Computational
Nature

Distributed/Modular Distributed/DOL Distributed/DOL

Reliability under
agent loss

High High High

Connectivity
Hard-wired
yet plastic

Liquid (*)
Liquid but

spatially constrained
(*)

Memory &
Learning

Synaptic
Population-based (Burnet) &

Synaptic (Jerne)
Population-based &

Synaptic

Regeneration
potential

Low High High

Externalities
Peripheral Nervous System &

Technology (tools)
No Nests & Agriculture

Weighted
Interactions

Hebbian Antibody-Mediated Pheromone-Mediated

Dynamical
State

Critical Critical (*) Critical (*)

TABLE I: Comparative properties in Liquid versus Solid Brains. This table summarises a broad set of properties that are
usually attributed to neural systems (soild brains) and here compared to those reported from two relevant examples of liquid
brains, namely the immune system and insect (mostly ant) colonies. While the way computations are performed is a parallel
process in all systems, all also exhibit some degree of specialisation, which can be understood as a modularity or a division of
labour (DOL)- This first is observable in vertebrate brains while the later is a characteristic allocation of tasks that can occur
either in societies with different morphological castes and in monomorphic ones. Similarly, we label the learning and memory
properties in terms of a simple, network-related set of properties. In most cases studied here the memory potential of an ant
colony is related to short-term phenomena tied to the production of a pheromone field, but long-term memories have also been
reported at the individual level. In all these examples we indicate by (*) those attributes that are not well established or have
been found in some case studies, and that will benefit from a theory of liquid brains.

type and strength of the connection. Theoretical work
has shown that cognitive tasks performed by these solid
brains (simple and complex) such as pattern recognition,
associative memory or language processing can be prop-
erly described. But what about liquid brains?

In this paper we review several models of both ant
colony and immune system dynamics based on a neu-
ral network perspective and compare them with previous
studies on “solid” brain models. In table I we summarise
some general qualitative properties of the three classes of
systems explored here, as well as others that we found
relevant. The list is not exhaustive and involves generic
descriptors that inevitably ignore the broad diversity of
sizes, organization levels and ecological contexts. Sev-
eral key components of each potential candidate, includ-
ing size, age, context or developmental trajectories have
some influence in the degree of robustness, memory po-
tential or wiring patterns. All these factors make this
basic table a tentative one. Nevertheless, it also high-
lights the commonalities that we consider relevant to our
presentation.

Some key examples are worth mentioning. The label
“liquid” is used to describe a physical state that ignores
spatial structuring such as lymph nodes in the immune
system or the nest structure of ant or termite colonies.
Some of these features cannot be taken as absolute indi-

cators since they are strongly influenced by life styles, size
or behavioural context. The neural network of a hydra
or a planarian flatworm are simple and small and might
not display the modularity found in more complex neu-
ral agents, but nevertheless they display spatially stable
networks of neurons, which are reliable under cell loss.
Other relevant features (which are not included in Table
1) such as the self/nonself discrimination problem will
be amply discussed later on. In the following sections,
we summarise several types of models used to represent
and understand the dynamics of the three case studies
discussed here. By using them, we aim at enhancing the
universal elements shared by these liquid systems while
tracing a theoretical framework to study them.

II. SOLID BRAINS

Standard neural networks (NN), from cell cultures to
brains, have received great attention since the 1950s. A
specially successful approach has been based on the use
of statistical physics as a robust formalism capable of
capturing the collective properties exhibited by neural
masses (Deco et al. 2008). Both in statistical physics
as well as in logic models of NN, neurons are replaced
by a toy model representing only the minimal features
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exhibited by real cells. The intrincate structure of phys-
iological neurons is ignored and replaced by a formal ob-
ject devoid of any specific traits associated to cellular
or molecular biological mechanisms. Similarly, the way
connections and propagation of activity occurs is mapped
into a simple graph. Despite all these oversimplifications,
NN theory (also known as connectionism) has been ca-
pable of explaining the nature and relevance of collec-
tive phenomena involved in a broad range of areas, from
learning in small metazoans to more complex phenomena
related to human cognition (Forrest 1990, Farmer 1990).

We use here the term “brains” in a generic way too:
it will refer to ensembles of interconnected neurons (or
neural-like elements).The field has been growing since
then into multiple directions, but a special turning point
is the classical paper by Hopfield (Hopfield 1982) where
the basis for a statistical physics description of neural
networks emerged and largely marked the development
of this class of systems. Such a ”physics” perspective
provided the basis for the understanding of their global
properties out from the underlying microscopic descrip-
tion. Importantly, it also provided a systematic approach
to identify the presence of different ”phases” associated
to the presence or lack of memory as well as dynamical
states separating different types of activity. In this way,
the physics of phase transitions (Amit et al. 1985, Som-
polinsky 1988, Haken 1991) became a cornerstone to our
understanding of neural networks.

The simplest, canonical model is based on an assembly
of two-state agents description (McCulloch & Pitts 1943,
Rashevsky 1960). These are denoted as Si(t) ∈ {0, 1}
or Si(t) ∈ {−1,+1} (with i = 1, ..., N). Agents are con-
nected to each other through fixed synaptic links (Fig.
1a): each element sends to and recieves a signals from an-
other. Connectivity is represented by a matrix Jik ∈ R.
The system is modelled by a dynamical set of equations:

Si(t+ 1) = Θ

 N∑
j=1

JijSj(t)− θi

 (1)

where Θ(z) = 1 for z > 0 and zero otherwise. The
scalar θi is a threshold value. The so called external
field, hi =

∑
j JijSj(t) weights the total input of Si. It

is worth noting that the same class of threshold model
used to describe the dynamics of NN has been used to ap-
proach the dynamics of gene regulatory networks (GRN)
(Kauffman 1993, Bornholdt 2005,2008).

A. Attractor dynamics in recurrent neural
networks

A general treatment of these systems involves a high-
dimensional problem and a wide range of dynamical be-
haviours. However, an illustration of the potential of
NN as a way of solving computational problems in a dis-
tributed manner is provided by the Hopfield model (Hop-
field, 1982, Peretto 1992). This consists of a fully con-

a

c

b

d

FIG. 2: Distributed computation in neural networks.
Using a very simple set of rules, a NN model can store and re-
trieve memories in a robust manner. In the Hopfield’s model,
a massively connected set of neurons (a) with symmetric con-
nections obeying Hebb’s rule (b) will display such properties.
In (b), a pair of formal neurons is shown receiving inputs
ξi, ξj ∈ {−1,+1} from a given memory state or pattern ξµ. If
they are identical, i. e. ξi = ξj , their connection is increased
(in both directions). Otherwise, Jij it is decreased. Network
dynamics makes the system’s state flow to energy minima,
thus recovering the desired memory state. The model ex-
hibits remarkable reliability against connection loss. In (d)
we show how reliable is memory retrieval against stochas-
tic thermal variability. Parameter α is a relative measure of
memory capacity. The critical value αc ' 0.138 separates the
two phases: memory reliability (shaded area) and unreliabil-
ity (blank area). This transitions occurs sharply.

nected neural network described by the dynamical equa-
tions (1) with θi = 0. Hopfield’s model assumes no self-
connection (Jii = 0) and symmetry, i.e. Jij = Jji. It
can be shown that the model only displays single-point
equilibrium (attractors), i.e., asymptotically, the trained
network will tend to a stable configuration where all ele-
ments remain in a given state (Fig. 2a-c). Additionally,
Hopfield’s model allows the network to store a number
p of “memories” (patterns) defined as a set of vectors
ξµ = (ξµ1 , ..., ξ

µ
j , ..., ξ

µ
N ) , µ = 1 . . . , p . The storage pro-

cess takes place within a “training phase” where they
are presented to the network in such a way that each
neuron Si adopts the memory state i. e. Si = ξi and
all its synaptic weights Jij are updated (starting from
Jij = 0 at time zero) following the so-called Hebb’s rule,
which is summarised in Fig. 2b. In a nusthell, corre-
lated inputs increase weights whereas uncorrelated ones
decrease them. It can be shown (Hertz et al. 1991) that
the memory states ξµ are, in fact, the minima of a (high-
dimensional) energy function, namely:

H ({ξµi }) = −1

2

∑
i,j

JijSiSj , Jij =
1

N

p∑
µ=0

ξµi ξ
µ
j (2)
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and initial conditions close to a minimum will evolve to-
wards it. This is also outlined in Fig. 2c where we rep-
resent such multiple minima. In summary, the Hopfield
model is a dynamical process of memory retrieval: stored
patterns are recovered by a purely dynamical process.
Extensions to this approach come by introducing ther-
mal noise for the {Si} degrees of freedom. Usually, this is
obtained via a temperature T that accounts for stochastic
thermal variations (and, more generally, for noise). Each
time we choose a neuron, the probability of changing to
(or remaining in) state Si = +1 is a saturating function
of the local field, namely:

P [Si(t+ 1) = +1 | hi(t)] = φ

 1

T

∑
j

JijSj(t)

 (3)

with T defining a temperature and φ(x) a function such
that φ(0) = 0 and φ(x) → ±1 for x → ±∞. Temper-
ature is not just an additional attribute, as it actually
provides a powerful mechanism to escape from local min-
ima. By using a stochastic transition rule, it is possible
to move to lower-energy states from a given, suboptimal
(usually non-memory) state. In this context, a measure
of memory capacity is introduced as α ≡ p/N , where p
here corresponds to the number of well-stored patterns.
A phase-transition diagram captures the overall system
behaviour, depicted in Fig. 1d. The shaded region repre-
sents states where the system is capable of retaining the
memory patterns, while, for the blank region, these are
lost due to noise. An abrupt transition separates these
two regimes.

The previous model is an illustration of how cogni-
tive functions can be understood in terms of a system
of connected neurons. Here synaptic weights are modi-
fied in such a way that the resulting attractor dynamics
allows associative memory to be the consequence of a re-
laxation towards energy minima. Only steady states are
thus allowed. However, as discussed in the next section,
a different picture emerges when we look at the actual
dynamical patterns exhibited by neural tissues.

B. Critical dynamics in cortical networks

If we think in an idealised graph such as the one de-
scribed in Figure 1a, two classes of nodes can be defined:
either inactive or active. Active nodes are formed by
firing neurons whose excitability can be propagated to
nearest inactive areas (Hesse & Gross 2014). As a re-
sult, excitation waves can move across whole areas. This
would be a requirement to maintain integration in a dy-
namical fashion (Muñoz 2018). Instead of point, stable
attractors are here replaced by more complex types of
attractors.

The minimal model that can describe the propagation
or activity is based on a contagion scenario where inac-
tive nodes can become active if they are are connected

to active nodes. Moreover, an active node can sponta-
neously decay. At the smallest scale, this is similar to
the threshold dynamics described above. The simplest
case to consider is a homogeneous model where all con-
nections are similar, capable of propagating excitability
with Jij = J and an average connectivity 〈k〉. It can be
shown that the large-scale (coarse-grained) dynamics for
this homogeneous case can be defined by the equation
(Hesse & Gross 2014):

dA

dt
= f(A) = −1

τ
A+

J〈k〉
τ

A(1−A) , (4)

where τ is a characteristic time decay. A specially rel-
evant observation is that neural systems exhibit critical
behaviour (Chialvo 2004, 2010, Plenz et al. 2014). Two
main classes of dynamical behaviour can occur. This can
be shown using the fixed points, i.e., those A∗ such that
(dA/dt)∗A = 0. Two states are obtained. One is the triv-
ial, inactive phase where no activity propagates: A∗0 = 0.
The second phase is associated to the second fixed point,
namely:

A∗1 = 1− 1

J〈k〉
, (5)

which is properly defined (i.e. A∗1 ≥ 0) provided that
J〈k〉 ≥ 1. A critical point separating the two phases is
thus achieved for J〈k〉 = 1. For a given J value, the
critical connectivity is given by 〈k〉c = 1/J .

In Figure 3 two important diagrams are shown that
summarise the basic phenomena resulting from the pre-
vious model. One is the so called bifurcation diagram
(Strogatz 1994) where the stable states A∗0, A∗1 are plot-
ted against the average connectivity 〈k〉, with a marked
change occurring at criticality. Additionally, we also dis-
play the potential function V (A) (Solé 2011), defined as

V (A) = −
∫
f(A)dA , (6)

such that the dynamics derives from it, i.e. dA/dt =
−dV (A)/dA. The minima (maxima) of the potential
correspond to stable (unstable) fixed points. As we ap-
proach criticality, the potential function becomes increas-
ingly flatter. What is the impact of this flatness in the
activity? In general, shallow potentials are associated to
higher time variability and fluctuations diverge close to
criticality. To show this, we can use a linear stability
analysis taking the state A(t) = A∗k + δA, i.e. a small
deviation δA from a fixed point A∗k, and pluggin it into
the original equation for A(t). On a first approximation,
it can be shown that

dδA
dt

=

(
∂f(A)

∂A

)
A∗k

δA = λ∗kδA , (7)

where λ∗k is a scalar to be evaluated at each fixed point.
The resulting equation for fluctuations is linear. Thus,
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a. b.

c. d.

FIG. 3: Phase transitions in neural dynamics. In a sim-
ple version of large scale dynamics of neural tissues (a) (such
as brain cortex) can be represented as a network of connected
neighbouring areas that are connected with excitatory links
(adapted from Eckman et al. 2007). A toy model of this
(b) could be represented as a lattice of neural elements con-
nected as a grid with all elements linked to four elements in a
homogenous fashion. Completar phase transitions. The anal-
ysis of this system (c-d) reveal a phase transition from zero
activity to high-activity by crossing a critical value of average
connections at 〈k〉c = 1/J . A potential function can be ob-
tained where the two phases are revealed as stable states of
V (A). Here, large fluctuations show clear dominance around
the critical point.

close to A∗k, we expect a growth of fluctuations follow-
ing an exponential growth or decay. For the inactive
phase[99], we have

δA(t) = (δA)0e
λ∗0t = (δA)0 exp

(
−1

τ
(1− J〈k〉)t

)
. (8)

As we can see the system will return to the fixed point
(when 〈k〉 < 1/J) at a rate given by λ0. As we get close
to criticality, the exponent gets smaller, the relaxation
time rapidly increases. If the previous result is written
in terms of a relaxation time T (J, 〈k〉), i. e. δA(t) ∼
exp(−t/T (J, 〉k〈)) we have

T (J, 〈k〉) ∼ 1

1− J〈k〉
(9)

which rapidly diverges as J〈k〉 → 1. The divergence pre-
dicted by this simple model is confirmed by the analysis
of the fluctuations found in neural systems.

The two previous models explore some essential com-
ponents of neural complexity. Both deal with collective
behaviour and exhibit special regions of parameter spaces
that separate different phases. Phase transitions are of
central importance within statistical physics, and provide

a powerful framework to capture how microscopic inter-
actions translate into system-level patterns and processes
(Goldenfeld 1992, Solé 2011). Their importance within
our context becomes manifest as qualitative changes in
collective behaviour are typically caused by phase tran-
sition phenomena often associated to the density of in-
dividuals or the signals they use to communicate. How
these systems behave close to transition points turns to
be a key issue, as it provides understanding about how
emergent phenomena occur.

III. LIQUID BRAINS

A. Ant colony dynamics

Social insects, including ants and termites among other
groups, amount to about the same biomass than hu-
mans on Earth (Wilson 2012). With an evolutionary
history spanning around a hundred million years, euso-
cial colonies have deeply engineered the environment and
dominated the terrestrial biosphere much ahead (Wilson
& Hölldobler 2005). In trying to attach biological fit-
tness, insect colonies appear to behave as superorganisms,
it is the colony as a whole that plays an evolutionary
role, rather than its individual agents (ants). Across the
biosphere, we encounter both monomorphic and poly-
morphic ant colonies. The latter involving physiological-
anatomical differences within a given colony. However,
it is estimated that 80% of ant species are monomorphic.
The rest of species (polymorphic) range from 2 to 3 dif-
ferent casts. Here onwards, we will focus our study on
monomorphic ant species.

On the other hand, various estimates state that the
behavioral repertoire of ant colonies ranges from 20 to
45 different individual-ant behaviour (Oster & Wilson
1978; pp. 180-200). In order to shift from a given state
to another and adapt to any given environmental cir-
cumstances, ants use chemical signals called pheromones.
Different ant species use different sets of pheromones,
some secrete only one type of molecule and others use up
to twenty[100]. Thus, information is processed in a two-
level fashion: mobile agents (ants) interacting with a set
of diffusive field of molecules (pheromones). Ants contin-
uously detect the pheromone concentrations and, upon
integrating this information, produce an internal image
that affects their behavioural state. Moreover, ant states
prompt the secretion of one (or more) pheromones thus
reshaping their concentration values. This coalescence of
signaling back and forth allows the whole colony to ac-
cess global states where functions are achieved by means
of its underlying network of interactions. Information is
stored and processed through this ”liquid brain” to give
rise to various large scale collective behaviours. In the
following examples, we will review several theoretical ap-
proaches to modelling ant colony dynamics and compare
them with standard NN model efforts.
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1. Ant colonies as excitable neural nets

One of the simplest illustrations of the neural-like na-
ture of insect colony dynamics is provided by the emer-
gent synchronization displayed by some small colonies of
the genus Leptothorax. In a nutshell, it has been ob-
served that the colony-level activity displayed by their
nests exhibits a remarkable bursting pattern (Fig. 4a,b)
that exhibits a periodic component (Cole 1991). This
means that ants can be active or inactive and the total
number of active individuals changes in such a way that
at times no ant in the colony is active while the synchro-
nization events are linked to an almost fully active colony.
These bursts have been found in other species (Hölldobler
& Wilson 1990) result from the propagation of activity
carried by moving individuals that can activate dormant
ants in ways similar to those found in epidemic models
(Goss et al. 1988, Bonabeau et al. 1998, Solé 2011). Syn-
chronisation of neural masses is in fact a major research
field within neuroscience (Buzsaki & Draguhn 2004) and
it has been shown to pervade a wide range of functional
traits and behavioural patterns. Is there something sim-
ilar taking place in ant colonies?

This problem provides a simple example of a fluid
network where the description level of individuals and
their interactions is limited to a Boolean set of variables
Σ = {0, 1} associated to the inactive (motionless) and ac-
tive (moving) states, respectively (see inset of Fig. 4c).
A NN model here is thus limited to a coarse-grained rep-
resentation of ants. Such a model was suggested in (Solé
et al. 1993) under the assumption that individuals can be
described as an underlying continuous variable Si ∈ [0, 1]
(with i = 1, ..., N) which change in time following a dy-
namical equation

Si(t+ 1) = Θ

∑
j∈Γi

J(ηj(t), ηi(t))Sj(t)

 . (10)

This dynamics strongly resembles the familiar form of
standard NN. However a rapid inspection reveals a fun-
damental difference: here the matrix J(ηj , ηi) is state-
dependent. In other words, its value is a function of
the specific pair of agents that interact at a given time
step. Specifically, we partition the activity interval [0, 1]
into two domains associated to the active/inactive ob-
servables, i.e., ηi = Θ[Si − θ]. Thus, the interaction ma-
trix will include the only four possible pairs,

[J(ηj , ηi)] =

[
J00 J01

J10 J11

]
,

where J ≥ 0. Once activity decreases below the threshold
θ, the ant becomes inactive and stops moving. Otherwise,
it moves around as a random walker (unless constrained
by other ants occupying nearest lattice sites). Here ants
are assumed to move on a discrete two-dimensional lat-
tice Ω and interactions occur in a strictly local manner,
only affecting the set of nearest neighbouring positions

Γi of Si. Finally, an inactive ant (with η < θ) can be-
come active spontaneously (achieving a state S0 > θ)
with probability pa. A common feature of these matrices
is the presence of coupling terms connecting active and
inactive individuals, as expected from an excitable sys-
tem where activity can be propagated among agents. It
is important to notice that the collective synchronisation
does not result from the coupling of individuals’ internal
clock. Instead, single virtual ants behave randomly. The
dynamics of single elements will be described by:

Si(t+ 1) = Θ (gJ11Sj(t)) . (11)

A simple case can be solved, namely when the coupling
is small and activity remains small (which is consistent
with observation). If we choose Θ(x) = tanhx, then we
may use linear approximation tanh(gJz) ≈ gJz which
admits a solution to the previous equation. If, initially,
an ant is activated to a level S0, then S(t) = S0(gJ)t,
which is a decaying function of time. If an activation
term is also introduced (i.e. active ants can activate in-
active ones), then a coarse grained model can be defined
in probabilistic terms. Let us label as Na the number of
active ants. This number will change in time as a con-
sequence of both interactions and decay. The efficiency
of activation events will be proportional to gJ , assuming
the previous linear approximation. Hereafter we will in-
dicate by N and ρ the total number and density of ants,
respectively.

If A(x, t) indicates the probability density of active
ants at a given point of our two-dimensional lattice x ∈
Ω, then it can be written as: A(x, t) = P [Sx(t) = 1]. The
activity density will evolve following a master equation
according to the previous rules:

dA(x, t)

dt
=
gJ

q

q∑
〈u〉

P [Sx(t) = 0 ∩ Su(t) = 1]− αA(x, t) ,

(12)
where 〈u〉 indicates sum over the set of q nearest neigh-
bors, P [Sx = 0 ∩ Su = 1] is the probability of having a
pair o nearest ants in different states.

The previous equation is exact, but its computation
would require knowledge of the probabilities associated
with the interactions between nearest sites. Several
methods can be used to solve this model with different
levels of approximation. Here we will consider the sim-
plest one, commonly known as a mean field theory, which
is based on suppressing the spatial correlation between
nearest sites. This is done by assuming that the system
is in fact well mixed and thus all sites are neighbours or,
in mathematical terms, q = Ω. If this is the case, we can
use the total population

ρ(t) =
Ω∑
x

ρ(x, t) . (13)

By summing on both sides of the previous master equa-
tion, and ignoring correlations between active and inac-
tive neighbours, it can be shown that the global dynamics
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FIG. 4: Ant colonies as excitable neural nets. In some ant species, such as those belonging to the genus Leptothorax (a),
oscillations in activity have been recorded (b) revealing a collective synchronization phenomenon. This phenomenon can be
described as an excitable neural system, where ants (inset of c) are reduced to a Boolean representation with active and inactive
individuals, As the density of ants ρ increases, a phase change occurs (c) at a critical density, separating inactive from active
colonies The potential function associated with the dynamics of these colonies is shown in (d): for densities larger (lower) than
ρcis displays a well defined minimum. Closer to criticality, this potential becomes flatter and allows for wide fluctuations to
occur.

can be described as:

dA
dt

= gJA(ρ−A)− αA . (14)

And this equation can be studied as a deterministic
model of ant colonies displaying excitable dynamics. The
model has two equilibrium points, namely A∗0 = 0 (no
activity spreads) and A∗1 = ρ− α/gJ , associated to per-
sistent propagation. The previous equation is similar to
those used in epidemic dynamics (Murray 1989) associ-
ated to a population composed by two classes of individ-
uals (infected and susceptible). Using the density of ants
as a control parameter, these two phases are separated
by a critical point ρc = α/gJ . The global behaviour of
this model is summarised in Figure 4c where the bifur-
cation diagram for this system is shown. Above ρc an
active phase is present whereas an inactive one if found
for ρ < ρc.

In this system, the potential function V (A) is:

V (A) = −
∫

(gJA(ρ−A)− αA) dA (15)

and is displayed in Figure 4d, where we show three ex-
amples of its behaviour for different density values. As
we already discussed within the context of brain criti-
cality, here too the transition between phases as density
is changed involves a shallow potential function, indicat-
ing thet wide fluctuations should be expected to occur.
One remarkable observation from Leptothorax colonies is
that they seem to be poised close to the critical density
(Miramontes 1995) at density levels where theory pre-
dicts that maximum information and behavioural diver-
sity is achieved (Solé & Miramontes 1995, Miramontes
& DeSouza 1996). As discussed above within the con-
text of neural tissues, criticality provides a source of fast
response and optimal information processing.

The key message provided by this example is that
a commonality with other excitable neural systems ex-
ists: a universal property is the use of critical points to
perform cognitive tasks. Being poised close to critical
states provides a natural way of amplifying input signals
while remaining most of the time in a low-fluctuation
state (Mora & Bialek 2011). Such a compromise makes
sense as a way of displaying optimal information while
reducing the cost of the system’s state. Is there a well-
defined function that can be associated to this? The
answer is yes. By using self-synchronized patterns of ac-
tivity a task may be fulfilled moreeffectively than with
non-synchronised activity, at the same average level of
activity per individual Delgado & Solé 1997a, 2000).

2. Collective decision making and symmetry breaking in
ant colonies

The next case study involves one of the best examples
of how fluid brains solve a well-defined optimisation prob-
lem. Specifically, a given ant colony exploiting a number
of sources of nutrients might need to discriminate be-
tween different sources (Deneubourg & Goss 1989, De-
train & Deneubourg 2006, Garnier et al. 2007). Another
problem (which we explore here) involves the determina-
tion of the shortest path to be chosen between two alter-
natives. This problem can be easily implemented in the
lab, using a two-bridge setup (Figure 5a). Here the ant
nest would be located in the left side and ants would walk
through the two-bridge to reach a food source located on
the right side. The two branches can be identical or in-
stead have different lengths. The problem to be solved
here is which one is the shortest. Once again, the solu-
tion cannot be found at the individual level: colony-level
processes need to be in place to make the right decision.
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Ants can use quorum-sensing mechanisms as a way
of creating and (responding to) pheromone fields thus
generating a large-scale chemical field that allows to
properly perform the decision. Initially, ants will walk
on both bridges, choosing randomly their branch. We
should expect at this point equal number of ants on each
branch, i.e. ρ1 = ρ2. However, once an ant has found
the food source, it releases a pheromone as it returns
to the nest. Other ants will detect the released signal,
which helps ants to decide where to move, releasing fur-
ther pheromones and amplifying the previous mark. The
pheromone trail also evaporates, and evaporation will be
more effective in the longer trail, where more surface is
available. As a result, the shortest path is more likely to
be used, and is eventually chosen. Ants have computed
the shortest path. A model describing this experiment
can be defined as follows. If ρ1 and ρ2 indicate the con-
centrations of trail pheromone in each branch, their dy-
namics (Nicolis & Denebourg 1999) is given by a pair of
equations for the pheromone fields:

dρk
dt

= µqkPk(ρ1, ρ2)− νρk , (16)

with k = 1, 2. Here µ is the rate of ants entering each
branch, qi the rate of pheromone production at the i−th
branch and ν is the rate of evaporation. The func-
tions Pi(ρ1, ρ2) can now be understood as probabilities
of choosing a bridge depending on thepheromone con-
centrations. These probabilities are well described by
a nonlinear, threshold response function (Beckers et al.
1992, Deneubourg et al. 1990):

Pi(ρ1, ρ2) =
(ρi +K)2

Θ(ρ1, ρ2)
, (17)

where Θ(ρ1, ρ2) =
∑
j=1,2(ρj + K)2 and i = 1, 2. The

parameter K gives the likelihood of choosing a path free
of pheromones (ρi = 0).

This is a general model that incorporates attributes
associated to each branch. But an interesting scenario
arises when one considers the symmetric case where q1 =
q2 = q. For this situation the previous set of equations
reduces to

dρi
dt

= µq
(ρi +K)2

Θ(ρ1, ρ2)
− νρi . (18)

Here there is no true optimal choice: both branches
are equal. Now, although the obvious expectation is a
similar disitribution of ants in each branch, this is not
what is observed. We would easily conclude that ants
would choose both paths and that individuals will equally
walk in both branches. However, what is typically seen is
that the symmetry is broken in favour of one of the two
branches. Why is this the case? This phenomenon illus-
trates a very important class of phase transition: the so
called symmetry breaking process. Despite the symmetry
of the system, amplification of initial fluctuations leads
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FIG. 5: Collective decision making. A two-path exper-
iment (a) allows to test the mechanisms by which emergent
decision making occurs. The photograph shows an example of
a colony that has made a collective decision, as shown by the
preferential use of the shortest one. (b) The mathematical
analysis of the model associated to this phenomenon shows
that two alternative solutions exist associated to the prefer-
ential choice of one branch, along with a third one where both
branches are used. In (c) the parameter space for the simple
symmetric case is shown.

to the formation of a dominant pheromone trail that is
used by all ants once established.

The fixed points associated to this system are ob-
tained from dρi/dt = 0. One possible solution to this
systemis the symmetric state ρ∗1 = ρ∗2 = ρ∗ (associ-
ated to equal use of both branches)ants equally dis-
tributed in both branches). For this special case, we
have Pi(ρ

∗
1, ρ
∗
2) = P (ρ∗) = µq/2 and thus a we only need

to solve a single equation dρ∗/dt = µq/2 − νρ∗, which
gives a fixed point ρ∗ = µq/(2ν). This is the symmet-
ric state to be broken. The second scenario corresponds
to the choice of one of the branches (ρ∗1 6= ρ∗2). Since
ρ1 + ρ2 = 2ρ∗ = µq/ν, we see that(µq

ν
− ρ∗i

)
(ρ∗i +K)2 = ρ∗i

(µq
ν
− ρ∗i +K

)2

, (19)

after some algebra, this gives the new fixed points ρ∗+ =
(ρ∗1+, ρ

∗
2−) and ρ∗− = (ρ∗1−, ρ

∗
2+) with

ρ∗i± =
µq

2ν
+

[(µq
2ν

)2

±K2

]1/2

. (20)

This pair of fixed points will exist provided that
µq/2ν > K which allows to derive a critical line (Fig.
5c)

µc =
2Kν

q
, (21)

indicating that there is a minimal rate of ants entering
the bridges required to observe the symmetry breaking
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phenomena. For µ > µc the symmetric state becomes
unstable (see Figure 5b-c) while the two other solutions
can be equally likely. Below this value, the only fixed
point is the symmetric case withidentical flows of ants
in each branch. This symmetric model can be gener-
alized to (more interesting)asymmetric scenarios where
the two potential choices are different (see Detrain &
Deneubourg 2006 and references therein) either because
the food sources have different size or because paths have
different lengths and the shortest path need to be cho-
sen. This symmetry breaking phenomenon has also been
observed in the ant colony panic responses (Altshuler et
al 2005) or army ant trails (Deneubourg et al 1989) or
optimal group formation (Amé et al 2006).A specially
interesting proposal concerning the phenomenon of sym-
metry breaking in ants was made in (Bonabeau 1996),
where it was suggested that flexible behaviour leading to
efficient decisions is more likely to occur close to critical
points.

3. Task allocation in ant colonies as a parallel distributed
process

In the previous example we considered a set of agents
described as binary variables, thus ignoring the combina-
torial complexity that should be expected from an insect
equipped with a brain. Moreover, it is clear that the
active/inactive dichotomy hides a repertoire of potential
activities that can be carried out by individuals, associ-
ated to the set of tasks needed to maintain the colony.
Division of labour is in fact one of the most important and
widespread phenomenon in nature, and very common in
social groups (Duarte et al. 2011). It has been shown
that the dynamics of subsets of individuals performing
specific tasks within colonies is an emergent phenomenon
(Gordon 1999). In this scenario, a colony that needs to
perform a given set of tasks under given environmental
conditions (and respond to changes in flexible ways) must
be capable of sensing its internal state using some kind
of distributed information processing.

Inspired in the dynamics of harvester ants, (Gordon
et al. 1992) proposed a neural network model of task
allocation where individual ants are represented by a se-
quence of Boolean variables instead of a single ON-OFF
description. Observations from extensive field work on
harvester ants (Pogonomyrmex) show that members of an
ant colony perform a variety tasks outside the nest, such
as foraging and nest maintenance work. Remarkably, this
is a monomorphic species, i.e. individuals exhibit identi-
cal phenotypes. The number of ants actively performing
each task changes over time due to task switching as well
as the presence of inactive workers (Gordon 1986). As
discussed in (Gordon 2010) interactions among ants in-
volve physical contact. This allows sensing the state of
other nestmates allows to create a network of informa-
tion exchanges. Experimental perturbation of the num-
ber of ants performing a given task triggers changes in

active tasks

inactive layer

a.

b.

c.

d.

FIG. 6: Neural network model of task allocation in ant
colonies. The dynamics of harvester ants in (Gordon et al.
1992) can be described in terms of virtual ants (a) each carry-
ing a 3-spin internal description, with changes taking place by
means of direct pairwise interactions. The total state space is
a three-dimensional Boolean cube (b) where we indicate active
(observable) tasks in the top of the cube while a lower layer
of inactive states is formed by a flip in the first spin (negative
for inactive ants). The model exhibits an attractor dynam-
ics with an associated potential (energy) function. Displayed
in (c), the potential function is easily found for a two-task
system for a specific (symmetric) values of parameters.

the numbers of individuals performing other tasks. Im-
portantly, this switching dynamics is a consequence of
the microscopic, local ant-ant interactions. The attrac-
tors associated to normal and perturbed conditions is
thus a collective-level outcome of individual interactions.

In their model, Gordon and co-workers consider a set
of four main tasks. This choice is partially due to the ob-
servation of four kinds of tasks, namely: patrollers, for-
agers, nest maintenance and midden workers displayed
by harvester ants. Additionally, individuals can become
inactive (as reported in ant colonies, see previous sec-
tion). Since each type of ant performing any of the four
tasks can become inactive, the model assumes that eight
possible vectors can represent the available space state
which can be covered by an internal state of three bi-
nary variables (Gordon et al. 1992). Specifically, ants
are described now as 3-spin vectors Sk = (S1

k, S
2
k, S

3
k). In

their original paper, they use the notation P = active
patroller, F = active forager, N = active nest mainte-
nance worker and M = active midden worker. The lower
case versions (p, f, n,m) would indicate inactive versions
of the previous vectors. The space of possible internal
states is indicated in Fig. 6a-b. These are represented as
vertices of a Boolean cube, where all states are respec-
tively indicated as strings of +1 and −1 values.

The simplest approach for this problem is to assume
that the different components of the internal state act
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independently, with different associated weight matrices.
In this way, we would have

Sµj (t+ 1) = Θ
(
hµj (t)

)
= Θ

(∑
k

JµjkS
µ
k (t)

)
. (22)

The (internal) state of Sµj will remain stable after one

interaction, provided that Sµj h
µ
j > 0. An energy function

is defined accordingly as follows:

H({Sµk , J
µ
ij}) = −1

2

∑
µ

∑
i,j

JµijS
µ
i S

µ
j . (23)

In the macroscopic realm, the observable state is the
number of ants performing each task from the repertoire.
It is then desirable to have a description where the energy
minimisation is defined in terms of the set {nk}. Thus,
the energy function now reads as

H({nk,Γij}) = −1

2

∑
i,j

Γijninj , (24)

with a new set of parameters {Γij} that depend on the
microscopic couplings and can be derived from the initial
matrices (Gordon et al. 1992). This energy function
allows a description of the system’s equilibrium states
(attractors) as a high-dimensional surface which minima
corresponds to the task allocation solutions. This form is
consistent with a reaction-based dynamics where pairwise
interactions among classes of individuals conditions the
global dynamics. As a simple illustration of this idea,
let us consider a two-state/two-task case, where it is not
difficult to show that the energy function will correspond
to

H(N1, N2) = −1

2

 ∑
Si=+1

Sihi +
∑
Sj=−1

Sjhj

 (25)

= −1

2

(
αN2

1 + αN2
2 − 2βN1N2

)
, (26)

where we use Γ11 = Γ22 = α and Γ12 = Γ21 = β. We can
easily recognise in this solution the elliptic paraboloid,
displaying a single minimum. In Figure 6c we show an
almost symmetric energy surface for α = 1, β = 0.1,
whereas a less symmetric case is displayed in Figure 6d,
where β = 0.5. In the latter, the coupling between the
two tasks creates an elongated valley that would allow
for more population fluctuations.

This model, with all the oversimplifications it contains,
provides an elegant illustration of a major difference that
might separate liquid from solid cognitive networks. The
proper functionality of an ant colony, like the one de-
scribed above, is satisfied for a given distribution of indi-
viduals performing the set of required tasks. Task allo-
cation is thus achieved as a coarse-grained solution with
high degeneracy: there are many ways to allocate indi-
viduals into given tasks. Thus the ant-ant interactions,

although describable in terms of the standard threshold
dynamics model, only provide a way to achieve the opti-
mal state associated to the energy minimum in the task
space.

4. Collective dynamics of communicating populations

Insect colonies use different organic molecules
(pheromones) to transmit signals and process informa-
tion at a colony level. It is safe to assume that evolution
has imprinted on ants a hard-wired pheromone-based de-
tection physiology that generates an internal image of
the local environment for each individual ant, however,
such an picture is incomplete when confronted to the
full complexity of the colony. It is indeed the cobweb of
diffusing pheromone-signals and ants acting as rewiring
agents that confers the colony its true evolutionary po-
tency. Individual ants are relegated to acting merely as
cogwheels for the macrocospical system (Wilson 2012).
This multiple-scale interrelation is the object of study of
the present model by Mikhailov (Mikhailov 1993).

Suppose a colony of ants individually labeled as i =
1, . . . , N . Now, introduce two-state variables for each

ant as Si ∈ {−1,+1}, ∀i. Thus, vector ~S = (S1, . . . , SN )
characterizes the full configuration of the system. In this
model, ants are again acting as neural agents but they
are also able to send out and receive messages into and
from the colony. A message is encoded in a pheromone
cocktail, and ants continuously secrete it. To simplify
the system’s dynamics we will consider that a message
is fully described with two labels, namely µσ,j = (σ, j),
where σ ∈ {−1,+1} and j corresponds to the address
tag. In other words, message µσ,j delivers information σ
to the j − th ant.

During a time interval τ , multiple messages are sent
all over the colony. Define m(σ, i) =

∑
µ|τ µσ,i, as the

sum of all +/− signals tagging ant i over time interval
τ , respectively (Fig. 7a). We then impose the following
dynamics on the ant-states:

Si(t+ τ) = sign (m(+, i)−m(−, i)) (27)

Let us introduce a correspondence matrix, {ωij}, with
each of the N(N − 1) elements of the former taking val-
ues {−,+}. The function of this matrix is to determine
whether a signal will be sent or not in a time interval τ .
The way it works is depicted in Figure 7c. If ωji = +,
the sender ant, i, will send a message µ±,j to ant j only
if Si = ±, whereas for ωji = −, the message will be anti-
correlated with the state of i, i.e., a message µ±,j is sent
only if Si = ∓. In simpler terms, the correspondence ma-
trix distinguished two channels of information transfer:
correlated (ω = +) or anticorrelated (ω = −) message
and sender-state. On the other hand, we define a fre-
quency distribution, Iij , as the number of messages per
unit time τ that ant j is sending to ant i (see Fig. 7b).
Within a spatial context, it is clear that Iij = I(|i− j|),
where | · | is the distance between two ants.
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a. b.

c.

FIG. 7: Collective communication dynamics in ant
colonies. In (a) we display an agent i and a set of mes-
sages reaching it within time τ , all addressed to i while some
carrying the + order others the − order. These messages
will be integrated according to (27). On the other hand, (b)
shows how interactions via message sending depends on the
frequency (or intensity) of messaging between agents, I. No-
tice that I values decay with the distance. Finally, the way
that orders are sent by senders (c) depends on yet another
set of couplings {ωij ∈ {−,+}}, which determine whether a
+ or a − order will be dumped into the system depending
on the actual state of the sender Si = ±. Schematically, the
arrow connecting sender and receptor is blocked (crossed out)
for anticorrelated correlation between coupling ωji and sender
state Si.

Withall, let us consider the dynamics of the messages
present in the system with labels (σ, i),

dm(σ, i)

dt
= −δm(σ, i) +

1

2

∑
j

Iij (1 + σωijSj) , (28)

where we have dubbed δ the message decay rate. There-
fore, at the stationary regime, we expect

m(σ, i) =
1

2δ

∑
j

Iij (1 + σωijSj) , (29)

which, combined with (27), leads to

Si(t+ τ) = sign

1

δ

∑
j

IijωijSj

 . (30)

Notice that (30) is equivalent to the Hopfield model
(1), provided that ωij = ωji. Thus, patterns can be
stored in a similar fashion by following a Hebbian ap-
proach by associating

1

δ
Iijωij → Jij =

1

N

p∑
µ=0

ξµi ξ
µ
j , (31)

where, as in section II.A, {ξµi } will correspond to the
agent states of µ = 1, . . . , p different stored patterns. Al-
though limitations to capacity will also apply here, per-
haps more interestingly, other constrains will too arise,
namely:

1. Agent-to-agent distance dependence on the signal
intensity, Iij = I(|i− j|), which should be take the
form of a monotonically decreasing function. Ef-
fectively, this leads to a diluted network, i.e., every
agent does not connect to every other agent.

2. Environmental noise: signal loss due to fluctuations
of the information channel. This can be formalized
as thermal noise, which has also been discussed in
section II.A.

3. Cost-efficiency effects: the adress-message system
devised here carries with it a large cost on the
senders to produce the necessary chemical reper-
toire so that the signal is well-transmitted with
minimal error.

Below, we will discuss further on how to address these
problems and figure out their implications in a collective
computational levels.

B. The Immune System as a Liquid Brain

The Immune System (IS) consists of a myriad of chem-
ical compounds (e.g. antibodies, cytokines) and multiple
cell lines (B-cells & T-cells or lymphocytes, macrophages,
etc.) aggregated into a multi-component complex sys-
tem. The essential purpose of the IS is to detect external
and malicious agents (antigens) such as viruses, bacte-
ria or cancerous cells; and prompt an according reaction
(antigen neutralisation or tolerance). At the same time,
it must be able to distinguish the latter from internal
signals (the self ). As such, the IS must be capable of
processing, storing and manipulating large amounts of
information (Delves & Roitt 2000).

The map of interactions of the IS can be depicted as
an interwoven web of signalling and response functions
between all its agents. Unravelling a full picture of the
IS is beyond the scope of this work. For the purpose
of our discussion, we will focus on the three core ele-
ments that significantly shape the IS architecture: T-
Cells, B-Cells and Antibodies (Ab). Lymphocytes have
specific enzymes on their membranes that store a molecu-
lar compound that has been randomly generated during
its maturation process. This compound binds to some
specific fragments of proteins (epitopes) coming from an
antigen (often through an antigen presenting cell), hence
prompting an internal cascade of reactions that activate
the lymphocyte. The collection of receptors of a given
lymphocyte clone-line is dubbed an idiotype.

Upon detection, B-Cells (aided by helper T-Cells) will
proliferate thus generating copies of the same receptor
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structre, while secreting large concentrations of its spe-
cific antibody. In summary, the clonal expansion the-
ory (Burnet 1959) states that, since the generated clones
share their idiotype, successive binding to the antigen
will be triggered and an amplification process will lead
to immune response (Perelson & Weisbuch 1997).

On the other hand, a more systemic approach to the IS
reveals an underlying network of idiotypes that excite or
inhibit one-another through the same detection/reaction
mechanisms as with antigens. This penomenon is known
as an idiotypic cascade: an initial perturbation (antigen)
activates a series of idiotypes filling the system with their
corresponding antibodies (Ab1), which, in turn, are de-
tected through by another set of idiotypes thus prompt-
ing a second batch of antibodies (Ab2) and so on and
so forth. This observation suggests a network scheme
where each node is associated with an idiotype and each
link will correspond to an interaction between any two
idiotypes (see Fig. 5a-c).

Idiotypic cascades were first observed and theorized
by Jerne (Jerne 1974) and have since spurred a scien-
tific debate between the allopoietic/autopoietic (reduc-
tionist/systemic) approaches to the IS (Barra & Agliari
2010, Perelson 1989, Parisi 1990). While Burnet’s theory
provides some mechanisms for how the IS generates its
idiotypic repertoire capable of self/non-self discrimina-
tion, Jerne’s network approach complements this process
and shows how a distributed computation concatenated
to clonal theory might give rise to crucial information-
processing aspects of the immune response.

In this section we will study some fundamental aspects
of the IS as a liquid brain. We will begin by looking at
the size of the IS and how it is constrained by its funda-
mental function of antigen detection and discrimination.
Then we will study how the IS is capabe of storing in-
formation at a network level, discuss how it makes use of
its idiotypic landscape structure to naturally reproduce
a reliable self/non-self classification and briefly comment
on the implications of such a systems-view on the IS.

1. Simple constrains for the probability of detection

Early studies of the IS showed that epitope reactiv-
ity for a generic lymphocyte (B-cell or T-cell) is of the
order 10−5, in other words, the probability that a ran-
dom epitope binds to the surface of a lymphocyte is given
by p ' 10−5 (Perelson & Weisbuch 1997). This begs the
question: why would not the IS organize such that p ∼ 1?

In (Percus et al. 1993), a simple argument was put
forward to show that the fact we observe such values of p
might be related to the problem of self/non-self recogni-
tion, which strongly constrains the way the IS is assem-
bled.

Consider the following definitions: n is the total num-
ber of receptors in the IS repertoire, N is the number of
foreing-epitopes for a given environment and N ′ denotes
the number of self-epitopes, or epitopes derived from cells

belonging to the organism. Thus, the goal of the IS is to
properly distinguish the foreing-epitopes while avoiding
an immune response for the self-originated ones. Let us
denote by P (N,N ′;n) the probability that the repertoire
of size n is able to properly detect N foreing-epitopes and
not detect N ′ self-epitopes. Note that the probability of
non-recognition of a random epitope for a single lympho-
cyte is given by q = 1− p. Hence,{

qn ; prob. of n consecutive non-recog.

1− qn ; prob. of at least one recognition.

Therefore, we may now compute

P (N,N ′;n) = (1− qn)N (qn)N
′
. (32)

The goal is to maximize (32). This is easily done by
maximizing the logP (N,N ′;n), which leads to an opti-
mal value for q

q =

(
1 +

N

N ′

)−1/n

≈ 1− 1

n
log

(
1 +

N

N ′

)
, (33)

where we expanded the previous expression using 1/n�
1. Notice that we can now write

p ≈ 1

n
log

(
1 +

N

N ′

)
. (34)

Early estimations of the repertoire size of a healthy hu-
man IS found n ∼ 106, while N/N ′ ∼ 1010 (see Perelson
& Weisbuch 1997 pp. 1225-1229 and references therein).
Along with p ∼ 10−5, such empirical values are com-
patible with the bounds imposed by (34). On the other
hand, expanding (34) shows that the dependence on the
ratio between self/non-self epitopes turns out to be very
coarse, as p ∼ (1/n)

[
N/N ′ +O

(
(N/N ′)2

)]
. More con-

strains on the complexity of the epitope molecule chains
and the surface receptors requiere other sophisticated ap-
proaches (see Percus et al. 1992). In summary, the study
of matching probabilities in detector systems such as the
IS provides a robust understanding of the possible assem-
blies and architectures for such biological structures.

2. Percolation thresholds in the IS

After Jerne’s discovery of idiotypic cascades, novel
ideas were put forward in trying to understand the or-
ganisational principles of the IS as a network. Perelson
(Perelson 1989) introduced a simple model of the idio-
typic cascading phenomenon. Given a repertoire of n
idiotypes, i.e., n different types of antibodies, and as-
suming that paratopes and epitopes can be thought of as
bit-strings of size L (see Fig. 8c), then we will consider
that an antibody can detect (bind to) a given string if the
number of matched pairs of the ordered paratope-epitope
interaction exceeds a threshold value, θ < n. As we will
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FIG. 8: Percolation in immune networks. Idiotypic cas-
cades take place at a network level in the IS. In (a) a critical
percolation cascading on a Bethe lattice of degree z = 3 is
shown. Concentric circles delimit successive layers of the cas-
cade. The percolation probability depends on the the match-
ing threshold θ as shown in (b). At low threshold values
the system is highly connected, allowing deep penetration
across layers, while for high θ, the matching probability de-
cays abruptly, leading to a phase of low connectivity with
small-sized cascades. Right in the interface, we have the
percolation point. Finally (c) portrays two strings (eptiope-
paratope) of length L = 10 with 7 matching pairs and 3 non-
matching pairs. For example, if threshold θ = 5, this par-
ticular pair of strings would react, whereas for high fidelity
matching (θ = 8), the pair would not connect.

see, this readily imposes a strong bounds on the system
performance.

Recall that, under the Jerne’s paradigm, antibodies are
now capable of matching with other antibody types and
concatenate into an idiotypic cascade. Thus, we can infer
that, for a high threshold value (low reactivity), less an-
tibodies will be matching, but also less antibodies will be
able to detect and react to a given antigen. On the other
hand, the reverse is also true: for low values of θ (high
reactivity), antibodies will be triggered altogether, as the
matching probability is expected to increase. Therefore,
it is interesting to study what type structure will emerge
from this simplified model.

Suppose that a given antibody is physically connected

to a number of antibodies z, i.e., it will encounter up to
z other antibody types but might or might not bind to
them. Now, the probability that any pair of antibodies do
match is denoted by p, which, by definition, will depend
on θ (see below). Thus, given an initial perturbation into
the system (such as antigen exposure) then an idiotypic
cascade is triggered, where idiotypes react to eachother.
Such a process will look like a Bethe lattice of degree z
(see Fig. 8a). Denote by A(i) the number of activated
antibodies at the i−th layer of the tree, then it is easy to
show that:

A(i+ 1) = p(z − 1)A(i) , (35)

which implies that there will by a characteristical prob-
ability value p = pc = (z − 1)−1, at which the network
becomes connected exhibiting a percolation phase tran-
sition (Solé 2011). For values of p > pc, the network is
fully connected, while for p < pc, any initial perturbation
will eventually die out (see Fig. 8a-b).

For the IS one can argue that z ∼ n, in other words, the
system is sufficiently fluid and the coarse number of ele-
ments is sufficiently large so that any physical interaction
can occur. This sets a value on the critical threshold at
pc ∼ n−1. On the other hand, one can compute p = p(θ)
by assuming that each bit, out of the L-sized strings, is
generated by a coin toss. Then, the probability of hav-
ing two strings with sufficient complementary bit-to-bit
values is

p =

L∑
k=θ

(
L

k

)(
1

2

)k (
1

2

)L−k
=

1

2L

L∑
k=θ

(
L

k

)
. (36)

which is plotted in Fig. 8b. We observe a sudden tran-
sition from low to high reactivity at around θ ∼ L/2. In
fact, as L→∞, then p(θ)→ 1−Θ(L/2).

Both n and p have been independently measured
(Perelson 1989 pp. 19-20 and references therein). The
repertoire size is estimated to be of the order n ∼ 106,
while p ∼ 10−5. Hence, the IS operates in the post-
critical regime, where connectivity is high and large cas-
cading events are common.

3. Information storage in the immune networks

In the search for a clear understanding of how the IS
stores and process information, optimisation arguments
as above do not suffice under the light of Jerne’s the-
ory of idiotypic networks. Initial attempts to describe
how information is distributed over the network con-
necting different idiotypes were put forward by De Boer,
Hogeweg, Weisbuch and Perelson (see Wiesbuch & Perel-
son 1997, pp. 1229-1258 and references therein). Here,
we will briefly summarize a minimal model by Parisi
(Parisi 1990) that involves Hopfield-like NN and imposes
global limits on the pattern recognition processes that a
distributed network of idiotypes must follow.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 26, 2018. ; https://doi.org/10.1101/478412doi: bioRxiv preprint 

https://doi.org/10.1101/478412


15

Consider the set of antibody binary concentrations
{ci(t) ∈ {0, 1}}, for i = 1, . . . , N , with N the total
number of antibodies of a healthy human IS (around
106 − 107). To all effects and purposes, antibodies and
idiotypes are interchangable from here onwards. Next,
we model idiotypic interaction networks, by imposing a
dynamical process of idiotype concentrations in the same
spirit of (1):

ci(t+ τ) = Θ

∑
j

Jijcj(t)

 . (37)

Now, the interactions between different idiotypes are
mediated by {Jij}, for which we consider the following
properties:

(a) Jij = 0, i.e., no idiotype self-interaction is allowed,
which is the case for paratope-epitope complemen-
tarity matching.

(b) Jij = Jji, which is a simplification of the Onsager
affinity relations between idiotypes [101], log |Jij | =
log |Jji|.

(c) Jij = U(−1,+1), ∀i 6= j.

Condition (c) states that the values of the off-diagonal
elements of Jij are taken from the uniform distribution
between [−1, 1]. These approximation allows for a deriva-
tion of overall limits of distributed storage of information.
The system is now described as a spin glass (Amit et al.
1985, Sompolinsky 1988, Mezard et al. 1987).

Stable solutions for this particular problem turn out
to be fully characterized by an average number of pre-
assigned concentrations, M . In other words, a generic
initial configuration of concentrations will inevitably flow
into a stable state by switching concentration values on
and off until a pre-assigned configuration of concentra-
tion levels is reached. These global stable states act as
memory basins similarly to how memory is stored in the
aforementioned NN models. Naturally, M < N , thus, we
can define α < 1 such that M = αN .

Spin glass theory (Mézard et al. 1987) predicts that,
for N � 1, out of the total 2N possible binary states
of the system, and for conditions (a) − (c), a total of
2λN patterns can be stored, with λ ∼ 0.3. Withall, we
can now try to understand the relation between λ and
parameter α.

Let us consider the probability (pm) of randomly
choosing a “memorized state” out of all the possible con-
figurations or, simply, pm = 2λN/2N = 2−(1−λ)N . How-
ever, because only M pre-assinged concentrations are re-
quired to fully describe an attractor, we then expect a
number of compatible solutions per stable state. Thus,
let us compute the average number of compatible solu-

tions per attractor as(
Av. num.
of solutions

)
= pm ×

(
Degeneracy
of config.

)
(38)

= 2−(1−λ)N × 2N−M (39)

= 2(λ−α)M . (40)

Notice that the average number of solutions will be
greater or equal to one iff α < λ ∼ 0.3. Essentially, this
imposes a bound in M . In other words, if we denote
αc = λ, then for M > αcN , no equilibrium states are
found. Thus, Mc ≡ αcN is the maximum number of pre-
assigned antibody concentrations such that the dynamics
imposed by (37) flow into well-defined stored patterns.
This effectively constrains the memory content that an
idiotypic interaction web is able to store.

A major insight from this model by Parisi is the fact
that selective preassure goes beyond the genetic compo-
nent involved in epitope/idiotope generation. Indeed, the
reductionist approach is insufficient in trying to capture
the full picture of IS evolution, as the information pro-
cessing and storage occurring at the idiotypic network
scale involves a higher order level at which selection will
too operate.

4. Idiotypic networks as liquid neural nets

In the remaining of this section we will outline a model
by Barra & Agliari (BA) (Barra & Agliari 2010) based
on statistical physics of a well-mixed/liquid neural web
representing Jerne’s idiotypic network. Let us assume:

(i) A given clone idiotype is fully characterised by a
string of L bits. All idiotypes are of the same size.

(ii) Each string is obtained from successive, indepen-
dent coin-tosses with values {0, 1}.

(iii) The number of cells of a clone-type is sufficiently
large so that potential idiotypic interactions are al-
ways carried out with their respective intensity val-
ues.

Assumptions (i)−(ii) are sensible first approximations
to the biological processes the IS undergoes during mat-
uration (Delves & Roitt 2000). On the other hand, a
sufficienty high number of lymphocytes per idiotype is
not realistic under the lights of clonal expansion the-
ory. However, the goal of the BA model is to figure out
the overall implications of having an idiotypic network
description[102].

Let us construct an idiotope space ΥL ≡
{
ξ ∈ {0, 1}L

}
spanning all possible strings with bit-size L. Indexes
i, j, . . . ∈ {1, . . . , N}, with N corresponding to the to-
tal number of different clone-types in the IS. A priori,
a complete repertoire would seem to scale as N ∼ 2L,
however, as we will see, the network constrains will give
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rise to another scaling behaviour between the repertoire
size and epitope/paratope length.

Next, we construct the network following a simple
model of chemical complementarity. As usual, let us de-
fine a complementarity function:

κij :=
1

L

L∑
µ=1

[
ξiµ
(
1− ξjµ

)
+ ξjµ

(
1− ξiµ

)]
=

1

L

(
|ξi |+ |ξj | − 2ξi · ξj

)
, (41)

with |A| ≡
∑L
µ=1Aµ. This accounts for the total number

of complementary inputs between idiotypes i and j. E.g.,
suppose L = 5, then for ξi = (10101) and ξj = (01011),
κij = 4

5 (Fig. 9b). In turn, this allows to construct a
chemical affinity function

fβ,L : Υ×Υ −→ R (42)

(ξi, ξj) 7−→ fβ,L(ξi, ξj) = βκij − (1− κij) ,

which is defined as a balance between repulsion and at-
traction effects of anti-complementary and complemen-
tary bit-pairs, moduled by trade-off parameter β ≥ 0.
Thus, it will be bounded as −1 ≤ fβ,L ≤ +β, distinguish-
ing two interactive regimes for each pair of idiotypes:

fβ,L =

{
< 0 repulsive regime

> 0 attractive regime
. (43)

Following these precepts, let us outline how the un-
weighted network of idiotype-idiotype interactions will
unfold. The IS can be arguably approximated as a well
mixed system. This means that, following (iii), any pos-
sible physical interaction (B-Cell/T-Cell or APC/T-Cell,
etc.) occurs at a sufficiently high rate so that we need
only to account for their internal affinity structure. Let
us then define pβ,L as the probability that two generic
idiotypes display a matching interaction. Consider the
following:

1. The idiotype strings, {ξi}, are extracted by a suc-
cessive L random coin-tosses with equal probability
for {0, 1} values, i.e. p0 = p1 = 1/2

2. The complementarity κij and affinity fβ,L func-
tions fully regulate the interactions. In particu-
lar, we define a link between two generic idiotypes
(ξi, ξj) iff fβ,L(ξi, ξj) > 0, i.e., if the pair lays on
the attractive regime.

In general, the probability for any two idiotypes to
produce a complementarity value, κ, is P (κ) =

(
L
κ

)
/2L.

Now, owing to assumption 2 and (42), then

pβ,L = P

 ⋃
fβ,L>0

κ

 =
L∑

κ=b L
β+1c+1

P (κ) . (44)

Since N is the total number of different idiotypes, the
emergent network picture will be described by an Erdös-
Renyi graph with degree distribution

φβ,L(k) =

(
N

k

)
pkβ,L (1− pβ,L)

N−k
, (45)

which mean value corresponds to 〈k〉 ≈ pβ,LN . ER net-
works display a percolation point at which the system
acquires a giant connected component (Solé 2011). Typ-
ically, this occurs at 〈k〉 = 1, associated to pc := 1/N .
Next, we explore what regime should we expect the idio-
typic network to be in and how this reflects on the IS’s
repertoire capacity.

For finite values of L, the shape of the function pβ,L
as a function of β is that of a transfer function. Re-
call the trade-off parameter β separates the favourably
repuslive regime (β < 1) from the favourably attractive
one (β > 1), β = 1 corresponding to the symmetric case.
Now, if chains (epitopes/idiotypes) are considered to be
large, then an amplification process occurs depending on
the favourably repulsive/attractive regimes determined
by the value of β. Such amplification is reflected on the
switch-like behaviour of the connection probability. On
the other hand, since the percolation threshold will be
of the order of 1/N , even if the system is repulsively-
favoured (β < 1), it can still easily become fully con-
nected.

Now, consider the three elements that are now com-
ming together: probability of connection, pβ,L; number of
idiotypes (or different clones), N ; and the average num-
ber of connections per idiotype, 〈k〉. While the proba-
bility of connection is purely a result from the internal
chemical interactions, 〈k〉 is a defining feature of our net-
work. Yet experimental data sets a value of N ∼ 1018,
and a connectivity between idiotypes in mature immune
systems of pβ,L ∼ 3 − 5% (Detours et al. 1996). This
means that we should expect a densely connected net-
work of around 〈k〉 ∼ 1012.

Moreover, the fact that pβ,L is so low, suggests that
the system operates at the repulsive regime. Withall, we
may now compute the relation between epitope size L
and number of idiotypes in the BA model by using (44)

and β < 1. This results in a scaling relation N ∼
√
LeγL,

with γ < 1, as opposed to the bit-by-bit repertoire size,
which would grow as 2L (Barra & Agliari 2010).

Hitherto, we have been able to characterise idiotypic
networks using only basic assumptions for chemical affin-
ity, which has lead to a dense ER. But what kind of com-
putations is this system able to perform? And how does
the IS utilises its autopoietic features to distinguish the
self/non-self? To provide an answer to these questions,
we ought to look at a fine-grained version of the idiotypic
network and inquire on how its interaction intensities are
distributed over the net.
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FIG. 9: The IS as a liquid brain. (a) Represents an interaction between an antigen-presenting cell (APC), carrying
a fragment of an antigen and presenting to a lymphocyte (L). Upon matching (b), the lymphocyte will react by secreting
antibodies (Ab) with the corresponding matching code, thus flooding the system with its idiotypic information ang prompting
an idiotypic cascade. Figure (c) is a representation of the subjacent idiotypic network operating accross the IS. This network
is actually self-organised into two major blocks (d)-(e) of heavily influential (darker region) and weakly influential (lighter
region) nodes. Such an effect can be computationally studied by looking at the strength distribution (d), P (ω), and noting that
picking a random node from the right/left (strong/weak) (i/j) ends of the spectrum, and then looking at its corresponding next
neighbor strength (̄i/j̄), they typically fall under the same cathegory, i.e., strong/weak nodes connect to strong/weak nodes.
This suggest an network-like mechanism for tackling the Self(S)/Non-Self(NS) classification problem (ω−axis is depicted in
logarithmic scale). Strong nodes are responsible for self-adressed Ab, and viceversa. Figure (d) is adapted from (Barra &
Agliari 2010).

5. Stewart-Varela-Coutinho theory

In their seminal papers Stewart-Varela-Coutinho
(Stewart et al. 1989, Varela & Coutinho 1991) showed
that a network systems approach to the idiotypic webs
described by Jerne actually displayed two major inter-
active blocks: a highly connected (strong interacting)
module and a loosely connected (low interactive) one.
Such observation suggested that each module’s activity
could correlate to the self and non-self reactions of the
IS. More specifically, the strongly connected module acts
as an auto-regulated dynamical subsystem that is con-
tinuously activated and auto-inhibited, this would corre-
spond to a tolerance reponse, thus associated to the self
(S) stimuli, in a healthy IS. On the other hand, the low
interactive module shows a basal activity in the system,
but under the presence of a stimuli will be activated, thus
prompting a neutralisation response. The latter module
is then associated to the non-self (NS) stimuli. Hence,
through this network structural property the vast reper-
toire of the IS is capable of sorting out the self/non-self.

Although this two-block structure could appear to be
the result of an intricate evolutionary process, by follow-
ing the BA model, a two-fold assembly akin to Stewart-
Varela-Coutinho’s system is shown to emerge for free.
This would suggest a generative mechanism capable of

explaining the underlying Self/Non-Self modular struc-
ture independently of adaptive drives. Let us briefly ex-
plore how this phenomenon takes place at the weighted
network level.

6. Weighted idiotypic networks and mirror-types

The affinity function fβ,L works as a representation
of the chimical reactions that take place on the cell sur-
faces, then, following a simple extension to the concept
of interaction connection matrix Jij(β, L) can be defined
as

Jij(β, L) ∼ Θ
[
fβ,L(ξi, ξj)

]
efβ,L(ξi,ξj) , (46)

Notice how we still impose a lower threshhold of con-
nectance by setting Jij = 0 for fβ,L ≤ 0, which keeps the
previous network picture, while turning on the matrix
values smoothly on the attractive regime. The exact val-
ues for all the Jij will depend on each realisation of the
stochastically generated network of idiotypes {ξi}, thus,
it will be necessary to normalise each interaction param-
eter over all the space of possible networks (see Barra &
Agliari 2010).
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Once the interaction-intensities are at place, one can
look at the total strength for each idiotype (node) as

ωi(β, L) =
∑

j|Jij>0

Jij(β, L) . (47)

Heuristically, Jij values characterize the robustness of
a given i− j interaction, while ωi measures how influen-
tial idiotype i is as relative to the whole network. Now,
consider the weight frequency distribution P (ω), which
can be shown to be well approximated by a normal dis-
tribution (Barra & Agliari 2010). Now, if we select an
idiotype i and look at its first-order neighbors that in-
hibit i, namely mirror-i idiotypes (or simply ī), then it
is possible to study how the system self-classifies these
pairs into two major classes (see Fig. 6e): strong and
weakly interacting pairs. The fact that the interaction is
symmetrically strong/weak for each pair is a consequence
of chemical complementarity in the affinity function.

However, this simple realisation turns out to be an
extremely powerful tool precisely towards the self/non-
self distinction. In summary:

• The P (ω) degree distribution separates the two
regimes of strong/weak influential nodes (see Fig.
6d). The weak nodes (blank triangles) happen to
have weak mirror-types (blank squares); whereas
the strongly interacting nodes (reversed blank tri-
angles) have mirror-types (black squares) that are
too highly-interactive nodes. This mechanism gives
rise to the S/NS modules.

• The strong block is hypothezised to account for
the self-directed antibodies, while the weak mod-
ule acts a basal signal only activated by the pres-
ence of non-self antibodies (triggered by external
antigens).

• Establishment of robust memories occur more ef-
fectively at the weakly interacting block, as relative
variations in the affinity values will produce more
durable configuration changes in this network mod-
ule.

• Autoimmune diseases can now be understood as
deviations from the two-module structure, where
strongly interacting circuits (responsible for self-
addressed antibodies) may deviate towards lower
weighted regions of the spectrum, thus triggering
auto-immune response.

Hence, a natural mechanism for fundamental compu-
tational questions such as the Self/Non-Self identifica-
tion is derived from first principles. This principles are
constructed under the assumption that the interaction
time-scales are small compared to the global observa-
tional time-scales, while, on the other hand the abil-
ity of the “neural agents” (idiotypes) to rapidly prop-
agate throughout the environment ultimately allows the
characterisation of the idiotypic network as a biologically

meaningful system. Thus, the IS appears to be a limit
case scenario for “liquid brains”, where it is precisely the
high levels of agent-mobility that give rise to its capacity
to solve classification problems.

This realisation spurs novel questions: are there a size
limitations for the immune systems and their perfor-
mance in terms of its physical embodiment? What are
the consequences of these constrains onto the Self/Non-
Self distinguishability? Or, in general, can different “im-
mune systems” exists accross multiple scales?

IV. DISCUSSION

The emergence of cognition in our biosphere has been
marked by several key events that allowed the evolution
of special classes of cell phenotypes along with ways of
wiring them together. Nerve cells and nerve nets pervade
the revolution towards new life forms capable of deal-
ing with non-genetic information in complex ways. But
the basic ingredients for the emergence of complex forms
of information processing have appeared multiple times
at different scales and in different evolutionary contexts
(Baluška & Levin 2016). Neural-like processing systems
have evolved as specialized organs but also as commu-
nities of moving agents. In both cases, agent-agent in-
teractions involve some sort of recognition, internal com-
munication coding and stimuli thresholds that decide if
changes are made. As shown in previous sections, sim-
ple models can capture relevant phenomena associated to
both classes of systems.

These two classes of networks share emergence as a
major feature. Memory, learning or decision making are
grounded in a set of bottom-up phenomena where emer-
gent properties arise from individual, microscopic inter-
actions (Fig. 10). Collective phenomena and a physics
approach becomes a natural common field where to ex-
tract universal features. These emergent traits can be
attractor basins associated to memory states or efficient
task allocation, but can also be phase transitions due to
the presence of critical connectivities or even criticality
itself, enabling rapid and efficient information transfer.

What is missing from our previous models? An im-
portant piece of complexity that has been ignored in this
discussion is the internal complexity of the agents. This is
not necessarily a limitation. When dealing with complex
systems, we always need to cut the details up to some
point in order to tackle the problem and provide true
understanding. That is imposed by the kind of question
being addressed. As with the Hopfield model and other
classical neural network approaches, neuronal complexity
is reduced to the minimal description. The immune sys-
tem too is a rather sophisticated system, exhibiting a con-
siderable diversity of cell types and interactions. Ants,
on the other hand, are not simple strings of Boolean bits.
But individual cognition exists: ants carry actual brains
inside their heads, even if small ones (Webb 2012).

As pointed out by some authors (Dornhaus & Franks,
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FIG. 10: Multiscale dynamics in liquid brains. Each example of liquid brains involves, as it occurs with many other
complex systems, several scales of description. Ant colonies (a) perform diverse functionalities, such as collective foraging (a3)
on a colony-level basis. At a smaller scale, pairwise interactions among ants take place (a2). Such interactions are localised
and, thus, constrained by spacio-temporal properties such as agent mobility or density. At the top of this hierarchy (a1) we
encouter single ants as a system. These agents will be defined by a set of rules that drive their behaviour in this minimal scale.
A similar scheme can be made for the immune system (b). Scales now involve a the idiotypic (or antibody type) network (b3),
where information is processed, for instance, at the self/non-self discrimination level (see above). As we zoom in, we encounter
the cellular-scale interactions level (b2), which are also associated to the simple-matching recognition dynamics. Finally, yet
another level of complexity is reached at the description of the IS elementary agents (b1): viruses, paratopes, epitopes and
surface repectors.

2008) even if these brains are orders of magnitude smaller
than ours, they pervade some types of cognitive skills.
How important are they compared to colony-level cog-
nition? This is an open question that will require fur-
ther attention. It might be the case that increases in
the cognitive complexity of ant colonies is accompanied
with reductions in individual’s cognition. Such trade-off
has been explored in other contexts, like the evolution
of multicellularity (McShea 2002), under the term com-
plexity drain. Previous work use coupled discrete maps
to suggest that collective computation might display too
this phenomenon (Delgado & Solé, 1997b). Further mul-
tiscale models of liquid brains should be developed to
properly address this question.

What other systems can be described as liquid brains?
As mentioned before, computations arising from gene-
gene regulatory links within cells have been studied using
similar formal schemes, from Boolean tables to threshold
networks (Kauffman 1984, Karlebach & Shamir 2008).
Several observations also suggest that gene networks
might be critical (Serra et al. 2007, Balleza et al. 2008,

Torres-Sosa et al. 2009, Daniels et al. 2018).

A final comment needs to be made concerning with the
physical phases used to present our classification between
liquid and solid. The use of the term “liquid” to label the
classes of systems discussed here is only partially appro-
priate. Particularly in relation with ants, their collective
dynamics is more appropriately described as active mat-
ter: ants (as well as bacterial and robotic swarms) need to
be understood as interacting self-propelled robots (Vic-
sek & Zafeiris 2012). Here too the statistical physics
approach has splayed a key role in understanding coordi-
nated behaviour and its transitions. Once again, in spite
of considerable differences, deep analogies exist between
classical equilibrium statistical physics systems and those
made of active units. Understanding the cognitive com-
plexity of liquid brains and its limits can provide deep in-
sights into the evolution of information-processing, com-
putational systems grounded in living structures.
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