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Abstract12

Accurately modeling cellular response to perturbations is a central goal of computational biology.13

While such modeling has been proposed based on statistical, mechanistic and machine learning14

models in specific settings, no generalization of predictions to phenomena absent from training data15

(‘out-of-sample’) has yet been demonstrated. Here, we present scGen, a model combining variational16

autoencoders and latent space vector arithmetics for high-dimensional single-cell gene expression17

data. In benchmarks across a broad range of examples, we show that scGen accurately models dose18

and infection response of cells across cell types, studies and species. In particular, we demonstrate19

that scGen learns cell type and species specific response implying that it captures features that20

distinguish responding from non-responding genes and cells. With the upcoming availability of large-21

scale atlases of organs in healthy state, we envision scGen to become a tool for experimental design22

through in silico screening of perturbation response in the context of disease and drug treatment.23

Introduction24

Single-cell transcriptomics has become an established tool for unbiased profiling of complex and25

heterogeneous systems [1, 2]. The generated datasets are typically used for explaining phenotypes26

through cellular composition and dynamics. Of particular interest is the dynamics of single cells in27

response to perturbations, be it to dose [3], treatment [4, 5] or knock-out of genes [6–8]. Although28

advances in single-cell differential expression analysis [9, 10] enabled the identification of genes29

associated with a perturbation, generative modeling of perturbation response takes a step further30

in that it enables in silico generation of data. The ability of generating data that cover phenomena31

not seen during training, is particularly useful and referred to as ‘out-of-sample’ prediction.32

While dynamic mechanistic models have been suggested for predicting low-dimensional quantities33

that characterize cellular response [11, 12], such as a scalar measure of proliferation, they face fun-34

damental problems. These models cannot be easily formulated in a data-driven way and require35

temporal resolution of the experimental data. Due to the typically small number of time points36

available, parameters are often hard to identify. Resorting to linear statistical models for model-37

ing perturbation response [6, 8], by contrast, leads to small predictive power for the complicated38

nonlinear effects that single-cell data display. By contrast, neural network models do not face these39

limits.40

Recently, such models have been suggested for the analysis of single-cell RNA-seq data [13–17].41

In particular, generative adversarial networks (GANs) have been proposed for simulating single cell42

differentiation through so a called latent space interpolation [16]. While being an interesting alterna-43

tive to established pseudotemporal ordering algorithms [18], this analysis does not demonstrate the44

GAN’s capability of out-of-sample prediction. The use of GANs for the harder task of out-of-sample45
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Figure 1 | scGen, a method to predict single cell perturbation response. Given a set of observed
cell types in control and stimulation, we aim to predict the perturbation response of a new cell type A (blue)
by training a model that learns to generalize the response of the cells in the training set. Within scGen,
the model is a variational autoencoder and the predictions are obtained using vector arithmetics in the
autoencoder’s latent space. Specifically, we project gene expression measurements into a latent space using
an encoder network and obtain a vector δ that represents the difference between perturbed and unperturbed
cells from the training set in latent space. Using δ, unperturbed cells of type A are linearly extrapolated
in latent space. The decoder network then maps the linear latent space predictions to highly non-linear
predictions in gene expression space.

prediction is hindered by fundamental difficulties: (1) GANs are hard to train for structured high-46

dimensional data, leading to high-variance predictions with large errors in extrapolation, and (2),47

GANs do not allow to directly map a gene expression vector x on a latent space vector z, making it48

hard to impossible to generate a cell with wished properties. In addition, GANs for structured data49

have not yet shown advantages over the simpler variational autoencoders (VAE) [19] (Supplemental50

Note 1.1).51

To overcome the problems inherent to GANs, we built scGen based on a VAE combined with vector52

arithmetics with an architecture adapted for single-cell RNA-seq data. For the first time, scGen53

enables predictions of dose and infection response of cells for phenomena absent from training data54

across cell types, studies and species. In a broad benchmark, it outperforms other potential modeling55

approaches such as linear methods, conditional variational autoencoders and style-transfer GANs.56

The benchmark of several generative neural network models should present a valuable resource for the57

community showing opportunities and limitations for such models when applied to transcriptomic58

data. scGen is based on Tensorflow [20] and on the single-cell analysis toolbox Scanpy [21].59

Results60

scGen accurately predicts single-cell perturbation response out-of-sample61

High-dimensional scRNA-seq data is typically assumed to be well-parametrized by a low-dimensional62

manifold arising from the constraints of the underlying gene regulatory networks. Current algorithms63

mostly focus on characterizing the manifold using graph-based techniques [24, 25] in the space64

spanned by a few principal components. More recently, the manifold has been modeled using neural65

networks [13–17]. As in other application fields [26, 27], in the latent spaces of these models, the66

manifolds display astonishingly simple properties, such as approximately linear axes of variation for67

latent variables explaining a major part of the variability in the data. Hence, linear extrapolations68

of the low-dimensional manifold could in principle capture variability related to perturbation and69

other covariates (Supplemental Note 1.2, Supplemental Figure 1).70

Let every cell i with expression profile xi be characterized by a variable pi, which represents a71
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Figure 2 | scGen accurately predicts single-cell perturbation response out-of-sample. a, UMAP
visualization [22] of the distributions of condition, cell type and data split for the prediction of IFN-β stim-
ulated CD4-T cells from altogether 16,893 PBMCs from Kang et al. [3]. b, Mean gene expression of 6,998
genes between scGen predicted and real stimulated CD4-T cells. c, Mean gene expression for control versus
stimulated resp. predicted CD4-T cells together with top five upregulated differentially expressed genes. d,
Comparison of R2 values for mean gene expression between real and predicted cells for the 7 different cell
types of the study. e, Distribution of ISG15 : the top uniform marker (response) gene to IFN-β [23] between
control, predicted and real stimulated cells of scGen when compared with other potential prediction models.
f, Similar comparison of R2 values to predict unseen CD4-T stimulated cells. g, Dot plot for comparing
control, true and predicted stimulation when predicting on seven cell types from Kang et al..

discrete attribute across the whole manifold, such as perturbation, species or batch. To start with,72

we assume only two conditions 0 (unperturbed) and 1 (perturbed). Let us further consider the73

conditional distribution P (xi|zi, pi), which assumes that each cell xi comes from a low-dimensional74

representation zi in condition pi. We use a VAE to model P (xi|zi, pi) in its dependence on zi and75

vector arithmetics in the VAE’s latent space to model the dependence on pi (Figure 1).76

Equipped with this, consider a typical extrapolation problem. Assume cell type A exists in the77

training data only in the unperturbed (p = 0) condition. From that, we predict the latent repre-78

sentation of perturbed cells (p = 1) of cell type A using ẑi,A,p=1 = zi,A,p=0 + δ, where zi,A,p=0 and79

ẑi,A,p=1 denotes the latent representation of cells with cell type A in conditions p = 0 and p = 1, re-80

spectively and δ is the difference vector of means between cells in the training set in condition 0 and81

1 (Supplemental Note 1.3). From the latent space, scGen maps predicted cells to high-dimensional82

gene expression space using the generator network estimated while training the VAE.83

To demonstrate the performance of scGen, we apply it to published human PBMC samples in84

control and under IFN-β stimulation [3] (Supplemental Note 2). As a first test, we compare the85

predictions of stimulated CD4-T cells held out during training (Figure 2a). scGen prediction of the86

mean associated with the perturbation in CD4-T cells correlates well with the ground-truth across87

all genes (Figure 2b). Comparing upregulated genes in stimulation (for example labeled transcripts88

in Figure 2c) we observe that these genes very well coincide in real and predicted stimulated cells.89

To evaluate generality, we trained six other models while holding out each of the six major cell types90

present in the study. Figure 2d shows that our model accurately predicts all other cell types (average91

R2 = 0.954). Moreover, the distribution of the strongest regulated IFN-β response gene ISG15 as92
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Figure 3 | scGen models infection response in two datasets of intestinal epithelial cells. a-b,
Prediction of early transit-amplifying (TA.early) cells from two different small intestine datasets from Haber
et al. [4] infected with Salmonella and helminth Heligmosomoides polygyrus (H.poly) after 2 and 10 days,
respectively. The mean gene expression for infected and control for different cell types shows how scGen
transforms control to predicted perturbed cells in a way that the expression of top 5 up and downregulated
differentially expressed genes are similar to real infected cells. c-d, Comparison of R2 values for mean gene
expression between real and predicted cells for all the cell types in two different datasets illustrates that
scGen performs well for all cell types in different scenarios.

predicted by scGen not only provides a good estimate for the mean but also captures the variance93

of the distribution (Figure 2e, all genes in Supplemental Figure 2a).94

scGen outperforms alternative modeling approaches95

Aside from scGen, we studied further natural candidates for modeling a conditional distribution that96

is able to capture perturbation response. We benchmark scGen against four of these candidates,97

including two generative neural networks and two linear models. The first of these models is the98

conditional variational autoencoder (CVAE) (Supplemental Note 3, Supplemental Figure 3a, [28]),99

which has recently been adapted to preprocessing, batch-correcting and differential testing of single-100

cell data [13]. However, it has not been shown to be a viable approach for out-of-sample predictions,101

even though, formally, it readily admits the generation of samples from different conditions. The102

second class of models are style transfer GAN (Supplemental Note 4, Supplemental Figure 3b), which103

are commonly used for unsupervised image to image translation [29, 30]. In our implementation,104

such a model is directly trained for the task of transferring cells from one condition to another. The105

adversarial training is highly flexible and does not require an assumption of linearity in a latent106

space. In contrast to other propositions for mapping biological manifolds using GANs [31], style107

transfer GANs are able to handle unpaired data, a necessity for their applicability to single-cell108

RNA-seq data. We also mention that we tested ordinary GANs combined with vector arithmetics109

similar to Ghahramani et al. [16]. However, for the fundamental problems outlined above, we were110

not able to produce any meaningful out-of-sample predictions using this setup. In addition to the111

non-linear generative models, we tested simpler linear approaches based on vector arithmetics in112
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gene expression space and the latent space of principal component analyses (PCA).113

Applying the competing models to the PBMC dataset, we observe that all other models fail to114

predict mean and variance of the distribution of ISG15 (all genes in Supplemental Figure 2), in115

stark contrast to scGen’s performance (Figure 2e). CVAE and style transfer GANs predictions are116

vaguely correlated with ground truth values and linear models also yield incorrect negative values117

(Supplemental Figure 2b-d). However, as shown in Figure 2b scGen provides most faithful prediction118

to real CD4-T cells and outperforms all other potential models (Figure 2f, Supplemental Figure 2,119

Supplemental Note 5).120

A likely reason for why CVAE fails to provide meaningful out-of-sample predictions, is that it121

disentangles perturbation information from the latent space. Hence, the model does not learn non-122

trivial patterns linking perturbation to cell type. A likely reason for that the style transfer GAN123

is incapable for achieving the task is it’s attempt of matching two high-dimensional distributions,124

with much more complex models involved than in the case of scGen. While notoriously more125

difficult to train. Some of these arguments can be better understood when inspecting the latent126

space distribution embeddings of the generative models. As the CVAE completely strips off all127

perturbation-variation, its latent space embedding does not allow to distinguish perturbed from128

unperturbed cells (Supplemental Figure 4a). In contrast to CVAE representations, the scGen (VAE)129

latent space representation captures both information for condition and cell type (Supplemental130

Figure 4c), reflecting that non-trivial patterns across condition and cell type variability have been131

learned.132

scGen predicts both response shared among cell types and cell type specific response133

Depending on shared or individual receptors, signaling pathways and regulatory networks, a group of134

cells perturbation response may result in expression-level changes that are shared across all cell types135

or unique to only some. Inferring both types of responses is essential for understanding mechanisms136

involved in disease progression as well as adequate drug dose predictions [32, 33]. Here, we show137

that scGen is able to capture both shared and cell type specific response after stimulation by IFN-β138

when any of the cell types in the data is held out during training and subsequently predicted (Figure139

2g). For this, we use previously reported marker genes [23] of three different kinds: cell type specific140

markers independent of the perturbation such as CD79A for B cells, perturbation-response specific141

genes like ISG15, IFI6, IFIT1 expressed in all cell types, and genes of cell type specific responses to142

the perturbation such as APOBEC3A in for DC cells. Across the seven different held out perturbed143

cell types present in the data of Kang et al., scGen consistently makes good predictions not only of144

unperturbed and shared perturbation effects but also for cell type specific ones. Hence, although145

scGen encodes perturbation response by a shared δ across all cells in the latent space, after decoding146

to expression space both shared and individual changes can be captured.147

scGen robustly predicts intestinal epithelial cells response to infection148

To illustrate that scGen works robustly, we evaluate its prediction performance quantitatively in149

two datasets from Haber et al. [4] related to epithelial cells from the small intestine (Supplemental150

Note 2) using the same network architecture as for the data of Kang et al.. These datasets consist of151

intestinal epithelial cells after Salmonella or Heligmosomoides polygyrus (H.poly) infections, respec-152

tively. scGen shows good performance for early transit-amplifying (TA.early) cells after infection153

with H.poly and Salmonella (Figure 3a,b), predicting both up and downregulated genes for each154

condition with high precision (R2 = 0.98 and R2 = 0.98, respectively). Figure 3c,d depicts similar155

analyses for both datasets and all occurring cell types — as before, the predicted ones being held156

out during training — indicating that scGen’s prediction accuracy is robust across most cell types.157

scGen’s performance is by far poorest for Tuft and Endocrine cells (Figure 3c,d). Whereas these158

cells, in reality, show a much weaker response than all other cells in the dataset, scGen predicts them159

as essentially non-responding (see Supplemental Figure 5). Hence, while scGen fails to capture the160

response quantitatively, it is remarkable that it captures the qualitative trend of the much weaker161

response despite not having seen this phenomenon for a high number of cells during training — both162
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Figure 4 | scGen accurately predicts single cell perturbation across different studies. a, scGen
can be used to translate the effect of stimulation trained in study A to how stimulated cells in study B
would look like, given a control sample set. b, Cell types for control and predicted stimulated cells for study
B (Zheng et al. [34]) in two conditions where ISG15, the top IFN-β response gene, is only expressed in
stimulated cells. c, Average expression between: control and stimulated F-Mono cells from study A (upper
left), control from study B and stimulated cells from study A (upper right) and control from study B and
predicted stimulated cells for study B (lower right). Red points denote top five differentially expressed genes
for F-Mono cells after stimulation in study A. d, Comparison of R2 values highlighted in panel c for F-Mono
and all other cell types.

Endocrine and Tuft cells only constitute a small fraction of the data.163

In order to further understand when scGen starts to fail to make meaningful predictions, we again164

trained it on the PBMC data of Kang et al., but now with more than one cell type held out.165

This study shows that scGen’s predictions are robust when holding out several dissimilar cell types166

(Supplemental Figure 6a-b) but start failing when training on data that only contains information167

about the response of one highly dissimilar cell type (see CD4-T predictions in Supplemental Figure168

6c).169

Finally, similar to what has been shown by [16] for differentiation of epidermal cells, we cannot only170

generate fully responding cell populations, but also intermediary cell states between two conditions.171

Here, we do so for the IFN-β stimulation and the Salmonella infection (Supplemental Note 6,172

Supplemental Figure 7).173

scGen enables cross-study predictions174

We showed that scGen predicts cells from a cell type in a specific biological condition using all other175

cells available in that study. In order to be applicable to broad cell atlases such as the Human Cell176

Atlas [35], the algorithm ought to be robust against batch effects and hence generalize its prediction177

to unperturbed cells measured in a different study. For this, we consider a scenario with two single178

cell studies: study A, where cells within a specific organ have been observed in two biological179
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Figure 5 | scGen predicts single cell perturbation response across different species. a, Prediction
of unseen rat LPS phagocytes while accounting for both stimulation and species effect by learning two different
vectors for each, on control and stimulated scRNA-seq from mouse, rabbit and pig by Hagai et al. [5]. b,Mean
gene expression of 6,619 one-to-one orthologs between species for control rat cells plotted against true and
predicted LPS while highlighted points represent top 5 differentially expressed genes after LPS stimulation in
the real data. c, Dot plot of top 10 differentially expressed genes after LPS stimulation in each species, with
numbers indicating how many species have those responsive genes among their top 10 differentially expressed
genes.

conditions, e.g., control and stimulation, and study B with the same setting as study A but only in180

the control condition. By jointly encoding the two datasets, scGen provides a model for predicting181

the perturbation for study B (Figure 4a) by estimating the study effect as the linear perturbation182

in the latent space. To demonstrate this, we use as study A the PBMC dataset from Kang et al.183

and as study B another PBMC study consisting of 2623 cells that are available only in the control184

condition (Zheng et al. [34]). After training the model on data from study A, we use the trained185

model to predict how the PBMCs in study B would respond to stimulation with IFN-β.186

As a first sanity check, we show that ISG15 is also expressed in the prediction of stimulated cells187

based on the Zheng et al. (Figure 4b). This observation holds for all other differential genes188

associated with the stimulation, which we show for FCGR3A+-Monocytes (F-Mono) (Figure 4c):189

The predicted stimulated F-Mono cells correlate more strongly with the control cells in their study190

than with stimulated cells from study A while still expressing differentially expressed genes known191

from study A. Similarly, predictions for other cell types yield a higher correlation than the direct192

comparison with study A (Figure 4d).193

scGen predicts single-cell perturbation across species194

In addition to learning the variation between two conditions, e.g. health and disease for a species,195

scGen can be used to predict across species. We trained a model on single cell RNA-seq dataset by196

Hagai et al. [5] comprised of bone marrow-derived mononuclear phagocytes from mouse, rat, rabbit,197

and pig perturbed with lipopolysaccharide (LPS) after six hours. Similar to what we did previously,198

we held out the rat LPS cells from the training data.199

In contrast to previous scenarios, now, two global axes of variation exist in the latent space associated200

with species and stimulation, respectively.201

Based on this, we have two latent difference vectors: δLPS , which encodes the variation between202
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Figure 6 | scGen removes batch effects. a, UMAP visualization of 4 technically diverse pancreatic
datasets with their corresponding batch and cell types. We report average silhouette width (ASW) for
batches in the original data (ASW = 0.2130, lower is better for batch effect evaluation). b, Data corrected
by scGen mixes shared cell types from different studies while preserving study specific cell types independent
(ASW = -0.0938).

control and LPS cells, and δspecies, which accounts for differences between species. Next, we predict203

rat LPS cells using zi,rat,LPS = 1
2(zi,mouse,LPS + δspecies + zi,rat,control + δLPS). This equation takes an204

average of the two alternative ways of reaching rat LPS cells (Figure 5a). Figure 5(b) illustrates205

that predicted LPS cells express similar differential genes as true LPS stimulated rat cells. All other206

predictions along the major linear axes of variation also yield plausible results for stimulated rat207

cells (Supplemental Figure 8).208

In addition to the species-conserved response of a few upregulated genes, e.g. Ccl3 and Ccl4, cells209

also display species specific responses. For example, Il1a is highly upregulated in all species except210

rat. Strikingly, scGen correctly identifies the rat cells as non-responding with this gene. Only the211

fraction of cells expressing Il1a increases at a low expression level (Figure 5c). Based on these early212

demonstrations, we foresee the prediction of human cell response based on data from healthy human213

and different healthy and perturbed animal models.214

scGen removes batch effects215

Let us now show that scGen is able to efficiently correct for batch effects. To evaluate scGen’s batch216

correction capability, we merged four pancreatic datasets [36–39] (Figure 6a). We train scGen on217

these data and define a source and destination batch and compute a difference vector δbatch between218

the source and the destination batch. To remove the batch effects from the destination batch, we219

add the learned δbatch to the latent representation of the cells in the destination batch (Figure 6b).220

Using the cell type labels from the studies we observe a homogeneous overlap. A comparison with221

four existing batch removal methods (Supplemental Figure 9) shows that scGen performs as well222

as the other methods [23, 40–42]. To further evaluate batch removal ability of our model on a223

larger dataset, we merged eight different mouse single cell atlases comprised of 114600 cells from224

different organs [43–50]. As expected, the homogeneity of the data increased after batch correction225

(Supplemental Figure 10).226
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Discussion227

We presented scGen, a model for predicting perturbation response of single cells based on generative228

neural networks and latent-space vector arithmetic. By adequately encoding the original expression229

space in a latent space, we achieve simple, near-to-linear mappings for highly non-linear sources230

of variation in the original data, which explain a large portion of the variability in the data. We231

provided examples for variation due to perturbation, species or batch. This allows to use scGen in232

several contexts including perturbation prediction response for unseen phenomena across cell types,233

study and species, for interpolating cells between conditions and for batch effect removal.234

While we showed proof-of-concept for in silico predictions of cell type and species specific cellular235

response, in the present work, scGen has been trained on relatively small datasets, which only reflect236

subsets of biological and transcriptional variability. While we demonstrated scGen’s predictive power237

in these settings, a trained model cannot be expected to be predictive beyond the domain of the238

training data. To gain confidence in predictions, one needs to make realistic estimates for prediction239

errors by holding out parts of the data with known ground truth that are representative for the240

task. It is important to realize that such a procedure arises naturally when applying scGen in an241

alternating iteration of experiments, retraining based on new data and in silico prediction. By design,242

such strategies are expected to yield highly performing models for specific systems and perturbations243

of interest. It is evident that such strategies could readily exploit the upcoming availability of large-244

scale atlases of organs in healthy state, such as the Human Cell Atlas [35].245

In summary, we demonstrated that scGen is able to learn cell type and species specific response.246

To be able to do so, the model needs to capture features that distinguish weakly from strongly247

responding genes and cells. Building biological interpretations of these features, for instance, along248

the lines of Ghahramani et al. [16] or Way and Greene [51], could help in understanding the differences249

between cells that respond to certain drugs and cells that do not respond, which is often crucial for250

understanding patient response to drugs [52].251

Code availability252

Code is available from https://github.com/theislab/scGen.253

Data availability254

All data is available from the original publications and linked on https://github.com/theislab/255

scGen.256
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Supplemental Note 1: Models and theoretical background287

Supplemental Note 1.1: Variational autoencoders288

A variational autoencoder is a neural network consisting of an encoder and a decoder similar to289

classical autoencoders. Unlike the classical autoencoders, VAEs are able to generate new data290

points. The mathematics behind VAEs is not similar to classical autoencoders. The difference is291

that the model maximizes the likelihood of each sample xi in the training set under a generative292

process as formulated in Equation (1).293

P (xi|θ) =
∫
P (xi|zi; θ)P (zi|θ)dzi. (1)

where θ is the model parameter which in our model corresponds to a neural network with its learnable294

parameters and zi is a latent variable. The most important idea of a VAE is to sample latent295

variables zi that are likely to produce xi and using those to compute P (xi|θ) [54]. We approximate296

the posterior distribution P (zi|xi, θ) using the variational distribution Q(zi|xi, φ) which is modeled297

by a neural network with parameter φ, called the inference network (the encoder). Next, we need a298

distance measure between the true posterior P (zi|xi, θ) and the variational distribution. To compute299

such a distance we use the Kullback-Leibler (KL) divergence between Q(zi|xi, φ) and P (zi|xi, θ),300

which yields:301

KL(Q(zi|xi, φ)||P (zi|xi, θ)) = EQ(zi|xi,φ)[logQ(zi|xi, φ)− logP (zi|xi, θ)]. (2)

Now, we can derive both P (xi|θ) and P (xi|zi, θ) by applying Bayes rule to P (zi|xi, θ) which results302

in:303

KL(Q(zi|xi, φ)||P (zi|xi, θ)) = EQ(zi|xi,φ)[logQ(zi|xi, φ)− logP (zi|θ)− logP (xi|zi, θ)] + logP (xi|θ).
(3)
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Finally, by rearranging some terms and exploiting the definition of KL divergence we have :304

logP (xi|θ)−KL(Q(zi|xi, φ)||P (zi|xi, θ)) = EQ(zi|xi,φ)[logP (xi|zi, θ)]−KL[Q(zi|xi, φ)||P (zi|θ)]. (4)

On the left hand side of Equation (4), we have the log-likelihood of the data denoted by logP (xi|θ)305

and an error term which depends on the capacity of the model. This term ensures that Q is306

as complex as P and assuming a high capacity model for Q(zi|xi, φ), this term will be zero [54].307

Therefore, we will directly optimize logP (xi|θ) :308

EQ(zi|xi,φ)[logP (xi|zi, θ)]−KL[Q(zi|xi, φ)||P (zi|θ)]. (5)

In order to maximize the Equation (5), we choose the variational distribution Q(zi|xi, φ) to be a309

multivariate Gaussian Q(zi|xi) = N (zi;µφ(xi), Σφ(xi)) where µφ and Σφ are implemented with the310

encoder neural network and Σφ is constrained to be a diagonal matrix. The KL term in Equation311

(5) can be computed analytically since both both prior (P (zi|θ)) and posterior (Q(zi|xi, φ)) are312

multivariate Gaussian distributions. The integration for the first term in (5) has no closed-form and313

we need Monte Carlo integration to estimate it. We can sample Q(zi|xi, φ) L times and directly314

use stochastic gradient descent to optimize Equation (6) as loss function for every training point xi315

from dataset D :316

Loss(xi) =
1

L

L∑
l=1

logP (xi|zi,l, θ)−KL[Q(zi|xi, φ)||P (zi|θ)]. (6)

However, the first term in Equation (6) only depends on the the parameters of P and the parameters317

of variational distribution Q are not there. Therefore, it has no gradient with respect to φ to be318

back-propagated. In order to address this, the reparameterization trick [19] has been proposed. This319

trick works by first sampling from ε ∼ N (0, I) and then computing zi = µφ(xi) + Σ
1
2
φ (xi) × ε. In320

consequence, we can use gradient-based algorithms to optimize Equation (6).321

For the results shown in the present paper, we adapted the cost function (6) of the VAE by322

replacing µ(xi)2 with (logΣ(xi))
2 in the regularization (KL) term.323

Supplemental Note 1.2: Linearity of the latent space324

scGen exploits vector arithmetics in the latent space of VAEs which assumes the shift (response)325

induced by stimuli can be modeled linearly. Similar to what has been shown by [55], we empirically326

demonstrate the linearity of the latent space with respect to biological conditions. In pursuance of327

that, we design a simple linear classifier based on the difference vector (δ) between two conditions328

in the latent space. We hypothesize that the δ vector directs toward a direction in the latent space329

where condition 1 increases. Therefore, by moving along the direction of δ we are moving from the330

condition 0 to condition 1. A high-level intuition for this is the difference vector manipulates cells by331

adding and removing information to them. Suppose, for example, a dimension of the latent vector332

corresponds to the degree of the infection in a cell. Increasing that attribute would be as easy as333

adding the δ vector corresponding for that attribute. In consequence, the dot product of the cells334

from the condition 1 with δ will be approximately greater than zero (or a constant positive value)335

indicating high similarity. Similarly, the dot product with cells in condition 0 would yield negative336

values showing low similarity (Supplemental Figure 1a). After finding the difference vector for each337

condition, including IFN-β from Kang et al. [3], H.poly and Salmonella infections from Haber et al.338

[4], we demonstrate the histogram of dot product results for the latent representation of all cells339

with their corresponding difference vector (Supplemental Figure 1b).340

We did another test by calculating δstim-k denoting the difference between stimulated and control341

cells for cell type k. We also calculated another set of difference vectors, δcelltype-ij, representing342

the difference between each of the seven cell types present in Kang et al. dataset irrespective of343
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Supplemental Figure 1 | Linearity of the latent space. a, Building a linear classifier based on the dot
product between the difference vector (δ) and the latent representation of each cell. b, Dot product results
between latent representation of all cells with their corresponding difference vector (δ) for each condition shows
that two conditions are approximately linearly separable using dot product classifier. c, Cosine similarity of
δstim-k, δcelltype-ij with δ where δcelltype-ij = avg(zcelltype=i) − avg(zcelltype=j) and δstim-k = avg(zstim, celltype=k)
− avg(zctrl, celltype=k) for all seven cell types present in Kang et al. dataset (z denotes the latent representation
of all cells with the corresponding label). The third violin plot shows pairwise cosine similarity for a set of
1000 random samples from 100 dimensional standard normal distribution.

their condition. Next, we calculated the cosine similarity for each set of previous vectors with δ.344

Supplemental Figure 1c depicts that vector in δstim-k set have very high cosine similarity with δ345

showing that they are both directing toward the same direction with a small angle. However, most346

of the δcelltype-ij vectors have cosine similarity close to zero that shows the cell type and condition347

vectors are different and nearly orthogonal. In order to get an intuition of how unlikely is to get a348

high cosine similarity in 100-dimensional vector space, we randomly drew 1000 samples from 100-349

dimensional standard normal distribution and calculated pair-wise cosine similarity between them350

(Supplemental Figure 1c, random).351

Supplemental Note 1.3: δ vector estimation352

In order to estimate δ, first, we extract all cells for each condition. Next, for each cell type, we353

up-sample the cell type sizes to be equal to the maximum cell type size in that condition. To further354

remove the population size bias, we randomly down-sample the condition with a higher sample size355

to match the sample size of the other the condition. Finally, we estimate the difference vector by356

calculating δ = avg(zcondition=1) − avg(zcondition=0), where zcondition=1 and zcondition=0 denote the357

latent representation of cells in each condition, respectively.358

Supplemental Note 2: Datasets359

The First dataset includes two groups of peripheral blood mononuclear cells (PBMCs) from Kang360

et al. [3]. The original dataset includes 29065 cells split into 14446 stimulated and 14619 control361
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Supplemental Figure 2 | Distribution matching comparison between different models. a-e, Mean
and variance matching comparison between scGen and four alternative models for CD4-T cells, shows scGen
outperforms other models. Similarly, by comparing UMAP visualizations one can see predictions by scGen
have more overlap with ground truth cells whereas predictions from other models lie far from real stimulated
cells. f, Ground truth mean and variance between control and stimulated CD4-T cells.

cells from 8 individuals. We annotated cell types by extracting an average of top 20 cluster genes362

from each of 8 identified cell types in PMBCs from [34]. Next, the Spearman correlation between363

every single cell and all 8 cluster averages was calculated and each cell was assigned to the cell type364

which it had a maximum correlation (similar to [3]). After identifying cell types, Megakaryocyte365

cells were removed from the dataset due to the high uncertainty of assigned labels. Next, the dataset366

was filtered for cells with minimum 500 expressed genes and genes which were expressed at least in367

5 cells. Moreover, we normalized counts per-cell and top 6998 differentially expressed genes were368

selected. Finally, we log-transformed the data in order to have a smoother training procedure.369

The second dataset comprises of epithelial response to pathogen infection from Haber et al. [4].370

In this dataset, the response of intestinal epithelial cells to Salmonella and parasitic helminth He-371

ligmosomoides polygyrus (H.poly) were investigated. Moreover, it includes three different conditions372

including, 1777 Salmonella infected cells and ten days (2,711) after H.poly infection and finally a373

group of 3240 control cells. The data was normalized per-cell and top 7000 differentially expressed374

genes were selected and finally log-transformed.375

The second PBMC dataset from Zheng et al. [34] was obtained from http://cf.10xgenomics.376

com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz. After filter-377

ing cells, the data was merged with filtered PBMCs from Kang et al. [3]. The Megakaryocyte cells378

were removed from the smaller dataset. Next, the data was normalized and then we selected top379

7000 differentially expressed genes. The merged dataset was log-transformed and cells from Kang et380
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Supplemental Figure 3 | Graphical pipeline of two alternative approaches to predict unseen
single cell perturbations. a, CVAE pipeline at test time to predict unseen condition. In order to predict
cells in condition 1, we feed all cells present in condition 0 with inverse label 1 concatenated (shown with +
symbol) to the data matrix. This informs the model that these cells are from condition 1. Therefore, the
model changes the condition of input cells from 0 to 1. b, The style transfer GAN to transform one condition
to another. This would be possible by learning a joint two-way mapping in an adversarial learning setting.
There exist two generators, G0−1 which transforms cells from condition 0 to 1 and G1−0 which does the same
task but in the reverse direction. Two discriminators, denoted by D0 and D1, are trained to detect real from
fake cells generated by G1−0 and G0−1, respectively.

al. were used for training the model. The remaining 2623 cell from Zheng et al. were used for the381

prediction.382

Pancreatic datasets were downloaded from ftp://ngs.sanger.ac.uk/production/teichmann/383

BBKNN/objects-pancreas.zip. All the comparisons to other batch corrections methods were per-384

formed similar to [41] with n = 50 PCs. The data was already preprocessed and directly used for385

training the model.386

Mouse cell atlases were obtained from ftp://ngs.sanger.ac.uk/production/teichmann/BBKNN/387

MouseAtlas.zip. The data was already preprocessed and directly used for training the model.388

LPS dataset [5] was obtained from https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6754/389

?query=tzachi+hagai. The data were further filtered for cells, normalized and log-transformed. We390

used BiomaRt (v84) [56] to find ENSEMBL IDs of the 1-to-1 orthologs in the other three species391

with the mouse. In total 6619 genes were selected from all species for training the model.392
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Supplemental Figure 4 | Latent space comparison. a-c, UMAP visualization of latent space represen-
tation for PBMCs from Kang et al. dataset. For scGen (VAE) and CVAE we used the bottleneck layer but
for style transfer GAN we used discriminator’s penultimate output as the input for UMAP algorithm.

Supplemental Note 3: Conditional variational autoencoder393

The conditional variational autoencoder (CVAE) [28] is also based on the variational inference394

framework. In the CVAE setting one can train a model conditioned on two existing biological395

conditions. We concatenate the condition of every cell with its input (xi) and latent variable (zi).396

At test time, we feed the model with cells in condition 0 and the label of condition 1 (inverse label)397

to transform the cells to same cell type but in condition 1 (Supplemental Figure 3a).398

Supplemental Note 4: Style transfer GAN399

The original style transfer model [30] learns to transform images in one visual domain (e.g., domain400

of all horses) to another domain (e.g., the domain of all zebras). We can adapt this to the single cell401

domain by training a network that receives single cells in condition 0 and transforms them to similar402

cells with the same cell type but in condition 1. This can be achieved in an adversarial training403

fashion (Supplemental Figure 3b). As it is shown in Supplemental Figure 3b, the model transforms404

cells in condition 0 to cells in condition 1 via G0−1 and then transforms them back to condition 1405

using G1−0. There exists a second line of networks which learns to transform cells from condition406

1 to 0 and reconstruct them back to condition 0. These two pipelines must work in a way that407

they can fool two discriminators (one for each condition) which are trained to detect real cells from408

generated (fake) cells. In order to make the problem setting more constrained, the reconstructions409

should not highly deviate from the real data according to a distance metric (e.g., L2). Moreover,410

similar networks in both lines share parameters. At test time, one can feed the gene expression411

profile of all target cells in condition 0 to transform them to condition 1.412
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cell type condition
a

Supplemental Figure 5 | UMAP visualization for epithelial response to pathogen infection from
Haber et al. [4]. a, Different cell types have various degree of response after infection. In comparison with
other cell types, the Endocrine and Tuft cells are less affected after infection.

Supplemental Note 5: Model comparison413

We compare the distribution matching capability of each model based on their variance and mean414

estimation of every individual gene. Our model yields most accurate mean estimation (R2 = 0.97,415

Supplemental Figure 2a) while other models yield poor results. For example, CVAE completely fails416

to upregulate differentially expressed genes and the result is more similar to control cells (R2 = 0.88,417

Supplemental Figure 2b). Notably, applying vector arithmetics in gene expression and PCA space418

make the mean of some genes to take invalid negative values and leaves the variance intact as it419

was in the real control cells (Supplemental Figure 2d,e). Furthermore, scGen also show reasonable420

performance in variance estimation (R2 = 0.63) and outperforms all other models (Supplemental421

Figure 2a).422

Supplemental Note 6: Latent space interpolation423

We exemplify the latent space interpolation ability of our model by generating 2000 intermediary TA424

(Salmonella, Haber et al.) and CD4-T (IFN-β, Kang et al.) cells. First, we project average control425

and predicted cells into the latent space and then linearly interpolate 2000 intermediary points426

between them. Next, by using generator network we map back latent intermediary cells into high-427

dimensional gene expression space (Supplemental Figure 7a-b). One can observe a smooth change428

of the top five up and downregulated Salmonella response genes as we traverse cell manifold from429

control towards Salmonella cells (Supplemental Figure7c). Similarly, we can see the upregulation of430
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Supplemental Figure 6 | scGen performs robustly when holding out more than one cell type.
a-c, Predicting IFN-β stimulated CD4-T and F-Mono cells form Kang et al. dataset in different scenarios
with different number of held out cell types. First panel shows UMAP visualization for the position of held
out cells. Other panels show mean gene expression of all genes and violin plot for ISG15, the top response
gene after stimulation with IFN-β for CD4-T and F-mono cells.

top five IFN-β response genes (Supplemental Figure 7d).431

Supplemental Note 7: Training and technical details432

We used a similar architecture to train all models in all scenarios. This architecture includes reduc-433

ing input dimension to 800 and creating another 800 features from the previous layer and finally434

projecting into 100 dimensional Gaussian governed latent space (inputdim → 800 → 800 → 100).435

The batch normalization [57] was applied to every layer except Gaussian and output layers. Leaky436

ReLU (Rectified Linear Unit) activation function was used for all the layers except Gaussian and437

output layers which linear and ReLU were used, Respectively. In order to avoid over-fitting, we ex-438

ploited several techniques including dropout [58], L2 regularization and early-stopping. Note that,439

the degree of regularization, dropout rate, and early stopping hyper-parameters are the only changes440

we made to train the model on different datasets. Adam [59] optimizer with learning rate 0.001 was441

used to train the networks. The detailed hyper-parameters for each dataset are listed on the GitHub442

repository.443

Usually, the conditions sizes are not equal leading to a biased δ vector estimation. Moreover,444

White [55] discovered that by removing smile vector from woman face, the male attribute was also445

added. This originates from the sampling bias induced by unequal size of smiling man and woman446

samples. In order to prevent a similar problem, as previously described we balanced cell type and447

condition size before estimating δ. Supplemental Figure 11 depicts the effects of using biased and448

unbiased δ vector for the prediction of stimulated CD4-T from Kang et al.449
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Supplemental Figure 7 | scGen enables the generation of intermediary cells between two con-
ditions. a-b, PCA visualization of generated intermediary TA (Haber et al.) and CD4-T (Kang et al.)
cells between control and predicted cells. c, Top five up and downregulated genes as we move from control
to Salmonella infected cells. d, Similarly, variation of top five IFN-β marker genes while transitioning from
control to predicted IFN-β stimulated cells.

Supplemental Note 8: Evaluations450

Silhouette width, we calculated the Silhouette width based on the first 50 PCs of the corrected451

data or the latent space of the algorithm if it did not return corrected data. The Silhouette coefficient452

for for cell i is defined as:453

s(i) = b(i)−a(i)
max{a(i),b(i)}454

where a(i) and b(i) indicate the mean intra-cluster distance and the mean nearest-cluster distance455

for sample i, respectively. Instead of cluster labels one can use batch labels to asses batch correction456

methods. We used silhouette_score function from scikit-learn [60] to calculate the average Silhouette457

width over all samples.458

Error bars, were computed by re-sampling the data points with replacement for 100 times and459

fitting the regression line for the re-sampled data. The interval represents the original estimation of460

R2 plus/minus the standard deviation of R2 values obtained from 100 fitted lines.461

cosine similarity, computes the similarity as the normalized dot product of X and Y defined as:462

cosine_similarity(X,Y ) = <X,Y >
||X||||Y ||463

The cosine_similarity function from scikit-learn was used to compute cosine similarity.464
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Supplemental Figure 8 | Alternative vector arithmetics for cross species prediction. a-f, Pre-
diction of ratLPS by adding difference vectors estimated using rat and mouse. g-h, Prediction of ratLPS by
adding δaverage to ratcontrol where δaverage = avg(zLPS, all species)− avg(zcontrol, all species).
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cell type

batch

original scGEN

cell type

batch

scanorama MultiCCA MNN bbknn

a b

c d e f

ASW= -0.0938
ASW = 0.2130

ASW = -0.0074 AWS = -0.0009 ASW = 0.0087 ASW is not applicable

Supplemental Figure 9 | Comparison of existing batch effect removal methods at integrating
four different pancreatic datasets. a, Original data contains large technical variation which causes
similar cell types cluster separately. We report average silhouette width (ASW) for batches in the original
data (ASW = 0.2130, lower is better). b, scGen aligns shared cell types in different studies while preserving
study specific cell types independent after batch correction and returns lowest ASW (-0.0938). c, Scanorama
marges shared cell types but they are not perfectly mixed and does not persevere the structure of the small
study specific cell types. d, CCA connects batches well but shared cell types are not perfectly mixed. e, MNN
mixes some cell types while keeping batch effect for others and it successfully preserves structure of study
specific cell types. f, Results of bbknn show shared cell types are not perfectly mixed and some cell types are
mistakenly merged into wrong clusters. In contrast to other methods this model only returns modified KNN
graph and does not provide any form of corrected data thus ASW is not directly applicable to corrected data.
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Supplemental Figure 10 | scGen integrates eight mouse single cell atlasess with 114600 cells.
a, UMAP visualization of eight different datasets with their corresponding study, cell type and organ labels.
ASW was calculated based on the 57300 randomly sub-sampled cells with their study labels. b, scGen merges
the data by connecting the similar cell types according to their cell labels while having lower ASW (-0.28147).
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biased unbiaseda

Supplemental Figure 11 | Biased sampling effect. a, UMAP visualization of CD4-T cells prediction
depicts that unbiased predicted cells have more overlap with real stimulated cells than biased predictions.
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