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Multiphoton imaging of genetically encoded calcium
indicators is routinely used to report activity from
populations of spatially resolved neurons in vivo. How-
ever, since the relationship between fluorescence and
action potentials (APs) is nonlinear and varies over
neurons, quantitatively inferring AP discharge is prob-
lematic. To address this we developed a biophysical
model of calcium binding kinetics for the indicator
GCaMP6s that accurately describes AP-evoked flu-
orescence changes in vivo. The model’s physical in-
terpretation allowed the same parameters to describe
GCaMP6s binding kinetics for both in vitro binding
assays and in vivo imaging. Using this model, we de-
veloped an algorithm to infer APs from fluorescence
and measured its accuracy with cell-attached electrical
recordings. This approach consistently inferred more
accurate AP counts and times than alternative meth-
ods for firing rates from 0 to >20 Hz, while requiring
less training data. These results demonstrate the util-
ity of quantitative, biophysically grounded models for
complex biological data.

Introduction

Linking animal behavior to the underlying neuronal activity
requires accurately measuring action potentials (APs) from
large populations of neurons simultaneously. Extracellular
electrical recordings [65, 84, 117] are widely used to monitor
APs in large neuronal populations during behavior [118, 130,
136] but cannot unambiguously assign activity to individual
neurons or spatial locations [12, 55]. Alternatively, AP-evoked
calcium influx can be detected optically using multiphoton
excitation [30] of fluorescent calcium sensors [129]. While this
approach can be used to record from both active and silent
neurons in anesthetized [70, 120], awake [32, 51] and freely
moving animals [114, 143], quantitative readout of neuronal
activity requires fluorescence signals to be converted into APs
using an inference procedure. For synthetic sensors with a sin-
gle calcium binding site [129, 57], fluorescence increases from
successive APs combine linearly [61, 70, 138] so APs can be
inferred by deconvolution [51, 53, 71, 70, 105, 113, 132, 138].
Genetically encoded calcium indicators (GECIs, reviewed in
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[64]), on the other hand, can label neurons with a specific cell
type or projection target and track neuronal populations over
days with single cell resolution. In particular GCaMP sen-
sors, derived from calmodulin and green fluorescent protein
[90], have been repeatedly improved [1, 122, 123, 127] and
GCaMP6s approaches the sensitivity of synthetic sensors [18].
However, inferring APs from GCaMP fluorescence remains
challenging and unreliable due to AP responses that and are
complex, nonlinear and variable over neurons [1, 18, 64]. This
complexity, nonlinearity and variability can be qualitatively
explained by cooperativity across GCaMP’s 4 calmodulin-
derived binding sites, slow and multiphasic kinetics of the
indicator, dependence of AP-evoked fluorescence amplitude
and shape on total GCaMP concentration [64] and out-of-
focus signals from background structures that can increase
baseline fluorescence differently for each neuron. However,
incorporating these effects into a quantitative description
of GCaMP-expressing neurons requires many unknown pa-
rameters to be determined. Instead, AP inference methods
have been proposed based on phenomenological modeling [29],
deep learning with many free parameters but no interpretable
model [126] and thresholding [32, 56]. While some of these
approaches outperform linear deconvolution on GCaMP data,
they produce inaccurate results for many neurons.

Here we describe a sequential binding model (SBM) linking
APs to GCaMP6s fluorescence based on biophysical principles.
This model quantitatively describes GCaMP6s fluorescence in
vivo and in vitro and allows for more accurate AP inference
than previous methods. Given an AP sequence, the SBM
describes the binding kinetics that determine concentrations
over time for free calcium, calcium bound to endogenous
buffers and GCaMP6s binding states with 0 to 4 calcium
ions. Solving the resulting differential equations provides
GCaMP6s binding state concentrations at each measurement
time, which we use to directly predict fluorescence. We fit
the SBM to a library of combined optical/electrical record-
ings from neurons in mouse visual cortex, showing it can
capture the AP-fluorescence relationship despite nonlinear-
ity and variability over neurons. We also used the SBM to
describe calcium-GCaMP6s interactions in vitro by applying
the same biophysical framework to fluorescence spectroscopy,
isothermal titration calorimetry and stopped-flow fluorescence
experiments. Globally fitting the SBM to data from all three
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in vitro binding assays yielded parameters that accurately
predicted AP-evoked fluorescence in vivo. To use the SBM for
AP inference, we developed a GPU-based sequential Monte
Carlo algorithm [49] and evaluated accuracy on held-out data.
SBM-based AP inference outperformed previous algorithms
[29, 32, 105, 126, 132], producing more accurate firing rates,
AP counts and AP times, while modeling the effect of AP
discharge on fluorescence in interpretable biophysical terms.

Results

AP-evoked GCaMP6s fluorescence in vivo

To characterize how AP discharge sequences give rise to
GCaMP6s fluorescence changes, we imaged neuronal popula-
tions expressing virally transfected GCaMP6s in L2/3 mouse
visual cortex while juxtasomally recording one neuron’s spon-
taneous APs (Figure 1a, n = 26 neurons, 10 animals, 15464
APs, 9.4 hours total, mean firing rates 0.008 to 12.5 Hz, me-
dian 0.16 Hz). Based on previous observations in L2/3 mouse
visual cortex [93], we identified 4 recordings as putative in-
terneurons from the electrophysiological data based on higher
mean spontaneous firing rates, AP waveforms with larger
afterhyperpolarizations (AHPs) and shorter peak-to-AHP la-
tencies than in pyramidal neurons. We extracted fluorescence
from each neuron’s somatic cytosol using a semi-automated
algorithm (Figure 1 - figure supplement 1, methods).

These recordings exhibited a wide variety of AP discharge
patterns, evoking a diverse range of fluorescence signals (Fig-
ure 1b). In pyramidal neurons, isolated single APs and brief
AP bursts evoked transient fluorescence increases (Figure 1b,
upper, peak latency 173 ± 70 ms), but during periods of
prolonged AP discharge fluorescence did not return to base-
line between bursts (Figure 1b, middle and lower). Isolated
single APs were sufficient to increase fluorescence in pyrami-
dal neurons [18], but response shape exhibited considerable
variability across neurons (average 1-AP peak ranged from
3.0%-18.7% ∆F/F0, mean 7.6%, s.d. 4.7%, Figure 1c) that
could not be explained by variation across animals or dif-
ferences in expression time (Figure 1 - figure supplement
2). The fluorescence evoked by AP burst of 2 or more APs
grew supralinearly with the number of APs (Figure 1d, burst
duration < 200 ms), with the peak fluorescence evoked by 2
APs ranging from 2-7 times the 1-AP peak (Figure 1e, mean
3.5, s.d 1.2, n = 22). In interneurons, fluorescence increased
during periods of more frequent AP discharge (Figure 1b,
lower) but single APs did not evoke discernible fluorescence
changes (maximum peak amplitude 0.2% ∆F/F0, Figure 1
- figure supplement 3). These results show that accurately
inferring APs from GCaMP6s fluorescence requires methods
capable of dealing with both nonlinearity and variability over
neurons.

We used this dataset to test several existing AP infer-
ence algorithms: the phenomenological model-based method
MLspike [29], a threshold-based approach (thr-σ) [32] and
a deep-learning method [126] trained on the current data
(c2s-t) or using published parameters (c2s-s). While these
approaches successfully detected single APs and bursts in
some cases, for a majority of neurons either less than half the

APs were detected or more than half of inferred APs were
false positives, for every method tested (Figure 1 - figure sup-
plement 4). These results show that inferring AP sequences
from GCaMP6s fluorescence signals remains a challenging
open problem. We therefore developed a quantitative model
linking AP discharge to fluorescence in GCaMP6s-expressing
neurons, to better understand the relationship between the
two and to provide a mathematical foundation for improved
AP inference.

A sequential binding model for GCaMP6s-
expressing neurons

To quantitatively link APs to GCaMP6s fluorescence, we
constructed a biophysical model based on the chain of causal
effects through which APs cause fluorescence changes. First,
the AP depolarizes the somatic membrane and calcium ions
enter the neuron through ion channels [5, 17, 40, 60, 107, 124]
(reviewed in [15, 62]). This temporary increase in cytosolic
calcium concentration is further shaped by physiological pro-
cesses, including buffering by endogenous proteins [60, 80,
111, 116] and extrusion [60, 80, 110, 111, 115, 116]. At the
same time, some calcium ions bind reversibly to GCaMP6s,
which contains a calmodulin-derived protein domain with 4
binding sites [90]. Calcium binding to GCaMP6s increases
its fluorescence [18], with proposed mechanisms based on
conformational changes that alter fluorophore protonation
[133, 2, 59, 122, 7]. We reasoned that since the individual
parts of this system have been extensively studied and quan-
tified, by modeling them together we could quantitatively
predict fluorescence from APs and infer APs from fluorescence
(Figure 2a). Furthermore, our combined optical/electrical
recordings could be used to fit model parameters, assess the
quality of model fits to data and evaluate the accuracy of
model-based AP inference.

We therefore developed a sequential binding model (SBM)
of GCaMP6s-expressing neurons (Figure 2b). The core idea of
the SBM is to model each individual binding step as calcium
binds the four sites of GCaMP6s:

4Ca2+ + Ca1GCaMP6s GGGBFGGG (1)

3Ca2+ +1 CaGCaMP6s GGGBFGGG

2Ca2+ + Ca2GCaMP6s GGGBFGGG

Ca2+ + Ca3GCaMP6s GGGBFGGG

Ca4GCaMP6s

These four reversible binding reactions involve free calcium
and five possible GCaMP6s binding states, with 0 to 4 ions
bound. We modeled these reactions using standard mass
action kinetics [87, 137]: each forward rate is proportional
to the concentrations of free calcium and the previous bind-
ing state, while each backward rate is proportional to the
concentration of the next binding state:

r+
j = k+

j [Ca2+][Caj−1GCaMP6s] (2)

r−j = k−j [CajGCaMP6s] (3)
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Figure 1: (A) Two-photon image of neuronal population expressing GCaMP6s (green) in L2/3 of mouse visual cortex, with astrocytes
stained using sulforhodamine 101 (red) and juxtasomal electrical recording of APs in a single neuron. (B) Simultaneous electrical
recording of AP times and imaging of neuronal fluorescence in 3 different neurons. For the third, an interneuron, firing rate was
calculated by Gaussian filtering of the AP sequence with σ = 500 ms. Dashed lines indicate 0% ∆F/F0 and 0 Hz. (C) Average
fluorescence evoked by isolated single APs (no APs in the preceding 5.5 s) in 22 pyramidal neurons. (D) Average fluorescence evoked
by single APs and bursts of 2-5 APs in a pyramidal neuron. Bursts were defined as groups of APs spanning < 200 ms with no other
APs 5.5 s before the first AP in the burst. (E) Comparison of peak amplitude evoked by 1 vs. 2 APs; same neurons as in (C). Peak
amplitude was calculated as the maximum of the average fluorescence response to 1 or 2 APs for each neuron.
Figure 1–Figure supplement 1. Removal of extraneous signals with a feature extraction algorithm.
Figure 1–Figure supplement 2. Peak AP-evoked GCaMP6s fluorescence as a function of expression time.
Figure 1–Figure supplement 3. Single APs do not evoke fluorescence increases in interneurons.
Figure 1–Figure supplement 4. Accuracy of existing AP inference methods.

Greenberg et al. | 2018 | bioRχiv 3/84

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/479055doi: bioRxiv preprint 

https://doi.org/10.1101/479055
http://creativecommons.org/licenses/by-nc/4.0/


Free
Ca2+

∆[Ca2+]AP

GCaMP6s Endogenous
calcium buffers

k+
1 k+

2 k+
3 k+

4

k−1 k−2 k−3 k−4

b+
1 b+

2

b−2b−1

φ0 φ1 φ4φ2 φ3

[GCaMP6s]total

[B]total
2

Molecular species Model parameters

fixed for each cell type

fixed for each GECI

different for each neuron

FBG

τex[B]total
1

Causation

Inference

APs [Ca2+] changes Binding State Transitions Fluorescence Changes

+

A

B

Figure 2: (A) Conceptual illustration showing biophysical modeling used to quantitatively link fluorescence and APs. AP discharge,
calcium kinetics, calcium-dependent binding state transitions and the resulting fluorescence changes are linked by a causal biophysical
model (left to right) and inference procedure (right to left). (B) Diagram showing the sequential binding model (SBM). Each AP
causes a calcium influx that increases cystosolic free calcium concentration by ∆[Ca2+]AP. Binding of calcium to GCaMP6s then
proceeds with on-rates k+j and off-rates k−j , and binding to endogenous buffers with on-rates b+j and off-rates b−j . [GCaMP6s]total

denotes the total GECI concentration in the neuron and the total concentration of each endogenous buffer is [B]total` . The calcium
dependence of GCaMP6s fluorescence is described by brightness values φj for each binding state CajGCaMP6s. The total fluorescence
predicted by the SBM is calculated (eq. 6-7) based on the current GCaMP6s binding state concentrations, the brightness φj of each
binding state and the background fluorescence FBG.
Figure 2–Figure supplement 1. Global rate equation describing mass action kinetics and extrusion.
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The constants of proportionality are given by the kinetic rate
constants k+

j (on-rates) and k−j (off-rates) for each binding
step, which together describe calcium’s interactions with
GCaMP6s. The SBM includes a different total indicator
concentration [GCaMP6s]total for each neuron to incorporate
varying levels of indicator protein expression [64].

In order to link APs and fluorescence, however, the SBM
must describe not only the interaction between calcium and
GCaMP6s but also the effects of AP discharge, endogenous
buffering and extrusion on calcium concentration. We mod-
eled AP discharge as an increase in free calcium concentration
by ∆[Ca2+]AP, and binding to endogenous buffers with two
additional reactions:

Ca2+ + B1 GGGBFGGG CaB1 (4)

Ca2+ + B2 GGGBFGGG CaB2

where B1 and B2 are endogenous buffers with on-rates b+1 and
b+2 , off-rates b−1 and b−2 and total concentrations [B]total

1 and
[B]total

2 . Extrusion was included as the reaction Ca2+ → ∅
involving only calcium ions, with the rate given by:

rex =
(
[Ca2+]− [Ca2+]rest

)
/τex (5)

where τex is the extrusion time constant and [Ca2+]rest is the
neuron’s resting calcium concentration. Because GCaMP6s,
the endogenous buffers and the extrusion process compete
for calcium ions, the SBM’s calcium dynamics are shaped by
all three together.

The SBM thus contains 7 reactions and 10 molecular
species. Given the current concentrations of these 10 species,
the rates of change of all concentrations are given by a global
rate equation (Figure 2 - figure supplement 1). The rate
equation can therefore be used to calculate the evolution
of all molecular species’ concentrations over time, which the
SBM then uses to predict the neuron’s fluorescence at the time
of each measurement. We modeled the total fluorescence Fcyt

arising from GCaMP6s located in the neuron’s somatic cytosol
by adding up the fluorescence arising from each binding state
of the indicator:

Fcyt =
∑
j

φj [CajGCaMP6s] (6)

where φj is the brightness of CajGCaMP6s. For exam-
ple, when each φj is greater than the previous value φj−1,
GCaMP6s fluorescence increases for every calcium ion bound.
Alternatively, if φj is the same for all binding states with
less than four calcium ions bound, only the final binding
step increases fluorescence. In this way the SBM model class
can describe spectroscopically silent steps, in which binding
of a calcium ion does not change the protein’s fluorescence
properties.

Since under in vivo imaging conditions neuronal fluores-
cence can exhibit time-varying baseline fluorescence [51, 70]
as well as contamination from tissue autofluorescence [125],
neuropil background signals [18, 70] and misfolded indica-
tor protein [23, 90], the SBM also incorporated a drifting
fluorescence baseline FBL and a constant background fluores-
cence term FBG. Combining these effects (see methods), the

observed fluorescence predicted by the SBM is:

F = FBL

(
Fcyt + FBG

F eq
cyt + FBG

)
(7)

where F eq
cyt is the equilibrium value of Fcyt when no APs

are discharged and [Ca2+] = [Ca2+]rest. Since rescaling the
SBM’s concentration units along with FBG does not change
the predicted fluorescence, we fixed [Ca2+]rest to 50 nM in
accordance with previous measurements in vitro [60, 80, 116]
and in vivo [142]. Consequently, all concentration values in
the SBM can alternatively be interpreted as multiples of the
resting calcium concentration [Ca2+]rest.

Overall, the SBM contains 22 different free parameters (Ta-
ble 1): 12 GECI-specific parameters describing the calcium-
binding and fluorescence properties of GCaMP6s, 8 cell
type-specific parameters describing calcium influx, buffer-
ing and extrusion and two remaining parameters, FBG and
[GCaMP6s]total, that can vary for each neuron. Having de-
signed the SBM to quantitatively link APs to fluorescence
based on established biophysical principles, we next fit its
parameters to our in vivo GCaMP6s dataset.

Fitting the SBM to combined optical / elec-
trical recordings in vivo

We fit the SBM to our in vivo dataset by adjusting all its
parameters to give the best possible predictions of fluores-
cence from AP sequences (Figure 3a-d). For this purpose,
we first estimated FBL by interpolating fluorescence values
from silent periods without APs (Figure 3 - figure supplement
1, see methods; interneurons lacked silent periods and were
excluded from fitting, but included when testing AP inference
below). We next initialized the SBM parameters to default
starting values, using estimates from experimental studies
where available (e.g. calcium influx per AP and extrusion
rate, full details in methods). To predict fluorescence from a
given AP sequence, we started at the beginning of the record-
ing and moved forward in time, incrementing free calcium
by ∆[Ca2+]AP at each AP while solving the rate equation
to determine the concentration over time for all molecular
species (Figure 3c, time step 10 ms). We then added up the
contributions of all 5 GCaMP6s binding states (eq. 6-7) to
generate a prediction of the neuron’s fluorescence (Figure 3b,
orange) and compared the result to observed fluorescence
values (Figure 3b, black). While calculating fluorescence
predictions AP sequences in this way, we then adjusted the
SBM parameters to minimized the mismatch between pre-
dicted and observed fluorescence values across all pyramidal
neurons’ recordings (n = 22), using iterative optimization
of with multiple initializations (Figure 3 - figure supplement
2, methods). This fitting procedure resulted in parameters
(Table 1) that closely predicted the measured fluorescence
signals (Figure 3a-d). Simplified versions of the SBM (Fig-
ure 3 - figure supplement 3) without endogenous buffers or
variation across neurons in FBG or [GCaMP6s]total predicted
fluorescence signals less accurately for most neurons (Figure
3 - figure supplement 4, p < 0.005, sign tests). Using more
than 2 buffers, more elaborate extrusion mechanisms or a
shorter time step did not improve fit quality (p > 0.05).
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Figure 3: A Two-photon image of neuronal population expressing GCaMP6s (green) in L2/3 of mouse visual cortex, with astrocytes
stained using sulforhodamine 101 (red) and juxtasomal electrical recording of APs in a pyramidal neuron. (B) GCaMP6s fluorescence
(black, upper) and simultaneous electrical recording of APs (lower) from the neuron shown in (A). The baseline fluorescence values used
for model fitting are shown in gray, and the SBM’s prediction after globally fitting all model parameters to the full dataset is shown in
orange. (C) Time-varying concentrations of free calcium, GCaMP6s binding states and calcium-bound endogenous buffers calculated
by the SBM to generate the prediction in (B). (D) Expansion of the period indicated by the dashed box in (B-C). (E) Average 1-AP
fluorescence increase in four pyramidal neurons (black) and SBM fits (orange). (F) Peak fluorescence increase following single APs
compared to SBM-fit values for all pyramidal neurons.
Figure 3–Figure supplement 1. Estimation of drifting baseline fluorescence with known AP times.
Figure 3–Figure supplement 2. Convergence of SBM parameters while fitting in vivo data.
Figure 3–Figure supplement 3. Comparison of SBM fits to data with increasing model complexity.
Figure 3–Figure supplement 4. Comparison of SBM variants over neurons.
Figure 3–Figure supplement 5. SBM simulations of fluorescence responses to AP discharge.
Figure 3–Figure supplement 6. Free calcium after AP discharge depends on [GCaMP6s]total in SBM simulations.
Figure 3–Figure supplement 7. Response nonlinearity depends on [GCaMP6s]total in SBM simulations.
Figure 3–Figure supplement 8. Endogenous buffers shape AP-evoked fluorescence in SBM simulations.
Figure 3–Figure supplement 9. Variation of SBM fluorescence predictions over multiple parameter sets.

Greenberg et al. | 2018 | bioRχiv 6/84

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/479055doi: bioRxiv preprint 

https://doi.org/10.1101/479055
http://creativecommons.org/licenses/by-nc/4.0/


Table 1: SBM parameters fit in vivo

Symbol Description Best-fit value Range of fit values## Units

∆[Ca2+]AP 1-AP calcium influx 20.2 2.3 - 32.6 µM
τex Extrusion time constant 7.5 5.5 - 64.9 ms
[Ca2+]rest Resting free calcium concentration 50** nM
k+

1 First GCaMP6s on-rate 2.5 1.6 - 52.1 µM−1 s−1

k+
2 Second GCaMP6s on-rate 16.9 1.2 - 20.2 µM−1 s−1

k+
3 Third GCaMP6s on-rate 1.1 0.5 - 636 µM−1 s−1

k+
4 Fourth GCaMP6s on-rate 1069 54 - 1766 µM−1 s−1

k−1 First GCaMP6s off-rate 0.1 0.1 - 961 s−1

k−2 Second GCaMP6s off-rate 205 2 - 984 s−1

k−3 Third GCaMP6s off-rate 11.8 2.9 - 515 s−1

k−4 Fourth GCaMP6s off-rate 5.8 1.4 - 35.1 s−1

φ1/φ0 CaGCaMP6s/GCaMP6s brightness ratio* 1.0 1.0 - 2.6 ***
φ2/φ0 Ca2GCaMP6s/GCaMP6s brightness ratio* 1.0 1.0 - 42.9 ***
φ3/φ0 Ca3GCaMP6s/GCaMP6s brightness ratio* 1.0 1.0 - 81.0 ***
φ4/φ0 Ca4GCaMP6s/GCaMP6s brightness ratio* 81.0 33.1 - 81.0 ***
[GCaMP6s]total Total GCaMP6s concentration 7.4 **** µM
FBG/F

eq
cyt Background/cytosolic fluorescence at rest 2.5 **** ***

b−1 /b
+
1 Fast buffer dissociation constant 3.4 2.2 - 100 µM

1/b−1 Fast buffer time constant < 1.0# ms
[B1]total Fast buffer concentration 64 0.0 - 154 µM
b−2 /b

+
2 Slow buffer dissociation constant 0.59 0.1 - 3.6 µM

1/b−2 Slow buffer time constant 17 12 - 30 s
[B2]total Slow buffer concentration 119 23 - 129 µM

*For two photon excitation at 920 nm in vivo
**Fixed to this value based on previous reports, not fit to data
***Unitless ratio
****Maximum likelihood estimate for the mode of a log-normal fit to parameter’s distribution over neurons
#Model fitting procedures results in the lowest allowed value of 1 ms for the fast buffer time constant.
## Range over multiple SBM parameter sets fit while excluding each neuron’s data in turn.

We next examined how individual aspects of the SBM con-
tributed to predicted fluorescence changes using simulations
in which some model parameters were perturbed or set to
zero. Changing [GCaMP6s]total affected the simulated 1-AP
fluorescence peak height, 2-AP peak height and peak timing
(Figure 3 - figure supplement 5), as well as the simulated
peak free calcium concentration after AP discharge (Figure
3 - figure supplement 6). This is consistent with previous
observations that synthetic indicators at high concentrations
contribute significantly to Ca2+ buffering [60, 80, 116], as
well as a theoretical study predicting that GECI expression
levels influence AP response amplitude and shape [64]. These
simulations also reproduced the nonlinearity of GCaMP6s’s
AP responses, with 2 APs evoking 4 to 7 times the fluores-
cence increases observed for 1 AP depending on the value of
[GCaMP6s]total (Figure 3 - figure supplement 7a-b), so that
nonlinearity can vary over neurons as observed in vivo (Fig-
ure 1e). Simulations omitting one of the endogenous buffers
(Figure 3 - figure supplement 8) showed that fluorescence
responses to 1 or 2 APs were shaped by a fast endogenous
buffer (time constant 1̃ ms), but the return to baseline after
long bursts was shaped by a slow buffer (> 10 s). Overall,
by incorporating variation over neurons in [GCaMP6s]total

and FBG together with endogenous buffering and extrusion
properties that were fixed for all neurons, the SBM was able

to capture variability in the rising and falling phases of ob-
served AP responses (Figure 3e). This allowed the SBM to
closely predict the peak fluorescence evoked by single APs
over the entire range of peak amplitudes observed (Figure 3f,
r = 0.91, n = 22 neurons).

While the SBM was able to predict fluorescence changes
from AP sequences, this does not guarantee that a unique
set of best-fitting parameter values can be unambiguously
identified from the available data. On the contrary, given the
SBM’s complexity its parameters may not be fully identifi-
able from our data, and multiple SBM parameter sets might
predict the observed fluorescence signals equally well from
the AP sequences. This uncertainty in parameter values is
common in detailed biophysical [95] and biochemical mod-
els with many parameters [45, 54, 108]. Therefore, to test
how tightly SBM parameters can be constrained given our
in vivo dataset, we repeatedly fit the SBM while excluding
one neuron at a time to generate multiple SBM parameter
sets, reasoning that if the parameters are identifiable given
our in vivo dataset then their optimal values should not be
significantly altered when removing a single neuron’s data.
Comparing the resulting parameter sets showed that most pa-
rameters ranged over about 1 order of magnitude, suggesting
that they cannot be precisely determined given the available
data (Table 1). Nonetheless, when tested on the same AP
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sequence these different SBM parameter sets produced nearly
identical predictions of fluorescence (Figure 3 - figure sup-
plement 9a). The concentrations over time of all molecular
species were also highly correlated over SBM parameter sets
(minimum correlation 0.98), although the absolute scale of
the concentrations differed (Figure 3 - figure supplement 9b).
These results show that fitting the SBM to in vivo data un-
ambiguously identifies the quantitative mapping from APs to
fluorescence, but multiple SBM parameter sets are consistent
with the same mapping given our in vivo data.

SBM analysis of in vitro binding assays

The SBM describes the interaction of calcium and GCaMP6s
as a sequence of protein-ligand binding reactions, allowing
quantitative data analysis through the biophysical framework
of mass action kinetics. To test whether this framework could
describe the same reaction sequence under controlled con-
ditions, we carried out in vitro binding assays to measure
GCaMP6s-calcium interactions outside of neurons. This al-
lowed us to study these reactions beyond the physiological
concentration ranges for GCaMP6s and calcium and using
a more diverse set of measurement techniques. We used
fluorescence spectroscopy to characterize GCaMP6s’s exci-
tation spectrum at equilibrium (Figure 4a), and how the
spectrum changes as calcium concentration is increased. We
used isothermal titration calorimetry (ITC) to detect the
heat absorbed or released as calcium was titrated into a
GCaMP6s solution (Figure 4b), providing readout of cal-
cium binding that does not depend on fluorescence changes.
We used stopped-flow fluorimetry to measure fluorescence
changes over time after GCaMP6s was rapidly mixed with
calcium or a calcium-chelator (Figure 4c). We globally fit the
SBM to all data simultaneously (n = 3 spectra, 8 ITC experi-
ments, 19 stopped-flow traces, 4 pools of purified GCaMP6s)
to determine kinetic and equilibrium binding properties for
GCaMP6s, adjusting all model parameters to achieve the
best possible prediction of spectra, heat and stopped-flow
fluorescence data (Figure 4d-g, Figure 4 - figure supplement
1, details in methods). This global fit resulted in SBM pa-
rameters (Table 2) that closely predicted data from all three
binding assays. Similarly to SBM fits on in vivo fluorescence
data, we found that a range of values for each SBM parameter
were consistent with in vitro measurements, possibly due to
spectroscopically silent binding steps or reactions too fast
to resolve using the methods employed. Nonetheless, these
results show that the SBM provides a quantitative account
of calcium-GCaMP6s interactions in all three binding assays.

We next examined whether the SBM rate constants ob-
tained from in vitro binding assays could accurately predict
AP-evoked fluorescence changes in vivo, as compared to pa-
rameters determined exclusively from in vivo recordings. To
test this, we fixed the in vitro-derived rate constants and fit
all remaining parameters to in vivo fluorescence signals. This
resulted in fluorescence predictions similar to those arising
from in vivo-derived rate constants (Figure 4h). Since this
procedure fit the SBM to the same data with fewer free pa-
rameters, larger errors would be expected than when fitting
all parameters on in vivo data alone. However, if the rate
constants obtained in vitro can accurately describe calcium

binding in neurons, then the fitting errors for in vitro- vs. in
vivo-derived rate constants should be approximately equal,
and should fall on a line with a slope of one. Comparing each
neuron’s r.m.s. error value for the in vitro- vs. in vivo-derived
rate constants in this way, we observed that in vitro-derived
rate constants produced only slightly higher error values (Fig-
ure 4i, r.m.s. error 5.9± 3.0 vs. 6.3± 3.2% ∆F/F0), and that
the errors fell on a line with a slope close to one (1.06, 95%
confidence interval 1.02 - 1.09). Fits using in vitro-derived
rate constants also predicted in vivo fluorescence more ac-
curately than simplified versions of the SBM that omitted
endogenous buffers or variation in FBG or [GCaMP6s]total

over neurons but were fit to in vivo data alone (Figure 3 -
figure supplement 4). These results show that in vitro-derived
rate constants lie within the range of SBM parameter sets
capable of accurately describing GCaMP6s fluorescence in
vivo, and that a single set of rate constants can accurately de-
scribe both scenarios when the different in vitro and cytosolic
environments are taken into account. In contrast, previous
phenomenological fitting approaches based on rise times and
Hill exponents have required different parameter values in
vivo and in vitro [61].

AP inference with the SBM

We next applied the SBM to the problem of inferring AP times
and neuron-specific parameters ([GCaMP6s]total and FBG)
from fluorescence data alone. To identify the AP-sequence
most consistent with the fluorescence data, we developed
a sequential Monte Carlo algorithm [49] (SMC, or particle
filtering, reviewed in [35]). SMC, a data-driven simulation
technique that has also been used with synthetic indicators
[131], generates many simulations or particles whose predic-
tions are compared to observed data (Figure 5a). For the
SBM each particle consisted of a simulated AP sequence along
with time courses for free calcium, GCaMP6s binding states
and baseline fluorescence (Figure 5b). The algorithm was
advanced forward in time by randomly extending each parti-
cle’s AP sequence and baseline fluorescence while solving the
rate equation to update all molecular species’ concentrations
(Figure 2 - figure supplement 1), using in vivo-derived rate
constants as these provided slightly tighter fits to the data
(Figure 4i). At each fluorescence measurement the particles’
predictions were compared to the observed fluorescence value
(Figure 5a) to calculate probability weights (Figure 5c, meth-
ods), and particles were then eliminated, retained or copied
multiple times with probabilities determined by their weights.
Particles whose predictions did not match the data were more
likely to be eliminated, so those with incorrect AP sequences
disappeared after a small number of measurements. After the
SMC algorithm traversed all the fluorescence measurements,
a fixed-lag smoother [73] combined the particles and weights
at each time point to compute the probability of spiking over
time given the fluorescence data. As the number of particles
increases, SMC methods converge to unbiased Bayesian esti-
mators of the hidden state variables (APs, binding states and
baseline) and of the data’s likelihood given model parameters
[27].

Developing an SMC algorithm for the SBM required sev-
eral new computational techniques to improve the speed and
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Figure 4: (A) Fluorescence spectroscopy of GCaMP6s; fluorescence showed the largest increase with [Ca2+] at 498 nm, and the largest
decrease at 404 nm. (B) Isothermal titration calorimetry experiment, with repeated injection of concentrated Ca2+ into GCaMP6s and
measurement of the heat absorbed or released upon binding. Raw calorimetric data (turquoise curve) show a net exothermic process for
each injection (negative peaks) until Ca2+-saturation of GCaMP6s. Heats of dilution for Ca2+ (gray) were measured by injecting Ca2+

into low-calcium pH buffer (30 mM MOPS with 100 mM Kcl, pH 7.2). (C) Stopped-flow fluorescence measurements of GCaMP6s
Ca2+-binding kinetics. BAPTA-buffered solutions of GCaMP6s and calcium are rapidly mixed and fluorescence is then measured
over time. (D) Fluorescence excitation spectra of GCaMP6s (black, emission wavelength 540 nm) and global SBM fit (orange) for a
range of calcium concentrations and 1.6 mM BAPTA. Arrows indicate 404 and 498 nm. (E) Integrated peak heats (circles) for 3 ITC
experiments and global fit (squares) vs. the ratio of total Ca2+ and GCaMP6s after each injection. (F) Kinetics of Ca2+ binding to
GCaMP6s measured using a stopped-flow device. 0.9 µM GCaMP6s in 37 µM BAPTA was mixed with 1.7 mM BAPTA and total Ca2+

ranging from 0-1.9 mM. (G) Kinetics of calcium release from GCaMP6s. 0.9 µM GCaMP6s with 21.1 µM total Ca2+ was mixed with 8
mM BAPTA. (H) Electrically detected APs (upper) and simultaneously recorded GCaMP6s fluorescence (black, lower) from a L2/3
mouse visual cortical pyramidal neuron, with model fit to in vivo data alone (blue) and model with rate constants fit to in vitro data
and other parameters fit in vivo (orange). (I) Root-mean-square error for SBM with rate constants fit in vitro vs. in vivo (n = 22
pyramidal neurons). Unity line is shown in gray and linear regression in cyan.
Figure 4–Figure supplement 1. Contributions of each GCaMP6s binding state to in vitro data fit.
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AP (lower) and predicted fluorescence from ten SBM simulations used in a sequential Monte Carlo (SMC) algorithm (orange). (B)
Time-varying concentrations of free calcium, GCaMP6s binding states and calcium-bound endogenous buffers for the SBM simulations
in (A). Scalebar in (A): 4 µM Ca2+, 10 µM GCaMP6s, 10 µM CaGCaMP6s, 2.5 µM Ca2GCaMP6s, 20 nM Ca3GCaMP6s, 750 nM
Ca4GCaMP6s, 40 µM CaB1 and 15 µM CaB2. (C) Probability weights (areas of black dots) for the SMC filtering distribution,
calculated using the simulations and data in (A). Black lines indicate particle ancestry for the SMC algorithm; red dots indicate AP
discharge times in the SBM simulations. (D) Inferred AP time with temporal uncertainty (upper) from an SMC algorithm with 102400
particles; same data as in (A-C). Means and standard deviations (lower) are shown for the SMC smoothing distributions of all molecular
species’ concentrations given fluorescence data in (A) and 102400 particles, along with the posterior mean and standard deviation of
de-noised fluorescence (orange). Data units are scaled as in (A-B). (E) SMC/SBM inference of AP times from 9 seconds of data during
which fluorescence never decays to baseline (dashed line indicates 0 fluorescence).
Figure 5–Figure supplement 1. Numerical integration of the SBM rate equation with a custom ODE solver.
Figure 5–Figure supplement 2. Sampling and resampling techniques for SMC variance reduction.
Figure 5–Figure supplement 3. Effect of the fixed-lag smoother delay on inferred AP discharge probability using the SMC algorithm with the
SBM.
Figure 5–Figure supplement 4. Accuracy and speed of SMC/SBM-based AP inference as a function of particle count.
Figure 5–Figure supplement 5. Identification of per-neuron parameters from fluorescence data alone.
Figure 5–Figure supplement 6. Fitting a single AP sequence to the posterior probability of AP discharge given fluorescence data inferred by
the SMC algorithm.
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Table 2: SBM parameters fit in vitro

Symbol Description Best-fit value Range of fit values* Units

k+
1 First GCaMP6s on-rate 2.4 2.3 - 12752 µM−1 s−1

k+
2 Second GCaMP6s on-rate 263 2.9 - 413 µM−1 s−1

k+
3 Third GCaMP6s on-rate 31 2.5 - 44 µM−1 s−1

k+
4 Fourth GCaMP6s on-rate 30 30 - 43 µM−1 s−1

k−1 First GCaMP6s off-rate 2.2 0.3 - 7093 s−1

k−2 Second GCaMP6s off-rate 390 1.5 - 532 s−1

k−3 Third GCaMP6s off-rate 2.2 2.0 - 19 s−1

k−4 Fourth GCaMP6s off-rate 3.7 3.4 - 4.3 s−1

*Range of parameter values fit from multiple initializations that converged with a normalized r.m.s. residual <10% higher
than the lowest r.m.s. residual over all initializations (17 / 50 initializations satisfied this criterion).

reliability of AP inference. To deal with the computational
burden of solving the SBM’s global rate equation (Figure
2 - figure supplement 1) separately for each particle, we
implemented a custom ordinary differential equation solver
without loops or branch points to maximize the efficiency of
GPU-based multithreaded computation (Figure 5 - figure sup-
plement 1, methods). This solver uses a backward (implicit)
Euler method, allowing time steps 1000 times longer than
for a forward (explicit) solver while maintaining accuracy
and numerical stability. We also designed new techniques
for randomly extending particles’ AP sequences (the SMC
sampler) and selecting particles at each fluorescence obser-
vation (resampler) specifically for SMC-based AP inference
(Figure 5 - figure supplement 2, details in methods). Most
importantly, our SMC algorithm analyzed the fluorescence
data twice, with the results of the first round used to design
sampling and resampling distributions for the second round.
Finally, we adjusted the fixed-lag smoother delay, which de-
termines how far the algorithm looks into future fluorescence
data when inferring APs at each time point (see methods).
Observing the standard tradeoff [73] between incorrect results
at short delays and inconsistent results at long delays (Figure
5 - figure supplement 3), we set this value to 500 ms. These
techniques greatly increased the reliability of the SMC algo-
rithm’s output, but over 105 particles were still required for
consistently accurate inference (Figure 5d, Figure 5 - figure
supplement 4).

In addition to inferring APs and baseline drift, the al-
gorithm also estimated [GCaMP6s]total and FBG for each
neuron by maximizing the likelihood of fluorescence data
given these parameters (Figure 5 - figure supplement 5, meth-
ods). After the SMC algorithm returned the probability of
an AP every 10 ms, a subsequent processing step produced
a single AP sequence without time discretization along with
temporal uncertainty for each AP (Figure 5d-e, Figure 5 -
figure supplement 6, methods).

When a neuron’s true AP sequence is known, baseline
fluorescence can be calculated directly using periods without
APs (Figure 3 - figure supplement 1). However, when AP
times are unknown or have been held out for testing, baseline
and APs must be inferred together based on fluorescence data
alone. To test whether an SMC algorithm could cope with
data where true baseline fluorescence is never observed due to
high firing rates, we analyzed a recording from a pyramidal

neuron where rhythmic AP bursts prevented the fluorescence
from returning to baseline (Figure 5e) without including
periods of inactivity before or after the analyzed data. Despite
the lack of fluorescence observations at baseline, the algorithm
correctly identified the number of APs in nearly all bursts and
inferred a drifting baseline less than the minimum fluorescence
value. Having verified that our SBM/SMC algorithm can
successfully infer APs in individual cases, we next tested it
on our complete in vivo dataset.

Accuracy of AP inference techniques

We evaluated the accuracy of SBM-based AP inference along
with alternative methods (MLspike, c2s-s, c2s-t and thr-σ),
comparing true electrically detected APs to the APs inferred
by each method (Figure 6a-c). For correlation-based analyses
that do not depend on data units, we also included two lin-
ear deconvolution-based methods that do not infer APs, but
rather a unitless quantity proportional to the neuron’s firing
rate: FOOPSI [132] and CFOOPSI [105]. We tested perfor-
mance using a cross-validation procedure for all methods and
accuracy measures to prevent overfitting: the SBM or other
method was fit with each individual neuron excluded from
the training data, and accuracy was evaluated using the held
out neuron.

We first evaluated the agreement of true and inferred AP
sequences by calculating their correlation over time for each
algorithm and neuron. We used Gaussian smoothing (σ =
100 ms, see methods) to emphasize accuracy of AP counts
as opposed to precise AP discharge times within bursts (see
below for analysis of timing accuracy). Correlation between
the true and inferred AP sequences (Figure 6d) was highest
for the SBM (0.83± 0.13, n = 26 neurons), with significantly
higher mean (p < 5e-6, t-tests) and median correlations (p
< 0.005, rank sum tests) than other methods and higher
correlation for nearly all neurons (24-26/26, p < 2e-5, sign
tests). The SBM also produced the highest correlations for
5 neurons recorded in 3 animals after development of the
SBM and all algorithms for model fitting and AP inference
(0.77± 0.15, next highest c2s-t at 0.63± 0.12). The F1-score
[29], which like correlation reaches 1 for perfect accuracy but
is also sensitive to the units of algorithms’ outputs (replacing
every inferred AP with 2 APs does not change the correlation),
was also highest for the SBM (0.65± 0.23, Figure 6 - figure
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Figure 6: (A) Electrically detected APs and GCaMP6s fluorescence (black, upper) from a L2/3 mouse visual cortical pyramidal
neuron. Orange curve shows the SBM’s posterior mean for denoised fluorescence. AP inference results (lower). (B) Detailed view from
(A). (C) As in (A-B) for an interneuron neuron firing at 12.5 Hz. D Correlation between each neuron’s true and inferred AP sequences
for the SBM (y-axis) compared to other methods, with 100 ms Gaussian smoothing (n = 26). Arrowheads indicate mean correlation
over neurons for each method and squares indicate interneurons. (E) False positive and detection rates for each neuron and algorithm
(n = 26). Arrowheads indicate mean over neurons, squares indicate interneurons and the dashed line shows the true mean spontaneous
firing rate. (F) SBM detection rates for single APs (black) and bursts of 2 or more APs (red, burst duration <100 ms), compared
to overall detection rates for each neuron (squares indicate interneurons). (G) Rate of false positives inferred by the SBM without
any true APs within 200 ms (y-axis) compared to overall false positive rates including overestimation of AP counts (x-axis). Squares
indicate interneurons.
Figure 6–Figure supplement 1. Precision, recall and F1 scores.
Figure 6–Figure supplement 2. AP inference accuracy as a function of peak 1-AP fluorescence amplitude.
Figure 6–Figure supplement 3. Effect of imaging frame rate and SNR on the accuracy of AP sequences inferred by the SBM.
Figure 6–Figure supplement 4. Comparison of SBM AP inference accuracy using rate constants fit to in vivo data vs. rate constants fit from
in vitro binding assay data.
Figure 6–Figure supplement 5. Accuracy of AP inference with one neuron of training data.
Figure 6–Figure supplement 6. Isolated single APs without visually apparent fluorescence increases.
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supplement 1).
To characterize the agreement of true and inferred AP

sequences beyond the single values provided by the correlation
and F1 measures, we next computed the rates of missed
APs and false positive detections when no APs were present
(Figure 6e). For these comparisons we used a timing tolerance
of 100 ms when matching the true and inferred AP sequences.
The SBM detected 67.5 ± 29.2% of APs (n = 26 neurons),
with a false positive rate of 0.07± 0.09 Hz. MLspike detected
APs at a lower rate of 46.3 ± 24.3% (p < 1e-6, t-test) but
its false positive rate was not significantly different from the
SBM (0.06 ± 0.06 Hz, p = 0.54). Similarly, c2s-s detected
APs at the same rate as the SBM (68.3± 26.4%, p = 0.88)
but with a false positive rate ten times the true median firing
rate (1.57 ± 0.45 Hz), possibly because it was trained on
data with firing rates of 2-5 Hz [126]. Compared to the
SBM, lower detection and higher false positive rates were
observed for c2s-t (50.5± 23.8%; 0.31± 0.10 Hz) and thr-σ
(5.3±4.4%; 0.28±0.34 Hz). In 19/26 neurons tested, the SBM
detected over half of all APs and less than half its inferred
APs were false positives. Of the 7 neurons for which SBM
did not satisfy this criterion, 4 were interneurons. In contrast,
MLspike satisfied this criterion for 11/26 neurons, and c2s-t,
c2s-s and thr-σ for no neurons.

We next examined which features of the AP sequence
were associated with various types of inference errors for the
SBM. About half the APs missed by the SBM (52 ± 32%,
n = 26 neurons) were found to be isolated single APs (as
opposed to bursts or longer discharge sequences). Overall,
58± 31% of isolated single APs were detected by the SBM,
though this ranged over neurons from 3% to 100% (Figure 6f,
green). For isolated bursts of 2 or more APs within 100 ms,
the chance of detecting at least 1 AP was 99± 0% for pyra-
midal neurons (Figure 6f, red circles, n = 22), and 14± 7%
for interneurons (Figure 6f, red squares, n = 4). When the
SBM inferred false positive APs not present in the electrical
recording, in 93 ± 12% of cases no true APs were present
within 100 ms, while in the remaining cases APs were present
but their number was overestimated (Figure 6g). In summary,
false negative errors (missed APs) arose from a combination
of failure to detect isolated single APs, underestimation of
activity in interneurons and underestimation of AP counts
in bursts. False positive errors arose predominantly from
spurious detections when no APs were present, with overesti-
mation of AP counts accounting for only a small fraction of
these errors.

The SBM’s accuracy depended on the characteristics of
signal and noise in each neuron’s fluorescence recordings.
Neurons whose single APs evoked larger fluorescence increases
exhibited higher correlations between true and SBM-inferred
APs (Figure 6 - figure supplement 2, r = 0.42, p = 0.05, t-test,
n = 22) and higher detection rates (r = 0.58, p = 0.005) but
not lower false positive rates (r = 0.07, p = 0.74). Similarly,
signal-to-noise ratio (SNR) was positively associated with
correlation (r = 0.36, p = 0.05, Figure 6 - figure supplement
3) and detection rate (r = 0.51, p = 0.003) but unrelated to
false positive rate (r = -0.04, p = 0.8). Imaging frame rate
showed no significant association with correlation, detection
rate or false positive rate over the range of 10-60 Hz (p >
0.2).

Finally, we examined how AP inference accuracy depends
on the type and quantity of training data used to fit SBM
parameters. We first examined the effect of using GCaMP6s
rate constants obtained from in vitro binding assays, while
fitting physiological parameters from in vivo data with cross
validation. This resulted in only a slight reduction in accu-
racy (correlation 0.81 ± 0.13, detection rate 65.2 ± 29.4%,
false positive rate 0.07± 0.06 Hz, n = 26, Figure 6 - figure
supplement 4) which did not significantly change correlation
(p = 0.39). We also examined how our approach of model
fitting followed by SMC-based AP inference would fare in an
extremely data-poor scenario, when model parameters are fit
from only a single neuron’s data. To compute accuracy across
our entire dataset, we carried out AP inference for each neu-
ron based on parameters fit from the previous neuron (Figure
6 - figure supplement 5, methods). Correlation between true
and inferred AP sequences was nearly unchanged when fitting
SBM parameters to a single neuron’s data, whether using
GCaMP6s rate constants fit to in vivo data (r = 0.78± 0.13
vs. 0.83 ± 0.13, p = 0.20) or those fit to in vitro binding
assays (0.80± 0.13 vs. 0.81± 0.13, p = 0.67). A much larger
decrease in correlation values was observed when training
c2s on a single neuron (r = 0.51± 0.18 vs. 0.67± 0.10, p =
0.0003); this difference might arise from c2s’ greater number
of parameters (1̃000) which could make it more susceptible
to overfitting.

Overall, these results show that the SBM provides a clear
advance in accuracy and robustness compared to currently
available inference methods, for multiple error metrics and in
both data-rich and data-poor conditions. Nonetheless, it is
worth emphasizing that for some neurons many APs will be
missed by all algorithms, as some single-AP responses are not
distinguishable from noise (Figure 6 - figure supplement 6).

Linear readout of neural activity

We next examined whether APs were accurately inferred at
all levels of neural activity, or only for certain firing rates. We
first divided our entire in vivo dataset, ranging from isolated
single APs to high frequency bursts (Figure 7a), into 500
ms windows and calculated the true firing rate in each one
(0-24 Hz for pyramidal and 0-48 Hz for interneurons) along
with each algorithm’s inferred rate. This analysis revealed a
tight linear dependence of the SBM’s average inferred rate
on the true rate (Figure 7b) that spanned the full range of
firing rates present in our dataset and did not depend on
the window size (Figure 7 - figure supplement 1). For the
SBM, this linearity was observed in all pyramidal neurons
(Figure 7b, black, r2 = 0.98± 0.02, n = 22) and interneurons
(Figure 7b, red, r2 = 0.96±0.03, n = 4), while other methods
provided a less linear readout of neural activity (p < 0.01,
rank sum tests, Figure 7 - figure supplement 2a-b). The
average SBM-inferred rate grew with the true rate at a slope
near 1 for pyramidal neurons (0.93 ± 0.20, n = 22), while
lesser slopes were observed for other methods (Figure 7 -
figure supplement 2c). For all true firing rates, the ratio of
the SBM-inferred and true rates was close to 1, but this was
not the case for other methods (Figure 7c). All methods
tested underestimated firing rates in interneurons (Figure 7d,
Figure 7 - figure supplement 2d). The SBM also provided
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the best agreement between the true and inferred values
of neurons’ overall mean spontaneous firing rates, and for
pyramidal neurons this relationship was linear with a slope
near 1 and y-intercept near 0 (Figure 7 - figure supplement 3).
These results show that the SBM linearly reads out pyramidal
neurons’ firing rates from <0.1 Hz (mean spontaneous rates)
to the maximum rate recorded in our dataset (> 20 Hz over
500 ms windows) and can do so with correct units, while for
interneurons firing rate readout is linear but underestimates
the true AP count.

We also examined whether the inter-spike intervals (ISIs)
between nearby APs affect the number of APs inferred by
the SBM. In recordings from pyramidal neurons, we first
identified 2-AP bursts with ISIs up to 40 ms (n = 528, shortest
3.3 ms), and compared the ISI to the number of inferred
APs (Figure 7e, blue). Calculating the average inferred AP
count as a function of ISI, we found these quantities to be
uncorrelated (p = 0.92, 10 ms time bins). Similar results were
observed for 3-AP bursts (Figure 7e, green, p = 0.88, n = 211)
and for interneurons (Figure 7f, p = 0.96, n = 75 for 2-AP
and p = 0.07, n = 59 for 3-AP bursts). As expected from
the above analyses of firing rate, the SBM underestimated
AP counts in bursts for interneurons, but did so in a uniform
way that did not depend on ISIs. These results show that
SBM-inferred AP counts do not depend on ISIs, and that our
approach can successfully enumerate APs separated by < 10
ms.

Precision of inferred AP times

When inferring events such as APs from measurements with
limited SNR and temporal resolution, event detection times
will generally not be precisely correct. Instead, they will
exhibit some time difference from the nearest true event time,
resulting in a probability distribution of timing errors that
depends on the data, model and inference method. Investi-
gating temporal precision is particularly important for AP
times inferred from GECI fluorescence signals, as SNR can
be <1 and the frame rate as low as 10 Hz (Figure 6 - figure
supplement 3). To measure the accuracy of inferred AP times,
we first examined how the correlation of true and inferred
AP-sequences (Figure 6d) depends on the Gaussian filter size
σ used to smooth both AP sequences before comparing them
(Figure 8a). When the timing error between true and inferred
APs is less than σ, the Gaussian filtering causes the smoothed
AP sequences to overlap and increases correlation, so smaller
σ values impose a more stringent requirement for accurate
AP times. The SBM produced the highest correlations for
all values of σ. Similarly, we calculated AP detection and
false positive rates (Figure 8b-c) as functions of the timing
tolerance within which true and inferred APs were consid-
ered as matching. For all timing tolerances, detection rates
were similar for the SBM and c2s-s and lower for other meth-
ods, while false positive rates were similar for the SBM and
MLspike and higher for other methods. We also examined
cross-correlation as a function of the time lag from true to
inferred APs (Figure 8d, figure 8 - figure supplement 1d, σ =
25 ms); the SBM exhibited the highest cross-correlation peak
(0.64± 0.18, Figure 8e) at the shortest time lag (−2.0± 29.7
ms, Figure 8f).

To further quantify timing precision, we analyzed the time
differences between true and inferred APs for each algorithm.
Using only isolated single APs (without other APs 1 s before
and 0.5 s after), we calculated for each method the rate of
inferred APs (or for FOOPSI and CFOOPSI, the unitless
output) as a function of time difference from the true AP
(Figure 8g, Figure 8 - figure supplement 1a-c). For each
neuron with isolated single APs (n = 22), we then computed
the average absolute time difference from the true AP for
each algorithm’s output (Figure 8h), which was lowest for
the SBM (64± 28 ms). The distribution of SBM-inferred AP
times peaked 17.4± 51.4 ms before the true AP time, while
other methods exhibited larger positive or negative delays
(Figure 8i).

To examine whether the SBM’s timing errors can be
attributed to some aspect of the image acquisition process
itself, we also compared the absolute error and mean time
delay for single APs to SNR and imaging frame rate (Figure 8
- figure supplement 2). Absolute timing error decreased with
SNR (r = -0.46, p = 0.015) but not frame rate (r = 0.18, p =
0.38) while the mean time delay was closer to zero at higher
frame rates (r = 0.43, p = 0.024) but not at higher SNR (r =
-0.20, p = 0.31). The absolute time differences between true
and SBM-inferred APs could also be predicted by the timing
uncertainty values output by the SBM for each AP (Figure 8
- figure supplement 3), showing that the SBM can accurately
quantify its own uncertainty regarding AP times.

Because inferred APs can precede true APs in time (Fig-
ure 8g), sensory-evoked APs detected optically may violate
the assumption that causes precede effects [4, 50]. To illus-
trate this, we carried out simulations of L2/3 neurons’ sensory
responses (Figure 8 - figure supplement 4) which showed that
optical AP detection can cause stimulus-evoked APs to be
assigned to times before the stimulus. Therefore, in order to
facilitate the use of optically detected APs for causal time se-
ries analysis we calculated the fraction of inferred APs before
the true AP, and how this fraction can be reduced by shifting
inferred APs forward in time. For isolated single APs, 90%
of SBM-inferred APs can be assigned after the true AP time
when using a forward shift of 114 ms, but when the latency
of stimulus-evoked APs is known a smaller shift can be used
(Figure 8 - figure supplement 5). Together, these results show
that the SBM results in smaller timing errors and average
time differences from true to inferred APs than other meth-
ods, but care must be taken when identifying causal effects
from optically measured AP activity.

Quantifying sensory-evoked AP discharge

Having developed and validated the SBM using spontaneous
activity in single neurons, we also applied it to infer sensory-
evoked activity across neuronal populations. We recorded
GCaMP6s fluorescence in visual cortex while presenting drift-
ing grating stimuli (5 repetitions in 8 directions) and inferred
AP times using the SBM, MLspike and thr-σ (Figure 9a-b).

Sensory stimulation at each neuron’s preferred orientation
resulted in SBM-inferred firing rates from 0-7 Hz (mean
0.9± 1.3 Hz, n = 66), while lower firing rates were inferred
by MLspike (0.3± 0.4 Hz, p = 2e-5, t-test) and thr-σ (0.5±
0.2 Hz, p = 0.04), consistent with these algorithms’ lower
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Figure 7: (A) Electrically detected APs and GCaMP6s fluorescence (black, upper) from a L2/3 mouse visual cortical pyramidal
neuron, and SBM-inferred APs. Orange curve shows the SBM’s posterior mean for denoised fluorescence. Numbers indicate the true
and inferred AP counts for each burst; single APs are unlabeled. (B) Firing rate inferred by the SBM as a function of the true firing
rate, calculated across the complete in vivo dataset using 500 ms windows with 90% overlap. Each curve corresponds to a single
pyramidal neuron (black) or interneuron (red). (C) Ratio of inferred to true firing rates in pyramidal neurons, as a function of the
true firing rate, for each inference method. Each curve shows an average over neurons (n = 22) and shaded regions show standard
deviations. (D) As in (C), but for interneurons. (E) Center : AP counts inferred by the SBM in pyramidal neurons as a function of
inter-spike interval (ISI) for bursts of 2 (blue) and 3 APs (green). Solid lines show average inferred AP counts in 10 ms ISI bins. For
3-AP bursts, the mean of the two ISIs was used. Inferred APs were counted from 200 ms before the first AP in the burst to 200 ms
after the final AP, and only bursts flanked by 400 ms without other true APs before and after were included. Top: Histogram of ISIs
for 2- and 3-AP bursts. Right : Probability distributions for the number of SBM-inferred APs for bursts of 2 (blue) and 3 true APs
(green). (F) As in (E), but for interneurons.
Figure 7–Figure supplement 1. Linearity of SBM-based firing rate inference is robust to the choice of time window size.
Figure 7–Figure supplement 2. Linearity and slope of inferred firing rate as a function of true firing rate, for all inference methods.
Figure 7–Figure supplement 3. Accuracy of inferred mean spontaneous firing rates.
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indicates median spontaneous firing rate. (D) Cross-correlation between true and inferred APs for each inference method, as a function
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were computed with a smoothing σ of 25 ms. (E) Mean and standard deviation over neurons of the peak cross-correlation. (F) Mean
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Figure 8–Figure supplement 1. Cross-correlation and single-AP timing accuracy in individual neurons
Figure 8–Figure supplement 2. Effect of imaging frame rate and SNR on timing accuracy of APs inferred by the SBM.
Figure 8–Figure supplement 3. Data-based evaluation of timing uncertainty values inferred by the SBM for isolated single APs.
Figure 8–Figure supplement 4. Simulations showing the effect of timing errors in optically detected APs on peri-stimulus time histograms
(PSTHs).
Figure 8–Figure supplement 5. Forward time shifts limit too-early assignment of inferred APs.
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AP detection rates (Figure 6e, Figure 7c-d). Orientation
tuning curves calculated using SBM-inferred APs (Figure 9c,
black) were similar to previous observations [93], including a
diverse range of preferred orientations as well as untuned and
nonresponsive neurons. Some pairs of adjacent neurons had
opposite orientation preferences (Figure 9c, neurons i and iv),
as previously observed using synthetic indicators in rats [97]
and mice [88]. These results show that the SBM can be used
to measure neurons’ sensory tuning, and that quantitative
estimation of this tuning can depend on the choice of AP
inference method.

Discussion

We developed the SBM to address the complex, nonlinear and
variable relationship between AP discharge and GCaMP6s
fluorescence. By using quantitative biophysical modeling to
link fluorescence and APs, it outperformed existing inference
methods (figures 6-8) with more accurate firing rates, higher
correlation and F1 values, higher detection rates, fewer false
positives, greater linearity and more precise AP times. This
improved accuracy can be explained by several differences
from previous approaches. For methods based on linear decon-
volution (FOOPSI [132] and CFOOPSI [105]) and threshold-
ing (thr-σ [32]), accuracy is limited by the fact that GCaMP6s
fluorescence neither increases linearly with AP counts nor
crosses a fixed threshold upon AP discharge (Figure 1). For
MLspike [29], the difference may arise because individual
binding steps and endogenous buffers are not included in
the phenomenological model, or because MLspike updates its
internal state only once per image frame. c2s uses the largest
number of parameters (1004) and is the most mathemati-
cally flexible method tested, but infers APs based only on
fluorescence values within a one second window around each
time point while other techniques look further into the past
and future. In addition to the specific limitations of each of
these methods, they all fail to address the variability of the
AP-fluorescence relationship over neurons, which is a central
challenge for AP inference from GECI fluorescence. While
algorithms such as c2s which fix all parameters after fitting
cannot account for this variability, the opposite extreme of
estimating all parameters separately for each neuron would
lead to overfitting and is likely to be computationally infea-
sible for models rich enough to describe nonlinear GECIs.
A small number of parameters can be chosen to vary across
neurons (for example, a single scaling factor as proposed in
[29]), but for non-physical parameters such as polynomial
coefficients or deep learning connection weights there is no
reason for neuron-to-neuron variability to manifest in some
parameters and not others. In contrast, the SBM captures
this variability using the parameters [GCaMP6s]total and FBG

(which are expected from their physical interpretations to
vary over neurons), requires fewer total parameters than c2s
and is more robust when trained on smaller datasets (Figure
6 - figure supplement 5).

The SBM’s false positive rate was 0.07 Hz, bringing
GCaMP6s into the range achieved by synthetic sensors such
as OGB1 [51, 53, 71, 70]. However, even with the SBM
GCaMP6s simply cannot match OGB1’s sensitivity to single

APs: excluding the 4 interneurons to match previous OGB1
measurements in pyramidal neurons brings the detection rate
to only 78%, compared to 90-95% for OGB1[51, 53, 71, 70].
This may reflect an upper performance limit intrinsic to
GCaMP6s that cannot be overcome by further improvements
of the SBM or other methods, as visual inspection shows a
total lack of fluorescence increase for some single APs (Figure
6 - figure supplement 6). Consequently, while bursts of 2 or
more APs were nearly always detected, for many neurons
isolated single APs were frequently missed (Figure 6f). These
errors could complicate efforts to understand how neuronal
populations carry out their essential functions, as even small
numbers of APs in a single neuron can have strong effects
on neuronal tuning through synaptic plasticity [102]. On the
other hand, the fact that most of the SBM’s false positive er-
rors occurred in the absence of true APs (Figure 6g) suggests
that most subsequent analyses would be unaffected by these
errors.

The SBM provides the most linear readout of neural ac-
tivity (Figure 7a-d , Figure 7 - figure supplements 1-3), with
the ratio of true and inferred firing rates independent of the
true rate (Figure 7c-d) and of ISIs within bursts (Figure 7e-
f). This is an important characteristic for an AP inference
algorithm, since it facilitates subsequent stages of quantita-
tive analysis such as computation of sensory tuning curves
[92]. Furthermore, for pyramidal neurons the SBM allows
comparison of firing rates across neurons with correct units
(Figure 7b-c, Figure 7 - figure supplement 2c), despite the
variation in AP-evoked fluorescence across neurons (Figure 1c,
Figure 3e-f).

Compared to alternative methods, SBM-based inference
introduced both lesser absolute timing errors and smaller
mean delays between true and inferred APs. AP timing plays
a central role in dendritic integration [13], sensory coding [26,
67, 85, 135] and both in vitro [11, 81] and in vivo synaptic
plasticity [86, 102]. Nonetheless, for GCaMP6s SBM-based
inference produced timing errors far larger than the timescale
of synaptic input integration [134] and often larger than the
image acquisition time. Since timing errors were reduced in
recordings with higher SNR and mean delays were reduced at
higher frame rates (Figure 8 - figure supplement 2), timing
precision can be modestly improved by imaging faster or
reducing noise, but major gains may require switching to a
faster sensor. Because the timing uncertainty arising from
optical measurement of APs (Figure 8d-i) can reverse the
apparent order of an inferred AP and the sensory stimulus
that evoked it (Figure 8 - figure supplement 4), causal analysis
of optically measured neural activity should either take the
uncertainty of inferred AP times into account or apply a
corrective time shift (Figure 8 - figure supplement 5) before
further analysis.

A current limitation of our SBM/SMC approach is that
it underestimates activity for interneurons (figures 6-7). This
can be attributed to interneurons’ negligible fluorescence in-
creases for single APs (Figure 1 - figure supplement 3), as
previously reported using OGB1 with post-hoc immunohis-
tochemistry [69]. We emphasize that this shortcoming was
specific to interneurons rather than high firing rates, as the
algorithm accurately inferred APs in pyramidal neurons at
firing rates >20 Hz and ISIs < 10 ms (Figure 7). Furthermore,
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Figure 9: (A) Two-photon image of neuronal population (upper) expressing GCaMP6s (green) in L2/3 rat visual cortex, with
astrocytes stained using sulforhodamine 101 (red) and imaged during visual stimulation with drifting gratings in 8 directions (colored
circles, lower). B Fluorescence (black) recorded from 4 neurons from the population in (A) during presentation of drifting grating
stimuli (gray bars; colors above indicate the direction of motion for each stimulus presentation). AP inference results are shown for
the SBM (black), MLspike (dark green) and thr-σ (light green). C Orientation tuning curves showing the mean firing rate evoked by
presentation of the drifting grating stimulus in 8 directions, for the 4 neurons in (A-B). Firing rates were calculated over the 2-second
stimulus presentation.
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the SBM’s inferred firing rate grew linearly with the true
rate in interneurons from 0 to >40 Hz, albeit with a slope <1
(Figure 7b,d). These results could be explained by stronger
calcium buffering in interneurons, in which case SBM perfor-
mance could be improved by relaxing the assumption that the
same endogenous buffers are present in all neurons. Including
per-neuron buffering parameters would require solving a more
difficult parameter estimation problem for each neuron, pos-
sibly using recent machine learning techniques for parametric
model fitting [78, 101, 128, 14]. More generally, the SBM
could benefit from more extensive quantitative knowledge
of endogenous buffers, extrusion mechanisms and calcium
flow between the cytosol, nucleus and endoplasmic reticulum
[110, 112, 115]. The SBM remains extremely simplistic in
comparison to the diverse set of calcium-binding molecules
present in neurons; for example, the InterPro database lists
826 different mouse proteins containing the calcium-binding
EF hand domain pair alone [42].

SBM-based AP inference could also benefit from new meth-
ods for acquiring and pre-processing imaging data. New scan-
ning techniques can increase imaging speed and the number
of recorded neurons [20, 53, 103] towards the levels achieved
by electrical approaches. Reduction in neuron-to-neuron vari-
ability might be achieved by using transgenic animals instead
of viral delivery [24, 79] or by localizing the indicator to sub-
cellular compartments [36, 72]. Accuracy could also benefit
from improved methods for motion correction [32, 52, 105]
and removal of contaminating signals from nearby structures
[31, 89, 105].

Current knowledge and experimental tools provide only
a partial picture of the calcium dynamics evoked by AP
discharge in neuronal somata, but the SBM is broadly cor-
roborated by past experimental measurements. The value of
∆[Ca2+]AP = 20.2 µM calcium influx per AP is consistent
with measurements in midbrain neurons [107] using the action-
potential clamp method [77] that reported 4.32 pC of charge
carried by calcium ions for each AP. For a spherical soma 10-15
µm in diameter, this would imply a concentration increase of
13-43 µM. While this far exceeds the sub-micromolar changes
in free calcium typically observed upon AP discharge [116,
142], the SBM models most calcium ions inside the neuron
as bound to endogenous buffers. For every free calcium ion,
the SBM modelled 203 ions bound to endogenous buffers in
a neuron at rest, consistent with previously reported values
for pyramidal neurons in vitro [60, 80, 99].

Because the SBM describes the effect of AP discharge
on fluorescence through the biophysical framework of mass
action kinetics, we were able to apply it to in vitro binding
assays as well as in vivo experiments. SBM parameters de-
termined from global fits of multiple in vitro experiments
can be used in vivo, both to predict fluorescence from APs
(Figure 5) and to infer APs from fluorescence (Figure 6 - fig-
ure supplement 4). The fact the SBM can describe the same
protein-ligand interaction under such divergent circumstances
lends support to the model class as a quantitative account of
calcium-GCaMP6s interactions. However, for both in vitro
and in vivo data, individual parameters could not be pre-
cisely determined, though predictions of the system’s output
were reliable and robust (Figure 3 - figure supplement 9).
This parameter sloppiness could arise from spectroscopically

silent binding steps (including the first 3 steps when using the
best-fit SBM parameters for in vivo data, see Table 1), insuf-
ficient temporal resolution to resolve the most rapid binding
reactions, insufficient number or diversity of experimental
conditions in vitro, the limited number of recorded neurons
or diversity of AP sequences in vivo or lack of structural
identifiability in the model itself [8]. This sort of parameter
sloppiness has been observed in many other complex models
in biochemistry and systems biology [45, 54, 108].

The SBM and associated techniques for model fitting and
AP inference have a number of applications beyond detecting
APs with GCaMP6s. These procedures could be applied
without modification to GCaMP6f/m [18], other GCaMPs,
recently developed red fluorescent versions [23] and future
calmodulin-based sensors. Because the SBM describes both
the calcium sensor protein and some aspects of neuronal phys-
iology, it could also prove useful in investigating the physio-
logical side-effects of GCaMP expression in virally transfected
neurons [2, 139] and genetically modified animal lines [119].
Given that SBM parameters obtained in vitro can be used to
predict fluorescence and infer APs in vivo, SBM parameters
fit from in vitro binding assays might be useful in large-scale
screening of candidate GECIs [18]. The model could also be
extended to include photoconversion of calmodulin-based ac-
tivity integrators [44], multiple protein products of the same
GECI gene [23] and calcium dynamics in dendrites, axons,
spines and boutons [21, 39, 75, 115, 121]. As a framework for
linking APs to experimental observations through reaction
kinetics, more general versions of the SBM could describe
biochemical reaction networks coupled to neural activity [10].
The models, fitting procedures and software tools we devel-
oped for in vitro binding assays could also be applied to other
calcium-binding proteins or different protein-ligand interac-
tions, as existing analysis software cannot easily fit model
parameters for multiple binding sites or combine equilibrium
and kinetic data from multiple binding assays in a common
global fit [141].

The approach we have taken here, of fitting parametric
generative models to experimental data while incorporating
domain-specific knowledge into design of the model class, has
already proved useful in several areas of neuroscience [37, 58,
66, 43, 109, 95, 100] and other fields of biology [45, 54, 94,
96, 108]. By improving the accuracy and interpretability of
data analysis, these results help justify the use of quantitative
causal models and domain-specific knowledge over model-free
black box methods for the analysis of complex biological data.
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Methods and Materials

Mathematical notation

N (µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2, while N
(
x;µ, σ2

)
denotes the pdf of this distribution

at the value x. We define a sum indexed by the empty set as zero, and a product indexed by the empty set as one. The
operator ◦ denotes convolution. For a vector vεRn, diag(v) is an n x n matrix with v on the diagonal and zeros elsewhere.
For a vector xεRn, we denote by xj:k the sub-vector starting at xj and finishing with xk.

Virus injection

Experiments were conducted according to German animal welfare regulations. Experimental subjects for our combined
optical-electrical recordings were 6 male C57BL6 mice, 20-25g body weight at the time of the virus injection. Fluorescence
imaging with visual stimulation was carried out 70g male Listar hooded rat. During all surgical and recording procedures,
anesthetic depth was regularly monitored and body temperature was maintained at 37◦C using a heating pad and thermal
probe. Mice were anesthetized with an intraperitoneal bolus injection of ketamine and xylazine (120 mg/kg and 16 mg/kg
respectively) while rats were anesthetized with fentanyl citrate, midazolam hydrochloride, and medetomidine hydrochloride
(5 µg/kg, 2 mg/kg and 150 µg/kg respectively). Supplemental doses of anesthetic solution given as required. The target
area for the virus injection (Lambda -1 mm, lateral 2.5 mm in mouse and Lambda +1.5 mm, lateral 4.5 mm in rat) was
exposed and marked. A small craniotomy (˜0.5 x 0.5 mm) was opened approx. 1 mm anterior to the marked target area
at the same lateral coordinate and a small opening made in the underlying dura. To induce expression of GCaMP6s in
cortical neurons, a glass pipette (tip opening ˜20 µm) filled with virus solution (AAV1.Syn.GCaMP6s.WPRE.SV40, Penn
State Vector Core, PA, USA) was advanced into the cortex to the target area at a 15-20◦ angle to the brain surface, and
an injection was made over approximately 5 minutes (250-400 nL in mouse and 1.5 µL in rat). The surgical site was then
protected with silicone (KwikSil, World Precision Instruments, FL, USA) and skin incision closed. Animals were given a
bolus dose (5 mg/kg flunixin meglumin for mice; 120 µg)/kg naloxone hydrochloride, 200 µg)/kg flumazenil, 750 µg)/kg
atipamezole) for post-operative analgesia, and allowed to recover. Additional, buprenorphine hydrochloride and carprofen (30
µg)/kg and 5 mg/kg respectively) were administered for the rat.

Imaging with simultaneous electrophysiological recording

After an expression time of 10-15 days, animals were anesthetized with urethane (1.6 mg/kg), a custom-made headplate fixed
to the skull using dental cement (Paladur, Kulzer GmbH, Hanau, Germany), an approx. 3 x 3 mm craniotomy centered
over the injection target site opened and the dura removed. Astrocytes were counterstained using sulforhodamine 101 (0.5
mM, Sigma-Aldrich, MO, USA), which was applied topically to the cortical surface for 60-120 s, and the exposed cortex
then covered with agar (1.2%, Sigma-Aldrich, MO, USA, dissolved in artificial cerebrospinal fluid (ACSF) of the following
composition in mM: NaCl, 135; KCl, 5.4; CaCl2, 1.8; MgCl2, 1; Hepes, 5) and a coverslip to minimize brain movement during
subsequent multiphoton and electrophysiological recordings.

Labeled neurons and astrocytes were visualized using custom-built multiphoton microscopes. Excitation light was provided
by a Ti:Sapphire pulsed laser system (Mai Tai, Spectra Physics, CA, USA) tuned to 920 nm. Datasets were acquired using
either an Olympus 20x (XLUMPlanFl, Olympus, Tokyo, Japan) or a Zeiss 20x (WPlan-APOCHROMAT, Zeiss, Oberkochen,
Germany) objective lens. The scanning system consisted either of a conventional or resonance galvanometric system. With
the conventional galvanometric system, imaging was carries out at 64 x 128 pixel resolution, acquired at frame rates of 10.4,
15.6, 18.6 or 37.2 Hz. With the resonance galvanometric system datasets comprised either 512x512, or 1024 x 256 pixel
images, acquired frame rates of 30 and 60 Hz respectively. Motion within each frame of the imaging datasets was corrected
using the method of [52] using red fluorescence from sulforhodamine 101.

Cell-attached electrophysiological recordings were made using glass pipettes (6-12 MΩ resistance) filled with ACSF contain-
ing either 2.5 µM Alexa 594 (ThermoFisher, MA, USA) or 2.5 µM Alexa 488 (ThermoFisher, MA, USA). Electrophysiological
signals were amplified using a Multiclamp 700B (Molecular Devices, CA, USA), equipped with a CV 7B headstage. Signals
were lowpass filtered at 10 kHz (Bessel filter) and digitized at 20 kHz (Power 1401, Cambridge Electronic Design, Cambridge,
UK). Cells were visually targeted under multiphoton guidance for acquiring simultaneous imaging and cell-attached datasets.

Imaging with simultaneous visual stimulation

After an expression time of 14 days, the rat was anesthetized with Ketamine-Medetomidine (100 mg/kg and 2 mg/kg
respectively) with supplemental doses of anesthetic solution given as required. A custom-made headplate fixed to the skull, a
craniotomy was opened and the dura was removed with the same procedure as for simultaenous optical/electrical recordings.
Visual stimuli were generated using a custom-written Matlab script and the Psychophysics Toolbox, and presented with a
monitor (Faytech, 16 x 12 cm, 60 Hz refresh rate) placed 15 cm in front of the rat, covering approximately 56◦ x 42◦ of the
visual field. Full-length drifting bar gratings (0.05 cycle/◦, 2 cycle/s, 8 orientations, 2 s duration, 3 s inter-stimulus-interval,
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100% contrast) were binocularly presented with 5 repetitions. Two-photon imaging with another custom-built microscopy
visualized labelled neurons and astrocytes similarly as described above, but apart from using an objective lens (Throl Optics).

Expression and purification of GCaMP6s

GCaMP6s was expressed in E. coli BL21 (DE3) pLysS (Novagen) in LB medium supplemented with 180 µg/mL Ampicillin
and 20 µg/mL Chloramphenicol for 24h at 25◦C in the absence of IPTG. The pellet was resuspended in 30 mM Hepes, pH
7.2, 500 mM NaCl, 10 mM Imidazole, 1 mM PMSF, and a Roche cOmplete tablet (EDTA-free), lysed by sonication and
cell debris was removed by ultracentrifugation. The cleared lysate was incubated with Ni-NTA Superflow beads (Qiagen).
After washing with high-salt buffer (1000 mM NaCl), bound protein was eluted in a step gradient with elution buffer (30
mM Hepes, pH 7.8, 500 mM NaCl, and 500 mM imidazole). The pool was subjected to gel filtration (Superdex 200, GE
Healthcare) in 30 mM MOPS, pH 7.2, 150 mM KCl.

Preparation of low calcium buffer (LCB)

All plastic ware and stirring bars were incubated for 30 min in 20 mM Tris (pH 8) with 50 µM EGTA, then washed 15 times
with clean water to remove all traces of EGTA. Standard buffer for the measurements was 30 mM MOPS and 100 mM KCl,
prepared with trace select water (Fluka), the pH was adjusted to 7.2 (final) using KOH. The buffer solutions were incubated
with BAPTA-based polystyrene beads (BAPTA-sponge S, ThermoFisher) on a rotating plate for 24-36 hours at RT to reduce
background calcium levels. Calcium contamination was determined using Fura-2 Thermo Fisher, F-1200) by fluorescence
spectroscopy.

Calcium removal by refolding or dialysis

To obtain nearly calcium-free protein levels (calcium-free GCaMP6s) we unfolded GCaMP6s in denaturation buffer (6 M
Guanidinium-HCl in 30 mM MOPS, pH 7.2, 100 mM KCl, 2 mM EGTA) followed by repeated concentration and dilution
in denaturation buffer using AMICON Ultra centrifugal filters (Millipore). The protein was refolded by fast dilution into
30 mM MOPS, pH 7.2, 100 mM KCl, 2 mM EGTA, 0.5 M Arginine, and 1 M Guanidinium-HCl. The buffer was then
exchanged to LCB using AMICON devices. Alternatively, calcium was removed by dialysis instead of refolding. The protein
pool was dialysed in slide-a-lyzer buttons (2 K MWCO) for 48 hours at RT and protected from light, against 30 mM MOPS,
100 mM KCl, 10 mM EGTA, 10 mM EDTA, pH 7.5. The buffer was exchanged to LCB by multiple rounds of dilution
and concentration at 4◦C using 15 mL Amicon concentration devices (10 K MWCO). During calcium removal and in all
subsequent steps, we exclusively employed chemicals and water (Fluka 95305) of the highest available grade and pre-cleaned
all plastic ware.

Fluorescence spectra

GCaMP6s was diluted to a nominal concentration of 2 µM in LCB with 2 mM BAPTA and 0 to 2 mM total calcium (final
concentrations taking into account the reagent purity values determined during data fitting are shown in the main and
supplementary figures). Spectra were recorded at pH 7.2 at 37 C on a PTI spectrometer in photon counting mode (at photon
counts below 700000, to avoid nonlinearities in the photon counting module). Excitation wavelength was varied from 350 to
505 nm. The colored spectrum shown in Figure 4d was taken from Wikimedia commons1 and is available under the creative
commons license.

Isothermal titrational calorimetry

ITC measurements were carried out in an ITC200 micro-calorimeter (MicroCal, Malvern Instruments) at 37C. The cell and
Hamilton syringe were incubated for 1 hour with 20 mM Tris/HCl (pH 8) and 50 µM EDTA, washed twice with the same
solution, then washed twenty times with trace select water (Sigma Aldrich). Finally, the cell and syringe were washed four
times with LCB.

All solutions were prepared in LCB (pH 7.2) using non-autoclaved Eppendorf tubes and pipette tips. Protein concentrations
were calculated from absorption at 280 nm.

Nominal concentrations of 400 to 1200 µM CaCl 2 was titrated into 20 to 60 µM calcium-free GCaMP6s. The experiments
consisted of 18 to 30 injections with volumes between 2 and 1.2 µL, 90 s spacing, and constant stirring at 1000 rpm. The
initial active cell volume was 203.4 µL. The heat of a 0.2 µL dummy injection at the beginning of each titration was not
analysed but its volume and calcium content was taken into account. Baseline correction and peak integration were carried
out using [68]. The integrated heat signal was corrected for the heat of dilution (obtained from reference titrations of syringe
component into buffer).

1commons.wikimedia.org/w/index.php?title=File:Rendered_Spectrum.png&oldid=110367311
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Stopped-flow fluorimetry

Measurements were carried out in an SX20 stopped-flow device (Applied Photophysics) at 37◦C in LCB (pH 7.2). The
injection volume was set to 145 µL for each syringe. Calcium release from GCaMP6s was measured by mixing 1 µM GCaMP6s
and 20 µM total CaCl2 in LCB (syringe 1) with 10 mM BAPTA in LCB (syringe 2).

In order to measure calcium binding to GCaMP6s, 1 µM protein in the presence of 50 µM BAPTA was mixed with a
defined free calcium concentration (2 mM BAPTA and 0-1.8 mM total calcium) in LCB. These concentrations are nominal
values, whereas corrected concentrations taking into account reagent purity values were calculated during data fitting and are
reported in the main text and figures.

The instrument was incubated in 50 µM EGTA in LCB over-night before experiments. Syringes were washed using trace
select water four times prior to the experiment, then an additional two times using low calcium buffer. Fluorescence was
excited at 488 nm (bandwidth 0.5 nm) and a 515 nm cut-off filter was used for the emission. The digitization rate was
adjusted to match the speed of the observed kinetics (80 kHz for the fastest trace).

Extraction of fluorescence signals from in vivo imaging data

We used an feature extraction method based on nonnegative matrix factorization [76] to separate fluorescence signals from
overlapping structures, similar to previously published techniques [105, 31, 89]. The aim of this method was not to detect
fluorescent structures such as neurons and dendrites, but rather to isolate the signals from a single structure that was already
identified and marked with a region of interest (ROI). In-depth exploration of the capabilities and limitations of this approach
as compared to alternative methods are beyond the scope of the present work and will be described elsewhere (Voit et al., in
final preparation).

Biophysical model

The sequential binding model is a generative, parametric biophysical model designed to describe GCaMP6s and other GECIs
both in vitro and in vivo. Here we first describe the model of reaction kinetics that make up the core of the SBM, while the
specific ways in which various data types depend on these kinetics are described in later sections. For a GECI G with m
calcium binding sites and total concentration [G]total, we model the sequential binding steps:

mCa2+ + G
k+

1
GGGGGGBFGGGGGG

k−1

(m− 1)Ca2+ + CaG
k+

2
GGGGGGBFGGGGGG

k−2

· · ·
k+
m−1

GGGGGGGGGBFGGGGGGGGG

k−m−1

Ca2+ + Cam−1G
k+
m

GGGGGGBFGGGGGG

k−m

CamG (8)

where k+
j and k−j are the kinetic rate constants for binding and unbinding of the m-th calcium ion. The net rate of each

reaction in the forward direction is then

rj = r+
j − r

−
j = k+

j [Ca2+][Caj−1G]− k−j [CajG] 1 ≤ j ≤ m (9)

The SBM also includes nbuffers additional molecules B1, B2, ..., Bnbuffers
binding a single calcium ion, with rates constants b+`

and b−` and total concentrations [B]total
` . Finally, free calcium is extruded from the neuron at the rate rex, which for the

standard SBM is

rex =
[Ca2+]− [Ca2+]rest

τex
(10)

We also implemented a more complicated extrusion mechanism (Figure 3 - figure supplements 3-4), in which nex different
extrusion reactions proceed with Michaelis-Menten kinetics. In this case, extrusion reaction p saturates at a maximum rate of
vex
p and the dependence on free calcium concentration is described by a Michaelis constant Kex

p , yielding the total extrusion
rate

rex =

nex∑
p=1

vex
p

(
[Ca2+]

[Ca2+] +Kex
p

− [Ca2+]rest

[Ca2+]rest +Kex
p

)
(11)

For both extrusion mechanisms, rex = 0 when [Ca2+] = [Ca2+]rest. When analyzing data from in vitro binding assays, we set
rex = 0.

Together, these reactions define the rate equation for our model [87, 137], a system of coupled nonlinear first-order
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ordinary differential equations.

d[CajG]

dt
=

 −r1 j = 0
rj−1 − rj 0 < j < m
rm j = m

(12)

d[CaB`]

dt
= b+` [Ca2+]([B]total

` − [CaB`])− b−` [CaB`] (13)

d[Ca2+]

dt
= −

m∑
j=1

rj −
nbuffers∑
`=1

d[CaB`]

dt
− rex (14)

This system of m+ nbuffers + 2 equations is slightly redundant, since
∑m
j=0[CajG] = [G]total is fixed. However, we explicitly

calculated all m+ 1 indicator binding state concentrations due to the nature of our numerical ODE solver (see below).

Equilibrium state for known free calcium concentration

For a fixed calcium concentration [Ca2+], we calculate the equilibrium concentrations for all molecular species by setting
derivatives to zero and solving the resulting system of linear equations. This gives for the GECI G the relations:

[CajG]eq

[Caj−1G]eq
= [Ca2+]k+

j /k
−
j 1 ≤ j ≤ m (15)

[CajG]eq

[G]eq
= [Ca2+]jβj 1 ≤ j ≤ m (16)

βj =

j∏
u=1

k+
u /k

−
u (17)

[CajG]eq = [G]total [Ca2+]jβj

1 +
∑m
h=1[Ca2+]hβh

0 ≤ j ≤ m (18)

Eq. 18 is known as the Adair-Klotz equation [87, 137] and the β’s are macroscopic association constants. Similarly, for the
buffers

[CaB`] = [B]total
`

[Ca2+]b+` /b
−
`

1 + [Ca2+]b+` /b
−
`

(19)

Equilibrium state for known total calcium concentration

For certain in vitro experiments, the total concentration of calcium [Ca2+]total is known but the free concentration [Ca2+] at
equilibrium is not. In this case we have the relation:

[Ca2+]total = [Ca2+] +
m∑
j=1

[CajG] +

nbuffers∑
`=1

[CaB`] (20)

= [Ca2+] + [G]total

∑m
h=1 h[Ca2+]hβh

1 +
∑m
h=1[Ca2+]hβh

+

nbuffers∑
`=1

[B]total
`

[Ca2+]b+` /b
−
`

1 + [Ca2+]b+` /b
−
`

(21)

Multiplying by the denominators gives a polynomial equation for [Ca2+] of degree m + nbuffers + 1. Because free and
total calcium concentrations are strictly increasing functions of each other, this polynomial must posses exactly one real
root between zero and [Ca2+]total, which we obtain numerically using the NumPy function roots. Substituting the value of
[Ca2+]rest obtained from eq. 21 into eq. 18-19 gives the concentrations of all other molecular species.

Differentiability of the equilibrium state Our procedures for fitting the SBM to in vitro data require calculating the
derivatives of equilibrium binding state concentrations with respect to model parameters. For this purpose, we can obtain the
derivative of [Ca2+] with respect to any total reagent concentrations or rate constants by implicit differentiation with respect
to polynomial coefficients. Suppose that xR is a root of some polynomial P (x) with degree d. Then considering xR as a
function of the polynomial coefficients, we have for the jth order coefficient pj :
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0 = P (xR) (22)

d

dpj
0 = xjR +

dP (x)

dx

∣∣∣∣
x=xR

dxR
dpj

(23)

dxR
dpj

= −xjR
(
dP (x)

dx

)−1 ∣∣∣∣
x=xR

(24)

The second line follows from the product and chain rules. Note when the xR represents the free calcium concentration

being calculated from total reagent concentrations, the polynomial derivative dP (x)
dx is zero only when xR = 0, i.e. when both

free and total calcium concentrations are zero.

In vitro data model

We analyzed data from three in vitro binding assays: fluorescence spectra, isothermal titration calorimetry (ITC) and
stopped-flow fluorimetry.

For spectral and stopped-flow data, the calcium buffer BAPTA [129] was used to control calcium concentration. Using
the Maxchelator program [9], we calculated an initial value for the dissociation constant Kd = b−/b+ = 222.8 nM at 37 ◦C,
ionic strength 0.15 and pH 7.2. We constrained the Kd in subsequent fitting procedures to lie within 5% of this value. While
BAPTA’s kinetics have not been as thoroughly investigated as its affinity, [91] reported an off-rate of b− = 79.0 s−1 at 22 ◦C.
We therefore initialized b− = 90 s−1 for data at 37 ◦C and constrained 1/b− to lie within 50% to 150% of its initial value of
11.1 ms.

Effective concentration and calcium contamination of GCaMP6s and BAPTA All in vitro experiments involved
solutions containing the calcium sensor GCaMP6s, calcium ions and in some cases the calcium buffer BAPTA. For each
of these, nominal concentration values were calculated based on dilution factors, molecular weight (for BAPTA) and UV
absorption at 280 nm (for GCaMP6s). However, true concentrations can differ substantially from nominal concentrations,
due imperfect theoretical predictions of protein extinction coefficients [47], increase in the mass of salts through absorption
of water and variations in purity across protein purifications or batches of chemical reagents [74, 82, 9, 98]. The effects of
calcium contamination can also be significant, especially when considering calcium concentrations approaching the extremely
low levels (< 100 nM) present in neurons at rest [116, 60, 80, 142], which we aimed to reproduce in the in vitro binding assays.

Therefore, for each pool of purified GCaMP6s or batch of BAPTA, we modeled the ratio of true to nominal concentration
as a free parameter, which we refer to as the ”purity” of the reagent. We also included for each GCaMP6s pool or BAPTA
batch a ”calcium contamination” parameter, defined as the ratio of excess total calcium concentration to the reagent’s
nominal concentration. We also included a different GCaMP6s contamination value for each ITC experiment, since the
absence of BAPTA makes these experiments extremely sensitive to the handling of the protein. We did not include a purity
value for the calcium added intentionally from diluted 0.1 M stock, since its concentration errors are likely to be minuscule
and since rescaling all concentrations and making a compensatory change to other parameters would not change the data
values predicted by the model. Thus our standard calcium stock acts as a unit of concentration or ”Urmeter” for our model
fits.

Data model for fluorescence spectra Spectral data were represented as a matrix F of fluorescence values, where
Fλ,v indicates the fluorescence detected with excitation wavelength λ in experimental condition v. For each spectroscopy
experiment, the experimental conditions differed only in the amount of total calcium present. Based on the nominal reagent
concentrations, contaminations and purities, we calculated the true concentrations of GCaMP6s, BAPTA and total calcium
for each condition. We next calculated free calcium concentration from eq. 21 and all binding state concentrations from eq.
18. Denoting the calculated concentration of binding state i in condition v by [CaiGCaMP6s]v, we modeled fluorescence
according to

F̂λ,v =

m∑
i=0

Fλ,i[CaiGCaMP6s]v (25)

Fλ,i > 0 denotes the fluorescence of binding state i when excited by wavelength λ.

Data model for isothermal titration calorimetry Data for a single ITC experiment were represented as a vector
QεRnQ of integrated peak heats. We first calculated the true concentrations of calcium and GCaMP6s for the syringe
and the intial solution in the reaction chamber given the nominal concentrations, purities and contaminations. For each
injection, we then updated the concentrations using the standard perfusion model [38]. Specifically, for a reagent X with
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total concentration [X]0 in the cell (after the dummy injection) and total concentration [X]S in the syringe, the concentration
in the cell after the ith injecion will be:

[X]i = [X]i−1
Vcell − Vinj

Vcell
+ [X]S

Vinj

Vcell
(26)

= [X]0

(
Vcell − Vinj

Vcell

)i
+ [X]S

[
1−

(
Vcell − Vinj

Vcell

)i]
(27)

After calculating total concentrations of GCaMP6s and calcium at each stage of the ITC experiment, we calculated free
calcium concentration from eq. 21 and all binding state concentrations from eq. 18. We next calculated for each mixture the
total enthalpy difference from the calcium-free state arising from binding of calcium to the indicator:

∆H =
m∑
j=1

hj [CajGCaMP6s] (28)

where hj is the enthalpy difference between one mole of indicator with j calcium ions bound and one mole of calcium-free
indicator. Finally, denoting the enthalpy difference after i injections by ∆Hi, we model the integrated peak heat by

Q̂i = ∆Hi −∆Hi−1
Vcell − Vinj

Vcell
(29)

The modeled peak heat Q̂ does not contain a term for the pre-reaction enthalpy of each injection, since the syringe did
not contain GCaMP6s. Note that we do not explicitly consider heats of dilution, as the heat of dilution for the injection of
concentrated calcium was already subtracted, and the dilution heat of GCaMP6s in the reaction cell is negligible compared
to binding enthalpy.

Data model for stopped-flow fluorimetry Data for a single stopped-flow experiment were represented as a vector F of
fluorescence observations Fi at a sequence of times after mixing. For each syringe, we calculated free calcium concentration
from eq. 21 and all binding state concentrations from eq. 18, giving the initial equilibrium states before mixing. We then
calculated the non-equilibrium binding state concentrations immediately after mixing as the average of the two equilibrium
states (since the syringe volumes are equal). We next integrated the rate equation (12-14) from time zero to tdead, representing
the ”dead time” delay between initial combination of the two solutions in the mixing chamber and observations made on
solution in the fluorescence cell. We then calculated the model’s prediction of time-dependent fluorescence by

F̂i = αstopped-flow

m∑
j=0

Fλ,j [CajGCaMP6s]i (30)

This formula differs from eq. 25 only in the presence of an additional scaling factor, which captures the differences
between stopped-flow and spectral data in collection efficiency, excitation intensity, data units, etc. We then integrated the
rate equation until the next fluorescence observation and repeated the procedure until the last data point.

In vivo data model

Time step For imaging data with a time step of ∆ between image frames, the SBM used a time step of δ < ∆ to describe
the AP sequence and all concentrations over time. Except where otherwise noted, we chose δ to be the largest possible value
less than 10 ms for which ∆/δ is an integer.

AP discharge Each neuron’s AP sequence was modeled as an independent Bernoulli variable for each time step. The
probability of AP discharge was

pAP = δχ (31)

where χ is the neuron’s firing rate. The prior distribution of firing rate over neurons was modeled as a Gamma distribution
χ ∼ Γ(kχ, θχ), where kχ is a shape parameter and θχ is a scale parameter. We modeled each AP as an instantaneous increase
in [Ca2+] by ∆[Ca2+]AP.
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Fluorescence model Fluorescent measurements are acquired as the neuron’s soma is scanned by the laser focus of the
two-photon microscope. The infrared laser light excites the fluorophore leading to emission of visible photons, some of which
are captured by the objective lens and detected by the photomultiplier tube (PMT). We model the expected value of the ith

fluorescence measurement by:

E[Fi] = F̂ = (Fcyt + FBG)
Bi

φ0[GCaMP6s]total
(32)

Fcyt =
m∑
j=0

φj [CajGCaMP6s]i (33)

Neither the values of φj nor their ratios need be consistent with the values of Fλ,j for in vitro data, due to the difference
between one- and two-photon excitation. FBG represents fluorescence from out-of-focus structures that does not depend on
binding state concentrations in the neuron. Bi represents many factors influencing the scale of the fluorescence measurement,
some of which may vary over time. These include laser power, light scattering and absorption by tissue, changes in blood
flow through vessels above the image plane, photobleaching of the fluorophore, collection efficiency, artifacts arising from
uncorrected lateral or axial motion, PMT quantum efficiency, amplifier gain and the analog-to-digital (A2D) converter’s
input range and bit depth. This formulation does not include an additive offset in the fluorescence values, and thus assumes
that the recorded fluorescence values will on average be zero in the absence of incoming photons. This can be achieved by
subtracting from the fluorescence data an offset recorded with the laser shutter closed before or after each imaging file, a
standard feature in many imaging systems such as Scanimage [106].

To ensure that Bi is positive while allowing it to drift over time, we define Bi = eρ and modeled ρ as a Brownian motion
with variance σ2

ρ sec−1. That is, given the value of ρ at time t1 seconds, its value at a later time t2 has conditional distribution

ρ(t2)|ρ(t1) ∼ N (ρ(t1), (t2 − t1)σ2
ρ) (34)

We set σρ = 0.01 for the analysis of all in vivo data.

Finally, we define ψj =
φj−φ0

φ0
to give a parameterization that does not depend on the units of fluorescence or concentration:

F̂ =

1 +
m∑
j=1

ψj
[CajGCaMP6s]

[GCaMP6s]total
+

FBG

φ0[GCaMP6s]total

Bi (35)

ψj =
φj − φ0

φ0
(36)

We assume that calcium binding does not decrease the indicator’s brightness, so each ψj > 0.

Joint prior distribution for [GCaMP6s]total and FBG Since resting calcium concentration is consistently 50-80 nM
[116, 60, 80, 142], neurons with higher GECI concentrations would be expected to have higher brightness relative to the
background fluorescence at rest. We therefore modeled the joint distribution over neurons on [GCaMP6s]total and FBG/F

eq
cyt

using a 2D log-normal prior:

[
log([GCaMP6s]total)

log(FBG/F
eq
cyt)

]
∼ N (µG,ΣG) (37)

where F eq
cyt =

∑m
j=0 φj [CajGCaMP6s]eq, with equilibrium concentrations calculated for [Ca2+] = [Ca2+]rest. Note that

[Ca2+]rest is not an estimated parameter, but has been fixed to 50 nM (see results).

Fluorescence observation noise For an expected fluorescence value F̂ predicted by the SBM, we modeled the probability
distribution on fluorescence observations as

F ∼ N

(
F̂ ,

gF̂ + σ2
F

nA2D

)
(38)

Where g is an unknown gain factor used to incorporate photon shot noise and other signal-dependent noise, nA2D is
the number of analog-to-digital values averaged when calculating the neuron’s fluorescence for each image frame and σF
represents signal-independent noise. We implemented our model fitting and AP inference algorithms with the option to
incorporate calibrated values of g and σF , but when estimating noise properties from fluorescence data alone (see below), we
set g = 0 and estimated only σF . Thus for SBM-based AP inference in this study, nA2D is known, g = 0 and a different value
of σF is estimated for each neuron based on its fluorescence signals.

Greenberg et al. | 2018 | bioRχiv 26/84

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/479055doi: bioRxiv preprint 

https://doi.org/10.1101/479055
http://creativecommons.org/licenses/by-nc/4.0/


Numerical solution of ODEs

Model fitting and AP inference with the SBM require integrating the rate equation (12-14) forward in time to calculate
predicted fluorescence given an AP sequence. When fitting models to in vitro data, we used a standard ODE solver available
as SciPy library function. We chose the LSODA solver [63] based on the backward differentiation formulas [6] with adaptive
step size determination, since we did not know the time constants of the various binding steps in advance and since the
stopped-flow data achieved measurement rates as high as 80 kHz. Another reason to use adaptive step sizes is that in vitro
experiments can produce much larger and more rapid changes in free calcium than those observed in neurons.

However, fitting in vivo data required us to design and use a custom solver. This is because when we use our model to
detect APs in a sequential Monte Carlo framework (see below), we will be carrying out many simulations in parallel using
a GPU implementation. In order to run efficiently on a GPU, these simulations must maintain a low memory footprint
per thread, must not allocate and deallocate memory and must avoid branch points such as ”IF statements” (to avoid
desynchronizing parallel simulations and causing the threads in non-active branches to wait). We therefore designed a custom
ODE solver for use with AP inference on the GPU. We also used our custom ODE solver when fitting SBM parameters to in
vivo fluorescence signals together with known AP sequences, both for speed and to ensure that any approximations or errors
would be apparent in the model fits.

Backward Euler method

Let yεR8 be the vector of binding state concentrations:

y =



[Ca2+]
[G]

[Ca1GCaMP6s]
[Ca2GCaMP6s]
[Ca3GCaMP6s]
[Ca4GCaMP6s]

[CaB1]
[CaB2]


(39)

We designed our solver to use the backward Euler method, defined by:

y(t+ δ) = y(t) + δf(y(t+ δ)) (40)

where f(y) is the vector of derivatives dy
dt , in our case defined by the rate equation (12-14). The backward Euler method

possesses several important stability properties [16], allowing us to use a relatively large step size of 10 ms without strongly
affecting the fluorescence predicted by the model (Figure 5 - figure supplement 1).

Applying eq. 40 requires solving a system of nonlinear equations, for which we use Newton’s method, an iterative technique
based on linearizing f using its Jacobian J . Given a current estimate yi(t+ δ) of y(t+ δ), we approximate

f(y(t+ δ)) ≈ f(yi(t+ δ)) + J(y(t+ δ)− yi(t+ δ)) (41)

J = ∂f/∂y

∣∣∣∣
y=yi(t+δ)

(42)

We then use this approximation to repeatedly refine the estimate of y(t + δ) by solving a system of linear equations.
Initializing with y0(t+ δ) = y(t), we have:

y(t+ δ) ≈ y(t) + δ
[
f(yi(t+ δ)) + J(y(t+ δ)− yi(t+ δ))

]
(43)

(I − δJ)
(
y(t+ δ)− yi(t+ δ)

)
≈ y(t)− yi(t+ δ) + δf(yi(t+ δ)) (44)

Setting ∆y = y(t+ δ)− yi(t+ δ) and z = y(t)− yi(t+ δ) + δf(yi(t+ δ)) gives:

(I − δJ)∆y = z (45)

(46)

solving for ∆y then allows us to compute the next iterative estimate yi+1(t+ δ) = yi(t+ δ) + ∆y.
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In order to solve this linear system with a low memory footprint and no branch points, we introduce a direct solver that
generalizes the tridiagonal matrix algorithm (see below). To avoid additional branch points we also fixed the step size to 10
ms and the number of Newton iterations to 3. We show that this does not lead to inaccurate predictions of in vivo GCaMP6s
fluorescence even at high firing rates (Figure 5 - figure supplement 1), though a shorter step size or a greater number of
Newton iterations might be needed for larger calcium fluxes or faster sensors.

Jacobian

To apply the backward Euler method, we use the following Jacobian matrix:

J =
df(y)

dy
=



J11 J12 J13 J14 J15 J16 J17 J18

J21 J22 J23 0 0 0 0 0
J31 J32 J33 J34 0 0 0 0
J41 0 J43 J44 J45 0 0 0
J51 0 0 J54 J55 J56 0 0
J61 0 0 0 J65 J66 0 0
J71 0 0 0 0 0 J77 0
J81 0 0 0 0 0 0 J88


(47)

where the elements of J are defined as follows for 0 ≤ j ≤ 4 and 1 ≤ ` ≤ 2:

J11 =
∂2[Ca2+]

∂t∂[Ca2+]
= −

4∑
j=1

k+[Caj−1GCaMP6s]−
2∑
`=1

b+` ([B]total
` − [CaB`])−

∂rex

∂[Ca2+]
(48)

J1,j+1 =
∂2[Ca2+]

∂t∂[CajGCaMP6s]
= k−j − k

+
j+1[Ca2+] (49)

J1,`+6 =
∂2[Ca2+]

∂t∂[CaB`]
= b−` + b+` [Ca2+] (50)

Jj+1,1 =
∂2[CajGCaMP6s]

∂t∂[Ca2+]
= k+

j [Caj−1GCaMP6s]− k+
j+1[CajGCaMP6s] (51)

Jj+1,j =
∂2[CajGCaMP6s]

∂t∂[Caj−1GCaMP6s]
= k+

j [Ca2+] (52)

Jj+1,j+1 =
∂2[CajGCaMP6s]

∂t∂[CajGCaMP6s]
= −k−j − k

+
j+1[Ca2+] (53)

Jj+1,j+2 =
∂2[CajGCaMP6s]

∂t∂[Caj+1GCaMP6s]
= k−j+1 (54)

J`+6,1 =
∂2[CaB`]

∂t∂[Ca2+]
= b+` ([B]total

` − [CaB`]) (55)

J`+6,`+6 =
∂2[CaB`]

∂t∂[CaB`]
= −b−` − b

+
` [Ca2+] (56)

with the convention that k−0 = k+
5 = [Ca−1GCaMP6s] = 0. For the standard SBM ∂rex

∂[Ca2+]
= 1/τex, while with

Michaelis-Menten extrusion ∂rex
∂[Ca2+]

=
∑nex

p=1

vexp Kex
p

([Ca2+]+Kex
p )2

.

Generalized tridiagonal solver

Except for its first row and column, J is a tridiagonal matrix. Here we describe an O(n) direct method (algorithm 1) for
solving such a system of linear equations, generalizing the tridiagonal algorithm [25] to the present case. We consider the
(n+ 1)-dimensional linear system

Mx = z (57)

where
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M =



m v1 v2 v3 · · · vn−2 vn−1 vn
u1 b1 c1 0 · · · 0 0 0
u2 a1 b2 c2 · · · 0 0 0
u3 0 a2 b3 · · · 0 0 0
...

...
...

...
. . .

...
...

...
un−2 0 0 0 · · · bn−2 cn−2 0
un−1 0 0 0 · · · an−2 bn−1 cn−1

un 0 0 0 · · · 0 an−1 bn


(58)

z =


w
d1

...
dn

 (59)

Following the original tridiagonal algorithm, we make a forward pass that sets a to zero and b to one, then a backward
pass that sets c to zero. During the backward pass, we also set v to zero, and during both passes we keep track of the
resulting changes to u, v, w, m and d. Finally, we make another forward pass that sets u to zero while changing only d,
at which point we have reduced M to the identity matrix so that we can return the modified z as the desired solution x.
Elements set to zero or one are not actually modified in memory since they will not be accessed again.

Algorithm 1 Generalized tridiagonal solver

c1 ← c1/b1
d1 ← d1/b1
u1 ← u1/b1
for i = 2 to n do
p← bi − aici−1

di ← (di − aidi−1)/p
ui ← (ui − aiui−1)/p
if i < n then
ci ← ci/p

end if
end for
for i = n− 1 to 0 do
if i > 0 then
di ← di − cidi+1

ui ← ui − ciui+1

end if
m← m− vi+1ui+1

w ← w − vi+1di+1

end for
w ← w/m
for i = 1 to n do
di ← di − wui

end for

return

[
w
d

]

In our implementations we unroll the loops and use different variable names for each vector element, so that no array
indexing or branch statements remain. We also skip the absent off-diagonal elements for endogenous buffers.

Fitting SBM parameters to in vitro binding assay data

We developed procedures to perform global fitting of all in vitro parameters and implemented them in the Python programming
language. The rate equation and its Jacobian with respect to all molecular species’ concentrations were implemented in
Python and NumPy, then compiled using Numba for speed.

Objective function

We minimized the weighted sum of squares
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evitro(Θ) = ωspectra

∑
uεUspectra

(X̂u(Θ)−Xu)2 + ωITC

∑
uεUITC

(X̂u(Θ)−Xu)2 + ωstopped-flow

∑
uεUstopped-flow

(X̂u(Θ)−Xu)2 (60)

Θ is a vector of SBM parameters, u is an index over all observed data values Xu, Ud is the set of data values belonging
to each data modality and ωd is a weighting factor for data modality. The ω’s were chosen so that each data type would
make approximately the same contribution to the objective function despite different data units, noise levels and numbers of
observations. We first fit data of each type (spectra, ITC and stopped-flow) independently to determine the r.m.s. residual σd
for each. We then normalized each data type by the corresponding squared residual, and further normalized by the number
of observation for each data type:

ω−1
d = Ndσ

2
d (61)

where Nd is the number of data values for data type d. Thus our objective function is not affected by rescaling the data
units or by adding multiple copies of the data for one data type. It also weights noisier measurements less heavily when
fitting the parameters.

Gradients

Gradients were calculated in closed form for ITC and spectral data, and using finite differences for stopped-flow data. Finite
differences were calculated using SciPy’s approx derivative function, using the default step size and central (3-point)
differences. For parameter values at the upper or lower bounds, approx derivative calculates derivatives using the tangent
to a 3-point quadratic fit.

Profiling over coefficients

For all three types of data, the value predicted by the model can be written as a matrix product of regressors and coefficients:

X̂ = Ac (62)

where rows of X are data points. For spectral and stopped-flow data, each row of A contains the sensor’s binding state
concentrations for one data point, whereas for ITC data each row contains concentration changes after each injection for
binding states with at least one calcium ion bound. For stopped-flow and ITC data, c is a vector of fluorescence values or
enthalpy differences for each binding state, whereas for spectral data c is a matrix whose rows contain the excitation spectra
of the binding states. Note that for clarity in eq. 62 we have ignored the weights ω but the results generalize in a trivial way
to the case where weights are present.

Instead of directly optimizing over all model parameters, we can first calculate A as a nonlinear function of the rate

constants, reagent purities, etc. and then optimize ĉ =
(
ATA

)−1
ATX by linear regression. In the case where bounds on c

prevent us from using a simple linear regression, we use SciPy’s optimize.nnls function (where only a positivity constraint
exists) or optimize.lsq linear (for arbitrary upper and lower bounds). In either case, we obtain the global optimum on c
since we are minimizing a convex function on a convex set. This allows us to greatly reduce the number of free parameters,
especially for spectral data with many excitation wavelengths. It also speeds convergence by avoiding small alternating
updates of c and A.

Let Θ = [ΘA Θc]
T

, where A depends only on ΘA and Θc is simply c in vector form. As long as the columns of A are
linearly independent, ĉ is well defined and we have

ec(ΘA) = argmin
c
‖X −Ac‖22 = ‖X −Aĉ‖22 (63)

and

dec(ΘA)

dΘA
=
∂ ‖X −Ac‖22

∂ΘA
+
∂ ‖X −Ac‖22

∂c

∣∣∣∣
c=ĉ

dĉ

dΘA
(64)

By definition, each element of ĉ is either at a local optimum or at a bound. For an element ĉi at an optimum,
∂‖X−Ac‖22

∂ci
= 0.

Elements at a bound and not at an optimum will not change upon an infinitesmal change in ΘA, so for these elements
dĉi
dΘA

= 0. Consequently, the second term on the right hand side of eq. 64 is a dot product whose additive sub-terms are all
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zero. Thus, after optimizing with respect to c we can calculate the gradients of the objective function with respect to ΘA

while treating c = ĉ as a constant.
Using eq. 64 does not merely speed up the calculation of gradients. When using an iterative solver (see below), the

current gradient and approximation to the Hessian matrix are used to compute a search direction, which is used as the basis
for a line search. However, by optimizing out the coefficients we can make larger steps in ΘA since c will be automatically
adjusted during the line search to minimize the objective function.

Reparameterization

We used an alternative parameterization for the kinetic properties of GCaMP6s that possessed two advantages over on-
and off-rates. First, it allowed us to separate equilibrium and kinetic responses into separate groups of parameters, so that
fits to spectral and ITC data would depend on a smaller number of parameters. Second, since the transitions through
unstable intermediate binding states might be extremely rapid, the values of some rate constants might be quite large. This
is problematic since we do not want to set a limit that may reduce the expressiveness of our model, but very large or small
rate constants may lead to numerical instability when integrating the rate equation or solving for the equilibrium state.

For the case of a single binding site, a natural alternative is to use the dissociation constant Kd = k−/k+ to describe
affinity and the time constant τobs = k− + Kdk

+ = 2k− to describe kinetics. Both parameters have simple, intuitive
interpretations: Kd is the ligand concentration at which the binding site is half-saturated, and the τobs is the time constant
with which the difference in saturation from 0.5 decays to 0 when free ligand concentration is fixed to the Kd. Kd’s can
also be calculated for molecules such as GCaMP that bind multiple ligands, in which case the jth Kd = k−j /k

+
j is the ligand

concentration at which the (j − 1)th and jth binding states have equal concentrations. However, this equality may occur at a
ligand concentration where both the (j − 1)th and jth binding sites are almost totally filled or totally empty, so the Kd’s do
not tell us the concentrations at which the binding actually happens.

We therefore introduce a new quantity K50
j , defined as the free ligand concentration at which precisely half the molecules

have j or more ligands bound. Thus by eq. 18 we have the relations:

j−1∑
h=0

(K50
j )hβh =

m∑
h=j

(K50
j )hβh (65)

Therefore, given the β’s we can determine each K50 by solving a polynomial equation, and given the K50’s we can
determine the β’s by solving a system of linear equations. Unlike for the Kd’s, if we know that the molecule transitions from
the apo to the saturated state occur over some ligand concentration range, then all the K50’s must lie in this range.

To describe the kinetics, we define τj = (k−j + k+
j K

50
j )−1, which is the time constant with which the (j − 1)th and jth

binding states would reach equilibrium if the ligand concentration where set to K50
j and all other binding state transitions

were ignored.
Based on exploratory fits with multiple initializations, we set following loose constraints on the parameters: 10 nM

≤ K50
1 ≤ 500 nM, 1 nM ≤ K50

j −K50
j−1 ≤ 300 nM, 0.1 ms ≤ τj ≤ 300 ms. Note that at any particular moment the actual

kinetics of a binding step can be faster or slower than the corresponding τ , as [Ca2+] may be greater or lesser than the
corresponding K50.

Initialization

Purities were initialized to 1, BAPTA contamination was initialized to 0 and GCaMP6s contamination was initialized to 1
(i.e. 25% saturation). Dead time was initialized to 1.5 ms. Values for the K50’s and τ ’s were initialized randomly 50 times
within their limits using latin hypercube sampling [83] as implemented in the lhs function of the pyDOE package. For each
initialization, the K50’s and τ ’s were fixed for the first 10 l-bfgs-b iterations.

Optimization

We minimized the objective function with the minimize function in the optimize module of SciPy, using the l-bfgs-b
algorithm with options maxls = 100, mintol = 0.0 and maxcor = 20. To ensure that poor approximations of the Hessian
matrix did not lead to false convergence, we repeatedly restarted the minimization function until the library reported
convergence in a single iteration. We did not limit the number of iterations. Optimization with multiple initializations was
parallelized using the multiprocessing python module.

Optimization proceeded with the following parameter bounds: 10 nM ≤ K50
1 ≤ 500 nM, 2.5 nM ≤ K50

j ≤ 1.5 µM for
j > 1, 1 ms ≤ τj ≤ 5 s, Fλ,i > 0, 1 ms ≤ tdead ≤ 2 ms. Based on previous studies, purity values were limited to the range
0.9 to 1.1 for GCaMP6s [47] and 0.75 to 1 for BAPTA [98]. Calcium contamination was limited to the range 0 to 0.01 for
BAPTA and 0 to 10 for GCaMP6s.
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Fitting SBM parameters to in vivo fluorescence signals using known AP times

We developed procedures to perform global fitting of all SBM parameters to in vivo data and implemented them in the
MATLAB programming language (Mathworks). We integrated the rate equation (12-14) using our custom ODE solver (see
above), implemented through C MEX functions with openMP for parallelization over multiple fluorescence time series. We fit
separate values of [GCaMP6s]total and FBG for each neuron. We fit our model only to fluorescence measurements with at
least 1 AP in the preceding 20 seconds; other data were not included in the objective function (but were still used when
calculating baseline fluorescence). Based on preliminary fits, we set nbuffers = 2. We explore other numbers of buffers in
Figure 3 - figure supplements 3-4.

Normalization

Before further analysis, each sequence of fluorescence measurements was normalized by its median value. This allowed us to
combine recordings from multiple microscope configurations, zoom factors and imaging rates for the same neuron even when
absolute fluorescence values differed across these recordings. In the following material on model fitting procedures, Fi refers
to these normalized measurements.

Simulation time steps

For neurons with data at multiple imaging rates, different values of δ were calculated for each fluorescence time series. The
time of each fluorescence observation tj was defined as the time when the laser focus passed through the center of the neuron.

All electrically detected AP times were rounded to the nearest simulation time step. For each simulation time step, we
first incremented [Ca2+] by ∆[Ca2+]AP for each AP present, then integrated the rate equation (12-14) forward in time by δ.
The first simulation time step begins ∆ before the first fluorescence measurement (but much earlier for AP inference; see
below). After every ∆/δ simulation time steps, we encounter a fluorescence observation for which we generate a predicted
value based on the current binding state concentrations.

For example, if ∆ = 99 ms, then δ = 9.9 ms, the first simulation time step begins 99 ms before the first fluorescence
observation and the first prediction of a fluorescence value occurs after 10 ODE integrations of 9.9 ms each.

An exception to the above occurred when electrically recorded APs occurred before the first fluorescence measurement.
In this case we included additional simulation time steps with the same value of δ, so that all APs up to 20 seconds before
the first fluorescence measurement were included.

Objective function

We fit SBM parameters to in vivo data by minimizing the mismatch between predicted and observed values for normalized
fluorescence. In order to weight all neurons in our datasets equally, we averaged square residuals over time for each neuron
and then summed the result over neurons:

evivo(Θ) =
∑

neurons

Ei(F̂i − Fi)2 (66)

where the expectation with respect to i is an average over images frames for each neuron. We chose this objective function
to ensure that all neurons contributed equally to the objective function, regardless of recording duration or imaging frame
rate.

Model prediction of fluorescence using known baseline fluorescence values

The formula for model-predicted fluorescence (eq. 35) contains the unknown, time-varying scaling factor Bi. To avoid having
to explicitly determine the Bi for each time point, we use the concept of baseline fluorescence FBL, defined as the fluorescence
that would be observed for a neuron at rest, with [Ca2+] = [Ca2+]rest and all binding state concentrations at their equilibrium
values. Thus we have by eq. 35

FBL =

1 +
m∑
j=1

ψj
[CajGCaMP6s]EQ

[GCaMP6s]total
+

FBG

φ0[GCaMP6s]total

Bi (67)

With F eq
cyt =

∑m
j=0 φj [CajGCaMP6s]EQ, we can derive the relation

Fcyt + FBG

F eq
cyt + FBG

=
F̂ φ0[GCaMP6s]total/Bi
FBLφ0[GCaMP6s]total/Bi

=
F̂

FBL
(68)

This quantity is simply the ratio of predicted fluorescence to baseline fluorescence, leading to eq. 7. Thus, if we known
FBL we can calculate F̂ without explicitly calculating B.
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Estimation of baseline fluorescence

For each contiguous sequence of T fluorescence measurements, we estimated baseline drift using fluorescence values and
electrically detected APs. We first identified all fluorescence measurements > 1.5∆ before subsequent APs and > 6 seconds
after previous APs, for which a binary mask M0 was set to 1. To initialize baseline fluorescence, we interpolated and smoothed
fluorescence measurements, using a kernel Kb consisting of a sum of two Gaussian functions with standard deviations 5
seconds and 500 ms. We calculated

b0 =
(M0F ) ◦Kb

M0 ◦Kb
(69)

where the multiplication and division are carried out elementwise.
This initial estimate showed less perturbation due to AP discharges than a rolling average or median, but still increased

during long AP bursts. To refine it further, we minimized an objective function eBL that penalized both mismatch between
data and predictions as well as excessive baseline fluctuations, while assuming exponential decay of fluorescence to baseline
starting 5.5 seconds after AP activity.

We first computed a second binary mask M1, defined in the same way as M0 but starting 5.5 seconds after each AP
instead of 6. Let the j-th contiguous sequence of time points for which M1 = 1 be denoted Gj , and let i0j = min(Gj) be the
first time point in Gj . For each such sequence we introduce a free variable Aj representing the initial ratio of fluorescence to
baseline for the first time point in Gj . We then sought to minimize the objective function

eBL =
∑
j

∑
iεGj

(
Fi − β − bi(1 +Aje

−(i−i0j )/τBL)
)2

+
1

σ2
BL

T∑
i=2

(bi − bi−1)2 (70)

=
∑
i

M1
i (Fi − β − biνi)2

+
1

σ2
BL

bTQb (71)

Where Q00 = QTT = 1, Qii = 2 for 1 < i < T , Qi,i+1 = Qi+1,i = −1 and Qik = 0 otherwise. We have also defined

νt = Aje
−(t−t0j )/τBL if t is in some Gj and νt = 1 otherwise. We used σ2

BL = δ/(4 minutes), where δ is the time between
fluorescence measurements. That is, we expect the baseline to drift with a standard deviation equal to its starting value
every four minutes.

The free parameters of this objective function are the baseline values bi > 0, the offset β, the initial amplitudes for each
segment Aj > 0 and the time constant τBL > 0. The objective function consists of squared residual terms over time points
for which M1 = 1, as well as a regularization terms over all time points.

We alternated between minimizing eBL over ({Aj}, τBL), β and b. We first optimized jointly over τBL and all the Aj . We
used golden section search with parabolic interpolation over τBL (Matlab’s fminbnd function), while calculating the optimal
value for each Aj in closed form given τBL using a rectified linear regression. τBL was initialized at 500 ms.

We then updated β in closed form to

β = EM1
i =1 (Fi − bisi) (72)

We then minimized eBL over b > 0. If we ignore the positivity constraint, setting the derivative to zero yields the system
of linear equations.

diag



M1

1 ν
2
1

M1
2 ν

2
2

...
M1
T ν

2
T


+

1

σ2
BL

Q

 b =


M1

1 ν1F1

M1
2 ν2F2

...
M1
T νTFT

 (73)

We accept this solution for b if it is nonnegative for all t. Otherwise, we must solve a quadratic programming problem (we
implemented this contingency using MATLAB’s quadprog function, but this code was never called for baseline fitting of
any data).

We iterated these alternating updates until the improvement in eBL after all three updates together was less than machine
precision (MATLAB’s eps function, about 2.2e-16), or when the improvement was less than 0.001% of the previous objective
function value. Computation time for baseline fitting was negligible compared to the overall model-fitting procedure.

Finally, we calculate FBL = b+ β. The results of this model fitting procedure are shown in Figure 3 - figure supplement 1.
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Table 3: Multiple initializations for K50
j

Initialization equilibrium binding state sequence K50
1 (nM) K50

2 (nM) K50
3 (nM) K50

4 (nM)

1 0→ 4 350 352.5 355 357.5
2 0→ 3→ 4 100 102.5 105 600
3 0→ 2→ 4 100 102.5 597.5 600
4 0→ 2→ 3→ 4 100 102.5 351.3 600
5 0→ 1→ 4 100 595 597.5 600
6 0→ 1→ 3→ 4 100 348.8 351.3 600
7 0→ 1→ 2→ 4 100 348.8 597.5 600
8 0→ 1→ 2→ 3→ 4 100 266.7 433.3 600

Closed-form solution for FBG

When all other parameters of the model are fixed, we can minimize evivo (eq. 66) with respect to FBG in closed form. For
each neuron, we have by eq. 68

F − F̂ = (F − FBL)− (F̂ − FBL) (74)

= (F − FBL)− FBL

(
Fcyt + FBG

F eq
cyt + FBG

− 1

)
(75)

= (F − FBL)− 1

1 + FBG/F
eq
cyt

FBL(Fcyt/F
eq
cyt − 1) (76)

so minimizing evivo amounts to a simple linear regression with unknown slope 1/(1 + FBG/F
eq
cyt). For model fitting, we

imposed the restriction 0.001 < FBG/F
eq
cyt < 20.

Initial parameter values

We initialized [GCaMP6s]total = 20 µM and ψ = [0.45, 0.45, 22.5, 45]T . The [Ca2+]rest was initialized to 50 nM [60, 116,
80, 142]. As previous studies suggest the extrusion time constant for calcium τex is around 5 ms in dendrites [60, 115], we
initialized this parameter to 20 ms to describe slower extrusion at the soma. The total calcium influx per AP ∆[Ca2+]AP

was initialized to 5 µM to be consistent with past measurements of total calcium influx [107] as well as smaller measured
increases in free calcium [60, 142]. We initialized the endogenous buffers Kd’s to 500 nM and their time constants to 15 ms
and 1 s. We initialized all total buffer concentrations at the same value, chosen so that the calcium binding ratio of a neuron
without GCaMP6s at rest was 125 [60, 99, 80]. The calcium binding ratio of buffer ` was defined as the derivative of the
concentration of calcium bound to the buffer with respect to free calcium concentration:

κ` =
∂[CaB`]EQ

∂[Ca2+]

∣∣∣∣
[Ca2+]=[Ca2+]rest

=
b−` /b

+
`

([Ca2+]rest + b−` /b
+
` )2

(77)

To describe the affinity and kinetics of calcium binding to GCaMP6s, we used the same reparameterization as for in vitro
data (see above), consisting of time constants τj and affinity parameters K50

j . We initialized each τj to 100 ms. We used 8

different initializations for the K50
j (Table 3), corresponding to the 8 possible ascending sequences from zero to four ions

bound. These 8 initializations corresponded to the presence or absence of the 3 intermediate binding states at equilibrium as
free calcium concentration was increased (absent binding states could still occur transiently in binding state kinetics evoked
by AP discharge). When a a binding state [CajGCaMP6s] was absent from a the equilibrium binding state sequence of an
initialization (Table 3, second column), we also imposed the restriction K50

j+1 −K50
j < 5 nM during optimization. After the

optimization converged, we then released these restrictions and optimized further.

Optimization

We computed the gradients of the error function using finite differences. For each parameter, we set the step size for the
finite gradient as 5e-7 or 5e-7 times the absolute value of the parameter value, whichever was larger. We used a positive
step only (asymmetric finite differences). We optimized over FBG for each neuron in closed form during finite difference
calculation and line search.

Using this procedure for gradient calculation, we minimized evivo using the sequential quadratic programming technique
available in MATLAB R2014a’s fmincon function. We used the following settings: algorithm = ’sqp’, tolfun = 1e-7, tolx =
1e-8, tolcon = 1e-10, gradobj = ’on’. We did not limit the number of iterations.
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Optimization proceeded with the same parameter bounds on K50
j and τj as for in vitro data, and the additional bounds

2.5 ms ≤ τex ≤ 300 ms, 10 nM ≤ ∆[Ca2+]AP ≤ 100 µM, 10 ≤ φ4 ≤ 80, φj ≥ φj−1, 250 µs ≤ 1/b−` ≤ 30 second, 100 nM
≤ b−` /b

+
` ≤ 100 µM and [B]total

` ≥ 0. We also enforced the bound 0.5 µM ≤ [GCaMP6s]total ≤ 300 µM for each neuron.

Hyperparameter fitting

After model-fitting, we obtained maximum likelihood estimators of the firing rate hyperparameters kλ, θλ by applying
MATLAB’s gamfit function to the true firing rates. We also fit µG,ΣG by maximum likelihood, yielding:

µG = E
[

log([GCaMP6s]total)
log(FBG/F

eq
cyt)

]
(78)

ΣG = Cov

([
log([GCaMP6s]total)

log(FBG/F
eq
cyt)

])
(79)

where the expectation and covariance are over neurons. We refer to µG,ΣG as hyperparameters since they define a
distribution on the parameters FBG and [GCaMP6s]total, but for fixed values of FBG and [GCaMP6s]total in a specific neuron
they do not affect the likelihood of that neuron’s fluorescence data.

Leave-one-out cross validation

In order to validate our procedures for AP inference and for estimation of FB and [GCaMP6s]total from fluorescence
measurements alone (see below), we first performed model fitting on all neurons but one in our dataset. We then discarded
the neuron-specific parameters [GCaMP6s]total and FBG and transferred the remaining parameters and hyperparameters to
the last neuron. This allowed us to infer the remaining neuron’s AP sequence along with χ, [GCaMP6s]total and FBG from
fluorescence data alone (see below), without using any parameters trained on its data.

When fitting the SBM using only a single neuron as training data, the algorithm was trained on neuron 1 and tested on
neuron 2, trained on neuron 2 and tested on neuron 3, etc. If the neuron previous to the testing neuron was an interneuron
(and hence could not be fit using our optimization procedures due to the lack of silent periods for fluorescence baseline
estimation), the previous pyramidal neuron was used instead.

Sequential Monte Carlo-based AP inference

We aim to infer the presence or absence of AP discharge at each SBM simulation time step j, denoted sjε{0, 1}. We first
describe procedures for inferring the posterior probability that each sj = 1 given fluorescence data when all parameters are
known, followed by procedures for inferring neuron-specific data from fluorescence data alone.

We used Sequential Monte Carlo to approximate posterior distributions over a vector y of hidden states using finite
weighted sums of delta functions. Each combination of state vector and weight is termed a particle. For the SBM y consists of s,
ρ and all molecular species concentrations. We update the particles once for every fluorescence measurement, yielding one new
value for ρ and ∆/δ new values for s and the binding state concentrations. Thus at the ith fluorescence measurement the state
vector includes spiking and binding state concentrations for the simulation time step range Ui = (i− 1)∆/δ + 1 : (i− 1)∆/δ.
For m = 4 binding steps and nbuffers = 2, we have the state vector

yi =



sUi

[Ca2+]Ui
[G]Ui

[Ca1GCaMP6s]Ui

[Ca2GCaMP6s]Ui

[Ca3GCaMP6s]Ui

[Ca4GCaMP6s]Ui

[CaB1]Ui

[CaB2]Ui

ρi


(80)

Filtering distribution

Given the SBM model parameters, the filtering distribution P (yi|F1:i) describes the posterior probability distribution on the
hidden states y at the time of the ith fluorescent measurement Fi, given all fluorescence data up to and including Fi. We
approximate the filtering with a finite number of samples, using the standard SMC estimator:

Greenberg et al. | 2018 | bioRχiv 35/84

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/479055doi: bioRxiv preprint 

https://doi.org/10.1101/479055
http://creativecommons.org/licenses/by-nc/4.0/


P (yi|F1:i) ≈
Nparticles∑
k=1

Wki1yi=ỹki
(81)

where ỹki is the state vector value for the kth particle at the ith fluorescence measurement, 1yi=ỹki
is an indicator function

and
∑
kWki = 1 for all i. In eq. 81, yi are unknown hidden variables whose probability distribution we approximating,

and the particle states ỹki are known values we are using for this approximation. The particles are propagated from ti−1 to
ti by sampling a new y for each k from the proposal q(yi|yi−1). The weights are then updated according to the standard
”sequential importance sampling” SMC update:

wki = Wk,i−1
P (ỹki|ỹk,i−1)P (Fi|ỹki)

q(ỹki|ỹk,i−1)
(82)

Wki =
wki∑
k wki

(83)

The data likelihood P (Fi|ỹki) is defined by eq. 38, while the transition probability P (ỹki|ỹk,i−1) is defined by eq. 31 and
34:

P (Fi|ỹki) = N

(
Fi; F̂ (ỹki),

gF̂ (ỹki) + σ2
F

nA2D

)
(84)

P (ỹki|ỹk,i−1) = P (ρi|ρi−1)P (SUi
) = N

(
ρki; ρk,i−1, δσ

2
ρ

) ∏
jεUi

(δχ)skj (1− δχ)1−skj (85)

Our proposal q first samples spiking from a Bernoulli distribution qs(j) that is different for each j but does not depend
on the state vector (see below). Once sj has been sampled for each jεUi, binding state concentrations are calculated
deterministically by integrating the rate equation with our custom ODE solver. We sample ρ from the transition prior, a
normal distribution with variance ∆σ2

ρ, so that the terms involving ρ cancel from the numerator and denominator of eq. 82.
Together these updates produce an SMC estimate of P (yi|F1:i) given Fi and the SMC estimate of P (yi−1|F1:i−1).

Resampling

After the SMC update has been carried out many times, if the proposal distribution does not precisely match the posterior
most of the particle weights will approach zero and a small number of particles will dominate the filtering distribution. This
situation, known as particle degeneracy [35] can lead to increasing variance in the estimates of the filtering distribution for
increasing t. To prevent this, a resampling operation is carried out in which particles are sampled with replacement from a
discrete distribution qRS(k) on {1, · · · , Nparticles} using the systematic resampling technique [73]. For each particle index
1 ≤ k ≤ Nparticles, a new index k′ is sampled from qRS. The weights and states are then updated according to:

yki ← yk′i (86)

wki ← wk′i/qRS(k′) (87)

Wki ←
wki∑
k wki

(88)

Most SMC algorithms choose qRS to be equal to the current filtering distribution so that Wki are all 1/Nparticles after
resampling, but other distributions have been used as well [41]. We used specialized distributions tailored to our model to
reduce the variance of SMC algorithm results, as described below.

After each update of the particle weights, we calculated the effective sample size

Neff =
1∑
kW

2
ki

(89)

and resampled if Neff < Nparticles/2. When illustrating the particle filter technique in Figure 5a-c, we resampled at every
fluorescence measurement.
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Initial state distribution

To assign weights and states at the first time step we sample random AP sequences before the first fluorescence measurement
and calculate their probabilities based on χ. We also sample initial values of ρ from a a broad prior πρ(ρ1). We first defined
Finit as the 10th percentile of the first 120 seconds of fluorescence values. If this gave a negative value, then σF was assigned
to Finit instead. We next sampled ρ1 from the prior

πρ(ρ1) = N
(
ρ1; log

(
Finit

FEQ

)
, V 0
ρ

)
(90)

With V 0
ρ = log(1.05)2.

For each particle k we set [Ca2+] = [Ca2+]rest and set the concentrations of all other molecular species to their equilibrium
values using eq. 18. We next a random AP sequence sk,U1 , with U1 in this case indexing 2.5 seconds before the first
fluorescence measurement, and update the concentrations of indicator and buffer binding states accordingly by integrating the
rate equation. As for the standard SMC state update, the probabilities of randomly sampling an AP for each simulation time
step are taken from qs, the form of which is specified below. We then calculated for each particle k the maximum likelihood
estimate of ρ given the indicator binding state concentrations and a fluorescence observation of Finit:

ρ̂k,1 = argmax
ρ1

P

(
Finit

∣∣∣∣ρ1,
[CajGCaMP6s]k

0 ≤ j ≤ m

)
(91)

= log(Finit)− log

1 +

m∑
j=1

ψj
[CajGCaMP6s]k
[GCaMP6s]total

+
FBG

φ0[GCaMP6s]total

 (92)

and calculated the Laplace approximation [19] to the likelihood of Finit given ρ, centered at ρ̂k,1:

P kLaplace(Finit|ρ1) = N
(
ρ1; ρ̂k,1, V

k
Laplace

)
(93)

V kLaplace =
gFinit + σ2

F

F 2
initnA2D

(94)

Using this approximation and the prior πρ, we calculated the sampling distribution for each k by multiplying the prior
and the Laplace approximation:

qρ

(
ρ1

∣∣∣∣Finit,
[CajGCaMP6s]k

0 ≤ j ≤ m

)
= N

(
ρ1;V ∗ρ

(
ρ̂k,1

V kLaplace

+
log(Finit/FEQ)

V 0
ρ

)
, V ∗ρ

)
(95)

V ∗ρ =
(
(V kLaplace)−1 + (V 0

ρ )−1
)−1

(96)

We then sampled each ρk,1 and calculated weights as the ratio of prior and sampling probabilities:

Wk,1 =
πρ(ρk,1)

∏
jεU (δχ)skj (1− δχ)1−skj

qρ

(
ρ1

∣∣∣∣Finit,
[CajGCaMP6s]k

0 ≤ j ≤ m

)∏
jεU1

qs(j)skj (1− qs(j))1−skj

(97)

Smoothing distribution

To estimate the smoothing distribution P (yi|F1:T ), we used a standard filter-smoother [73] with lag of 500 ms. We kept
track of each particle’s history of previous state values as we advanced the filtering distribution forward in time. Then, at
each time point the current filtering weights together with the state values of each particle’s ancestor 500 ms back in time
define the smoothing distribution. For particle k at fluorescence measurement i, the smoothing weight W ∗ki is defined as the
summed weights of its descendants 500 ms after ti (or for ti > tT − 0.5, descendant weights at tT ). W ∗ki = 0 for particles with
no descendants 500 ms in the future. Smoothing weights are then used to calculate posterior means and variances of y:

Esmc(yi|F1:T )) =
∑
k

W ∗kiỹki (98)

Varsmc(yi|F1:T )) =
∑
k

W ∗ki (ỹki − Esmc(yi|F1:T )))
2

(99)

where the squaring in the definition of Varsmc is carried out elementwise.
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Sampling and resampling techniques for SMC-based AP inference with the SBM

The quality of an SMC algorithm, measured by the number of particles required to obtain accurate filtering and smoothing
distributions, depends strongly on the choice of proposal distribution q [34, 19, 35]. When the generated samples match the
posterior poorly, many will be rejected during resampling events and most computation will be wasted. For the SBM, the
key question is whether the algorithm extends AP sequences forward in time in a way consistent with fluorescence data.
Successful inference requires at least some particles to generate an AP at the time of each true AP, and for these particles to
survive all resampling steps until the filter-smoother lag has been reached. However, if the needed APs are not sampled or
are lost to resampling, the algorithm will fail to detect the true AP. In this section, we describe three techniques for designing
proposal and resampling distributions to generate the needed spikes and ensure their survival through resampling steps.

Increased AP discharge probability in the sampling distribution For δ = 10 ms and our median firing rate of
χ = 0.16 Hz, the prior probability P (sj = 1) is only pAP = χδ = 0.0016. Therefore, even with many particles the chance of
simply failing to generate spike trains consistent with the data is not insignificant when sampling sj from its prior distribution.
We therefore sample APs with a higher probability than the prior to generate a greater diversity of AP sequences. While this
mismatch between the transition prior and proposal will cause an overall increase in the frequency of resampling when APs
do not occur, the fit to the data will be better when APs are present.

We sampled APs with probability max(pAP, 0.01). We demonstrate how sampling APs at a higher rate than the prior can
reduce variability in the SMC algorithm’s output in Figure 5 - figure supplement 2.

Multiround filtering with time-varying proposals To further improve the quality of sampled AP sequences, we first
run the SMC algorithm with increased probability of AP sampling as above to obtain the smoothing distribution and
s̄j = Esmc[sj |F1:T ]. We then designed a time-varying proposal on AP discharge

q(s) = max(s̄ ◦Kq, 0.01) (100)

where ◦ denotes convolution and Kq is a Gaussian kernel with σ = 100 ms. We extend the calculation of both s̄ and the
time-varying proposal q(s) to the full 2.5 seconds before the first fluorescence measurement for which SBM simulations are
carried out (see section ”Initial state distribution” above). We show how this technique further reduces Monte Carlo variance
in Figure 5 - figure supplement 2.

Resampling to the proposal For GECIs in general and for GCaMP6s in particular, an additional difficulty for SMC
algorithms arises from the delay between AP discharge and peak fluorescence. The first fluorescence measurement after
AP discharge may not show a strong increase in fluorescence, and for higher imaging rates this can increase to 2 or 3
measurements. Consequently, for particles generating an AP at the correct time, the resulting increase in their weights
relative to other particles without the correct AP may not appear until the algorithm has passed over at least one second of
fluorescence measurements. So even even if APs are sampled by the SMC algorithm at the correct time, they may be lost
during resampling steps before the predicted fluorescence increase has been fully observed. Since the pspike is low, sampling
an AP will decrease the probability weight of a particle at the next fluorescence measurement compared to other particles (eq.
82). This will both reduce Neff to make resampling more likely and increase the chance that the particle with the AP will be
lost.

This problem is not alleviated by using an increased or time-varying q(s), since while this causes more APs to be sampled
when needed it also decreases the weights of particles with APs even further due to the presence of q in the denominator of
eq. 82. We might sometimes be fortunate enough not to encounter a resampling event between the sampling of an AP and
the subsequent correct prediction of a fluorescence increase, but this will not always be the case. The possibility of these two
different outcomes, where the spikes needed to match the data are retained or are lost to resampling, sharply increases the
variability of the SMC algorithm over multiple runs.

We therefore introduce a novel modification of the SMC algorithm which we term ”resampling to the proposal,” designed
specifically to deal with state transitions that have strong but delayed effects on the predict measurements. In addition to
the standard raw weights wki and normalized weights Wki, we also maintain a second set of raw weights wqki and normalized
weights W q

ki. The second set of weights, which we refer to as ”proposal weights” are obtained by calculating the particle
weight updates as if the time-varying proposal on APs were also the prior on APs. Both sets of weights share the same state
variables ỹ. This leads to the update rules:

wqki = W q
k,i−1P (Fi|ỹki) (101)

wki = wqki

∏
jεUi

pspike

q(sj)
(102)
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with normalized weights calculated as above. Note that s does not appear in the update of wqik since the proposal and
prior on s are the same, so the numerator and denominator in eq. 82 cancel. Thus particles with more APs do not have lower
resampling weights wqik, although they do have lower standard weights wik.

To reduce the chance of losing needed APs to resampling events, we simply set the resampling distribution to be equal to
the normalized proposal weights: qRS(k) = W q

ik. Resampling is used to select a single set of indices, but the standard and
resampling weights are updated differently. The updates now take the form

wki ← wk′i/w
q
k′i (103)

wqki ← 1 (104)

with normalized weights calculated as above. We calculate the effective sample size using the proposal weights W q
ik.

Finally, when calculating the smoothing distribution we use the original weights Wki to calculate W ∗ki as before. Unlike the
proposal weights, the standard weights used for smoothing take into account χ through a weight decrease for every discharged
AP, but they also reflect fluorescence measurements acquired after those APs. This technique allowed us to sample APs with
high probability from our time-varying prior, keep those spikes through resampling events and still obtain the smoothing
distribution for the original problem. We show how this further reduces Monte Carlo variance of the SMC algorithm in figure
5 - figure supplement 2. In order to illustrate the SMC technique in Figure 5c, the area of the black dots was chosen to be
proportional to proposal weights, using a q based on increased AP discharge probability but not multiround filtering.

To our knowledge, resampling to the proposal is the first approach to use two particle filters with the same states but
different weights to deal with lags between state changes and changes in the observed data. Previous approaches to dealing
with such lags have generally focused on modifying SMC states in the past using MCMC steps [46, 33], but these approaches
are often unreliable for time series more than a few hundred measurements [3] and could impose impractical computational
and memory requirements for GPU-based SMC with many particles. However, the idea of coupling two particle filters to
use the same indices during resampling is not unprecedented, and has been applied to compute finite difference gradients
of the data likelihood with respect to static model parameters [22]. However, the use of proposal weights for resampling
distinguishes resampling to the proposal from previous approaches, and when combined with proposal distributions based on
multi-round filtering may prove useful for a wide range of nonlinear filtering problems.

Fitting a spike train to posterior moments

The SMC algorithm described above calculates each s̄j . These values are discretized in time with a step size of δ, and
represent the marginals of the joint posterior distribution provided by the SMC smoother. While for certain applications,
such as calculation of receptive fields, s̄ itself can be used directly, at other times it is preferable to infer a single AP sequence
from a fluorescence time series.

We therefore developed a procedure to infer a single, non-time-discretized AP sequence from s̄. Inspection of the
time-varying posterior spiking probability from the SMC smoother revealed that true, electrically detected APs gave rise to
Gaussian-like peaks in s̄, which can be interpreted as uncertainty in the times of APs. We therefore fit to s̄ an approximation
consisting of a sum of nAPs Gaussian functions with means µk and standard deviations σk. We modeled the individual values
of s̄j as integrals of the Gaussian functions over each time step of length δ:

s̄j ≈
nAPs∑
k=1

Φ

(
tj + δ/2− µk

σk

)
− Φ

(
tj − δ/2− µk

σk

)
(105)

which we optimize in least squares with the restriction that δ/2 ≤ σk ≤ 50 ms.
We determine nAPs and the values of µk and σk using a greedy algorithm. First, we attempt to add a new spike while

varying the new σ value in 100 steps, ranging from 1% to 99% of the interval between the minimum and maximum allowed
values. For each value of σ for the new AP, we shift the mean to each tj , and choose the location which decreases the sum of
square errors most. We then adjust all the µ’s and σ’s to minimize the sum of square errors using Gauss-Newton optimization,
while allowing both to vary continuously without discretization. The algorithm terminates when no new spikes can be added
to reduce the sum of square errors, yielding the µ’s as spike times and the σ’s as temporal uncertainties. For the step of
adding new spikes, we precompute a lookup table of all necessary Φ values for speed. This method is illustrated in Figure 5 -
figure supplement 6.

Parameter estimation from fluorescence data alone

Most of the SBM’s parameters are determined by fitting in vitro binding assay data or fitting in vivo fluorescence data
with true AP times known. However, when detecting APs from fluorescence recordings without simultaneous cell-attached
recordings or where the true APs have been held out for testing, the remaining parameters (χ, σF , [GCaMP6s]total, FBG) must
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be determined from fluorescence alone. For this purpose, we use a heuristic method to determine σF and an expectation-
maximization method for χ, while [GCaMP6s]total and FBG are determined using an SMC-based estimate of the marginal
data likelihood.

Estimation of σF

We estimated σF as

σ̂F = nA2D
mediani(|Fi − Fi−1|)

2erf−1(0.5)
(106)

where erf−1 is the inverse error function. The numerator is the median absolute fluorescence difference across neighboring
image frames, while the denominator is median absolute difference for two values drawn from a standard normal distribution.

EM estimation of χ

With σF known and for fixed values of [GCaMP6s]total and FBG, we perform maximimum a posteriori (MAP) estimation
of χ using the SMC version of the Expectation-Maximization (EM) algorithm [28]. In the E-step, use the SMC algorithm
to estimate the smoothed posterior on s given F . In the M-step, we use this posterior to maximize the expected complete
log-likelihood times the parameter prior:

Q(Θ|Θ0) = P (Θ)

∫
P (y1:T |F1:T ,Θ0) [logP (F1:T |y1:T ,Θ) + logP (y1:T |Θ)] dy1:T (107)

where Θ0 is the current estimate of the parameters and Θ is the new estimate. The SMC version of the EM algorithm uses
the SMC smoothing distribution, which is a sum of delta functions, to approximate P (y1:T |F1:T ,Θ0). Thus maximization of
eq. 107 over χ reduces to maximization of a gamma prior times a product of Bernoulli likelihoods, which we consider in the
log domain:

log(P (χ)) +
∑
i,k

W ∗ki
∑
jεUi

sjk log(χδ) + (1− sjk) log(1− χδ) =

(kχ − 1) log(χ)− χ/θχ +

∑
j

s̄j

 log(χδ) +

T∆/δ −
∑
j

s̄j

 log(1− χδ) (108)

Having computed
∑
j s̄j using the SMC smoother, we maximized the expression in eq. 108 numerically with the Matlab

function fminbnd.
We found that a single EM-iteration was sufficient to estimate χ, in the sense that multiple iterations did not improve

inference of the AP sequence or the marginal data likelihood (see below). Since we already use two SMC passes over the data
to reduce Monte Carlo variance (see section ”Multiround filtering with time-varying proposals” above), we simply estimated
χ after the first round of SMC and used this value for the second round.

Marginal likelihood

In addition to providing filtering and smoothing distributions, SMC algorithms can also be used to estimate the marginal
data likelihood P (F1:T |Θ), where Θ is a vector of model parameters that determine the transition prior, the initial state
distribution and/or the distribution on observed data values given the model state. We seek to compute this function in order
to perform model fitting: that is, to find values of Θ consistent with our data. The marginal likelihood can be a difficult
quantity to calculate since it involves integration over the joint distribution on hidden states over all time points:

P (F1:T |Θ) =

∫
P (F1:T |y1:T ,Θ)P (y1:T |Θ)dy1:T (109)

We follow the standard approach of decomposing

P (F1:T |Θ) = P (F1)
T∏
i=2

P (Fi|F1:i−1,Θ) (110)
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The terms of this product, which are the likelihoods of each fluorescence measurement condition on previous measurements,
can be calculated using the SMC weights [104]:

PSMC(F1|Θ) =

∑
k wk,1

Nparticles
(111)

PSMC(Fi|F1:i−1,Θ) =
∑
k

wki (112)

Maximization of tempered posterior

For a given choice of [GCaMP6s]total and FBG we can obtain an estimate χ̂ of χ via EM, and then calculate the SMC estimate
of the marginal likelihood. Multiplying the result by the prior on χ, [GCaMP6s]total and FBG yields

H([GCaMP6s]total, FBG) (113)

= P (F1:T |[GCaMP6s]total, FBG, χ̂, σ̂F ,Θfixed)N
([

log([GCaMP6s]total), log(FBG/F
eq
cyt)
]T

;µG,ΣG

)
P (χ) (114)

∝ P ([GCaMP6s]total, FBG, χ̂|F1:T , σ̂F ,Θfixed) (115)

Where Θfixed contains SBM parameters that do not vary over neurons. Since χ̂ is a partial optimizer of the posterior
given the other parameters, maximizing H over [GCaMP6s]total and FBG yields a maximum a posteriori estimate over all
three parameters.

Direct maximization of H is not possible, since even for 105 particles the variance of logH for fixed input can reach 10 for
as little as 30 seconds of imaging data (Figure 5 - figure supplement 2). Instead, we seek to characterize the shape of the
function H and find its maximum in a way that is robust to the variability in the calculated value of H([GCaMP6s]total, FBG)
over multiple runs arising from random number generation within the SMC algorithm.

To do this, we use the adaptive independent Metropolis Hastings (AIMH) technique of [48]. This method draws samples
from a density proportional to a function while simultaneously fitting a Gaussian mixture to the sample set by harmonic
K-means clustering. The algorithm was implemented in Matlab as described in [48], and run for 400 iterations. For harmonic
K-means clustering, we used the kmeanhar implementation of [140]. Our implementation accepts multiple time series for
the same neuron, but by default we limit the length of the input data to 12500 fluorescence measurements for speed. Because
we are interested only in the maximum of H and not in characterizing the entire distribution, we increased the acceptance
rate by ”tempering” H by a temperature T . That is, instead of using H as the target distribution for the AIMH technique,
we used H1/T . To choose the temperature, we first calculated H 15 times at the initial values of [GCaMP6s]total and FBG,
which we set to equal µG. We then choose T so that log(H1/T ) would have a variance of 0.1 or less:

T = max
(√

10 ·Var(H(µG)), 10
)

(116)

After 400 AIMH iterations, we returned the mode of the Gaussian mixture as a point estimate for ([GCaMP6s]total, FBG),
along with the corresponding values of χ̂, σ̂F . These procedures are illustrated in Figure 5 - figure supplement 5.

Other inference methods

We implemented Matlab wrappers for all other AP inference methods, a Matlab GUI capable of running all algorithms on
individual data segments, neurons and datasets and calculating accuracy measures based on the results. All individual and
group data comparisons of various algorithms were carried out on the same data with the same pre-processing, including
feature extraction and motion correction. For inference methods

FOOPSI

Fluorescence data were first detrended using Matlab’s built-in detrend function. Next, the minimum value was subtracted
from the detrended data, the result was divided by its maximum and a value of machine epsilon (2.22e-16) was added. Finally,
the result was passed into the fast oopsi function, with the parameter tau c = 0.5.

CFOOPSI

Unmodified fluorescence values were passed to the constrained foopsi function, with no additional inputs. Commit
08468bc1b25c9b8617b861a6404bbf4576cf156c was retrieved from
github.com/epnev/constrained-foopsi, and was used with CVX version 2.1, Build 1116 (d4cc5c5).
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c2s

For c2s-s, we used the c2s preprocess command to upsample fluorescence data to 100 Hz as descriped in [Theis et al.], while
providing metadata indicating which fluorescence time series were from the same neuron. We then used the c2s predict
command to infer spike probabilities. For c2s-t, we used the c2s leave-one-out command to carry out training and to infer
spike probabilities with cross validation. To calculate the number of parameters used by c2s, we trained it on our complete
dataset (n = 26 neurons) with standard settings, for which c2s selected 10 PCA components consisting of 1000 elements
but only 945 degrees of freedom after accounting for orthonormality constraints. The spike triggered mixture model used
20 feature parameters, 3 bias parameters, 6 weights and 30 predictor coefficients, for a total of 1004 parameters. Commit
9f12398a33a17e557b4a689f1dce902123c6f2eb was retrieved from github.com/lucastheis/c2s.

MLspike

We used MLspike with the published parameters for GCaMP6s [29], as the autocalibration feature failed whenever tested on
our GCaMP6s data. These parameters were: a = 0.113, tau = 1.87, pnonlin = [0.81, -0.056], drift.parameter = 0.01. One
call was made to the tps mlspikes function for each different imaging rate in a neuron’s data, with the parameters and the
frame interval passed along with fluorescence data. For an image frame i for which a single AP was inferred, we assigned it to
the midway point between the times when the neuron was scanned: (ti−1 + ti)/2. For an image frame for which k APs were
inferred, we distributed the inferred APs evenly across the interval between the two scan times, assigning the jth AP time as
ti−1 + ∆(j − 0.5)/k. Commit 048122135c7d77457ee8c8c026a572ac40739c3f was retrieved from github.com/MLspike/spikes,
along with commit 048122135c7d77457ee8c8c026a572ac40739c3f from github.com/MLspike/brick.

thr-σ

We first estimated fluorescence baseline FBL as the 8th percentile of fluorescence values over a 15 s window around each data
point. For data points within 7.5 s of the start or end of a fluorescence recording, the first or last fluorescence value was
repeated to substitute for the missing values. We then calculated a normalized ∆F/F0 measure as y = (F−FBL)/median(FBL).
We then divided the fluorescence recording into 1 s windows and calculated the standard deviation of y in each window, and
estimated the standard deviation of fluorescence noise σnoise as the median over 1 s windows of the standard deviation of
y. We then identified time points where y cross a threshold of 4σnoise. After each threshold crossing, additional threshold
crossing events were ignored until after y decreased below 2σnoise. For each threshold crossing, an AP was assigned at the
maximum value of y among the values after y increased over 4σnoise and before it decreased below 2σnoise.

Accuracy measures

To calculate the correlation of two AP sequences with AP times {ai} and {bj}, we convolved each AP sequence with a
Gaussian kernel of width σ leading to a sum of Gaussian functions:

Za(t) =
∑
i

N
(
t; ai, σ

2
)

(117)

Zb(t) =
∑
j

N
(
t; bj , σ

2
)

(118)

We then calculated the means of Za, Zb, their product and their squares over the time window [t0, t1] over which the AP
sequences are defined:

Za =
1

t1 − t0

∫ t1

t0

Zadt =
1

t1 − t0

∑
i

[
Φ

(
t1 − ai
σ

)
− Φ

(
t0 − ai
σ

)]
(119)

Z2
a =

1

t1 − t0

∫ t1

t0

Z2
adt =

1

t1 − t0

∑
i1,i2

G(ai1 , ai2) (120)

ZaZb =
1

t1 − t0

∫ t1

t0

ZaZbdt =
1

t1 − t0

∑
i,j

G(ai, bj) (121)

G(u, v) = N
(
u; v, 2σ2

) [
Φ

(
t1 − (u+ v)/2)

σ/
√

2

)
− Φ

(
t0 − (u+ v)/2

σ/
√

2

)]
(122)

where Φ is the Gaussian cdf and Zb, Z2
b are defined correspondingly. Finally we calculated the correlation as
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ρ =
ZaZb − Za · Zb√

Z2
a · Z2

b

(123)

To calculate the average absolute timing error, we first collected all the outputs of each algorithm up to 500 ms before
and after each isolated single AP. For algorithm that produced AP times (the SBM, MLspike and thr-σ), we then simply
calculated the mean absolute time difference from the true AP. For other algorithms which produce expected AP counts (c2s)
or unitless outputs (FOOPSI and CFOOPSI), we calculated (

∑
i |ti − tAP|yi) / (

∑
i yi), where yi is the algorithm’s output at

time ti.

Statistical analysis

To calculated the average fluorescence evoked by single APs in pyramidal neurons, we included only those without other APs
in the preceding 5.5 s. We first calculated fluorescence baseline FBL and ∆F/F0 values using fluorescence and true AP times
as described above in the section ”Estimation of baseline fluorescence” above. The baseline-fitting procedure also determined
the time constant τBL with which fluorescence decays back to baseline after starting 5.5 s after AP discharge, as well as an
exponential fit to all ∆F/F0 values at least 5.5 s after any APs. Therefore, to remove any effects of earlier AP discharge >5.5
s before single APs, we extrapolated the exponential fit forward through the fluorescence values around the single AP, and
subtracted this from the ∆F/F0 values. We then subtracted the mean of ∆F/F0 values for image frames 0 to 200 ms before
the AP. Finally, we calculated the ∆F/F0 values around single APs, using 75 ms bins with a bin edge centered on the time of
AP discharge. For interneurons, the requirement that no other APs were present in the preceding 300 ms was used instead.
To calculate fluorescence responses to bursts of multiple APs, we included bursts with up to 200 ms between the first and
final AP, and no other APs afterwards, with a bin edge centered on the first AP time.

The amplitude or ”height” of the response was defined as the maximum of the average from 0 to 300 ms for single APs,
and 0 to 500 ms for bursts. Signal-to-noise ratio (SNR) was defined as the ratio of the single AP response amplitude to the
standard deviation of the fluorescence noise. To calculate the noise standard deviation, we used all ∆F/F0 values 300 ms to
50 ms before isolated single APs as defined above.

All values are reported as mean +/- standard deviation unless otherwise stated.

Data and code availability

All AP sequences, fluorescence signals and in vitro binding assay data are provided along with metadata (supplementary data).
Raw fluorescence movies will be available in the future at caesar.de/sbm. Pre-alpha releases of code for analyzing in vivo and
in vitro data are available at http://github.com/dgreenberg/sbmvivo and http://github.com/dgreenberg/sbmvitro.
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Figure 1–Figure supplement 1. (A) Two-photon image acquired using galvanometric scanning (18.6 Hz), showing a neuronal population
expressing GCaMP6s (green) in L2/3 of mouse visual cortex, with astrocytes stained using SR101 (red) and electrical recording of APs in a
single pyramidal neuron. (B) Image showing the mean GCaMP6s fluorescence for each pixel after removal of extraneous signals using the feature
extraction algorithm (see methods). (C) Image showing the mean GCaMP6s fluorescence removed from each pixel by the feature extraction
algorithm. (D) Fluorescence time series calculated by a simple average (cyan) over pixels within a region of interest (ROI, white countour in (A)),
along with the fluorescence removed by the feature extraction algorithm (red) and the resulting estimate of cytosolic fluorescence (black). Note the
ongoing fluctuations in ROI fluorescence due to contamination from the neuropil background. (E) Electrically recorded AP times for the data
shown in (D). (F-J). As in (A-D), but for a second neuron recorded using resonance scanning (60 Hz). Note that in this case, most of the removed
fluorescence arises from a second neuron, which due to the microscope’s point spread function overlaps the neuron recorded electrically.
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Figure 1–Figure supplement 2. Peak GCaMP6s fluorescence increase evoked by isolated single APs as a function of time since viral injection.
Each circle represents one pyramidal neuron, while each color represents one animal.
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Figure 1–Figure supplement 3. Single APs do not evoke fluorescence increases in interneurons. (A) GCaMP6s fluorescence (upper) and
simultaneous electrical recording of APs (lower) from an interneuron in L2/3 mouse visual cortex that discharged APs at 2.6 Hz for the data shown
and 2.4 Hz overall. Based on this neuron’s high firing rate, we defined its isolated single APs (green arrows) as those not preceded by other APs for
300 ms, instead of the 5.5 s required for pyramidal neurons. (B) Fluorescence signals recorded during 8 isolated APs within the data shown in
(A). (C) Fluorescence change relative to baseline during all isolated APs (n = 131) for the neuron shown in (A-B). Solid and dashed green lines
indicate mean and standard deviation over events; gray line indicates 0% ∆F/F0. To calculate ∆F/F0 = (F − FBL)/FBL we estimated baseline
fluorescence using the median of fluorescence values over a 60 second window around each time point, since our usual procedure of interpolating
fluorescence values from periods at least 5.5 seconds after AP discharge (see methods) could not be applied due to the lack of silent periods. We
also subtracted the mean ∆F/F0 value 0-200 ms before the isolated AP. While it is possible that this procedure could overestimate baseline for
frequently firing neurons, resulting in incorrectly scaled ∆F/F0 values, it nonetheless shows that fluorescence does not show an average increase
after single APs. (D) Average fluorescence change as in (C), but for all 4 interneurons (additional firing rates 12.5, 7.6 and 8.8 Hz). The green
curve indicates the neuron from (A-C). Note that for the neurons with the highest spontaneous firing rates, isolated single APs occurred only
after a pause in AP discharge after long periods of frequent AP discharge. As a result, fluorescence decreased after the AP due to decay from the
previous period of activity.
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Figure 1–Figure supplement 4. (A) AP detection rates for MLspike (dark green), c2s standard model (magenta), c2s re-trained (cyan) and
thr-σ (light green). The detection rate is defined as the fraction of true APs that were successfully identified by each inference method. True and
inferred APs within 100 ms were considered as matching. Bar graph shows mean and stadard deviation, while circles denote the detection rate for
individual neurons. (B) False positive rates for the same inference algorithms. Dashed line indicates the median true firing rate (n = 26).
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Figure 2–Figure supplement 1. Global rate equation describing mass action kinetics and extrusion. Time derivatives of the concentrations of
GCaMP6s binding states, endogenous buffer binding states and free calcium are given as instantaneous functions of the current concentrations.
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True APs

Fluorescence
Initial baseline estimate

Iteratively optimized baseline
Intrpolated baseline during AP discharge

Figure 3–Figure supplement 1. Estimation of drifting baseline fluorescence from fluorescence signals and known AP times acquired in vivo
(full details in methods). Starting from APs (upper) and fluorescence (lower, black), an initial estimate (red) is computed by Gaussian filtering of
the fluorescence data values, with fluorescence values occurring less than 5.5 seconds after an AP excluded (see methods). An iterative procedure
then computes a final estimate of baseline fluorescence for periods not following an AP (green), which is interpolated to fill in the missing values
following each AP (cyan).
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Figure 3–Figure supplement 2. Convergence of SBM parameters while fitting in vivo data. (A) Values of the objective function evivo over
successive iterations while fitting the SBM to full set of optical/electrical recordings (n = 22 pyramidal neurons). (B) Convergence of SBM
parameters during optimization. Upper left : rate constants normalized to their final values. Upper right : values of φ, denoting brightness values
for each binding state relative to the calcium free state. Lower left: time constants, dissociation constants and total concentrations of the two
endogenous buffers, normalized to their final values. Lower right: AP-evoked calcium influx and extrusion time constant, normalized to their final
values.
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Figure 3–Figure supplement 3. Comparison of SBM fits to data with increasing model complexity. (A) AP sequence recorded from a L2/3
mouse visual cortical pyramidal neuron in vivo. (B) Fluorescence (black) compared to SBM fit using a reduced minimal’ model without endogenous
buffers or variation in FBG or [GCaMP6s]total over neurons. (C) SBM fit when including 2 endogenous calcium buffers but still without variation
in FBG or [GCaMP6s]total over neurons. (D) SBM fit including variation in FBG across neurons, allowing the amplitude but not the shape of
AP-evoked fluorescence to be different for each neuron. (E) SBM fit when allowing both FBG and [GCaMP6s]total to vary over neurons; this is the
SBM variant used throughout the present study unless otherwise noted. (F) Fit for extended SBM, consisting of the full SBM in (E) along with 2
Michaelis-Menten extrusion mechanisms, allowing for calcium-dependent modulation of extrusion rate. (G) Fit for extended SBM, consisting of
the full SBM in (E) but with 3 endogenous buffers instead of 2. (H) Fit for the full SBM shown in (E), but when solving the rate equation with a
maximum time step of 5 instead of 10 ms.
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Figure 3–Figure supplement 4. Comparison of SBM variants over pyramidal neurons (n = 22) shows that the standard SBM fits the data
better than simplified versions, but using more complicated variants do not improve fit quality. (A) Root-mean-square error for the standard SBM
compared to a reduced ’minimal’ version without buffering or variation in FBG or [GCaMP6s]total over neurons (Figure 3 - figure supplement 2b).
(B) Comparison of standard SBM to reduced version with 2 endogenous calcium buffers but no variation in FBG or [GCaMP6s]total over neurons
(Figure 3 - figure supplement 2c). (C) Comparison of SBM to reduced version which also includes variation in FBG but not [GCaMP6s]total over
neurons (Figure 3 - figure supplement 2d). (D) Comparison of standard SBM to an extended version using two Michaelis-Menten extrusion
mechanisms, each with its own Michaelis constant and maximum rate (see methods). (E) Comparison o f standard SBM to an extended version
with 3 endogenous buffers (each with its own concentration, affinity and time constant). (F) Comparison of standard SBMs with maximum time
steps of 5 vs. 10 ms. (G) Mean and standard deviation of root-mean-square error over neurons for each SBM variant. Single asterisk indicates p <
0.01, double asterisks indicate p < 1e-6.
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Figure 3–Figure supplement 5. SBM simulations using parameters fit to in vivo data (FBG/F
eq
cyt = 2.5). (A) Fluorescence response (upper)

to one AP using [GCaMP6s]total = 5 µM, with binding state concentrations over time (middle, scalebar: 400 nM Ca2+, 1 µM GCaMP6s, 1 µM
CaGCaMP6s, 100 nM Ca2GCaMP6s, 0.4 nM Ca3GCaMP6s, 10 nM Ca4GCaMP6s, 4 µM B1, 4 µM B2). Fluorescence response to one AP as a
function of [GCaMP6s]total (lower). (B) As in (A) but for a 2-AP burst (scalebar: 1 µM Ca2+, 1 µM GCaMP6s, 1 µM CaGCaMP6s, 200 nM
Ca2GCaMP6s, 2 nM Ca3GCaMP6s, 20 nM Ca4GCaMP6s, 10 µM B1, 4 µM B2). (C) As in (A-B) but for 20 APs at 25 Hz (scalebar: 1 µM Ca2+,
1 µM GCaMP6s, 1 µM CaGCaMP6s, 400 nM Ca2GCaMP6s, 20 nM Ca3GCaMP6s, 1 µM Ca4GCaMP6s, 10 µM B1, 10 µM B2). (D) Simulated
peak fluorescence evoked by one (blue) and two APs (green) and single-AP peak latency (red) as functions of [GCaMP6s]total.
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Figure 3–Figure supplement 6. The concentration of free calcium over time after AP discharge depends on total GCaMP6s concentration
in SBM simulations. (A) SBM simulation of calcium concentration after a single AP as a function of total GCaMP6s concentration. At low
concentrations GCaMP6s does not contribute significantly to calcium buffering compared to endogenous buffers, while at higher concentrations it
acts as a buffer, reducing the free calcium concentration in the cytosol. (B) Peak [Ca2+] one time step (δ ≤ 10 ms) after a single AP as a function
of total GCaMP6s concentration.
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Figure 3–Figure supplement 7. Nonlinearity of AP-evoked fluorescence depends on total GCaMP6s concentration in SBM simulations
(FBG/F

eq
cyt = 2.5). (A) 2-AP fluorescence response divided by 1-AP response, as a function of time after AP discharge and for a range of total

GCaMP6s concentrations. Note that the ratio of the 2-AP response to the 1-AP response is not constant over time for any GCaMP6s concentration,
and that the shape of the ratio as a function of time depends on the GCaMP6s concentration. (B) Ratio of peak 2-AP evoked fluorescence to peak
1-AP fluorescence as a function of GCaMP6s concentration.

Greenberg et al. | 2018 | bioRχiv 61/84

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/479055doi: bioRxiv preprint 

https://doi.org/10.1101/479055
http://creativecommons.org/licenses/by-nc/4.0/


Full SBM
Slow buffer only
Fast buffer only

No buffers

20 APs @ 25 Hz

A

2 APs

1 AP

B

C

1 s

500 ms

500 ms

25% ∆F/F0

500% ∆F/F0

50% ∆F/F0

Full SBM
Slow buffer only
Fast buffer only

No buffers

Full SBM
Slow buffer only
Fast buffer only

No buffers

Figure 3–Figure supplement 8. Role of endogenous buffers in shaping AP-evoked fluorescence in SBM simulations ([GCaMP6s]total = 5 µM,
FBG/F

eq
cyt = 2.5). (A) Fluorescence arising from discharge of one AP in simulations from the full SBM (black) or when incorporating only the slow

buffer (green), only the fast buffer (cyan) or neither buffer (magenta). (B) As in (A), but for a burst of 2 APs. (C) As in (A-B), but for a train of
20 APs at 50 Hz. Note that the slow buffer plays only a minor role in determining fluorescence responses to discharge of 1 or 2 APs, while the fast
buffer has no effect on the decay phase following the train of 20 APs.
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Figure 3–Figure supplement 9. Variation of SBM fluorescence predictions over multiple parameter sets. (A) Left : Fluorescence (black, same
data as Figure 4a-c) with predictions from each parameter set (colored dashed lines). Each set of SBM parameters was obtained by fitting the in
vivo dataset while excluding a single neuron. Right : Correlation matrix showing correlation over time of fluorescence predictions from the 22
parameter sets. (B) Binding state concentrations from the fits in (A) (as in Figure 3b-c), with correlation over time of binding state concentrations
from the 22 parameter sets.
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Figure 4–Figure supplement 1. Decomposition of in vitro binding assay data into contributions from each GCaMP6s binding state. (A)
Fluorescence (black) excited at 404 nm (upper) and 498 nm (middle) as a function of free calcium concentration at each step of a titration used to
measure excitation spectra (Figure 4a,d), and prediction fluorescence from SBM global fit (orange). Additional colors show contributions of each
binding state to total predicted fluorescence; excitation wavelengths are shown as arrowheads in Figure 4c. Modeled binding state fractions (lower)
as a function of free calcium for the same data. (B) Integrated peak heats (circles, upper) for the data shown in turqouise in Figure 4b,d along
with global fit (squares) and contributions to enthalpy changes arising from changes in each binding state concentration (colored curves). Modeled
concentrations of free Ca2+ (black, lower) and each GCaMP6s binding state are shown for the same data. Free Ca2+ increases slowly until the
four binding sites of GCaMP6s are saturated, after which it increases rapidly. The concentration of the saturated state Ca4GCaMP6s initially
increases due to binding, then decreases due to dilution and perfusion. (C) Upper graph: Fluorescence signals acquired during stopped-flow
experiment (black) and global fit (orange) for the data in Figure 4f showing binding kinetics after a transition from 17 nM to 348 nM free Ca2+.
Additional colors show the modeled fluorescence contributions of each GCaMP6s binding state. Lower graph: modeled concentrations over time for
all molecular species.
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Figure 5–Figure supplement 1. (A) Forward (explicit) Euler integration of the SBM rate equation for 1 AP, with δ = 10 (left), 100 (center) or
150 µs. Steps >50 µs resulted in negative concentrations. (B) As in (A), but for 50 APs at 10 Hz. Steps >100 µs caused divergence to infinity.
(C) Backward Euler integration (see methods) for the AP sequences in (A-B) with 3 Newton iterations and δ = 0.1, 1, 10 and 50 ms. Note the
close agreement for δ ≤ 10 ms, and that transient differences in [Ca2+] for δ ≤ 10 ms do not lead to differences in binding state concentrations or
predicted fluorescence. (D) Peak ∆F/F0 values for the AP sequences in (A-C), relative to the exact solution and as a function of δ for backward
Euler integration, with 1-4 Newton iterations. Note the nearly identical solutions for 3 (the default value for model fitting and AP inference) vs. 4
Newton iterations.
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Figure 5–Figure supplement 2. Sampling and resampling techniques for reducing the variability of the SMC algorithm’s output. (A)
Fluorescence and APs recorded for 22 seconds from a pyramidal neuron in L2/3 mouse visual cortex. (B) Cumulative log marginal likelihood
calculated for the data in (A). At each time point the SMC technique (see methods) is used to calculate the likelihood given the model parameters
of all observed data up to the current time point. Results are shown for 100 independent runs using the same parameters and data, with sampling of
AP sequences from the prior distribution (magenta), a proposal distribution with increased AP discharge probability (red), a time varying proposal
in a two-round scheme (blue) or a time varying proposal with resampling to the proposal (green). (C) Variance over runs of the cumulative log
marginal likelihoods shown in (B). (D) Distribution over runs of marginal likelihood at the end of the data in (A-C) (circles). Bar graph shows
means and standard deviations. (E) Variance over runs for the distributions in (D).
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Figure 5–Figure supplement 3. Effect of the fixed-lag smoother delay on inferred AP discharge probability using the SMC algorithm with the
SBM. (A) Fluorescence signals (upper) and electrically recorded APs (lower) from a L2/3 mouse visual cortical pyramidal neuron. (B) Probability
of AP discharge every 10 ms, inferred using the filter smoother and averaged over 1000 runs of the algorithm. The SMC algorithm was used with
102400 particles. Results are shown for fixed-lag smoother delays 54 (top), 108, 269, 538, 753 and 1021 ms (bottom). Same data as in (A); gray
lines indicate true AP times. (C) As in (B), but showing the standard deviation over 1000 runs of the algorithm.
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Figure 5–Figure supplement 4. Accuracy and speed of SMC/SBM-based AP inference as a function of particle count. (A) 134 seconds of
fluorescence signals (upper) and simultaneously recorded APs for a L2/3 mouse visual cortical pyramidal neuron. SBM/SMC-based AP inference
results are shown for a single run of the algorithm with 1024, 10240, 102400 and 1024000 particles. False positives produced by the algorithm (time
difference from true APs > 200 ms) are shown in red. (B) Probability distributions over 1000 runs for the marginal data likelihood (see methods),
correlation of true and inferred AP (smoothing σ 200 ms), detection rate and false positive rate (timing tolerance 200 ms). Results are shown
for the same particle counts and data as in (A). (C) Computation time for a single SMC forward pass with calculation of posterior probability
of AP discharge every 10 ms, as a function of the number of particles and for the same data as in (a-b). Results are shown for a CUDA-C++
implementation running on a Geforce GTX 1080 TI (nVidia) or a Matlab implementation running on an Ryzen 7 1800X 8 core processor (AMD).
(D) Correlation of true and inferred APs over our entire in vivo dataset (n = 26 neurons) as a function of particle count. Error bars show standard
error of the mean over 1000 runs.
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Figure 5–Figure supplement 5. Identification of per-neuron parameters from fluorescence data alone. (A) Scatter plot of [GCaMP6s]total

vs. FBG/F
eq
cyt for adaptive independent Metropolis-Hasting procedure samples (see methods). Contours show 1-s.d. isoclines from each mixture

component; numbers indicate component probabilities. (B) [GCaMP6s]total concentration for each sample in (A) (blue) and mode of the current
iteration’s lognormal mixture fit (green). (C) As in (B), but for FBG/F

eq
cyt. (D) Log marginal data likelihood times the prior probability, after

optimization with respect to the firing rate, for the samples in (A-C). Green dots indicate accepted samples, while red dots indicate rejections with
repetition of the previous sample. (E) Overall fraction of samples that have been accepted as a function of the number iterations completed.
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Figure 5–Figure supplement 6. A single AP sequence is fit to posterior probability of AP discharge every time step (δ ≤10 ms) given fluorescence
data. (A) Neuronal fluorescence (upper, black) with the SBM-inferred posterior mean of denoised fluorescence (orange). Simultaneously recorded
APs (lower). (B) Posterior probability of AP discharge every 10 ms given the fluorescence data (upper, blue) output by the SMC algorithm.
Sum of Gaussian functions (magenta) fit to the posterior AP discharge probabilities. Note that the posterior probability of AP discharge never
approaches 1 due to temporal uncertainty, but the total increase associated with each inferred AP sums to around one. By fitting a sum of
unweighted Gaussian functions to the posterior probabilities, the SMC output is quantized, so that each period of increase in the posterior is
interpreted as a discrete number of APs. The result (lower) is a set of Gaussian means that we interpret as AP times and standard deviations
(gray) that we interpret as temporal uncertainties for each AP.

Greenberg et al. | 2018 | bioRχiv 70/84

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/479055doi: bioRxiv preprint 

https://doi.org/10.1101/479055
http://creativecommons.org/licenses/by-nc/4.0/


0 0.5 1
0

0.5

1

Recall

F1 score (other method)

SBM
MLspike

c2s−t
c2s−s

CFOOPSI
FOOPSI

thr-σ

A

B

F1 score
(SBM)

0 1
0

1

0.5

0.5

Precision

MLspike
c2s−t
c2s−s

CFOOPSI
FOOPSI

thr-σ

Figure 6–Figure supplement 1. (A) Precision vs. recall for each neuron and AP inference algorithm. Recall is defined as the fraction of
true (electrically detected) APs that are detected by the inference algorithm, and is referred to as detection rate in the main text. Precision is
defined as the fraction of inferred APs that actually occurred. Both precision and recall have been computed within a maximum allowed time
difference of 100 ms when matching true and inferred APs. Squares indicate interneurons. (B) Scatter plot comparing the performance of the
SBM approach to other algorithms using the F1 score. Squares indicate interneurons. The F1 score is defined as the harmonic rate of recall and
precision: 2 · recall · precision/(recall + precision).
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Figure 6–Figure supplement 2. AP inference accuracy as a function of peak 1-AP fluorescence amplitude. (A) Peak mean fluorescence evoked
by single APs in each pyramidal neuron compared to the correlation between true and inferred AP sequences for each algorithm (n = 22). (B)
Peak mean fluorescence evoked by single APs for each neuron compared to each algorithm’s detection rate. (C) Peak mean fluorescence evoked by
single APs for each neuron compared to each algorithm’s false positive rate. Dashed line indicates median true firing rate.
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Figure 6–Figure supplement 3. Effect of imaging frame rate and SNR on the accuracy of AP sequences inferred by the SBM. (A) Correlation
of true and inferred APs as a function of SNR (n = 22 pyramidal neurons). Each color indicates a different imaging frame rate from 10 to 60 Hz;
data from the same neuron are connected by line segments. (B) As in (A), for the SBM’s AP detection rate. (C) As in (A-B), for the rate of false
positives inferred by the SBM.
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Figure 6–Figure supplement 4. Comparison of SBM-based AP inference accuracy using rate constants fit to in vivo data vs. rate constants fit
to in vitro binding assay data. (A) Correlation between true and inferred AP sequences for each neuron for the SBM using rate constants fit from
in vitro binding assays (x-axis) and rate constants fit from in vivo data. Squares indicate interneurons. (B) SBM detection rate for rate constants
fit in vitro vs. in vivo. (C) SBM false positive rate for rate constants fit in vitro vs. in vivo.
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Figure 6–Figure supplement 5. Accuracy of AP inference with one neuron of training data. (A) Correlation of true and inferred AP sequences
for each neuron (n = 26, squares indicate interneurons) when using full training data (only one neuron at a time held out for cross-validation,
x-axis) or a single training neuron (y-axis). Results are shown for the SBM using rate constants fit to in vivo data (black), for the SBM using rate
constants fit to in vitro binding assays (red) and for c2s-t (cyan). (B) As in (A), but showing AP detection rates when using training full training
data vs. a single training neuron. (C) As in (A-B), but showing false positive rates. (D) Mean and standard deviations of correlation, detection
rate and false positive rate for the data shown in (A-C). Dashed line indicates true median firing rate.
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500 ms

Figure 6–Figure supplement 6. 20 isolated single APs without visually apparent fluorescence increases. Each AP was recorded in a different
pyramidal neuron and was chosen based on the lack of accompanying fluorescence increase. In the 2 pyramidal neurons not shown, every isolated
single AP evoked a fluorescence increase that could be visually identified.
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Figure 7–Figure supplement 1. Linearity of SBM-based firing rate inference is robust to the choice of time window size. (A-B) As in Figure 7b,
but using window sizes of 250 ms and 1s.
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Figure 7–Figure supplement 2. Linearity and slope of inferred firing rate as a function of true firing rate, for all inference methods (500 ms
windows). (A) Regression r2 values for inferred firing rate as a function of true firing rate (regressions included non-zero y-intercepts). Each circle
represents one pyramidal neuron, bar graph shows mean values and error bars show standard deviations. (B) as in (A), but for interneurons. (C)
Linear regression slopes for inferred firing rate as a function of true firing rate, for all pyramdial neurons and each inference method. Gray line
indicates a slope of 1, for which inferred firing rates have the correct units. (D) As in (C), but for interneurons.
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Figure 7–Figure supplement 3. Accuracy of inferred mean spontaneous firing rates. (A) True vs. inferred mean spontaneous firing rates for
each inference method (n = 26 neurons, squares indicate interneurons). (B) Rank correlation of true and estimated firing rates for each method (n
= 26 neurons). (C-D) Slope and y-intercept of linear regressions for pyramidal neurons (n = 22). Error bars indicate 95% confidence intervals,
which include both a slope of 1 and y-intercept of 0 for the SBM, but not for other methods.
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Figure 8–Figure supplement 1. Cross-correlation and single-AP timing accuracy in individual neurons. (A) Six electrically recorded single
APs and simultaneous fluorescence measurements (upper) with the output of AP inference algorithms (lower). Note that SBM, MLspike and thr-σ
output an AP sequence, c2s outputs estimated spiking probabilities over time and CFOOPSI and FOOPSI have unitless outputs. (B) Magnified
views showing AP inference results relative to electrically detected AP times (gray vertical lines) for the six single APs in (A). (C) Mean rates of
AP inference relative to true AP times (gray vertical line) for single APs (no other APs for 1 s before and 0.5 s after), for individual neurons.
Averaging these results over neurons gives the curves shown in Figure 8G. To be included in this analysis, a neuron’s data had to include at least 5
true isolated single APs, and for methods whose outputs were not unitless at least 5 total APs had to be inferred within 0.5 s of these 5 true
isolated single APs. The unitless outputs of CFOOPSI and FOOPSI have been rescaled for each neuron to give a maximum average output of 1 for
each neuron. (D) Cross-correlation between true and inferred APs for each inference method, as a function of time lag, for individual neurons.
Averaging these results over neurons gives the curves shown in Figure 8D.
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Figure 8–Figure supplement 2. Effect of imaging frame rate and SNR on timing accuracy of APs inferred by the SBM. (A) Absolute timing
error of isolated single APs inferred by the SBM as a function of SNR. Each color indicates a different imaging frame rate from 10 to 60 Hz; data
from the same neuron are connected by line segments. Each data point corresponds to a combination of a specific pyramidal neuron with a specific
imaging frame rate, and a combination was included only if it contained at least 5 true isolated single APs with at least 5 APs inferred by the SBM.
(B) As in (A), but with imaging frame rate shown as the x-coordinate and SNR indicated by color. (C) Average delay from true to SBM-inferred
times for isolated single APs, as a function of SNR (colors as in (A)). (D) As in (C), but with imaging frame rate shown as the x-coordinate and
SNR indicated by color.

Greenberg et al. | 2018 | bioRχiv 81/84

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/479055doi: bioRxiv preprint 

https://doi.org/10.1101/479055
http://creativecommons.org/licenses/by-nc/4.0/


A B

0 100 200
−200

0

100

200
Ti

m
e 

di
ffe

re
nc

e 
fro

m
 tr

ue
 to

 S
B

M
-in

fe
rr

ed
 A

P
 (m

s)

0 100 200
0

100

200

Inferred AP time uncertainty σ (ms) A
bs

ol
ut

e 
tim

e 
di

ffe
re

nc
e 

be
tw

ee
n 

tru
e 

an
d 

S
B

M
-in

fe
rr

ed
 A

P
 (m

s)

 

Inferred AP time uncertainty σ (ms)

-100

True AP
before inferred AP

True AP
after inferred AP

Figure 8–Figure supplement 3. Data-based evaluation of timing uncertainty values inferred by the SBM for isolated single APs. For each
AP inferred by the SBM, the algorithm also fits a standard deviation σ to the posterior moments inferred by the particle filter (Figure 5 - figure
supplement 6), up to the maximum allowed value of 200 ms. To test whether σ can be validly interpreted as the width of the posterior distribution
of the AP time, we compared the inferred σ values to the actual differences between true and inferred AP times. (A) Difference between true and
inferred AP times as a function of inferred σ values (n = 399 APs from 22 neurons). APs were included in this analysis only if no other APs were
present for 5 s before or 500 ms after, the SBM inferred exactly one AP within 200 ms of the true AP time and the SBM inferred no other APs
within 500 ms of the true AP time. (B) Mean (black) and standard deviation (gray) of the absolute time difference between true and inferred AP
times for the data in (A) as a function of the AP timing uncertainty output by the SBM/SMC inference algorithm. The red line shows the relation

y =
√

2/πx, as would be expected if each σ value correctly describes a Gaussian posterior distribution on an AP time given the fluorescence data.
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Figure 8–Figure supplement 4. Simulations showing the effect of timing errors in optically detected APs on peri-stimulus time histograms
(PSTHs). (A) Diagram illustrating simulation of an optical PSTH (right) by adding together stimulus→AP latencies from a true electrical PSTH
(left) and timing errors for spontaneous APs detected optically in another neuron (center). (B) PSTH showing APs evoked by whisker deflection
and recorded electrically in a L2/3 neuron in somatosensory cortex, previously published in [71]. Among APs recorded from 100 ms before the
stimulus onset to 500 ms after, the fraction arising from spontaneous activity that occurred before stimulus onset was pbefore = 6%. (C) Simulated
electrical PSTHs for 3 GCaMP6s-expressing L2/3 pyramidal neurons from mouse visual cortex. For each isolated single AP recorded electrically
in the neuron, an AP time relative to the simulated stimulus was drawn randomly from the PSTH shown in (B). Due to random sampling of
stimulus-AP latencies and a finite number of trials, pbefore ranges from 2% to 12% in these simulations. (D) Distribution of timing errors for
isolated single APs, for the 3 neurons in (C). (E) Simulated optical PSTHs for the neurons shown in (C-D). For each isolated single AP recorded in
the neuron, a true AP time relative to the stimulus was drawn from the PSTH shown in (B), and the results of SBM-based AP inference were
used to assign optically detected AP times relative to the true AP time. Since the detection rate for single APs was less than 100%, on some
stimulus trials no APs were inferred. Due to AP timing errors for the inferred APs, a greater fraction of APs were assigned to time points before
the stimulus for the simulated optical PSTH than for the simulated electrical PSTH, with pbefore ranging from 13% to 47%.
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Figure 8–Figure supplement 5. Forward time shifts limit too-early assignment of inferred APs. (A) Probability that SBM-inferred APs occur
from 0 to 200 ms before true isolated single APs, as a function of the forward time shift applied to all inferred APs. Blue curves shows this
relationship for neurons with ≥ 5 true isolated single APs and for which ≥ 5 APs were inferred within 500 ms of true single AP times (n = 18).
Black curve and gray shaded region show mean and standard deviation over neurons. To limit the average probability that inferred APs occur
before true APs to 0.1, a forward shift of 114 ms is required. (B) As in (A), but showing the probability of SBM-inferred APs occurring before
a sensory stimulus for a simulated PSTH as in Figure 8 - figure supplement 4. Dashed red line indicates the true probability (0.056) that APs
occurred before the stimulus in the electrically recorded PSTH used to carry out the simulations. To obtain the same probability for SBM-inferred
APs on average a forward shift of 128 ms is required, while obtaining a probability of 0.1 requires a forward shift of 74 ms.
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