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Highlights 41 

• Low peripheral blood CD4 + T cell count and hypergammaglobulinemia are associated 42 

with inefficient transplacental IgG transfer in HIV-infected women 43 

• Antigen-specific IgG binding strength to placentally-expressed Fc receptors, but not 44 

placental Fc receptor expression levels, mediates selective placental IgG transfer 45 

• Antigen-specific IgG Fc region glycan profiles also contribute to the selective placental 46 

IgG transfer of maternal IgG populations in HIV-infected women 47 

 48 

SUMMARY 49 

The transplacental transfer of maternal IgG to the developing fetus is critical for infant 50 

protection against infectious pathogens in the first year of life. However, factors that modulate 51 

the transplacental transfer efficiency of maternal IgG that could be harnessed for maternal 52 

vaccine design remain largely undefined. HIV-infected women have impaired placental IgG 53 

transfer, yet the mechanism underlying this impaired transfer is unknown, presenting an 54 

opportunity to explore factors that contribute to the efficiency of placental IgG transfer. We 55 

measured the transplacental transfer efficiency of maternal HIV and other pathogen-specific IgG 56 

in historical U.S. (n=120) and Malawian (n=47) cohorts of HIV-infected mothers and their HIV-57 

exposed uninfected and HIV-infected infants. We then examined the role of maternal HIV 58 

disease progression, infant factors, placental Fc receptor expression, and IgG Fc region subclass 59 

and glycan signatures and their association with transplacental transfer efficiency of maternal 60 

antigen-specific IgG. We established 3 distinct phenotypes of placental IgG transfer efficiency in 61 

HIV-infected women, including: 1) efficient transfer of the majority of antigen-specific IgG 62 

populations; 2) generally poor IgG transfer phenotype that was strongly associated with maternal 63 
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CD4+ T cell counts, hypergammaglobulinemia, and frequently yielded non-protective levels of 64 

vaccine-specific IgG; and 3) variable transfer of IgG across distinct antigen specificities. 65 

Interestingly, maternal IgG characteristics, such as binding to placentally expressed Fc receptors 66 

FcRIIa and FcRIIIa, IgG subclass frequency, and Fc region glycan profiles were associated 67 

with placental IgG transfer efficiency. These maternal IgG transplacental transfer determinants 68 

were distinct among different antigen-specific IgG populations. Our findings suggest that in 69 

HIV-infected women, both maternal disease progression and Fc region characteristics modulate 70 

the selective placental transfer of distinct IgG subpopulations, with implications for both the 71 

health of HIV-exposed uninfected infants and maternal vaccine design. 72 

 73 

INTRODUCTION 74 

Protective immunity in the first few months of life is reliant on maternal IgG that is 75 

passively transferred across the placenta (Dowling and Levy, 2014; Levy et al., 2013; Palmeira 76 

et al., 2012; Zash et al., 2016). This transplacental transfer of protective IgG can be enhanced by 77 

maternal vaccination during pregnancy. For example, it is estimated that worldwide incidence 78 

rates of neonatal tetanus decreased by 75% from the years 2000 to 2013 due to the wide-scale 79 

implementation of maternal tetanus toxoid vaccination during pregnancy (Khan et al., 2015). 80 

Furthermore, maternal immunization against influenza has also had a positive impact on infant 81 

health, with up to a 63% decrease in influenza infection rates in the first six months of life in 82 

infants born to vaccinated mothers compared to those born to unvaccinated women (Zaman et 83 

al., 2008). Yet, in 2015, despite the remarkable successes of maternal vaccination, >900,000 84 

neonates died from vaccine-preventable respiratory infections worldwide (Liu et al., 2016). As 85 

an example, even though the maternal coverage for pertussis vaccination exceeds 80%, neonatal 86 
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pertussis rates have increased three-fold over the last three decades in the U.S. alone (Healy et 87 

al., 2004). This may be partly due to the fact that maternal passively acquired pertussis-specific 88 

IgG can wane to low levels in newborns as early as two months of life, leaving the infant 89 

vulnerable to infection (Healy et al., 2004; Nunes et al., 2016). Therefore, there is an urgent need 90 

to 1) improve the transplacental IgG transfer efficiency of current maternal vaccines that are 91 

routinely administered during pregnancy and 2) develop novel maternal vaccine strategies 92 

designed for optimal placental IgG transfer to combat congenital and neonatal infections. On the 93 

other hand, minimizing the placental IgG transfer of monoclonal antibody therapies given to 94 

pregnant women for their own health is an important goal to improve the safety of this class of 95 

therapeutics during gestation.  96 

The transplacental transfer of maternal IgG begins in the first trimester of pregnancy and 97 

by 20 weeks of gestation, maternal IgG levels in cord blood represent approximately 10% of the 98 

maternal blood levels (Malek et al., 1996). In normal pregnancies, by 37-40 weeks of gestation, 99 

infant cord blood levels can exceed maternal plasma IgG concentrations, often reaching levels 100 

>100% compared to those of their mothers (Kohler and Farr, 1966; Malek et al., 1996; Palmeira 101 

et al., 2012; Tatra and Placheta, 1979). Yet in the setting of specific maternal infections, such as 102 

HIV, the transplacental transfer of IgG is impaired (Dangor et al., 2015; de Moraes-Pinto et al., 103 

1996; de Moraes-Pinto et al., 1993; de Moraes-Pinto et al., 1998a; de Moraes-Pinto et al., 1998b; 104 

Palmeira et al., 2012; Scott et al., 2005). Therefore, HIV-infected women represent a unique 105 

population to define factors that modulate the transplacental transfer of maternal IgG to the fetus. 106 

Moreover, HIV-exposed uninfected (HEU) infants have up to four-fold higher rates of morbidity 107 

and mortality from diarrheal and respiratory infections compared to unexposed infants (Dauby et 108 

al., 2016; Locks et al., 2017; Shapiro and Lockman, 2010; Shapiro et al., 2007; Slogrove et al., 109 
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2010; Weinberg et al., 2017). Several factors likely contribute to the high illness and death rates 110 

in HEU infants, including the poor transplacental transfer of protective maternal IgG (Adler et 111 

al., 2015; Brahmbhatt et al., 2006; Evans et al., 2016; Slogrove et al., 2016). Thus, understanding 112 

the mechanisms of impaired transplacental IgG transfer in HIV-infected women could inform 113 

strategies to improve the health of HEUs.  114 

To reach the fetal circulatory system, maternal IgG must cross distinct placental cell 115 

barriers that make up the placental villous tree: the syncytiotrophoblast, the villous stroma, and 116 

fetal endothelial cells. The Fc receptor neonatal (FcRn) plays a key role in shuttling maternal IgG 117 

across the placenta to the fetal circulatory system (Roopenian and Akilesh, 2007; Simister, 2003; 118 

Simister and Mostov, 1989; Simister and Story, 1997). Yet, while syncytiotrophoblast cells 119 

express FcRn, neither stromal cells nor fetal endothelial cells express this canonical placental 120 

IgG shuttle receptor. Interestingly, other Fcγ receptors are also expressed in placental cells, yet 121 

their role in modulating the transplacental transfer of maternal protective IgG is unknown (Fouda 122 

et al., 2018; Kristoffersen and Matre, 1996; Martinez et al., 2018; Sedmak et al., 1991; Simister, 123 

2003; Simister et al., 1996). Notably, Hofbauer cells located in the villous stroma express FcγRI 124 

and FcγRIII, and fetal endothelial cells – the last cell barrier crossed by maternal IgG before 125 

reaching the fetal circulatory system – express FcγRII (Kristoffersen et al., 1990; Martinez et al., 126 

2018; Simister, 2003). Gaps in our understanding include how maternal IgG is transferred across 127 

this final placental cell barrier in the absence of FcRn, and whether FcγRI, FcγRII, or FcγRIII 128 

expression in placental cells contribute to the transplacental transfer of maternal IgG. In addition, 129 

IgG characteristics that impact Fc receptor (FcR) interactions, such as IgG subclass and/or Fc 130 

region glycans, could play a role in transplacental IgG transfer efficiency. The IgG subclass 131 

distribution among different antigen-specific IgG populations is distinct, and previous studies 132 
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have indicated that this distribution impacts the transplacental transfer efficiency of different 133 

antigen-specific IgG populations (Ferrante et al., 1990).  134 

In this study, we aimed to explore the mechanism(s) by which transplacental IgG transfer 135 

is impaired in HIV-infected women by identifying the determinants of placental IgG transfer 136 

through delineation of clinical and antibody characteristics that are associated with poor or 137 

efficient placental transfer of antigen-specific IgG populations in 167 HIV-infected pregnant 138 

women from the U.S and Malawi. We employed multivariable linear regression modeling to 139 

examine the association between transplacental IgG transfer and: 1) maternal HIV disease 140 

progression, 2) infant clinical factors, 3) placental factors such as FcR RNA expression, and 4) 141 

IgG Fc region characteristics including subclass, glycosylation profiles, and binding strength to 142 

placental FcRs. A deeper understanding of factors that modulate the transplacental transfer of 143 

maternal protective IgG will be important for improving infant health and extending the window 144 

of passively acquired IgG-mediated protection.  145 

 146 

RESULTS 147 

Clinical characteristics of U.S. and Malawian mother infant pairs 148 

We assessed the transplacental transfer of HIV-specific and pathogen-specific IgG in two exiting 149 

cohorts of HIV infected women: the US-based Women and Infant transmission study (WITS) 150 

and the Malawian-based CHAVI009 study. The majority of the n=120 U.S. HIV infected women 151 

included in this study did not receive antiretroviral (ART) therapy during pregnancy but, ten of 152 

them (8.3%) received azidothymidine (AZT) monotherapy throughout pregnancy and two of 153 

them (1.6%) received AZT prophylaxis at delivery. In contrast, 100% of Malawian HIV-infected 154 

women received a single dose of nevirapine ART prophylaxis at delivery; and 13 of 47 (28%) of 155 
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Malawian HIV-infected women with CD4+ T cell counts <250 (cells/mm3) received 156 

combination (Stavudine/Lamivudine/Nevirapine) antiretroviral (cART) therapy throughout 157 

pregnancy. Overall, HIV-infected U.S. women overall had lower plasma viral load and higher 158 

peripheral blood CD4+ T cell counts compared to HIV-infected Malawian women at delivery, 159 

despite more Malawian HIV-infected women being initiated on cART during pregnancy (Table 160 

1). We measured total plasma IgG levels in U.S. and Malawian women as a surrogate measure of 161 

maternal hypergammaglobulinemia, a hallmark feature of advanced HIV-disease progression 162 

(Moir et al., 2001). HIV-infected U.S. women had lower total plasma IgG concentrations 163 

compared to Malawian women (median plasma IgG concentration levels of 16.3 mg/ml (range 164 

2.5 – 123.5 mg/ml) vs 39 mg/ml (range 8.5 – 158.4 mg/ml) in U.S. vs Malawian women), with 165 

both populations having higher total plasma IgG concentrations compared to ~10mg/ml that is 166 

observed in normal pregnancies (Benster and Wood, 1970), consistent with HIV-associated 167 

hypergammaglobulinemia.  168 

All 120 infants born to the U.S. HIV-infected women included in this study were 169 

uninfected, whereas five out of 47 (10.6%) infants born to Malawian HIV-infected women 170 

became infected with HIV in utero or peripartum. The U.S. HEU infants had a median 171 

gestational age of 40 weeks (range: 30-43 weeks), and Malawian HEU and infected infants had a 172 

median gestational age of 39 weeks (range: 33-44 weeks) (Table 1). There were no significant 173 

differences in infant birth weight, gestational age, or sex between the two populations.  174 

 175 

Distinct transplacental IgG transfer efficiency phenotypes in U.S. and Malawian HIV-176 

infected women 177 
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Previous studies have demonstrated that the transplacental transfer efficiency of maternal 178 

vaccine antigen-specific IgG is impaired in the setting of maternal HIV infection (de Moraes-179 

Pinto et al., 1996; de Moraes-Pinto et al., 1993). However, it is unclear if antigen-specific IgG 180 

populations are uniformly poorly transferred to the fetus in the setting of maternal HIV infection. 181 

We therefore measured HIV-specific IgG antibody levels in U.S. and Malawian paired mother-182 

infant samples against various regions of the envelope glycoprotein including: gp120, variable-183 

loop 3 (V3), variable-loop 1 and 2 (V1V2), and the gp41 membrane-proximal external region 184 

(MPER). We also measured antigen-specific IgG antibody levels against common neonatal 185 

pathogens, including: influenza hemagglutinin, pertussis toxin, tetanus toxoid, diphtheria toxin, 186 

rubella virus capsid, hepatitis B surface antigen, respiratory syncytial virus (RSV) F surface 187 

antigen, and Haemophilus influenzae type B (Hib) (Figure 1). Both HIV and standard neonatal 188 

pathogen-specific IgG responses were detectable at similar frequencies in both U.S. and 189 

Malawian HIV-infected women (Table S1).  190 

In contrast to previous studies that have only reported a uniformly poor transplacental 191 

IgG transfer efficiency among antigen-specific IgG in HIV-infected women(de Moraes-Pinto et 192 

al., 1996; de Moraes-Pinto et al., 1998b), we observed three distinct transplacental transfer 193 

efficiency phenotypes, including: 1) efficient transplacental IgG transfer efficiency across the 194 

majority of measured antigen-specificities, 2) poor transplacental IgG transfer efficiency across 195 

the majority of antigen-specificities, and an unexpected phenotype of 3) variable transplacental 196 

IgG transfer efficiency across antigen-specific IgG populations (Figure 1).  197 

To more quantitatively define transplacental IgG transfer efficiency phenotypes in HIV-198 

infected women from both cohorts across antigen-specific IgG populations, we generated a 199 

global transplacental IgG transfer score for each mother-infant pair based on the mean transfer 200 
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efficiency of the measured IgG populations (Figure 1). Using this scoring system, of 120 U.S., 201 

HIV-infected women, 8.3%, 30.8%, and 60.8% of mother-infant pairs were defined as exhibiting 202 

efficient, poor, and variable transplacental IgG transfer, respectively. In contrast, of 47 203 

Malawian, HIV-infected women, 0%, 59.5%, and 40.5% mother-infant pairs were defined as 204 

exhibiting efficient, poor, and variable transplacental IgG transfer efficiency, respectively. We 205 

utilized the global transplacental IgG transfer score for U.S. and Malawian HIV-infected women 206 

using multivariable linear regression analyses to define maternal HIV disease progression factors 207 

that are associated with placental IgG transfer efficiency. We also generated separate 208 

transplacental IgG transfer efficiency scores for three specific IgG populations: gp120, tetanus 209 

toxoid, and pertussis toxin-specific IgG. We utilized the antigen-specific IgG transfer score of 210 

gp120, tetanus toxoid, and pertussis toxin-specific IgG in multivariable linear regression 211 

modeling to define IgG characteristics that are important for transplacental transfer efficiency of 212 

these specificities.  213 

 214 

U.S. and Malawian HIV-infected women with protective IgG concentrations passively 215 

transfer sub-protective levels of vaccine-specific IgG to their HEU infants 216 

HEU infants are known to be more vulnerable to respiratory and diarrheal diseases and have 217 

higher rates of morbidity and mortality compared to HU infants (Afran et al., 2014; Filteau, 218 

2009; Slogrove et al., 2016; Zash et al., 2016). We therefore examined the proportion of U.S. and 219 

Malawian infants that had cord blood plasma IgG levels below the protective threshold, despite 220 

being born to HIV-infected mothers with protective levels of vaccine antigen-specific IgG. We 221 

defined protective concentration thresholds as set by the World Health Organization (WHO) 222 

(Plotkin, 2010): tetanus toxoid-specific IgG (0.10 IU/ml), rubella-specific IgG (10 IU/ml), 223 
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diphtheria toxin-specific IgG (0.10 IU/ml), and Hib-specific IgG (0.15 μg/ml). Of 120 U.S. HIV-224 

infected women, 84%, 36%, 48%, and 22% had plasma concentrations above the protective level 225 

threshold for tetanus toxoid-specific IgG, rubella-specific IgG, diphtheria-specific IgG, and Hib-226 

specific IgG, respectively (Figure 2). Yet, due to inefficient IgG transfer, 7%, 16%, 15%, and 227 

41% of HEU infants born to these U.S. HIV-infected women with protective IgG levels 228 

displayed concentrations below the protective threshold for tetanus toxoid-specific IgG, rubella-229 

specific IgG, diphtheria-specific IgG, and Hib-specific IgG, respectively. Similarly, in 47 230 

Malawian HIV-infected women, 87%, 30%, 68%, and 21% had plasma concentrations above the 231 

protective level threshold for tetanus toxoid-specific IgG, rubella-specific IgG, diphtheria-232 

specific IgG, and Hib-specific IgG, respectively. Yet, 15%, 71%, 50%, and 70% of infants born 233 

to these Malawian HIV-infected women with protective IgG levels had IgG concentrations 234 

below the protective threshold for tetanus toxoid, rubella, diphtheria, and Hib, respectively, 235 

highlighting the infant health consequences of impaired maternal IgG transfer in HIV-infected 236 

women on the infant health.  237 

 238 

Maternal plasma antigen-specific IgG levels and transplacental IgG transfer efficiency in 239 

U.S. and Malawian women 240 

To determine whether the antigen-specific IgG concentration in maternal plasma was a primary 241 

factor in the distinct transplacental IgG transfer efficiency of both HIV and vaccine antigen-242 

specific IgG, we first examined the association between plasma antigen-specific IgG magnitude 243 

and transplacental IgG transfer efficiency (Table 2). In U.S. HIV-infected women, maternal 244 

plasma concentrations of HIV V3-specific and RSV surface F antigen-specific IgG was 245 

negatively associated with transplacental IgG transfer efficiency (slope: -0.24, p=0.05; slope: -246 
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0.32, p<0.001, respectively). In Malawian HIV-infected women, tetanus toxoid-specific IgG was 247 

positively associated with transplacental transfer efficiency (slope: 0.50, p<0.004). Yet, maternal 248 

plasma antigen-specific IgG levels were not associated with transplacental transfer efficiency for 249 

the majority of HIV and vaccine antigen-specific IgG in both U.S. and Malawian HIV-infected 250 

women (Table 2), indicating that factors other than plasma antigen-specific IgG concentration 251 

contribute to the efficiency of transplacental IgG transfer.  252 

 253 

Maternal HIV disease progression factors and infant birth characteristics associations with 254 

transplacental IgG transfer efficiency 255 

It remains unclear how maternal HIV disease progression factors contribute to the poor 256 

transplacental IgG transfer observed in HIV-infected women. Maternal CD4+ T cell counts were 257 

weakly positively correlated with transplacental IgG transfer efficiency in U.S. HIV-infected 258 

women (0.25 p<0.007) but not in Malawian HIV-infected women (0.10 p=0.47) (Figure S1). 259 

Interestingly, maternal total plasma IgG was negatively correlated with transplacental IgG 260 

transfer efficiency in both U.S. and Malawian HIV-infected women (Figure S1). We therefore 261 

sought to examine if maternal peripheral blood CD4+ T cell counts, plasma viral load, and total 262 

plasma IgG levels (or hypergammaglobulinemia) contribute to transplacental IgG transfer 263 

efficiency in both U.S. and Malawian women in a multivariable linear regression model. We 264 

examined maternal clinical characteristics and their relationship to the global transplacental IgG 265 

transfer score of each patient by multivariable linear regression. As maternal ART treatment 266 

during pregnancy has been associated with improved transplacental IgG transfer (Bosire et al., 267 

2018), we first examined if maternal ART treatment during pregnancy in HIV-infected U.S., and 268 

Malawian HIV-infected women was associated with transplacental IgG transfer efficiency. 269 
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Maternal ART monotherapy in U.S. HIV-infected women during pregnancy was not correlated 270 

with transplacental transfer efficiency (slope: 0.01, p=0.96, FDR=0.96) (Table 3). Similarly, 271 

combination ART treatment in Malawian HIV-infected women initiated during pregnancy was 272 

not associated with transplacental transfer efficiency (slope: 0.03, p=0.53, FDR=0.85). In this 273 

cohort, maternal peripheral blood CD4+ T cell counts were positively associated with 274 

transplacental IgG transfer efficiency in U.S. women (slope: 0.19, p<0.002, FDR<0.004), but not 275 

in Malawian women (slope: -0.03, p=0.85, FDR=0.85). In contrast, maternal plasma HIV RNA 276 

load was not associated with transplacental IgG transfer efficiency in either U.S. (slope: 0.02, 277 

p=0.74, FDR=0.93) or Malawian (slope: -0.05, p=0.80, FDR=0.85) women. Yet, maternal total 278 

plasma IgG concentrations were negatively associated with transplacental transfer efficiency in 279 

both U.S. (slope: -0.37, p=0.001, FDR=0.001) and in Malawian (slope: -0.40, p=0.005, 280 

FDR=0.02) HIV-infected women, indicating that hypergammaglobulinemia is associated with 281 

poor placental IgG transfer.  282 

Infant factors such as gestational age and birth weight have been associated with 283 

transplacental IgG transfer efficiency (Palmeira et al., 2012). To assess if these infant factors 284 

contributed to the distinct transplacental IgG transfer efficiency phenotypes, we examined infant 285 

gestational age, weight, and sex in a multivariable linear regression model in both U.S. HEU and 286 

Malawian HEU and HIV-infected infants (Table 3). In these primarily term infant cohorts, 287 

neither infant gestational age (U.S. slope: 0.04, p=0.62, FDR=0.62; Malawian slope: 0.24, 288 

p=0.03, FDR=0.1), nor weight (U.S. slope: 0.10, p=0.19, FDR=0.55; Malawian slope: -0.33, 289 

p=0.05, FDR=0.1), nor sex (U.S. slope: -0.08, p=0.57, FDR=0.62; Malawian slope: 0.08, p=0.74, 290 

FDR=0.74) were associated with transplacental transfer efficiency in either maternal-infant 291 

cohort. 292 
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 293 

Maternal co-morbidities in Malawian HIV-infected women and transplacental IgG 294 

transfer efficiency 295 

We next examined maternal co-morbidities that could potentially lead to altered placental IgG 296 

transfer such as maternal proteinuria (a marker of risk of preeclampsia) and syphilis co-infection, 297 

as defined by a maternal rapid plasma reagin (RPR) positive test in the Malawian cohort. These 298 

maternal co-morbidity data were not available for U.S. HIV-infected women. 8.5% of Malawian 299 

HIV-infected women tested positive for the RPR test, whereas 36% tested positive for trace 300 

levels of proteinuria. Interestingly, proteinuria, in addition to total plasma IgG concentration, was 301 

associated with efficient transplacental IgG transfer in Malawian HIV-infected women (slope: 302 

0.55, p=0.01). In contrast, maternal co-infection with syphilis was not significantly associated 303 

with the transplacental transfer efficiency of maternal IgG (slope: -0.79, p=0.06).  304 

 305 

Placental FcR expression and transplacental IgG transfer  306 

To examine the role of placental FcR expression on the transplacental transfer efficiency 307 

of maternal IgG, we performed RNAseq analysis on available placental biopsy tissues only from 308 

Malawian HIV-infected women (n=44), as placental biopsy tissues were not collected in the U.S. 309 

cohort. Maternal placental FcRn, FcγRIIa, FcγIIb, FcγIIc, FcγIIIa, and FcγIIIb mRNA was 310 

detectable in all Malawian HIV-infected women (Figure S2), yet the levels of expression as 311 

defined by Log2 copies per million (CPM) were variable (Figure S3). We then compared the 312 

levels of placental FcR mRNA expression in HIV-infected women with variable and poor 313 

transplacental transfer of maternal IgG. Placental FcRn, FcγRIIa, FcγIIb, FcγIIc, and FcγIIIa 314 

expression levels strongly correlated with each other, whereas FcγIIIb had lower overall 315 
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expression levels and a weak correlation with FcRn, FcγRIIa, FcγIIb, FcγIIc, and FcγIIIa 316 

expression levels (Figure S2). We did not observe statistically significant differences in FcR 317 

expression levels in HIV-infected women with variable and poor transplacental IgG transfer 318 

efficiency (Figure S3). We examined Fc receptor expression levels and their relationship to the 319 

global transplacental IgG transfer score of each patient by multivariable linear regression. There 320 

was no significant association between placental FcR expression levels and transplacental IgG 321 

transfer efficiency.  322 

 323 

Binding of maternal antigen-specific IgG for placental FcRs and transplacental IgG 324 

transfer  325 

We next assessed the binding of maternal plasma antigen-specific antibodies to placentally-326 

expressed FcRs and their common polymorphic variants in Malawian HIV-infected women 327 

(n=47). We measured maternal gp120, tetanus toxoid, and pertussis toxin-specific IgG binding to 328 

FcRn, FcγRIIb, FcγRIIIb, the high affinity polymorphic forms FcγRIIa 131H and FcγRIIIa 329 

158V, and the low affinity polymorphic variants FcγRIIa 131R and FcγRIIIa 158F, as well as to 330 

complement protein C1q (Figure S4). The binding magnitude of gp120 and tetanus toxoid-331 

specific IgG strongly correlated among the measured placental FcRs, whereas the binding 332 

magnitude of pertussis toxin-specific IgG to placental FcRs exhibited variable correlations 333 

among FcRs (Figure S5). After correcting for predictors of transplacental IgG transfer in HIV-334 

infected Malawian women (total plasma IgG levels and proteinuria), we examined if gp120, 335 

tetanus toxin, and pertussis toxin-specific IgG binding to placentally expressed FcRs was 336 

associated with transplacental IgG transfer efficiency. We related Fc receptor binding magnitude 337 

of gp120, tetanus toxin, and pertussis toxin-specific IgG to their unique antigen-specific 338 
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transplacental IgG transfer score by multivariable linear regression. Neither maternal gp120 nor 339 

pertussis toxin-specific IgG binding to placentally expressed FcRs was associated with their 340 

transplacental IgG transfer efficiency (Table 4). In contrast, maternal tetanus toxoid-specific IgG 341 

binding to all FcRs positively, albeit weakly, associated with transplacental IgG transfer 342 

efficiency (slope: 0.23, p<0.05) (Table 4). Moreover, binding of tetanus toxoid-specific IgG to 343 

FcRIIa 131H (slope: 0.18, p<0.03), FcRIIa 131R (slope: 0.15, p<0.03), and FcRIIIa 158F 344 

(0.21, p<0.05) were positively associated with transplacental IgG transfer efficiency of this 345 

specificity (Table 4), suggesting distinct FcR interaction determinants of placental IgG transfer 346 

efficiency for different antigen-specific IgG populations.  347 

 348 

IgG subclass and transplacental IgG transfer efficiency in HIV-infected women with 349 

variable transplacental IgG transfer efficiency 350 

To further explore IgG Fc characteristics that play a role in antigen-specific IgG 351 

transplacental transfer efficiency, we focused on three antigen-specific IgG populations of HIV-352 

infected women defined to have variable transplacental IgG transfer efficiency phenotype: 353 

gp120, tetanus toxoid, and pertussis toxin-specific IgG. We measured gp120, tetanus toxoid, and 354 

pertussis toxin-specific IgG subclass distribution in both U.S. (n=50) and Malawian (n=16) HIV-355 

infected women with variable transfer of antigen-specific IgG populations (Figure S6). We 356 

focused on defining IgG characteristics of gp120-specific IgG because it is generally poorly 357 

transferred and on tetanus toxoid and pertussis toxin-specific IgG because they are generally 358 

efficiently transferred (Figure S6). The frequency of gp120, tetanus toxoid, and pertussis toxin-359 

specific IgG1 subclass responses was higher than that of the other IgG subclasses in both U.S. 360 

and Malawian HIV-infected women. Gp120, tetanus toxoid, and pertussis toxin-specific IgG2 361 
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subclass responses were less frequently detected in all antigen-specific populations in U.S. 362 

compared to Malawian women (U.S.: gp120-specific 3%, tetanus toxoid-specific 2%, and 363 

pertussis toxin-specific 3%; Malawian: gp120-specific 6%, tetanus toxoid-specific 25%, and 364 

pertussis toxin-specific 6%, Figure S6). Similarly, U.S. HIV-infected women had relatively 365 

lower frequencies of gp120, tetanus toxoid, and pertussis toxin-specific IgG3 subclass responses 366 

compared to Malawian women (U.S.: gp120-specific 17%, tetanus toxoid-specific 10%, and 367 

pertussis toxin-specific 7%; Malawian: gp120-specific 25%, tetanus toxoid-specific 44%, and 368 

pertussis toxin-specific 13%, Figure S6). Lastly, U.S. HIV-infected women also had overall 369 

lower frequencies of detectable gp120, tetanus toxoid, and pertussis toxin-specific IgG4 subclass 370 

responses compared to Malawian HIV-infected women (U.S.: gp120-specific 2%, tetanus 371 

toxoid-specific 27%, and pertussis toxin-specific 2%; Malawian: gp120-specific 19%, tetanus 372 

toxoid-specific 81%, and pertussis toxin-specific 0%, Figure S6). In contrast to U.S. HIV-373 

infected women, Malawian HIV-infected women were boosted with a tetanus vaccine during the 374 

third trimester of pregnancy, perhaps explaining the overall higher frequencies of tetanus toxoid-375 

specific IgG subclass responses.  376 

We then related IgG subclass frequency of gp120, tetanus toxin, and pertussis toxin-377 

specific IgG to their unique antigen-specific transplacental IgG transfer score using multivariable 378 

linear regression modelling. We assessed the isolated contribution of antigen-specific IgG 379 

subclass distribution to placental IgG transfer efficiency using a multivariable linear regression 380 

model that corrected for identified predictors (maternal CD4+ T cell counts and total plasma IgG 381 

concentrations) of transplacental IgG transfer. Due to the high collinearity of IgG1 subclass and 382 

antigen-specific IgG response frequency, the frequency of antigen-specific IgG responses was 383 

included instead of IgG1 subclass in the model (Table 5). Interestingly, in U.S. women, the 384 
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frequency of maternal gp120-specific IgG3 subclass responses (slope: -0.68, p<0.03), the 385 

frequency of maternal tetanus toxoid-specific IgG4 subclass responses (slope: -0.52, p=0.04), 386 

and the frequency of maternal pertussis-specific IgG responses (slope: -0.33, p=0.02) were 387 

negatively associated with their transplacental IgG transfer (Table 5). We did not find that IgG 388 

subclass distribution of gp120, tetanus toxoid, or pertussis toxin-specific IgG, to be associated 389 

with their transplacental IgG transfer efficiency in Malawian women, likely due to the smaller 390 

cohort size.  391 

 392 

IgG Fc region glycans and transplacental IgG transfer efficiency in HIV-infected women 393 

with variable transfer efficiency  394 

To examine the potential contribution IgG Fc region glycan profiles in mediating 395 

transplacental IgG transfer efficiency, we measured the composition of Fc region glycans in the 396 

overall poorly transferred gp120-specific IgG population, and generally efficiently transferred 397 

tetanus toxoid and pertussis toxin-specific IgG populations in U.S. HIV-infected women with 398 

variable transplacental IgG transfer (n=50) (Figure 3A). We did not observe statistically 399 

significant differences of agalactosylated (G0) (Figure 3B) Fc region glycans of gp120, tetanus 400 

toxoid, and pertussis toxin-specific IgG. In contrast, we observed statistically significantly 401 

different profiles of monogalactosylated (G1) (p<0.0001, Figure 3C), digalactosylated (G2) 402 

(p<0.01, Figure 3D), fucosylated (p<0.0001, Figure 3E), bisected (p<0.003, Figure 3F), di-403 

sialylated (p<0.0001, Figure 3G), mono-sialylated (p<0.0001, Figure 3H), and total sialylated 404 

(p<0.0001, Figure 3I) Fc region glycans between the isolated IgG for the same specificities.  To 405 

determine if specific Fc region glycans were associated with transplacental IgG transfer 406 

efficiency, we performed a principal component analysis in which we examined the proportional 407 
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variance of each principal component as it related to the transplacental IgG transfer efficiency. 408 

Principal component 1 (composed of G0, G1, G2, mono sialic acid, and total sialic acid, Figure 409 

4, Table S2) accounted for 59-64% of the variance of transplacental IgG transfer of gp120, 410 

tetanus toxoid, and pertussis toxin-specific IgG (Table S2), whereas principal component 2 411 

(composed of fucose, disialic acid, and bisecting, Figure 4, Table S2) accounted for 16-24% of 412 

the variance of transplacental IgG transfer for the same specificities.  413 

Previous studies reported that a lower frequency of Fc region fucose glycans led to 414 

increased binding strength to FcγRIIIa, suggesting that Fc region glycans may modulate binding 415 

to Fc receptors (Masuda et al., 2007; Niwa et al., 2004; Okazaki et al., 2004). Interestingly, 416 

poorly transferred gp120-specific IgG had higher frequencies of Fc region fucose, whereas 417 

efficiency transferred tetanus toxoid and pertussis toxin had overall higher levels of fucose 418 

(Figure 3D), suggesting that Fc region glycans may modulate the selective transfer of IgG 419 

subpopulations. We therefore related Fc region glycan profiles of gp120, tetanus toxin, and 420 

pertussis toxin-specific IgG to their unique antigen-specific transplacental IgG transfer score by 421 

multivariable linear regression. We fit a multivariable linear regression model that corrected for 422 

identified clinical predictors of transplacental IgG transfer efficiency (maternal CD4+ T cell 423 

counts and total plasma IgG concentrations). We found that Fc region glycan signatures of 424 

tetanus toxoid or pertussis toxin-specific IgG were not associated with their transplacental IgG 425 

transfer efficiency. In contrast, gp120-specific IgG Fc region fucose, bisecting, and disialic acid 426 

glycan frequencies (PC2) were weakly positively associated with transplacental IgG transfer 427 

efficiency of this specificity (slope: 0.27, p<0.01) (Figure 4A, Figure 4B, and Table 6), 428 

suggesting that Fc region fucose, bisected, and disialylated glycans can modulate transplacental 429 

IgG transfer efficiency of some but not all antigen-specific IgG subpopulations. We next 430 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2018. ; https://doi.org/10.1101/479121doi: bioRxiv preprint 

https://doi.org/10.1101/479121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

examined the isolated contribution of each individual gp120-specific IgG Fc region glycan as it 431 

related to transplacental IgG transfer efficiency. We observed weak yet significant associations 432 

with individual gp120-specific Fc region glycans (Table 6). Gp120-specific IgG Fc region fucose 433 

and di-sialic acid frequencies were significantly but very weakly associated with transplacental 434 

IgG transfer efficiency, suggesting a collective effect of these Fc region glycans on placental IgG 435 

transfer (Table 6).  436 

 437 

Antigen-specific IgG magnitude and transplacental IgG transfer efficiency in HIV-infected 438 

women with variable transfer efficiency  439 

After again correcting for identified maternal predictors of transplacental IgG transfer 440 

efficiency, we reexamined the isolated role of antigen-specific plasma IgG concentrations and 441 

their association with transplacental IgG transfer efficiency in U.S. women with variable 442 

transplacental IgG transfer efficiency. We examined antigen-specific magnitude of gp120, 443 

tetanus toxin, and pertussis toxin-specific IgG by multivariable linear regression using their 444 

unique antigen-specific transplacental IgG transfer score. Maternal gp120-specific IgG 445 

concentrations were significantly associated with transplacental transfer efficiency in HIV-446 

infected women with variable transplacental IgG transfer efficiency (slope: 0.38, p=0.01) (Table 447 

6). In contrast, neither maternal tetanus toxoid-specific IgG concentrations (slope: -0.04, p=0.78) 448 

nor maternal pertussis toxin-specific IgG concentrations (slope: -0.03, p=0.89) were associated 449 

with their transplacental IgG transfer efficiency in U.S. HIV-infected women with variable 450 

transplacental IgG transfer.  451 

 452 
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Combined analysis of IgG characteristics associated with transplacental IgG transfer 453 

efficiency in HIV-infected women with variable transfer efficiency  454 

Finally, to examine the combined impact of IgG characteristics on transplacental transfer 455 

efficiency, we fit a linear regression model that combined each of the identified characteristics of 456 

gp120, tetanus toxoid, and pertussis toxin-specific IgG found to be associated with placental IgG 457 

transfer efficiency in U.S. HIV-infected women with variable transplacental IgG transfer 458 

efficiency. We related these IgG characteristics to their unique antigen-specific transplacental 459 

IgG transfer score by multivariable linear regression. Again, due to the high collinearity of IgG1 460 

subclass responses and antigen-specific IgG response magnitude, the frequency of IgG1 subclass 461 

was not included in the combined model of IgG characteristics (Table 7). The frequency of 462 

tetanus toxoid-specific IgG subclass IgG4 responses was also negatively associated with 463 

transplacental IgG transfer of tetanus toxoid-specific IgG (slope: -0.65, p<0.01) (Table 7). The 464 

high frequency of IgG4 subclass responses and the negative association with transplacental IgG 465 

transfer was only observed for tetanus toxoid-specific IgG. Moreover, in the combined model of 466 

IgG Fc characteristics, the frequency of IgG2 subclass responses was strongly positively 467 

associated with transplacental IgG transfer efficiency of gp120, tetanus toxoid, and pertussis 468 

toxin-specific IgG (slope: 1.21, p<0.01, slope: 0.99, p<0.01, slope: 1.26, p<0.01, respectively). In 469 

addition, magnitude of maternal plasma gp120-specific IgG was positively associated with 470 

transplacental IgG transfer efficiency this specificity (slope: 0.27, p<0.03). Finally, gp120-471 

specific IgG Fc region glycan profiles that comprised PC2 remained weakly positively associated 472 

with transplacental IgG transfer (slope: 0.26, p<0.01). Altogether, these findings suggest that IgG 473 

Fc characteristics differentially mediate the selective placental transfer efficiency of distinct IgG 474 

subpopulations.  475 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2018. ; https://doi.org/10.1101/479121doi: bioRxiv preprint 

https://doi.org/10.1101/479121
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

 476 

DISCUSSION 477 

A major roadblock for improving the protection of newborns via maternal passively-478 

acquired maternal IgG is our limited understanding of the molecular interactions of IgG and 479 

placental FcRs that modulate transplacental IgG transfer. Placental IgG transfer is impaired in 480 

the setting of certain maternal infections, such as HIV and malaria (Cumberland et al., 2007; de 481 

Moraes-Pinto et al., 1996; de Moraes-Pinto et al., 1993; de Moraes-Pinto et al., 1998b; Palmeira 482 

et al., 2012). Thus, we sought to define factors that associated with poor or efficient placental 483 

IgG transfer in the pathologic setting of maternal HIV-infection. Interestingly, we observed wide 484 

variability in the efficiency of transplacental transfer of antigen-specific IgG in U.S. and 485 

Malawian HIV-infected women who received minimal ART treatment (Figure 1). In U.S. HIV-486 

infected mother infant pairs, we observed efficient, poor, and variable transplacental IgG 487 

transfer. In contrast, in Malawian HIV-infected mother infant pairs, we only observed poor and 488 

variable transplacental IgG transfer. It was surprising to observe the variable transplacental IgG 489 

transfer efficiency phenotype in the majority of HIV-infected women, and it suggests that the 490 

placental transfer is distinctly regulated for different antigen-specific IgG populations. Malawian 491 

HIV-infected women had more evidence of advanced HIV disease, with higher plasma viral 492 

load, lower peripheral blood CD4 + T cell counts, and higher concentrations of total plasma IgG 493 

compared to HIV-infected women from the U.S. (Table 1), potentially accounting for the lack of 494 

an efficient transplacental IgG transfer efficiency in this cohort.  495 

Previous studies have reported the suboptimal transplacental transfer of protective IgG in 496 

HIV-infected women (Abu-Raya et al., 2016; Gupta et al., 2014; Jones et al., 2011), raising the 497 

possibility that the poor transplacental transfer of maternal protective IgG may contribute to the 498 
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higher rates of infectious diseases in HEU infants. Accordingly, we observed that between 7-499 

79% of infants born to HIV-infected women with protective plasma IgG titers against tetanus, 500 

rubella, diphtheria, and Hib, were born with IgG concentrations below protective thresholds 501 

against these common neonatal pathogens (Figure 2). Interestingly, despite having a tetanus 502 

toxoid booster vaccine during pregnancy, Malawian HIV-infected women still had overall poor 503 

transplacental IgG transfer of tetanus toxoid-specific IgG. Moreover, up to 15% of HEU infants 504 

born to Malawian HIV-infected women were below the protective titer for tetanus-specific IgG 505 

at birth, suggesting that maternal vaccination alone may not be sufficient to overcome the poor 506 

transplacental IgG transfer in this population. These findings highlight that the poor 507 

transplacental transfer of maternal protective IgG in HIV-infected pregnant women puts their 508 

HEU infants at risk for vaccine-preventable infectious diseases.  509 

In our study, biomarkers of maternal HIV disease progression, including CD4+ T cell 510 

counts and hypergammaglobulinemia, were associated with poor placental IgG transfer. 511 

However, maternal plasma HIV load was not associated with transplacental IgG transfer 512 

efficiency in either U.S. or Malawian HIV-infected women. This finding contrasts with a prior 513 

study that reported maternal plasma HIV load and poor transplacental IgG transfer efficiency in a 514 

cohort of 50 HIV, clade A virus-infected Kenyan women (Farquhar et al., 2005). This disparate 515 

finding could be due to differences in maternal HIV disease progression and potentially HIV 516 

clade-specific differences. Total IgG concentrations in maternal plasma above a certain high 517 

threshold (greater than ~15mg/ml) have previously been associated with poor transplacental IgG 518 

transfer efficiency (Gonçalves et al., 1999; Hartter et al., 2000; Michaux et al., 1966; Okoko et 519 

al., 2001; Palmeira et al., 2012), and accordingly, maternal hypergammaglobulinemia was 520 

associated with poor transplacental IgG transfer efficiency in both U.S. and Malawian HIV-521 
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infected women (Table 3). In addition, Malawian HIV-infected women had higher median 522 

concentrations of plasma total IgG concentrations compared to U.S. HIV-infected women (Table 523 

1). Altogether, our findings suggest that low maternal peripheral blood CD4+ T cell counts and 524 

hypergammaglobulinemia negatively impact the transplacental transfer of maternal IgG. While it 525 

is possible that high maternal plasma IgG concentrations are a biomarker of advanced HIV-526 

disease progression that tracks together with low peripheral blood CD4 + T cell counts in these 527 

primarily untreated cohorts, it is also possible that maternal high plasma IgG concentrations lead 528 

to impaired transplacental IgG transfer by saturating placentally expressed FcRs that shuttle 529 

maternal IgG to the fetus (Englund, 2007; Palmeira et al., 2012; Wilcox et al., 2017). In addition, 530 

it is possible that the B cell dysfunction that leads to hypergammaglobulinemia in HIV-infected 531 

women also results in altered Fc region characteristics (i.e., altered IgG subclass composition or 532 

Fc region glycan profiles) that lead to impaired transplacental transfer of some IgG 533 

subpopulations.  534 

While the role of placentally expressed FcRn in mediating the transplacental transfer of 535 

maternal IgG is clear (Palmeira et al., 2012; Roopenian and Akilesh, 2007; Simister and Mostov, 536 

1989), the role of noncanonical placental FcRs in transplacental transfer of maternal IgG remains 537 

unexplored (Simister, 2003; Simister and Story, 1997). We did not detect overall placental FcR 538 

expression differences in HIV-infected, Malawian women with distinct phenotypes of 539 

transplacental IgG transfer (Figure S2, Figure S3), suggesting the determinants of IgG transfer 540 

efficiency are more likely to be modulated by IgG characteristics or other factors, even though it 541 

remains unclear if cell-type-specific FcR abundances may play a role. Moreover, differences in 542 

the overall placental FcRs expression levels in Malawian HIV-infected women were not 543 

associated with transplacental IgG transfer efficiency. Interestingly, the binding of tetanus 544 
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toxoid-specific IgG to placentally expressed FcRIIa 131H, FcRIIa 131R, and FcRIIIa F158, 545 

positively associated with transplacental IgG transfer efficiency in Malawian HIV-infected 546 

women, suggesting that IgG interaction with noncanonical placental FcRs may play a role in 547 

mediating the transplacental transfer of some antigen-specific IgG populations (Table 4). The 548 

distinct outcomes in FcR binding and transplacental transfer efficiency among maternal gp120, 549 

tetanus toxoid, and pertussis toxin-specific IgG, may be explained by differences in IgG 550 

characteristics among these distinct antibody populations. For example, tetanus toxoid-specific 551 

IgG responses in Malawian HIV-infected women had higher frequencies of IgG4 subclass 552 

responses compared to both gp120 and pertussis-specific IgG responses (Figure S6). 553 

Furthermore, gp120, tetanus toxoid, and pertussis-specific IgG exhibited distinct Fc region 554 

glycan profiles (Figure 3) which could contribute to the lack of a uniform binding strength to 555 

distinct placentally-expressed Fc receptors (Figure S2).  556 

Maternal IgG subclass is known to be an important factor in transplacental IgG transfer 557 

(Fouda et al., 2018; Palmeira et al., 2012), with IgG1 and IgG4 being the most efficiently 558 

transferred (Garty et al., 1994). In this cohort of U.S. HIV-infected women, the frequency of 559 

gp120-specific IgG3 subclass, tetanus toxoid-specific IgG1, and pertussis-specific IgG4 subclass 560 

responses negatively associated with transplacental transfer efficiency (Table 5), suggesting that 561 

IgG subclass frequency of some antigen-specific IgG populations may negatively impact the 562 

transplacental IgG transfer. Moreover, maternal IgG2 subclass frequency of gp120, tetanus 563 

toxoid, and pertussis toxin-specific IgG strongly positively associated with efficient 564 

transplacental IgG transfer in the combined model (Table 7) of IgG characteristics (Table 5). 565 

However, the association of gp120, tetanus toxoid, and pertussis toxin-specific IgG subclass 566 

prevalence and efficient transplacental IgG transfer should be interpreted with caution given the 567 
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low frequency of IgG2 subclass responses in U.S. HIV-infected women with variable 568 

transplacental IgG transfer efficiency. We did not find the same association of IgG subclass 569 

frequencies and transplacental IgG transfer in Malawian HIV-infected women, potentially 570 

attributable to a smaller cohort size or more advanced HIV disease progression. It is also possible 571 

that higher frequency of IgG1 and IgG4 subclass responses track together with 572 

hypergammaglobulinemia in HIV-infected women. As it has been reported that IgG subclasses 573 

have distinct affinity for FcRn, FcγRII, and FcγRIII (Abdiche et al., 2015; Bruhns et al., 2009), 574 

IgG subclass-specific affinity to placental FcRs could be an important, yet unexplored, 575 

determinant of transplacental IgG transfer efficiency. 576 

The Fc region glycosylation profile at the conserved glycosylation site may also be an 577 

important factor that impacts transplacental IgG transfer efficiency, due to its role in mediating 578 

IgG binding to certain placental Fc receptors including: FcγRI, FcγRII, and FcγRIII. While the 579 

affinity of IgG Fc to the canonical IgG placental shuttle receptor, FcRn, is not likely dependent 580 

on this Fc glycosylation profile (Martin et al., 2001), previous studies have reported differences 581 

in IgG Fc region glycans in mother infant pairs (Williams et al., 1995), suggesting that IgG Fc 582 

glycan-dependent placentally-expressed Fcγ receptors may modulate transplacental IgG transfer 583 

efficiency. While one study that examined IgG Fc region glycans in ten mother-infant pairs 584 

found no significant differences in Fc region glycosylation patterns in maternal and infant IgG 585 

populations (Einarsdottir et al., 2013), a more recent study found overall IgG glycan differences 586 

in maternal IgG and those that were passively transferred to the infant (Jansen et al., 2016). 587 

However, these studies examined glycosylation profiles in total maternal IgG as opposed to that 588 

of antigen-specific IgG populations, potentially masking distinctions in placentally transferred Fc 589 

region glycan profiles. Consistent with a previous study that reported distinct Fc region glycans 590 
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profiles of antigen-specific IgG populations (Mahan et al., 2016), poorly transplacentally-591 

transferred gp120-specific IgG had overall differences in the relative amounts of certain Fc 592 

region glycans compared to that of efficiently-transferred tetanus and pertussis toxoid-specific 593 

IgG (Figure 4). Further, we identified that the Fc region glycan profile was associated with 594 

transplacental IgG transfer efficiency of gp120-specific IgG (Figure 4, Table 6). Fucosylated, 595 

bisected, and disialylated IgG Fc region glycans were weakly associated with efficient 596 

transplacental IgG transfer efficiency of gp120-specific IgG in combination, but had limited 597 

contribution individually (Table 6), suggesting a cooperative effect among Fc region glycans. Fc 598 

region fucose glycans have been shown to mediate binding strength to FcγRIIIa in vitro (Okazaki 599 

et al., 2004). Accordingly, we also found that poorly transferred gp120-specific IgG had lower 600 

frequencies of Fc region fucose, suggesting that Fc region glycans modulate transplacental IgG 601 

transfer efficiency, likely through altered binding to placental Fc receptors such as FcγRIIIa. Our 602 

findings suggest that antigen-specific IgG Fc profiles modulate the selective placental transfer 603 

efficiency of distinct IgG subpopulations.  604 

While we aimed to comprehensively examine factors that mediate the transplacental IgG 605 

transfer in HIV-infected women, our study has some limitations. Both cohorts lacked detailed 606 

vaccination history, with the exception of tetanus vaccination during pregnancy in Malawian 607 

women. Another limitation of our study is the lack of a robust clinical record for U.S. HIV-608 

infected women of potential co-morbidities that could also impact the efficiency of transplacental 609 

IgG transfer. Nonetheless, we examined the role of clinical signs of preeclampsia and maternal 610 

syphilis in Malawian HIV-infected women and designed our linear regression models to correct 611 

for these factors that are known to affect transplacental IgG transfer. Moreover, while we found 612 

that placental FcR RNA expression levels were not distinct among HIV-infected Malawian 613 
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women with variable and poor transplacental IgG transfer, it is known that gene copy numbers 614 

may vary within the FcR locus and could complicate the interpretation of FcR mRNA expression 615 

levels (Hollox and Hoh, 2014; Lassauniere and Tiemessen, 2016). Our inability to detect FcR 616 

RNA expression level differences could also be due to the absence of an efficient transplacental 617 

IgG transfer group in HIV-infected Malawian women. Another caveat to our study is that factors 618 

in U.S. HIV-infected women that were associated with transplacental IgG transfer efficiency 619 

were not always similarly correlated with transplacental IgG transfer efficiency in Malawian 620 

HIV-infected women. While these differences could be explained by differences in cohort sizes, 621 

health, and/or genetic differences in U.S. and Malawian HIV-infected women, our findings 622 

should be validated in larger cohorts of HIV-infected mother infant pairs. It should also be noted 623 

that the calculated transplacental IgG transfer score was specifically designed to detect 624 

differences among HIV-infected U.S. and Malawian women with distinct IgG transfer 625 

phenotypes and was inherently arbitrary. Finally, as only 5 of 167 infants were HIV infected, our 626 

study was not designed to identify immune correlates of protection against mother to child 627 

transmission of HIV, but instead was geared towards defining determinants of transplacental IgG 628 

transfer efficiency.  629 

Altogether, our findings reveal that the placental transfer of maternal IgG is a selective 630 

process, particularly in the setting of HIV infection. Our results suggest that a combination of 631 

factors, including IgG FcR binding strength, subclass, and glycan profiles including fucose, but 632 

not placental FcR expression levels or antigen-specific IgG concentration, collectively play a 633 

role in the selective and differential placental transfer of maternal antigen-specific IgG (Figure 634 

5). Our results also suggest that the transplacental transfer efficiency is differentially regulated 635 

by distinct Fc region characteristics across antigen-specific IgG subpopulations. These findings 636 
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also shed light on the potential design of strategies to improve the transplacental IgG transfer to 637 

the fetus via Fc region modifications of some antigen-specific IgG (i.e., tetanus toxoid and 638 

pertussis toxin-specific IgG). Moreover, our findings have important implications for improving 639 

the transplacental IgG transfer achieved by routinely administered vaccine-elicited IgG responses 640 

in pregnancy such as the tetanus, diphtheria, and pertussis vaccine (i.e., Tdap), especially in 641 

HIV-infected women. For example, future studies could explore adjuvant-mediated modulation 642 

of the Fc region characteristics of vaccine-elicited IgG to increase binding to placentally-643 

expressed FcRs or drive specific Fc region glycosylation profiles with the goal of improving 644 

transplacental IgG transfer efficiency. These data also suggest that maternal HIV treatment that 645 

prevents CD4+ T cell loss and reduces maternal hypergammaglobulinemia is likely to improve 646 

the transplacental transfer of maternal protective IgG, which should be studied in combination 647 

ART-treated HIV-infected maternal populations. Future work that further defines the 648 

determinants of placental IgG transport will ultimately inform strategies to improve the transfer 649 

of maternal IgG to the vulnerable fetus, extending the window of maternal IgG-mediated infant 650 

protection in the first year of life.  651 

 652 

EXPERIMENTAL PROCEDURES 653 

Study population 654 

HIV-infected women and their HIV-infected or HIV-exposed uninfected (HEU) infants were 655 

selected from two previously described maternal-infant cohorts based on the availability of 656 

maternal plasma and paired infant cord blood plasma sample from delivery (Fouda et al., 2013; 657 

Permar et al., 2015; Sacha et al., 2015). N=120 maternal and infant cord-blood samples from 658 

delivery were obtained from the Woman and Infant Transmission Study (WITS) cohort. WITS 659 
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study participants were HIV-infected women from North America, thus primarily infected with 660 

clade B virus. All 120 infants included from the WITS cohort were HEU as determined by 661 

plasma HIV load PCR testing at delivery. Forty-seven maternal and infant cord blood plasma 662 

samples from delivery were obtained from the Center for HIV/AIDS Vaccine Immunology 009 663 

(CHAVI009) cohort of HIV-infected women from Malawi. Mothers and infants enrolled in the 664 

CHAVI009 study received a single dose Nevirapine at delivery. Five infants from the 665 

CHAVI009 cohort were HIV-infected in utero, and n=42 infants were HEU as determined by 666 

whole blood HIV DNA PCR testing at delivery.  667 

Ethics statement 668 

Approval was obtained from the institutional review board at each collaborating institution and 669 

enrollment clinical sites to utilize de-identified maternal and infant cord blood plasma samples 670 

from the WITS and CHAVI009 cohorts.  671 

Measurement of antigen-specific IgG levels 672 

A binding antibody multiplex assay (BAMA) was used to measure maternal and infant HIV and 673 

non-HIV-specific IgG responses. Briefly, carboxylated beads were coupled to HIV and non-HIV 674 

antigens as described previously (Tomaras et al., 2008). A total of 5 × 106 carboxylated 675 

fluorescent beads (Luminex Corp) were covalently coupled to 25µg of proteins and peptides 676 

tested. Recombinant HIV and non-HIV antigens included: Con6gp120, MNnegD11gp120, 677 

gp70MNV3, gp70BcaseAV1V2, MulVgp70_his, Bio-V3.C (Bio-678 

KKKNNTRKSIRIGPGQTFYATGDIIGDIRQAHC), Bio-MPER03 (Bio-679 

KKKNEQELLELDKWASLWNWFDITNWLWYIR), Bio-MPER656, (Bio-680 

KKKNEQELLELDKWASLWNWFNITNWLW), Tetanus toxoid (Pfenex, Inc), Pertussis toxin 681 

(Sigma-Aldrich), Influenza hemagglutinin/A/Solomon Islands/03/2006 (Protein Sciences Corp), 682 
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Rubella virus capsid (Abcam), Diphtheria toxin (Sigma), Hemaphilus Influenza B (Hib)Type B 683 

oligosaccharide-Human Serum Albumin conjugate (BEI Resources), Hepatitis B surface antigen 684 

(Abcam), and Respiratory syncytial virus (RSV) F surface antigen (DSCAV-1) (a kind gift of Dr. 685 

Barney Graham, NIH VRC). Peptides were purchased from CPC Scientific (Sunnyvale, CA). 686 

Maternal and infant plasma was tested against Con6gp120, MNnegD11gp120, gp70MNV3, 687 

gp70BcaseAV1V2, MulVgp70_his, Bio-V3.C, Bio-MPER03, Bio-MPER656, Tetanus toxoid, 688 

Pertussis toxin, Influenza hemagglutinin/A/Solomon Islands/03/2006, Rubella virus capsid, 689 

Diphtheria toxin, and RSV DSCAV-1 surface F antigen at 1:100 dilution in serum diluent (1X 690 

PBS, 1% milk, 5% normal goat serum, 0.05% Tween-20). Maternal and infant plasma was tested 691 

against Hib Type B oligosaccharide-Human Serum Albumin conjugate and Hepatitis B surface 692 

antigen at a 1:25 dilution in a modified serum diluent to reduce background (1X PBS, 1% milk, 693 

5% normal goat serum, 0.05% Tween-20, 0.05% polyvinyl alcohol, and 0.08% 694 

polyvinylpyrrolidone). Maternal and infant plasma HIV and vaccine antigen-specific IgG was 695 

detected with a mouse anti-human IgG (Southern Biotech, Birmingham, AL) phycoerythrin-696 

conjugated antibody at 2µg/ml as described previously (Tomaras et al., 2008). 697 

Hyperimmuneglobulin isolated from HIV-seropositive donors (HIVIG) standard was used to 698 

calculate concentration of Con6gp120-specific IgG antibodies in mother infant pairs. A 699 

membrane proximal external region (MPER)-specific IgG (2F5) was used to calculate the 700 

concentration of MPER-specific IgG in mother infant pairs. A V3-specific IgG (CH22) was used 701 

to calculate the concentration of maternal and infant V3-specific IgG. A V1V2-specific IgG 702 

(CH58) was used to calculate the concentration of V1V2-specific IgG in mother infant pairs. An 703 

influenza hemagglutinin-specific IgG (CH65) was used to calculate the concentration of flu-704 

specific IgG in mother infant pairs. Finally, an RSV surface antigen-specific mAb (Palivizumab - 705 
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MedImmune) was used to calculate the concentration of RSV-specific IgG in mother infant 706 

pairs. Concentration of tetanus toxoid, pertussis toxin, rubella virus capsid, Haemophilus 707 

influenzae type B, hepatitis B, and diphtheria toxin-specific IgG was determined by using 708 

commercially available WHO international standards (National Institute for Biological Standards 709 

and Controls – anti-tetanus toxoid sera: 26/288, anti-pertussis sera: 06/140, anti-rubella sera: 710 

91/688, anti-Haemophilus influezae type B: 09/222, anti-Hepatitis B: 07/164, anti-diphtheria 711 

toxin: 10/262). We measured protective concentration thresholds in U.S. and Malawian HIV-712 

infected women as set by the World Health Organization (WHO) (Plotkin, 2010): tetanus toxoid-713 

specific IgG (0.10 IU/ml), rubella-specific IgG (10 IU/ml), diphtheria toxin-specific IgG (0.10 714 

IU/ml), and Hib-specific IgG (0.15 μg/ml). Normal human sera samples from uninfected donors 715 

were used as a negative control for HIV antigens. All MFI values were blank bead and well 716 

subtracted. All mother-infant samples were tested at the same dilution. Antibody measurements 717 

were acquired using a Bio-Plex 200 instrument (Bio-Rad). 718 

Calculation of transplacental IgG transfer efficiency 719 

Maternal IgG transplacental transfer efficiency was calculated as infant antigen-specific IgG 720 

concentration/maternal antigen-specific IgG concentration X 100. Efficient transplacental 721 

transfer was defined as >99% transfer efficiency for the majority (>75%) of measured antigen-722 

specific IgG. Variable transplacental transfer was defined as efficient (>99%) and poor (<60%) 723 

transfer efficiency of measured antigen-specific IgG within a mother infant pair. Poor 724 

transplacental transfer was defined as <60% transfer efficiency for the majority (>75%) of 725 

measured antigen-specific IgG.  726 

Measurement of HIV and non-HIV antigen-specific IgG subclass 727 
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To measure HIV and vaccine-antigen IgG subclass responses, maternal samples were tested 728 

against a Con6gp120, MNgDneg11gp120, gp70MNV3, gp70BcaseAV1V2, tetanus toxoid, 729 

pertussis toxin, MulVgp70_his, influenza hemagglutinin/A/Solomon Islands/03/2006 (Protein 730 

Sciences Corp), and a blank bead at a 1:40 dilution by BAMA. Biotinylated antibody reagents 731 

specific for each IgG subclass were used at 4 µg/ml: anti-IgG1-biotin (BD Pharmingen, clone: 732 

G17-1), anti-IgG2-biotin (BD Pharmingen, G18-21), anti-IgG3-biotin (Calbiochem, clone: 733 

HP6047), and anti-IgG4-biotin (BD Pharmingen, clone: G17-4). Plates were washed 3X and 734 

streptavidin-conjugated phycoerythrin antibody diluted was used at 1:100 dilution and added to 735 

wells. All MFI values were blank subtracted.  736 

IgG Fc region glycosylation analysis 737 

Maternal plasma samples were heat inactivated at 56°C for 1 hour. Maternal plasma samples 738 

were incubated with 25µl of uncoated streptavidin coated magnetic beads (New England 739 

Biolabs) at room temperature (RT) in rotation. MNnegD11gp120, tetanus toxoid, and pertussis 740 

toxin antigens were biotinylated with LC-LC-biotin (Thermo Scientific) according to the 741 

manufacturer’s protocol. Streptavidin coated magnetic beads were activated with 0.5M NaCl, 742 

20mM Tris-HCl [pH 7.5], 1mM EDTA and incubated with biotinylated antigens at RT for 1 hour 743 

in rotation. Maternal plasma and coupled beads were mixed and incubated at RT for 1 hour in 744 

rotation. Adsorbed plasma samples were removed and antigen-specific IgG bound to the antigen-745 

coupled beads was digested with IDEZ (New England Biolabs) at 37°C for 1 hour in rotation. 746 

Cleaved Fc region supernatants were digested with PNGaseF (New England Biolabs) according 747 

to manufacturer specifications. To precipitate Fc region glycans, ice-cold ethanol was added and 748 

incubated at -20°C for 30 min. Plates were spun and the ethanol layer was transferred to clean 749 

plates. Plates were spun in a Centrivap (Labconco Corporation) and dried glycans were labeled 750 
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with APTS dye (Life Technology) in Sodium Cyanoborohydride in Tetrahydrofuran (Sigma). 751 

Labeled glycans were transferred to filtered plates (Harvard Apparatus) containing P-2 slurry 752 

(Bio-Rad) and excess APTS dye was removed by washing with water. Cleaned Fc region labeled 753 

glycans were run immediately on a 3130 Genetic analyzer Sanger sequencer (Applied 754 

Biosystems) as described previously (Mahan et al., 2015).  755 

Measurement of total plasma IgG 756 

Goat anti-human polyclonal IgG (Life Technologies) was used to coat high binding 384 well 757 

ELISA plates (Corning) with 3µg/ml overnight at 4°C. Plates were washed and blocked with 758 

SuperBlock (4% whey protein, 15% goat serum, and 0.5% Tween 20 diluted in 1X PBS) for 2 759 

hours at RT. Maternal plasma IgG was tested at 1:1000 starting dilution and was serially diluted 760 

in 3-fold dilutions. Reagent grade normal human serum IgG (Sigma) was used as a standard at a 761 

starting concentration of 10µg/ml and was serially diluted in 3-fold dilutions. An anti-human IgG 762 

HRP conjugated antibody produced in goat (Sigma Aldrich) was used at 1:10,000 dilution. After 763 

washing the plates, SureBlue reserve TMB substrate (KPL) was added. Substrate reactions were 764 

stopped by adding an equal volume of Stop solution (KLP). Optical densities were read at 450nm 765 

using a Spectramax plate reader. OD values within the linear range of a 5-parameter standard 766 

curve were used to interpolate the total IgG concentration of plasma samples.  767 

Placental RNAseq analysis and assessment of FcR expression levels  768 

Placental biopsy samples in RNAlater from HIV-infected Malawian women were thawed on ice. 769 

Fifty mg of tissue was homogenized in Trizol (Invitrogen), and total RNA was purified with 770 

miRNeasy extraction kit (Qiagen) according to the manufacturer guidelines. RNA quality was 771 

assessed on Bioanalyzer 2100 instrument using RNA 6000 Nano Kit (Agilent). Total RNA 772 

libraries were prepared from 500 ng purified RNA using TruSeq Stranded Total RNA with Ribo-773 
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Zero Gold Kit (Illumina). Deep sequencing was performed on a Nextseq500 sequencer 774 

(Illumina) using 75bp paired-end reads. Raw BCL (base call) files generated from NextSeq 775 

sequencer were converted to FASTQ files using bcl2fastq Conversion Software v2.18. During 776 

BCL to FASTQ processing, bcl2fastq also separates multiplexed samples and removes adapters. 777 

Each pair of a FASTQ file was sequentially mapped to human ribosomal RNA and hemoglobin 778 

sequences using a gapped aligner STAR (Dobin et al., 2013) to make sure that rRNA was 779 

depleted and there was no hemoglobin contamination. Raw RNA-seq data in FASTQ file format 780 

was quality controlled during and after sequencing to identify potential technical issues. Cleaned 781 

sequencing reads of placental FcRs were then mapped to the human reference genome (assembly 782 

GRCh38, Gencode annotation release 25) using STAR to generate read counts for each of 783 

annotated genes. The raw gene read count data was normalized using edgeR (Robinson et al., 784 

2010). 785 

FcR binding antibody multiplex assay  786 

Fv and Fc profiles of plasma antibodies were characterized using a multiplexed Fc array assay as 787 

described previously (Brown et al., 2017; Brown et al., 2018). In brief, recombinant proteins 788 

were covalently coupled to fluorescent beads (Luminex). To display biotinylated peptides, 789 

streptavidin (Rockland) was coupled to beads first to capture the peptides. In duplicate, test 790 

samples were diluted 1:250 or 1:1,000 into a 384-well microplate (Greiner Bio One) containing 791 

∼500 beads of each specificity per well. Following bead opsonization, beads were washed and 792 

subsequently incubated with PE-conjugated Fc detection reagents, including human FcRs 793 

tetramers (Boesch et al., 2014), anti IgG (Southern Biotech), and C1q (Sigma-Aldrich), followed 794 

by a final wash. Data were acquired on a FlexMap3D instrument (Luminex) and raw data were 795 

reported as MFI values. 796 
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Statistical analysis 797 

The statistical analysis plan was finalized prior to data analysis. Multivariable linear regression 798 

models with sandwich variance estimates were used to evaluate the association between transfer 799 

efficiency and covariates of interest. Before regression, transfer efficiency was rank-gauss 800 

transformed (i.e. they are ranked and the ranks are transformed by the inverse Gaussian 801 

probability function). Missing antibody-specific transfer efficiencies were imputed using the R 802 

package mice. Principal component analysis of glycan markers was performed after the markers 803 

were scaled to 1. Global transplacental transfer was calculated for each patient and assigned a 804 

transfer score. An antigen-specific IgG transplacental transfer score was assigned to each distinct 805 

IgG specificity. All statistical procedures were implemented using the R language and 806 

environment for statistical computing and graphics. False discovery rate (FDR) p values are 807 

reported as FDR values. 808 
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