1 2 3	Short Title: Psittacid adenovirus-2 infection in the orange-bellied parrot
4	Psittacid Adenovirus-2 infection in the critically
5	endangered orange-bellied parrot (Neophema
6	chrysogastor): A key threatening process or an
7	example of a host-adapted virus?
8	
9	Nian Yang ¹ , Jennifer McLelland ² , David J. McLelland ² , Judy Clarke ³ , Lucy Woolford ⁴ , Paul Eden ⁵ ,
10	David N. Phalen ^{1*}
11	
12	¹ Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales,
13	Australia
14	² Adelaide Zoo, Zoos South Australia, Adelaide, South Australia, Australia
15	³ Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania,
16	Australia
17	⁴ School of Animal and Veterinary Science, University of Adelaide, Roseworthy, South
18	Australia, Australia
19	⁵ Werribee Open Range Zoo, Zoos Victoria, Werribee, Victoria, Australia
20	
21	*Corresponding author
22	Email: david.phalen@sydney.edu.au (DP)

23 Abstract

24 Psittacid Adenovirus-2 (PsAdv-2) was identified in captive orange-bellied parrots (25 *Neophema chrysogastor*) during a multifactorial cluster of mortalities at the Adelaide Zoo, 26 South Australia, and an outbreak of *Pseudomonas aeruginosa* septicaemia at the Tasmanian 27 Department of Primary Industries, Parks, Water and Environment captive breeding facility, 28 Taroona, Tasmania. This was the first time that an adenovirus had been identified in orange-29 bellied parrots and is the first report of PsAdv-2 in Australia. To investigate the status of 30 PsAdv-2 in the captive population of orange-bellied parrots, 102 healthy birds from five 31 breeding facilities were examined for the presence of PsAdv-2 DNA in droppings and/or 32 cloacal swabs using a nested polymerase chain reaction assay. Additionally, eight birds 33 released to the wild for the 2016 breeding season were similarly tested when they were 34 recaptured prior to migration to be held in captivity for the winter. PsAdv-2 was identified in 35 all breeding facilities as well as the birds recaptured from the wild. Prevalence of shedding 36 ranged from 29.7 to 76.5%, demonstrating that PsAdv-2 is endemic in the captive 37 population of orange-bellied parrots and that wild parrots may have been exposed to the 38 virus. PsAdv-2 DNA was detected in both cloacal swabs and faeces of the orange-bellied 39 parrots, but testing both samples from the same birds suggested that testing faeces would 40 be more sensitive than cloacal swabs. PsAdv-2 was not found in other psittacine species 41 housed in nearby aviaries at the Adelaide Zoo. The source of the infection in the orange-42 bellied parrots remains undetermined. In this study, PsAdv-2 prevalence of shedding was 43 higher in adult birds as compared to birds less than one year old. Preliminary data also 44 suggested a correlation between adenovirus shedding prevalence within the breeding 45 collection and chick survival.

46 Key words: Disease, *Neophema chrysogastor*, orange-bellied parrots, prevalence, Psittacid

47 Adenovirus-2, subclinical infection

49 Introduction

50

51 The orange-bellied parrot (*Neophema chrysogaster*) is the most critically endangered parrot 52 in the world [1]. It is a migratory species that breeds in south-western Tasmania and 53 historically wintered along the coast of South Australia, Victoria, and New South Wales. It 54 was abundant before the 1920s [2], but declined to around 200 birds in the 1990s [3]. In the 55 spring of 2016, just 13 birds returned to the only known remaining breeding site, in 56 Melaleuca, Tasmania [4]. While many possible causes have been suggested, the threatening 57 processes driving this decline are incompletely understood (reviewed in Stojanovic et al. [5]). 58 To save this species, a captive breeding program was initiated in 1984 [6]. Currently, there 59 are over 400 birds managed in six captive breeding institutions. The wild population is 60 augmented annually with the release of captive bred birds to the breeding ground each 61 spring [4].

Captive breeding programs are increasingly the last resort for the survival of many endangered species [7, 8, 9]. A potential risk of captive breeding and release programs is the introduction of disease to both the captive and wild populations from other species in the captive collection or from native wild or feral species frequenting the breeding facilities [10, 11]. If an infectious disease is introduced into a captive population of endangered species it can prove challenging or even impossible to eradicate [12, 13]. The introduction of novel pathogens to wild populations can also threaten their viability [14,15,16].

Endangered psittacine birds (parrots) in captive breeding programs are particularly
at risk for exposure to introduced viruses, as multiple viruses have been established in
parrots as the result of the historic and ongoing trade in wild-caught parrots [17]. Notable

examples of virus incursions in captive breeding programs for endangered parrots, include Avian Bornavirus in the main breeding colony of Spix macaws (*Cyanopsitta spixii*) [11] and Psittacine Beak and Feather Disease Virus (PBFDV) in captive and wild populations of Echo parrots (*Psittacula eques*) [18]. The orange-bellied parrot population is also threatened by PBFDV with three incursions of PBFDV occurring in the captive or wild populations in the past 15 years [19].

78 Adenoviruses also have the potential to impact captive breeding programs of 79 endangered parrots. Adenovirus infections have been described and variably characterised 80 in many species of parrots originating from all of their geographic distributions [20, 21, 22, 81 23, 24]. They have been associated with a range of lesions, including hepatitis, splenitis, 82 pancreatitis, enteritis, nephritis, conjunctivitis and pneumonia [21, 25, 26, 27]. At least one 83 adenovirus has been shown to cause significant ongoing mortality events in captive-raised 84 Poicephalis species in South Africa, and Poicephalis and other species in Europe [28, 29]. In 85 contrast, many reports describe adenovirus-associated disease where only one or a few 86 birds are affected [24, 25, 30]. In some of these reports, adenovirus-associated lesions were 87 part of a multifactorial disease complex [20, 21, 31, 32], or were incidental findings [29, 33, 88 34]. This suggests that, in at least some instances, adenovirus-associated lesions in parrots 89 reflect reactivation of subclinical infections in the face of immune suppression, a 90 phenomenon recognised in other species, including chickens [35]. 91 Overall, the epizootiology of adenoviruses that affect parrots is poorly understood. 92 It is likely, however, based on the behaviour of adenoviruses in poultry, that the 93 adenoviruses that affect parrots are maintained in subclinically infected individuals, and that 94 disease may only occur when birds are stressed or co-infected with immunosuppressive

111	Materials and methods
110	
109	and that PsAdv-2 disease is most likely to occur in birds with other concurrent diseases.
108	preliminary data indicating that subclinical infection may result in reduced chick survivability
107	orange-bellied parrots and that the wild population has been exposed. We also provide
106	Australia. We demonstrate that it is widespread in the captive breeding population of
105	In the current study, we report, for the first time, the presence of PsAdv-2 in
104	tested, yet there was no history of adenovirus disease in these collections.
103	Slovenia [34] where PsAdv-2 DNA was found in cloacal swabs of 10.2% (13/128 birds) birds
102	Adenovirus 2 (PsADv-2) in parrots was also demonstrated by a study of avicultural birds in
101	rufiventris) [24]. Evidence for widespread subclinical infection of parrots by Psittacid
100	porphyrocephala) was found to be fatal to in-contact red-bellied parrots (Poicephalus
99	adenovirus shed by subclinically-infected purple-crowned lorikeets (Glossopsitta
98	Evidence for this was provided in a recent report where it was shown that a novel
97	subclinically infected while other species are more prone to infection resulting in disease.
96	geographic origins are commonly housed together, that some species are more likely to be
95	viruses [36, 37, 38]. It is also possible that given that many species of parrots from multiple

- 112
- 113 Animal ethics

115	All the material used in this study was submitted for diagnostic purposes. The Animal Ethic	:S
116	Committee at the University of Sydney was informed that findings from the diagnostic	

- 117 material were to be used in a publication and a formal waiver of ethics approval has been
- 118 granted.
- 119

120 Investigation of mortality events at two captive breeding facilities

122	The first mortality event (n = 8) occurred between February- and March 2016 in the captive
123	breeding collection at the Adelaide Zoo, South Australia (34°54'46.71"S, 138°36'25.00"E).
124	The second mortality event (n=25) occurred in January 2017 at the Department of Primary
125	Industries, Parks, Water and Environment orange-bellied parrot breeding facility in Taroona,
126	Tasmania (42°57'0.70"S, 147°21'13.71"E) [39]. Representative tissues from deceased birds
127	were collected into 10% neutral buffered formalin, embedded in paraffin, sectioned at 4 μ m
128	and stained with haematoxylin and eosin. Liver, kidney and/or spleen were frozen at -20 $^\circ$ C
129	from all eight birds from the Adelaide mortality event, and15 of the 25 birds that died at the
130	Taroona facility.
131	
132	Detection of adenovirus DNA in tissues
133	
124	
134	Tissues from two birds from the Adelaide Zoo and 15 birds from the Taroona breeding
134	Tissues from two birds from the Adelaide Zoo and 15 birds from the Taroona breeding facility were submitted for PCR screening for adenovirus infection (Table 1). DNA was
134 135 136	Tissues from two birds from the Adelaide Zoo and 15 birds from the Taroona breeding facility were submitted for PCR screening for adenovirus infection (Table 1). DNA was extracted from all tissues submitted with a DNA extraction kit (DNeasy Blood & Tissue Kit,
134 135 136 137	Tissues from two birds from the Adelaide Zoo and 15 birds from the Taroona breeding facility were submitted for PCR screening for adenovirus infection (Table 1). DNA was extracted from all tissues submitted with a DNA extraction kit (DNeasy Blood & Tissue Kit, Qiagen, Doncaster, Victoria, Australia) following the manufacture's recommendations.
 134 135 136 137 138 	 Tissues from two birds from the Adelaide Zoo and 15 birds from the Taroona breeding facility were submitted for PCR screening for adenovirus infection (Table 1). DNA was extracted from all tissues submitted with a DNA extraction kit (DNeasy Blood & Tissue Kit, Qiagen, Doncaster, Victoria, Australia) following the manufacture's recommendations. Adenovirus DNA was detected using nested-PCR with degenerated primer sets described by
 134 135 136 137 138 139 	Tissues from two birds from the Adelaide Zoo and 15 birds from the Taroona breeding facility were submitted for PCR screening for adenovirus infection (Table 1). DNA was extracted from all tissues submitted with a DNA extraction kit (DNeasy Blood & Tissue Kit, Qiagen, Doncaster, Victoria, Australia) following the manufacture's recommendations. Adenovirus DNA was detected using nested-PCR with degenerated primer sets described by Wellehan et al. [40]. The first and nested rounds of the DNA amplifications were based on

140	the following protocol: One cycle of 95 C $^{\circ}$ for 3 min, followed by six cycles where the first
141	annealing temperature (60°C) was decreased by 2° C with each cycle. In all subsequent
142	cycles (n=44) the annealing temperature was 50°C. Primers were allowed to anneal in all
143	cycles for 30 s and all extension phases were at 72° C for 30 s., these were followed by a
144	denaturation phase at 95°C for 30 s. Following the last standard cycle, the samples were
145	held at 72 ^o C for 2 min and immediately chilled to 5 ^o C. The amplification products were
146	separated by electrophoresis on 1.5% agarose gels containing ethidium bromide and
147	visualized under ultraviolet light. The second amplification products of the positive samples
148	were purified by centrifugation (Amicon Ultra Centrifugal Filtration Units, Millipore,
149	Tulagreen, Ireland) and sequenced in both directions using the amplification primers
150	(Australian Genome Research Facility, Sydney, New South Wales, Australia). Sequences
151	were compared with adenovirus sequences in GenBank using NCBI BLAST [41].
152	

152

153 Table 1. Histopathological findings and PCR results of orange-bellied parrots (*Neophema*

154 *chrysogaster*) necropsied at Adelaide Zoo and Taroona Breeding Facility.

	Bird No.	Viral inclusions observed	Fresh tissue tested			Results for	
Facility			Kidney	Liver	Pooled Liver and Spleen	Adenovirus Testing	
Adelaide	1	Kidney	~			+	
Zoo	2	Kidney	~			+	
	3	Kidney			~	-	
	4	Kidney			~	-	
	5	Kidney	~			+	
	6	no	~			+	
	7	no	~			-	
	8	NA	~			+	
Taroona	9	NA	~			-	
Breeding	10	NA		~		+	
Facility	11	NA		~		+	
-	12	NA		~		+	
	13	NA		~		+	
	14	NA		~		-	
	15	NA		~		-	
	16	NA		~		-	
	17	NA			~	+	

156 Detection of adenovirus DNA in cloacal swabs and droppings157

158	Cloacal swabs, frozen dry at -20°C prior to analysis, were obtained from 102 outwardly
159	healthy captive orange-bellied parrots at Adelaide Zoo (n = 23), Priam Parrot Breeding
160	Centre (n = 17) (35°20'22.71"S, 149°15'0.65"E), Healesville Sanctuary (n = 37) (37°40'57.13"S,
161	145°31'51.20"E), and Moonlit Sanctuary (n = 25) 38°12'41.70"S, 145°15'2.89"E). This
162	sampling represented 92% of the Adelaide Zoo flock, 100% of the Priam flock, and
163	approximately 50% of the Healesville and Moonlit flocks. Faecal samples were collected
164	concurrently from 35 birds at the Healesville Sanctuary. Eight captive-raised female birds
165	released to the wild for the 2016-2017 breeding season were recaptured prior to migration
166	and held in isolation over winter in captivity at Werribee Open Range Zoo (37°55'22.23"S,
167	144°40'2.58"E). Cloacal swabs were collected from all eight birds.
168	An additional 38 cloacal swabs from adjacently housed parrots at the Adelaide Zoo
169	were also tested. Species tested included: elegant parrot (Neophema elegans) (n=15);
170	regent parrot (<i>Polytelis anthopeplus</i>) (n=4); black-capped lory (<i>Lorius lory</i>) (n=4); eclectus
171	parrot (<i>Eclectus roratus</i>) (n=5); scarlet macaw (<i>Ara macao</i>) (n=2); crimson-bellied parakeet
172	(<i>Pyrrhura perlata</i>) (n=6); blue-and-yellow macaw (<i>Ara ararauna</i>) (n=1) and yellow-crowned
173	amazon (Amazona ochrocephala) (n=1).
174	DNA extraction, PCR amplification of adenovirus DNA, and sequencing were done as
175	described above. To test the hypothesis that the amplification products were from PsADv-2,
176	PsAdv-2 specific primers (3'GAACAGAGAGGAGGAAGG, 5'GGGAAAACCGAAAAAGAGCA)
177	were designed to amplify the second amplification products of the positive samples using

178 Geneious (Biomaters, Auckland New Zealand). One positive sample from each tested

- 179 institution was randomly selected for sequencing with the PsAdv-2 specific internal primers
- 180 (Australian Genome Research Facility, West Mead, Australia).
- 181

182 Characterisation of suspected adenoviruses in the black-capped

183 lories

184

185	The PCR amplification products of the time of time of the time of the time of time of the time of time	e cloacal swabs from 3 black-capped lories were of the
-----	--	--

- 186 appropriate mass to be adenovirus. The attempt to sequence the amplicons with the
- 187 degenerate amplification primers failed. To test the hypothesis that the amplification
- 188 products were from PsADv-2, two additional PsAdv-2 specific primers were designed
- 189 (3'ACAGAGAGGAGGAAGGCAGT, 5'TCACACACCCTTTGCCCTTT) using Geneious and
- 190 amplification was attempted using amplicons from the first PCR reaction for the three lories
- 191 and amplicons from the orange-bellied parrots as positive controls.

192

193 Sensitivity of the PCR assay

194

- 195 To determine the sensitivity of the PCR assay, the first amplification products were purified.
- 196 Then 10-fold serial dilutions of the purified product were made, starting from 10^5 copies/ μ L
- 197 to 1 copy/ μ L. The dilutions were then amplified by the nested PCR assay.

198

199 Data analysis

201	Sex, age and reproductive data (n= 65 birds) for the 2016-17 breeding season of the birds
202	were acquired from the breeding institutions. The age of birds was categorised as adult (\geq
203	1 yr) and juvenile (<1yr) groups. Significant tests for associations between the presence of
204	the adenovirus infection and the age and sexes of the tested birds were based on Chi-
205	squared test (p \leq 0.05).
206	Linear regression modelling [42] was used to assess the correlations between the
207	prevalence of adenovirus and indicators (fertility of eggs, egg hatchability, percentage of
208	chicks that fledged) of reproductive success among four of five breeding collections
209	(Healesville Sanctuary, Adelaide Zoo, Moonlit Sanctuary and Priam Parrot Breeding Centre).
210	Goodness of fit was assessed by the R ² values. Statistical significance of the linear regression
211	coefficients was assessed by the P-value from the <i>t-test</i> .
212	
213	Results
213 214	Results
213214215	Results Investigation of mortality events at two captive breeding facilities
213214215216	Results Investigation of mortality events at two captive breeding facilities
 213 214 215 216 217 	Results Investigation of mortality events at two captive breeding facilities Adelaide Zoo
 213 214 215 216 217 218 	Results Investigation of mortality events at two captive breeding facilities Adelaide Zoo
 213 214 215 216 217 218 219 	Results Investigation of mortality events at two captive breeding facilities Adelaide Zoo
 213 214 215 216 217 218 219 220 	Results Investigation of mortality events at two captive breeding facilities Adelaide Zoo Birds were either found dead, or died after a short period of hospitalization, having been found weak, some with increased respiratory effort. The only consistent gross necropsy
 213 214 215 216 217 218 219 220 221 	Results Investigation of mortality events at two captive breeding facilities Adelaide Zoo Birds were either found dead, or died after a short period of hospitalization, having been found weak, some with increased respiratory effort. The only consistent gross necropsy finding was thin body condition and birds were underweight, with empty gastrointestinal
 213 214 215 216 217 218 219 220 221 222 	Results Investigation of mortality events at two captive breeding facilities Adelaide Zoo Birds were either found dead, or died after a short period of hospitalization, having been found weak, some with increased respiratory effort. The only consistent gross necropsy finding was thin body condition and birds were underweight, with empty gastrointestinal tracts. The first bird to die in February 2016 was diagnosed with systemic Gram-negative

224	associated with mild hepatocellular necrosis. Electron microscopy identified viral particles
225	90-100nm in diameter that were morphologically consistent with an adenovirus. Four birds
226	had mild non-specific histopathological changes and one bird had necrotizing Gram-negative
227	sinusitis. Locally abundant intra-nuclear inclusions in renal epithelial cells of the collecting
228	ducts associated with mild to moderate degenerative changes were found in two birds (Fig 1)
229	that had severe aspergillosis; Both of the birds were positive for adenovirus DNA by PCR
230	(Table 1). The mortality event was attributed to cumulative stressors in the flock, including a
231	period of hot and unusually humid weather. Adenoviral lesions in these cases were
232	considered secondary to immunosuppression in debilitated birds, and were not considered
233	to have contributed significantly to the deaths of these birds.
234	
235	Fig 1. Intra-nuclear inclusion bodies in renal collecting duct epithelial cells in an orange-
236	bellied parrot infected with psittacid adenovirus 2 (Arrows).
237	
237 238	Taroona breeding facility
237 238 239	Taroona breeding facility
237 238 239 240	Taroona breeding facility The mortality event in Taroona was attributed to <i>Pseudomonas aeruginosa</i> septicaemia
 237 238 239 240 241 	Taroona breeding facility The mortality event in Taroona was attributed to <i>Pseudomonas aeruginosa</i> septicaemia traced to contaminated sprouted seed [39]. Histopathology was available for five birds;
 237 238 239 240 241 242 	Taroona breeding facility The mortality event in Taroona was attributed to <i>Pseudomonas aeruginosa</i> septicaemia traced to contaminated sprouted seed [39]. Histopathology was available for five birds; intra-nuclear inclusions were found in kidney sections of three birds. Eight of the fifteen
 237 238 239 240 241 242 243 	Taroona breeding facility The mortality event in Taroona was attributed to <i>Pseudomonas aeruginosa</i> septicaemia traced to contaminated sprouted seed [39]. Histopathology was available for five birds; intra-nuclear inclusions were found in kidney sections of three birds. Eight of the fifteen birds were PCR positive for PsAdv-2, with virus identified in kidney and/or liver. Two birds
 237 238 239 240 241 242 243 244 	Taroona breeding facility The mortality event in Taroona was attributed to <i>Pseudomonas aeruginosa</i> septicaemia traced to contaminated sprouted seed [39]. Histopathology was available for five birds; intra-nuclear inclusions were found in kidney sections of three birds. Eight of the fifteen birds were PCR positive for PsAdv-2, with virus identified in kidney and/or liver. Two birds with renal inclusions tested PCR negative (pooled liver and spleen); one PCR-positive bird
 237 238 239 240 241 242 243 244 245 	Taroona breeding facility The mortality event in Taroona was attributed to <i>Pseudomonas aeruginosa</i> septicaemia traced to contaminated sprouted seed [39]. Histopathology was available for five birds; intra-nuclear inclusions were found in kidney sections of three birds. Eight of the fifteen birds were PCR positive for PsAdv-2, with virus identified in kidney and/or liver. Two birds with renal inclusions tested PCR negative (pooled liver and spleen); one PCR-positive bird (liver) had no viral inclusions identified (Table 1).

247 Sequencing and PCR amplification with PsAdv-2 specific primers

248

249 The sequences (323bp) of the amplicons from the orange-bellied parrots at the Adelaide,

250 Taroona, breeding facilities were all identical to the sequence of PsAdv-2.

251

252 Detection of adenovirus DNA in cloacal swabs and droppings

253 Adenovirus infection was detected in all institutions, including the recaptured birds held at

- 254 Werribee Zoo. The overall prevalence of the adenovirus infection was 42.7%, and the
- 255 prevalence for each institution ranged from 29.7% to 76.5% (Table 2). The sequencing
- 256 results of the DNA samples from each institution were all identical to PsAdv-2. All
- amplification products from positive orange-bellied parrots re-amplified with nested specific
- 258 PsADV-2 primers. Three of four black-capped lories were PCR-positive for adenovirus; the
- 259 other 35 parrots at Adelaide Zoo were negative. The sequences of the amplification
- 260 products from the black-capped lories were not readable and amplification products were
- 261 not generated using PsAdv-2 specific primers.

Table 2. Detection of psittacid adenovirus 2 in cloacal swabs from orange-bellied parrot

263 (*Neophema chrysogaster*) across five captive breeding institutions.

	Healesville Sanctuary	Adelaide Zoo	Moonlit Sanctuary	Werribee Zoo	Priam Breeding Centre	Overall
Adenovirus- Positive	11	9	10	4	13	47
Total	37	23	25	8	17	110
Prevalence	29.7%	39%	40%	50%	76.5%	42.7%

264 Relative sensitivity of sample sources and sensitivity of PCR assay

265

- 266 A comparison of PCR results for the paired faecal samples and cloacal swabs collected from
- 267 35 orange-bellied parrots at Healesville Sanctuary is shown (Table 3). Seven birds were both
- 268 positive on both samples; 25 birds were negative on both samples. Three birds were only
- 269 positive for adenovirus in faeces.
- 270

Table 3. Relative sensitivity of faeces and cloacal swabs for the detection of adenovirus

272 **DNA in orange-bellied parrots (***Neophema chrysogaster***).**

Adenovirus testing results	Number of individuals	Percentage %	
Faeces +; Swabs +	7	20.0%	
Faeces +; Swabs -	3	8.6%	
Faeces -; Swabs -	25	71.4%	
Faeces -; Swabs +	0	0%	
Total	35	100%	

- 273
- 274

275 Sensitivity of the nested PCR assay

276

- 277 All dilutions of DNA could be detected by the nested PCR indicating that it was able to
- 278 detect a minimum of six copies of PsAdv-2.

280 Correlation between infection prevalence and age, sex and

281 reproductive data

- 282 The presence of PsAdv-2 was significantly associated with age, with adult birds more likely
- 283 to be infected by PsAdv-2 than birds < 1 yr (χ^2 =8.38 > $\chi_{0.05}^2$ = 3.841). There was no
- significant association between PsAdv-2 infection and sex ($\chi^2=0.34 < \chi_{0.05}^2 = 3.841$). A
- 285 quasi-significant negative correlation was observed between the fledgling rate of hatched
- chicks and the PsAdv-2 prevalence at the institutional level ($R^2 = 0.890$, $p_{\alpha} = 0.057$, p_{β}
- 287 = 0.013) (Fig 2). No significant association was observed between PsAdv-2 prevalence and
- 288 fertility rate or hatch rate of fertile eggs.
- 289
- 290 Fig 2. Linear regression model of the correlations between adenovirus prevalence and

291 reproductive success of the orange-bellied parrots (*Neophema chrysogaster*) during the

- 292 **2016-17** breeding season. (H: Healesville Sanctuary, A: Adelaide Zoo, M: Moonlit
- 293 Sanctuary, P: Priam Parrot Breeding Centre).

294

295 **Discussion**

The orange-bellied parrot is on the verge of extinction in the wild. Efforts to maintain a wild population require the annual release of captive-raised birds [4]. Detailed protocols are in place, including the isolation of breeding stocks from other captive parrots, testing and quarantine, to minimise the impact of diseases in the captive breeding program and to prevent the introduction of disease from the captive-raised orange-bellied parrots to the wild orange-bellied parrots [43]. The identification of adenovirus inclusions in birds dying from a multifactorial disease at the Adelaide Zoo, and from *Pseudomonas areuginosa* 303 septicaemia at the Taroona breeding facility prompted efforts to determine the specific

304 adenovirus that was causing these lesions, determine how widespread infection was in the

305 captive breeding stock, and if the wild birds had already been exposed.

306 Sequencing data generated in this study shows that the cause of the lesions in the 307 Taroona and Adelaide birds, and the adenovirus subclinically infecting other orange-bellied 308 parrots, is the Siadenovirus PsAdv-2. This is the first record of this virus in Australia and the 309 most comprehensive investigation into its epizootiology to date. PsAdv-2 was first detected 310 in North America in a plum-headed parrot (*Psittacula cyanocephala*) that died with an acute 311 systemic bacterial infection [21]. This bird also had adenovirus inclusions in the liver that 312 were associated with a mild inflammatory response and individual hepatocyte necrosis. 313 Wellehan et al. [21] also reported PsAdv-2 infection in an umbrella cockatoo (*Cacatua alba*) 314 that died with a chronic encephalitis of unknown cause. Adenovirus inclusions were not 315 seen in this bird and there was no evidence that PsAdv-2 contributed to its illness. The only 316 other study of PsADV-2 involved a survey of 128 apparently healthy captive parrots in 317 Slovenia [34]. In this study, cloacal swabs from 13 (10.2%) of the parrots were positive for 318 PsADV-2 DNA. The positive species originated from South America, Africa, Southwest Asia, 319 and Australia, including a Neophema sp. [34].

Based on the study in Europe [34] and our findings in orange-bellied parrots, PsAdv-2 has a wide host range and is able to circulate in parrot populations without causing apparent disease, or doing so infrequently. While it will be challenging to determine the species of parrots from which this virus originated, it appears that its ability to cause subclinical infections in a wide range of parrot species has resulted in its global distribution [21, 34]. Finding virus in cloacal swabs and droppings suggests that faecal/urinary-oral transmission would be the most likely form of transmission. However, some adenoviruses 327 can be transmitted vertically [44], so it is possible that PsAdv-2 may also be transmitted this328 way.

329 Whether PsAdv-2 was introduced into the orange-bellied parrot population by 330 indirect contact with other native or exotic species, or whether it originated in the orange-331 bellied parrot, is not known. All institutions housing orange-bellied parrot breeding 332 populations, with the exception of the Taroona facility, have multiple other species of both 333 native and exotic birds, and many of the enclosures are open to the environment and thus 334 have the potential for wild bird exposure. We were only able to test parrot species in nearby 335 enclosures at one institution and we found no evidence of infection to suggest they were 336 the source of infection or that they had been infected with PsAdv-2 from the orange-bellied 337 parrots. More extensive testing of other birds housed adjacent to the orange-bellied parrots 338 at the other breeding institutions is warranted to further investigate potential transmission 339 pathways.

Amplicons of the appropriate mass were detected in three of four black-capped lories, but attempts to sequence these products were unsuccessful. These amplification products are not PsAdv-2 DNA as PsAv-2 specific primers did not produce an amplicon when used in a nested reaction with the first amplification product. Therefore, they may represent non-specific amplification products or the adenoviruses that infected the blackcapped Lories were not PsAdv-2. Cloning and sequencing the amplification products will be necessary to differentiate between these two possibilities.

While most PsAdv-2 infections appear to be subclinical, they may not be completely innocuous. The first report of this infection, in a plum-headed parrot [21], described a mild chronic hepatitis associated with inclusions and we saw a similar lesion in one of the orangebellied parrots that died with aspergillosis in the Adelaide Zoo mortality cluster. Renal 351 inclusions were also seen in two other birds from the Adelaide Zoo and three of five birds 352 for which there was histopathology that died from *Psuedomonas auregenosia* had renal 353 inclusions. Virus inclusions in the kidneys varied between being uncommon to locally 354 abundant and while generally not associated with necrosis nor a significant inflammatory 355 response, degeneration of tubular epithelial cells was seen. This variation in lesions suggests 356 that while adenovirus infection may persist in one or more organs in healthy birds, virus 357 replication is triggered or increased in birds that are compromised by other infectious 358 diseases and at these times it may have an impact on the host. Given that the 359 immunosuppressive PBFDV is enzootic in the captive orange-bellied parrot breeding 360 population [19], future studies correlating PsAdv-2 shedding with past and current PBFDV 361 infection status would be warranted.

362 The reproductive success of the captive breeding program of orange-bellied parrots 363 is relatively poor with problems including infertile eggs and suboptimal chick survival after 364 hatch [5]. This may reflect a lack of genetic diversity in the overall population, challenges 365 associated with breeding orange-bellied parrots outside of their normal summer range, 366 malnutrition and/or other unrecognized factors. In this paper, we present preliminary data 367 suggesting a correlation between adenovirus shedding prevalence with in a breeding facility 368 and chick survival. Additional studies correlating the infection status of the parents with 369 chick infection status and survival will be required before the impact of PsAdv-2 on chick 370 mortality can be determined. Testing dead, in shell, embryos and infertile eggs for the 371 presence of PsAdv-2 would also prove useful, as it could be used to determine if egg 372 transmission occurs and if egg infection impacts embryo survival. If egg transmission does 373 occur, it would make eradication of the virus from the orange-bellied parrots challenging or 374 even impossible.

375 A Veterinary Technical Reference Group containing members from all the 376 institutions involved in the orange-bellied parrot captive breeding program has been 377 established to provide advice to the Orange-bellied Parrot Recovery Team. The value of this 378 Reference Group was demonstrated in their response to the initial detection of an 379 adenovirus in the captive orange-bellied parrots. The Reference Group was instrumental in 380 making samples available for the adenovirus testing done in this study. Additionally, the 381 Reference Group agreed prior to testing that if an adenovirus was found to be present in all 382 institutions and wild birds had been exposed, then it would be considered to be endemic in 383 both the captive and wild populations and no control efforts would be undertaken. Our 384 findings show that PsAdv-2 is indeed endemic in the captive orange-bellied parrot 385 population and that the wild population has been exposed. Our findings of an overall 386 prevalence of 42.7% infection in the tested birds also make any type of control option 387 virtually impossible. Isolation of nearly half of the birds and taking this number of captive 388 birds out of the breeding population would not be practical and likely would result in a loss 389 of genetically important breeding stock. Also, the sensitivity of PCR testing of cloacal swabs 390 or droppings to detect infected birds is unknown. It is possible that infected birds shed virus 391 intermittently or may not shed virus at all. We also found that virus shedding was more 392 common in adult birds than birds less than one year. This may mean, as occurs in 393 adenovirus infections in poultry, that although birds are infected with an adenovirus, 394 shedding is more likely to occur in sexually mature birds (McFerran and Smyth, 2000). If any 395 of these hypotheses are correct, the prevalence of infected birds may be much higher than 396 the results of this study have documented. Repeated testing of birds over time, and 397 opportunistic parallel testing of cloacal swabs/droppings and tissues at necropsy, will be 398 necessary if the sensitivity of this test is to be determined.

399 This study generated additional results of potential diagnostic significance. While 400 both cloacal swabs and droppings were found to be useful samples for detecting PsAdv-2 401 infection in the orange-bellied parrot, in the 35 samples where both cloacal swabs and 402 droppings were submitted, 20% of the cloacal swabs were positive, while 28.7% of the 403 droppings were positive. This suggests that droppings may be the preferred sample to test 404 when screening for PsAdv-2 infection, eliminating the need to catch a bird to test it. 405 Additional diagnostic findings show that both the liver and the kidney can contain PsAdv-2 406 DNA without the presence of inclusion bodies in histological sections. Also, PsAdv-2 DNA 407 can be found in some, but not all, liver samples, from birds with renal inclusions, making 408 kidney the organ of choice when testing cadavers for the presence of PsAdv-2. 409 It has been proposed that private aviculturists might be used to assist in breeding 410 the orange-bellied parrot to increase the numbers in captivity and the availability of birds 411 for release into the wild. The findings of this study argue against this proposal. Given the 412 uncertainty of the sensitivity of testing for PsAdv-2, it would be impossible to guarantee that 413 birds sent to aviculture collections would be free of this virus and therefore could pose a risk 414 to the aviculturists' birds. Likewise, while extensive testing is done yearly for the PBFDV in 415 the captive orange-bellied parrot population [19], it has been impossible to eradicate it and 416 so these birds remain potential sources of this virus. Introduction of new infectious diseases 417 into the captive orange-bellied parrot population in aviculturists' collections is also a risk. 418 Most aviculturists have limited resources and it would be unlikely that they could provide 419 housing and management practices that would prevent disease transmission from their own 420 birds to the orange-bellied parrots. This is of great concern in that Avian Bornavirus-2 and 4 421 and Psittacid Herpesvirus-3, pathogens that have had major impacts on avicultural species 422 globally, are known to be present in some Australian avicultural collections [45, 46). Also,

423	new viruses are still being discovered in Australian aviculture collections and the
424	epizootiology of these viruses and means of testing for them are largely unknown [24, 47].
425	In conclusion, this study documents the presence of PsAdv-2 in Australia for the first
426	time. It also shows that it is endemic in the captive orange-bellied parrot population and
427	that the wild population has been exposed. PsAdv-2 does not appear to be highly
428	pathogenic to the orange-bellied parrot, but reactivation of replication may occur in birds
429	that are experiencing other stressors or concurrent infections. Preliminary findings hint that
430	PsAdv-2 may impact chick survival to fledging, but a more detailed investigation will be
431	required to confirm this. Because PsAdv-2 is endemic in the orange-bellied parrot
432	population, its impact on the population is minimal or unproven, and the sensitivity of
433	available testing methods is not known, efforts to control this virus in this population are
434	unlikely to be successful and are not recommended at this time.
135	

435

436 Acknowledgements

437

This research was funded by the Sydney School of Veterinary Sciences, The University of
Sydney. The authors are grateful to the staff of Adelaide Zoo, Taroona Orange-bellied Parrot
Breeding Facility, Healesville Sanctuary, Moonlit Sanctuary, Priam Parrot Breeding Centre
and the Werribee Open Range Zoo who collected samples for this study. The authors thank
Annika Everaardt, Lisa Tuthill, Leanne Wicker, and Daniel Gowland for their support and
providing samples.

444

445 **References**

447	1. BirdLife International 2016. <i>Neophema chrysogaster</i> . The IUCN Red List of
448	Threatened Species 2016: e.T22685203A93063235. Avialable at:
449	http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22685203A93063235.en.
450	2. Jarman H. The orange-breasted parrot (<i>Neophema chrysogaster</i>). Australian Field
451	Ornithology. 2016;2(6): 155-167.
452	3. Menkhorst P, Loyn R, Brown P. Management of the orange-bellied parrot. In TW
453	Clark TW, Seebeck JH, editors. Management and conservation of small populations. Chicago,
454	Chicago Zoological Society; 1990. pp. 239-52.
455	4. Troy S. Tasmanian Orange-bellied Parrot Program: Report on the Tasmanian Wild
456	Population 2016/17. In Natural and Cultural Heritage Division, editor: DPIPWE; 2017.
457	5. Stojanovic D, Alves F, Cook H, Crates R, Heinsohn R, Peters A, et al. Further
458	knowledge and urgent action required to save orange-bellied parrots from extinction. Emu-
459	Aus Ornithol. 2017;118(1): 1-9.
460	6. Smales I, Brown P, Menkhorst P, Holdsworth M, Holz P. Contribution of captive
461	management of orange-bellied parrots Neophema chrysogaster to the recovery programme
462	for the species in Australia. Int Zoo Yb. 2000;37(1): 171-178.
463	7. Zipple K, Johnson K, Gagliardo R, Gibson R, McFadden R, Browne R, et al. The
464	amphibian ark: A global community for ex situ conservation of amphibians. Herpetol
465	Conserv Biol. 2011;6(3): 340–352.
466	8. VanderWerf E, Crampton LH, Diegmann J, Atkinson CT, Leonard DL. Survival
467	estimates of wild and captive-bred released Puaiohi, an endangered Hawaiian thrush. Condor.
468	2014;116(4): 609-618.

469	9. Howard JG. Lync C. Santymire RM, Marinari PE, Wildt DE. Recovery of gene
470	diversity using long-term cryopreserved spermatozoa and artificial insemination in the
471	endangered black-footed ferret. Anim Conserv. 2016;19(2): 102-111.
472	10. Hammer S, Watson R. The challenge of managing Spix Macaws (<i>Cyanopsitta spixii</i>)
473	at Qatar-an eleven-year retrospection. Zool Gart. 2012;81(2): 81-95.
474	11. Regnard GL, Boyes RS, Martin RO, Hitzeroth II, Rybicki EP. Beak and feather
475	disease viruses circulating in Cape parrots (Poicepahlus robustus) in South Africa. Arch
476	Virol. 2015;160(1): 47-54.
477	12. Meli ML, Cattori V, Martínez F, López G, Vargas A, Simón MA, et al. Feline
478	leukemia virus and other pathogens as important threats to the survival of the critically
479	endangered Iberian lynx (Lynx pardinus). PLoS One. 2009;4(3): e4744.
480	13. Seimon TA, Miquelle DG, Chang TY, Newton AL, Korotkova I, Ivanchuk G, et al.
481	Canine distemper virus: an emerging disease in wild endangered Amur tigers (Panthera tigris
482	altaica). M Bio. 2013;4(4): e00410-13.
483	14. Walker SF, Bosch J, James TY, Litvintseva AP, Valls JAO, Piña S, et al. Invasive
484	pathogens threaten species recovery programs. Curr Biol. 2008;18(18): R853-R854.
485	15. Fenner J, Seltzer J, Peyton S, Sullivan H, Tolson P, Walsh RP, et al. Demographic
486	variation of Wolbachia infection in the endangered Mitchell's Satyr Butterfly. Insects.
487	2017;8(2): 50-57.
488	16. Peniche G, Olson PD, Bennett DJ, Wong L, Sainsbury AW, Durrant C. 2017.
489	Protecting free-living dormice: Molecular identification of cestode parasites in captive
490	dormice (Muscardinus avellanarius) destined for reintroduction. EcoHealth 2017;14: S106-
491	S116.

492 17. Fogell DJ, Martin RO, Groombridge JJ. Beak and feather disease virus in wild and
493 captive parrots: an analysis of geographic and taxonomic distribution and methodological
494 trends. Arch Virol. 2016;161(8): 2059-2074.

495 18. Kundu S, Faulkes CG, Greenwood AG, Jones CG, Kaiser P, Lyne OD, et al. Tracking

496 viral evolution during a disease outbreak: the rapid and complete selective sweep of a

497 circovirus in the endangered Echo parakeet. J Virol. 2012;86(9): 5221-5229.

498 19. Peters A, Patterson EI, Baker BG, Holdsworth M, Sarker S, Ghorashi SA, et al.

499 Evidence of psittacine beak and feather disease virus spillover into wild critically endangered

500 orange-bellied parrots (*Neophema chrysogaster*). J Wildl Dis. 2014;50(2): 288-296.

501 20. Wellehan JF, Johnson AJ, Latimer KS, Bischoff K, Lafortune M, Jacobson ER.

502 Identification and initial characterization of an adenovirus associated with fatal hepatic and

503 lymphoid necrosis in a Meyer's parrot (*Poicephalus meyeri*). J Avian Med Surg. 2005;19(3):

504 191-197.

505 21. Wellehan JF Jr, Greenacre CB, Fleming GJ, Stetter MD, Childress AL, Terrell SP.

506 Siadenovirus infection in two psittacine bird species. Avian Pathol. 2009;38(5): 413-417.

507 22. To KK, Tse H, Chan WM, Choi GK, Zhang AJ, Sridhar S, et al. A novel psittacine

508 adenovirus identified during an outbreak of avian chlamydiosis and human psittacosis:

509 zoonosis associated with virus-bacterium coinfection in birds. PLoS Negl Trop Dis.

510 2014;8(12): e3318.

511 23. Hulbert CL, Chamings A, Hewson KA, Steer PA, Gosbell M, Noormohammadi AH.

512 Survey of captive parrot populations around Port Phillip Bay, Victoria, Australia, for

513 psittacine beak and feather disease virus, avian polyomavirus and psittacine adenovirus. Aust

514 Vet J. 2015;93(8): 287-92.

- 515 24. Das S, Fearnside K, Sarker S, Forwood JK, Raidal SR. A novel pathogenic
- 516 aviadenovirus from red-bellied parrots (*Poicephalus rufiventris*) unveils deep recombination
- 517 events among avian host lineages. Virol. 2017;502: 188-197.
- 518 25. Pass DA. Inclusion bodies and hepatopathies in psittacines. Avian Pathol. 1987;16(4):
 519 581-597.
- 520 26. Desmidt M, Ducatelle R, Uyttebroek E, Charlier G, Hoorens J. Respiratory
- 521 adenovirus-like infection in a rose-ringed parakeet (*Psittacula krameri*). Avian Dis. 1991;
- 522 35(4):1001-1006.
- 523 27. Droual R, Woolcock P, Nordhausen R, Fitzgerald S. Inclusion body hepatitis and
- 524 hemorrhagic enteritis in two African grey parrots (*Psittacus erithacus*) associated with
- 525 adenovirus. J Vet Diagn Invest. 1995;7(1): 150-154.
- 526 28. Mfenyana N. The isolation and characterisation of a Psittacine Adenovirus from
- 527 infected parrots in South Africa. BSc HonsThesis. University of the Free State; 2007.
- 528 Avilable from:
- 529 https://www.researchgate.net/publication/265191217_The_isolation_and_characterisation_of
- 530 _a_Psittacine_Adenovirus_from_infected_parrots_in_South_Africa?enrichId=rgreq-
- 531 c1eb98e63bee71e09a9957f0fa34f440-
- 532 XXX&enrichSource=Y292ZXJQYWdIOzI2NTE5MTIxNztBUzoyOTkyMzMzMTcwMTU1
- 533 NTJAMTQ0ODM1NDE5MDk5MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
- 534 29. Lüschow D, Prusas C, Lierz M, Gerlach H, Soike D, Hafez HM. Adenovirus of
- 535 psittacine birds: investigations on isolation and development of a real-time polymerase chain
- reaction for specific detection. Avian Pathol. 2007;36(6): 487-494.
- 537 30. Scott P, Condron R, Reece R. Inclusion body hepatitis associated with adenovirus-
- 538 like particles in a cockatiel (Psittaciformes; *Nymphicus hollandicus*). Aust Vet J.
- 539 1986;63(10):337-8.

- Mori F, Touchi A, Suwa T, Itakura C, Hashimoto A, Hirai K. Inclusion bodies
 containing adenovirus-like particles in the kidneys of psittacine birds. Avian Pathol.
 1989;18(1): 197-202.
- 012 1909,10(1): 197 202.
- 543 32. Gomez-Villamandos JC, Mozos E, Sierra MA, Perez J, Mendez A. Inclusion bodies
- 544 containing adenovirus-like particles in the intestine of a psittacine bird affected by inclusion
- 545 body hepatitis. J Wildl Dis. 1992;28(2): 319-22.
- 546 33. Raue R, Gerlach H, Muller H. Phylogenetic analysis of the hexon loop 1 region of an
- adenovirus from psittacine birds supports the existence of a new psittacine adenovirus
- 548 (PsAdV). Arch Virol. 2005;150(10): 1933-1943.
- 549 34. Zadravec M, Račnik J, Slavec B, Ballmann M, Marhold C, Harrach B, et al. (2011).
- 550 Detection of new adenoviruses in psittacine birds in Slovenia. IX Simpozij Peradarski dani
- 551 2011 S međunarodnim sudjelovanjem, Sibenik, Croatia p.131-134.
- 552 35. Hess M. Aviadenovirus infections. In; Swayne DE, Glisson JR, McDougald LR,
- 553 Nolan LK, Suarez DL, Nair VL, editors. Diseases of Poultry, 13th ed. Ames; Wiley-
- 554 Blackwell: 2013. pp. 290-300.
- 55536.Ramis A, Marlasca MJ, Majo N, Ferrer L. Inclusion body hepatitis (IBH) in a group
- of eclectus parrots (*Eclectus roratus*). Avian Pathol. 1992;21(1): 165-169.
- 557 37. Toro H, Gonzalez C, Cerda L, Hess M, Reyes E, Geisse C. Chicken anemia virus and
- 558 fowl adenoviruses: association to induce the inclusion body hepatitis/hydropericardium
- 559 syndrome. Avian Dis. 2000;44(1): 51-58.
- 560 38. Eregae ME, Dewey CE, McEwen SA, Ouckama R, Ojkić D, Guerin MT. Flock
- 561 prevalence of exposure to avian adeno-associated virus, chicken anemia virus, fowl
- 562 adenovirus, and infectious bursal disease virus among Ontario broiler chicken flocks. Avian
- 563 Dis. 2013;58(1): 71-77.

564	39. Clarke J, Peck S, Davis A, Knowles G, Taylor J, Delaine J, et al. Outbreak of
565	Pseudomonas aeruginosa at the Taroona Orange Bellied Parrot Breeding Facility in January
566	2017: diagnosis, sources and lessons learnt. Wildl Dis Assoc Australasian Section Conf 2017;
567	Falls Creek, Victoria, Australia.
568	40. Wellehan JF, Johnson AJ, Harrach B, Benkö M, Pessier AP, Johnson CM, et al.
569	Detection and analysis of six lizard adenoviruses by consensus primer PCR provides further
570	evidence of a reptilian origin for the atadenoviruses. J Virol. 2004;78(23): 13366-13369.
571	41. Boratyn GM, Schäffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL.
572	Domain enhanced lookup time accelerated BLAST. Biol Direct. 2012;7(1): 12-25.
573	42. Schneider A, Hommel G, Blettner M. Linear regression analysis: part 14 of a series
574	on evaluation of scientific publications. Dtsch Arztebl Int. 2010;107(44): 776-782.
575	43. Orange-belled Parro Recovery Team. National recovery plan for the orange-bellied
576	parrot (Neophema chrysogaster), Department of Primary Industries and Water. 2006.
577	Avialable at: http://www.environment.gov.au/system/files/resources/f6680c43-4b28-4a4a-
578	86c1-04adaad26f28/files/national-recovery-plan-orange-bellied-parrot.pdf
579	44. Grafl B, Aigner F, Liebhart D, Marek A, Prokofieva I, Bachmeier J, et al. Vertical
580	transmission and clinical signs in broiler breeders and broilers experiencing adenoviral
581	gizzard erosion. Avian Path. 2012;41(6): 599-604.
582	45. Weissenböck H, Bakonyi T, Sekulin K, Ehrensperger F, Doneley RJ, Dürrwald R, et
583	al. Avian bornaviruses in psittacine birds from Europe and Australia with proventricular
584	dilatation disease. Emerg Inf Dis. 2009;15(9): 1453.
585	46. Gabor M, Gabor L, Peacock L, Srivastava M, Rosenwax A, Phalen D. Psittacid
586	herpesvirus 3 infection in the eclectus parrot (Eclectus roratus) in Australia. Vet Path.

587 2013;50(6): 1053-7.

- 588 47. Sutherland M, Sarker S. Genomic characterisation of the Psittacid herpesvirus from
- 589 Indian ringnecks (*Psittacula krameri*). Annual Conference Proceedings Association of Avian
- 590 Veterinarians Austrlasian Committee 2017 Conference, Auckland, New Zealand. 2017: 16-

591 19.

592

- 593
- 594

Figure 1

Figure 2