
 

Title: The embryonic transcriptome of Arabidopsis thaliana 

 

 

Authors: Falko Hofmann1,2, Michael A. Schon1,2 and Michael D. Nodine1 

 

 

Affiliations: 1Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter           

(VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; 2These authors contributed equally to this work 

 

Corresponding author: Michael D. Nodine (email: michael.nodine@gmi.oeaw.ac.at; phone: +43 1          

79044-9821) 

 

Author ORCID IDs: Falko Hofmann (#0000-0002-5032-0411), Michael A. Schon         

(#0000-0002-4756-3906) and Michael D. Nodine (#0000-0002-6204-8857) 

 

 

 

 

1 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 27, 2018. ; https://doi.org/10.1101/479584doi: bioRxiv preprint 

mailto:michael.nodine@gmi.oeaw.ac.at
https://doi.org/10.1101/479584


 

Key Message 

Arabidopsis embryos possess unique transcriptomes relative to other plant tissues including somatic            

embryos, and can be partitioned into four transcriptional phases with characteristic biological            

processes. 
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Abstract 

Cellular differentiation is associated with changes in transcript populations. Accurate quantification of            

transcriptomes during development can thus provide global insights into differentiation processes           

including the fundamental specification and differentiation events operating during plant          

embryogenesis. However, multiple technical challenges have limited the ability to obtain high quality             

early embryonic transcriptomes, namely the low amount of RNA obtainable and contamination from             

surrounding endosperm and seed-coat tissues. We compared the performance of three low-input            

mRNA sequencing (mRNA-seq) library preparation kits on 0.1 to 5 nanograms (ng) of total RNA               

isolated from Arabidopsis thaliana (Arabidopsis) embryos and identified a low-cost method with            

superior performance. This mRNA-seq method was then used to profile the transcriptomes of             

Arabidopsis embryos across eight developmental stages. By comprehensively comparing embryonic          

and post-embryonic transcriptomes, we found that embryonic transcriptomes do not resemble any            

other plant tissue we analyzed. Moreover, transcriptome clustering analyses revealed the presence of             

four distinct phases of embryogenesis which are enriched in specific biological processes. We also              

compared zygotic embryo transcriptomes with publicly available somatic embryo transcriptomes.          

Strikingly, we found little resemblance between zygotic embryos and somatic embryos derived from             

late-staged zygotic embryos suggesting that the molecular basis of somatic and zygotic embryogenesis             

are distinct from each other. In addition to the biological insights gained from our systematic               

characterization of the Arabidopsis embryonic transcriptome, we provide a data-rich resource for the             

community to explore.  
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Introduction 

Flowering plants begin their life as an embryo deeply embedded within a seed. In Arabidopsis               

thaliana (Arabidopsis), a series of stereotypical cell divisions produces the fundamental body plan             

that already possesses precursors to the shoot and root meristem, as well as the epidermal, ground and                 

vascular tissues arranged in concentric layers. Cellular differentiation includes, and is largely defined             

by, changes in the quantity of specific transcripts present in the cell. Therefore, understanding cellular               

differentiation during embryogenesis requires the ability to quantify embryonic transcriptomes.          

However, multiple technical challenges limit the ability to obtain high quality embryo transcriptomes             

especially from the earliest stages when basic patterning processes are instrumental in defining the              

plant body plan. Due to the small size of early embryos and their enclosure within a seed, isolating                  

RNA from embryos is prone to contamination from the surrounding endosperm and maternal             

sporophytic RNA (Schon and Nodine 2017). Additionally, the protocol must be sensitive enough to              

detect even lowly abundant transcripts from the few nanograms or less of total input RNA that is                 

typically obtainable from early embryos.  

 

Results 

Comparison of  low-input mRNA-seq library preparation methods 

A variety of low-input mRNA sequencing (mRNA-seq) methods have been developed for            

tissue-specific and single-cell sequencing (reviewed in (Chen et al. 2018)). To determine the optimal              

mRNA-seq method for profiling transcriptomes from low-input total RNA isolated from Arabidopsis            

embryos, we compared the performance of three different mRNA-seq library construction protocols.            

We prepared mRNA-seq libraries from 5, 1, 0.5 or 0.1 ng of total RNA isolated from bent-cotyledon                 

staged embryos using either the Ovation PicoSL WTA System V2 (Ovation; Nugen) or SMARTer              

Ultra Low Input RNA Kit for Sequencing - v3 (SMARTer; Clontech) commercially available kits, or               

the non-commercial Smart-seq2 method (Picelli et al. 2013).  
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We were able to detect between 13,453-16,315 protein-coding genes with at least 1 transcript              

per million (TPM) from libraries constructed with Smart-seq2 across the dilution series of input RNA               

(Fig. 1A). This is comparable to Ovation, which detected between 14,398-16,545 genes across the              

same range of RNA input. In contrast, libraries generated with SMARTer had lower sensitivity              

compared with the other two methods and only detected 6,218 unique protein-coding genes from 100               

picograms of total RNA. Methods that enable the sequencing of full-length transcripts provide a more               

accurate representation of the transcriptome. We therefore determined which method captured           

full-length transcript sequences by comparing the coverage of mRNA-seq reads along           

Araport11-annotated protein-coding genes (Cheng et al. 2017) (Fig. 1B). mRNA-seq libraries           

generated with Smart-seq2 produced the most uniform coverage along protein-coding genes, while            

SMARTer library mRNA-seq reads were most abundant in the middle of transcripts and Ovation              

library reads showed uneven coverage that varied from gene to gene. 

We also assessed the reproducibility of quantifying transcript levels from varying amounts of             

low-input total RNA for the three mRNA-seq methods. Transcript levels across the dilution series              

were most highly correlated to each other for libraries generated with the Smart-seq2 protocol (Fig.               

1C). The increased reproducibility of Smart-seq2 compared to the other two methods was most              

prevalent when starting with sub-nanogram levels of total RNA. To determine the accuracy and              

sensitivity of the three mRNA-seq library preparation methods, we introduced 92 synthetic poly(A)             

RNAs in specific molar ratios (i.e. ERCC spike-in mixes; LifeTech, (Baker et al. 2005)) to the                

samples before generating libraries with these methods. We compared the TPM levels detected for              

each ERCC spike-in with the relative amount added to each of the samples (Fig. 1D). Compared with                 

the SMARTer and Ovation methods, libraries generated with Smart-seq2 consistently produced           

ERCC spike-in values that were more highly correlated with their known input amounts across the               

dilution series. Moreover, libraries generated with Smart-seq2 detected a higher percentage of the             

ERCC spike-ins added to the samples suggesting that Smart-seq2 was the most sensitive method.              

Altogether, our comparisons indicate that Smart-seq2 produces more sensitive, uniform, reproducible           

and accurate transcriptome profiles from Arabidopsis embryos especially when starting with           
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sub-nanogram quantities of total RNA. Because the Smart-seq2 method is published, it also offers the               

advantage of being substantially less expensive compared with the other two methods.  

 

 

 
 
Figure 1.  Comparison of different low-input mRNA-seq methods 
(A) Number of genes detected when using three different mRNA-seq library preparation methods from a               
dilution series of total RNA. (B) (Above) Read distribution along the length of all protein-coding transcripts for                 
Smart-seq2, SMARTer, and Ovation samples generated from 100 pg of total RNA. Relative read coverage depth                
was binned into 100 bins from the 5′ terminus to 3′ terminus of each transcript. (Below) Heatmaps of read                   
coverage for the 1000 most highly expressed transcripts across the three methods. (C) Heatmap depicting               
pairwise Pearson correlation of gene expression values for all samples in the dilution series. (D) Correlation of                 
the TPM of all detected ERCC RNA spike-in molecules with their relative input concentration. r is Pearson                 
correlation. Number in parentheses represents the percentage of ERCC spike-in oligos that were detectable in               
the given sample 
 

A developmental time series of Arabidopsis embryo transcriptomes 

In order to profile transcriptome dynamics during Arabidopsis embryogenesis, we generated           

Smart-seq2 libraries from total RNA collected from embryos spanning presumptive morphogenesis           

(preglobular to late heart) and maturation (early torpedo to mature green) phases. More specifically,              
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RNA was extracted from 50 embryos at each of these 8 different stages in biological triplicate (1,200                 

embryos total; Fig 2A). Embryos were staged based on their distinct morphologies as represented in               

Fig. 2A (see Materials & Methods for details regarding embryo isolations). 

Sequencing of the 24 libraries on an Illumina sequencing platform yielded a total of over 792                

million paired 50 base reads. After adaptor trimming with Cutadapt (Martin 2011), transcript             

abundances were quantified using Kallisto (Bray et al. 2016) and the Araport11 annotations (Cheng et               

al. 2017). In total, 624 million read pairs (78.8%) pseudoaligned concordantly to the Arabidopsis              

transcriptome (Online Table S1 & S2). Over 15,000 genes were detected at >1 TPM in every sample,                 

with a gradual increase in total number of expressed genes through the early heart stage. We defined a                  

gene as being expressed in the embryo if it has a mean TPM value of >1 in at least one developmental                     

stage. Using this definition, we found that 21,433 genes (63.8% of all annotated genes) are expressed                

in developing embryos. Pearson correlations between biological replicates exceeded 0.97 in all            

pairwise comparisons, demonstrating that the results were highly reproducible (Online Table S3).  

As previously shown, contamination by RNAs originating from the surrounding maternal           

seed coat and endosperm has been a frequent problem leading to erroneous conclusions when              

generating early embryonic transcriptomes (Schon and Nodine 2017). To determine whether           

significant RNA contamination exists in our datasets, we applied the Tissue-Enrichment Test (Schon             

and Nodine 2017) to each of the 24 embryonic sequencing libraries. This test revealed a strong                

enrichment of genes specific to the embryo proper in all samples (Fig. 2B). Additionally,              

suspensor-specific genes were statistically enriched in preglobular and globular embryos (adjusted           

p-value < 0.001). In contrast, none of the five seed coat or endosperm tissues were enriched in any                  

sample at any stage. Therefore, we concluded that the mRNA-seq time series generated in this study                

represents transcripts exclusively from whole embryos.  
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Figure 2. mRNA-seq time course of the Arabidopsis embryonic transcriptome  
(A) Overview of the performed experiment. From each of the displayed stages, total RNA was isolated from 50                  
embryos dissected from ovules in biological triplicate. Smart-seq2 libraries were prepared for each sample and               
the resulting libraries were sequenced on an Illumina instrument. (B) Results from the Tissue-Enrichment Test               
(Schon and Nodine 2017) on the obtained embryonic transcriptomes revealed a significant enrichment for              
embryo proper and suspensor transcripts (in the early stages), but no significant seed coat or endosperm                
contamination across all stages. (C) PCA displaying the embryo time series from this study in comparison with                 
other embryo transcriptomics data (Nodine and Bartel 2012; Belmonte et al. 2013; Schneider et al. 2016). The                 
centroids for each stage are depicted as dots connected by a gray line. 
 

To further assess the quality of our mRNA-seq time series, we compared it to publicly               

available embryonic gene expression data. The datasets we used were the laser capture             

microdissection (LCM) microarray data (Belmonte et al. 2013), an mRNA-seq time course of late              
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stage embryos (Schneider et al. 2016) and timed, reciprocal crosses of early embryonic stages (Nodine               

and Bartel 2012). Each of these datasets were high quality and contamination-free (Online Fig. S1).               

To enable comparisons of the mRNA-seq and microarray datasets, we linearized the mRNA-seq data              

via DESeq2’s variance stabilizing transformation (VST) (Love et al. 2014) (Online Table S2). We              

then set a uniform baseline score of five for all datasets and performed a principal component analysis                 

(PCA) (Fig. 2C). This analysis showed that PC 1 and 2, accounting together for about 64% of the                  

variation, stratified the transcriptomes according to their developmental stage. The samples followed            

an archlike pattern, with transcriptomes from similar embryonic stages, but produced by different             

researchers, grouped in close proximity. This demonstrates that despite different methods of tissue             

isolation and transcript measurement, the global temporal dynamics revealed in the current study is              

consistent with expectations established by previously published datasets. 

Arabidopsis embryos have a unique transcriptome 

To assess the broader developmental context of our embryo time series, we compared it to a large                 

collection of transcriptomes from different Arabidopsis tissues (Klepikova et al. 2015, 2016). These             

two datasets currently provide the most comprehensive mRNA-seq maps available in Arabidopsis and             

include 27 different tissues and 31 developmental time points for a total of 153 distinct samples. We                 

also included leaf and floral bud Smart-seq2 data that we previously generated to control for               

differences between protocols and lab conditions (Lutzmayer et al. 2017; Schon et al. 2018). Together               

with the early and late embryo samples described above, we have 186 additional mRNA-seq libraries               

to compare with the 24 embryo time series samples produced in this study.  

To compare the embryonic transcriptome to post-embryonic tissues, we built a pairwise            

correlation matrix of the 210 samples mentioned above and included two RNA-seq collections             

generated on somatic embryos produced by two different protocols (Wickramasuriya and Dunwell            

2015; Magnani et al. 2017); Online Table S3). This correlation matrix was used to hierarchically               

cluster all samples in a single dendrogram (Fig. 3A, all sample names shown in Online Table S1).                 

Similar tissues largely grouped together, and a set of 15 general “tissue clusters” emerged, excluding               

samples derived from tissue culture. Embryo samples were partitioned into four clusters that were              
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separated by developmental time: 1-cell/2-cell to globular stage embryos (referred to as            

pre-cotyledon), early heart through bent cotyledon (transition), green embryos 10 to 13 days after              

pollination (mature green), and post-green embryos 15 days after pollination or older clustered with              

dry seeds (post-mature green). These four groups will be referred to as embryonic “phases” below. 

To gain insights into the global relationships between these tissue clusters we performed             

t-distributed stochastic neighbor embedding (t-SNE) (Fig. 3B; detailed version Online Fig. S3).            

Post-embryonic tissue clusters radiated out from the “shoot apical meristem” cluster, connected via a              

loose collection of intermediate tissues that were labelled “nascent tissue”. In contrast, embryos             

formed a distinct group from all post-embryonic tissues and were stratified by developmental time. In               

both hierarchical clustering and t-SNE analysis, a large gap separates all embryos collected at or               

before eight days after pollination (bent cotyledon stage) from mature green embryos and dry seeds.               

Therefore, our analysis suggests that the Arabidopsis embryonic transcriptome undergoes radical           

global changes after both the globular and bent cotyledon stages. 

To determine what specific transcript populations make the embryonic transcriptome unique,           

gene expression within all 15 tissue clusters was then compared to the global average. Transcripts that                

were at least 4-fold significantly more abundant (ANOVA, Benjamini-Hochberg adjusted p-value <            

0.05) were considered enriched in that cluster if they were also significantly higher than their nearest                

neighbor on the dendrogram (Online Table S4). The inverse was also calculated to generate a list of                 

genes depleted in a given tissue (Online Table S5). Roots had the highest number of genes enriched                 

only in the given tissue and nowhere else (Fig 3C). Of embryo phases, pre-cotyledon possessed the                

largest number of exclusively enriched genes at 363. This set includes well-known embryo markers              

such as LEC1, LEC2, PLT1, PLT2, WOX2, WOX8, and DRN (Meinke et al. 1994; West et al. 1994;                  

Haecker et al. 2004; Aida et al. 2004; Chandler et al. 2007; Galinha et al. 2007; Lau et al. 2012), and a                      

much larger cohort of uncharacterized genes (Online Table S4 & S5). However, the most substantial               

difference between embryos and other plant tissue types appears to come from the genes specifically               

downregulated. With the exception of mature pollen, all four phases of embryogenesis had a larger set                

of genes exclusively depleted from their transcriptomes than any post-embryonic tissue. Additionally,            

38% of genes depleted in the pre-cotyledon phase are also depleted in dry seeds. These genes are                 
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largely related to photosynthesis, including 13/13 annotated subunits of photosystem I, 9/15 subunits             

of photosystem II, and 14/20 light-harvesting complex genes. These core components of            

photosynthesis are absent early in morphogenesis, become abundant during the transition phase, but             

drop precipitously again in mature embryos (Online Fig. S3). This suggests that gene expression              

dynamics are tightly controlled during embryo development. 
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Figure 3. Comparison of embryo transcriptome to other plant tissues 
(A) Hierarchical clustering of 217 mRNA-seq libraries of various Arabidopsis tissues. Dendrogram was              

produced by clustering Pearson correlation of log2(TPM+1) using Ward’s criterion. (B) T-SNE comparing             
transcriptomes from different tissues and sources (Nodine and Bartel 2012; Belmonte et al. 2013; Klepikova et                
al. 2015, 2016; Schneider et al. 2016; Lutzmayer et al. 2017; Schon et al. 2018). Tissue clusters are defined by                    
the results in panel A. (C) Number of genes in each tissue group cluster that show either enriched or depleted                    
expression across different tissues. Minimum 4-fold change in tissue cluster vs. all other samples, ANOVA               
p-value <0.05 with Benjamini-Hochberg multiple testing correction. Gene expression was additionally required            
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to be significantly higher than the neighboring set of samples on the hierarchical tree (ANOVA, BH-adjusted                
p-value <0.05) 

 

Model based clustering reveals co-expressed groups, recapitulating specific biological functions 

To examine temporal changes in gene expression, protein-coding genes detected at ≥1 TPM in at               

least one embryonic stage of the Smart-seq2 time series were subjected to model-based clustering by               

Mclust ((Scrucca et al. 2016), see Methods). Mclust classifies points according to a set of Gaussian                

Mixture Models and chooses the optimal model parameters to maximize the Bayesian Information             

Criterion (BIC). The mean TPM of 18,600 genes were converted to z-scores and based on analysis                

with Mclust, the optimal cluster number was 24 (Online Fig. 5). These 24 distinct covariance clusters,                

each composed of 290-1669 genes, were organized into four groups: (A) highest during the              

pre-cotyledon phase, (B) decreasing between transition and mature phases, (C) highest during the             

transition phase, and (D) highest during the mature phase (Fig. 4A; Online Table S6). To evaluate the                 

accuracy of these covariance clusters, we examined the levels of 92 synthetic poly(A) RNAs (ERCC               

RNA Spike-In Mix; LifeTech, (Baker et al. 2005)) that were added to the samples in specific amounts                 

during RNA isolation. The concentrations of the oligos in the mix spanned six orders of magnitude,                

but the ratio of each oligo relative to the others in the mix remained constant in all samples. Therefore,                   

the ERCC spike-in RNAs represent a group of “covarying transcripts” across the time series.              

Fifty-seven ERCC RNAs passed the detection threshold of 1 TPM, covering four orders of magnitude               

of abundance. All 57 detected spike-in transcripts were placed in cluster A6, demonstrating that BIC               

clustering successfully identifies groups of covarying genes over a large dynamic range of expression. 
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Figure 4. Covariance clustering of expressed genes across the embryo time series 
(A) Average maximum-normalized expression values for all genes in each of the 24 clusters generated by                
Mclust. Numbers in each panel indicate the number of genes grouped in that cluster, and polygons represents ±1                  
standard deviation. (B) Heatmaps of Gene Ontology (GO) term enrichment (red) and depletion (blue) for all 24                 
clusters for the terms “extracellular region”, “nucleus”, “mitochondrion”, and “chloroplast”. (C) Select GO term              
enrichments representative of the strongest enrichments across 24 clusters 
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To investigate whether temporal covariance of gene expression in the embryo is connected to              

biological function, we performed Gene Ontology (GO) enrichment analysis on each BIC cluster             

(Ashburner et al. 2000; The Gene Ontology Consortium 2017). Compared to a background of all               

genes expressed during embryogenesis, all clusters showed an overrepresentation of at least one GO              

term (hypergeometric distribution p-value <0.05, Benjamini-Hochberg multiple testing correction;         

Online Table S6). A selection of the most strongly enriched terms in each cluster was examined in                 

greater detail. For general insights on all clusters, enrichments and depletions for terms in the domain                

"cellular_component" are shown (Fig. 4B). Clusters peaking in the globular or heart stage have a               

tendency to be enriched for "mitochondrion" annotations, while "chloroplast" GO terms were            

predominantly associated with clusters that peak later in the transition toward mature embryos. In              

contrast, “nucleus” affiliated genes tend to be broadly expressed with a bias toward early expression,               

while genes with very early or very late expression tend to be associated with “extracellular region”                

GO terms. 

The strongest early expression clusters were both enriched for the biological process term             

“killing of cells of other organism” (Fig. 4C). All 67 genes associated with this term in clusters A1                  

and A2 are defensin-like genes, a large family of short cysteine-rich peptides that were first               

characterized for their role as antimicrobial peptides (Silverstein et al. 2005), and a subset were later                

demonstrated to influence suspensor elongation during early embryogenesis (Costa et al. 2014). At             

the opposite end of the time series, cluster D6 is enriched in “seed oil body biogenesis” GO terms,                  

represented by the oleosins OLE1, OLE2, and OLE4, as well as SEIPIN1 and OIL              

BODY-ASSOCIATED PROTEIN 1A, both of which regulate the formation of the lipid droplets that              

accumulate in mature seeds (López-Ribera et al. 2014; Cai et al. 2015). Genes associated with “cell                

division” GO terms tend to be expressed throughout the time series but are highest at the early heart                  

stage (cluster B4, Fig. 4C). This cluster is also enriched for embryo lethal mutations as defined by the                  

Seedgenes database (Meinke et al. 2008), with 55 Seedgenes mutants belonging to this cluster              

(p-value < 2.3e-8, Online Fig. S6). This cluster is most strongly associated with the biological process                

“cell division” (GO:0051301, p-value < 2.2e-14) and contains 13 cyclins, along with 48 other cell cycle                
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associated genes. Even more strongly enriched for embryo lethal genes is cluster B6, which peaks               

early during the heart stage but is sustained throughout the transition phase. This cluster is one of a                  

few associated with “chloroplast organization”, and 28 of the 44 embryo lethal genes with this               

expression pattern are reported to arrest at the globular stage, including the gene ACCUMULATION              

OF PHOTOSYSTEM ONE 2 (APO2 , AT5G57930; (Meinke et al. 2008)). Indeed, a study focused on               

chloroplast-localized lethal genes concluded that embryo arrest at the globular stage was a common              

feature of chloroplast disruption (Bryant et al. 2011). Altogether this suggests that making             

photosynthetically active chloroplasts is a key checkpoint during embryo development, required to            

move beyond the morphogenesis phase. 

Identification of embryo specific marker transcripts 

While forward genetic screens and functional studies have led to the identification of important              

developmental regulators and embryonic markers (Haecker et al. 2004; Meinke et al. 2008;             

Rademacher et al. 2011; Lau et al. 2012), we hypothesized that we could define additional markers                

with the embryonic transcriptome datasets. To identify embryonic markers we applied the tool MGFR              

(El Amrani et al. 2015) and treated different embryonic samples belonging to the four developmental               

phases (i.e. pre-cotyledon, transition, mature green and post-mature green). We required that            

protein-coding transcripts were >5 TPM in at least one embryonic stage, and after initial marker               

identification we also required that the marker transcript levels were at least five-fold higher              

compared to the other stages. This led to the identification of 107 pre-cotyledon, 141 transition, 84                

mature green and 460 post-mature green marker transcripts (792 total; Fig. 5 A, B, Online Table S7).                 

Because transcription factors are major determinants of cellular differentiation and have been utilized             

as embryonic markers, we investigated how many transcription factors are contained within this set of               

phase-enriched markers. For this we used the transcription factor annotations available from            

PlantTFDB 4.0 (Jin et al. 2017). We identified 7 pre-cotyledon, 13 transition, 6 mature green and 31                 

post-mature green marker transcription factors highly enriched in their respective phases (57 total;             

Fig. 5 A, B). In addition to identifying known transcription factor markers during morphogenesis such               

as WOX2, WOX8 and DRN, we also identified new markers including two storekeeper protein-related              
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transcripts (AT1G11510 and AT4G00390), AT1G68320/MYB62 and AT2G36890/RAX2 (Fig. 5C,         

Online Table S7). In addition to transcription factors, we also detected transcripts encoding a potential               

transcriptional co-activator (AT5G09240), a putative ubiquitin E3 ligase (AT3G11600) and an           

ubiquitin-like protein (AT1G53930). To provide a more complete resource, we also performed this             

marker analysis on the individual embryo stages (Online Table S7). 

 

 

Figure 5. Identification of developmental phase markers 
Overview of the number of all (A) and transcription factor (B) marker genes identified for each developmental                 
phase. (C) Marker gene transcript levels. (Top ) Metaplots showing transcript levels for each marker group.               
Individual transcripts were normalized as TPM and scaled between 0 (not detected) and 1 (highest transcript                
levels observed). Purple, yellow, green and rose are used to indicate pre-cotyledon, transition, mature green or                
post-mature green phase embryos, respectively. Standard deviations for each set are indicated by the              
corresponding shading. (Bottom ) A heatmap displaying row-scaled TPM values of marker genes identified             
(rows) across various embryonic stages (columns). Rows are sorted by their specificity score (decreasing).              
Phases are indicated by the colored bars on the left. Select transcription factors are labelled.  
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Somatic and zygotic embryo transcriptomes are distinct from each other 

Somatic embryos are widely thought to be suitable models for studying zygotic embryogenesis.             

However, it remains to be determined how similar somatic and zygotic embryos are to each other in                 

terms of their transcript and protein populations. We hypothesized that transcripts up-regulated during             

the onset or progression of somatic embryogenesis should resemble zygotic embryo phases if somatic              

and zygotic embryo transcriptional processes are similar. 

Two studies performed RNA-seq on somatic embryos derived from late-staged zygotic           

embryos during either their initiation (Magnani et al. 2017) or developmental progression            

(Wickramasuriya and Dunwell 2015). Magnani et al. collected torpedo staged embryos and            

dedifferentiated them into calli by culturing in auxin-rich medium in the dark. To induce somatic               

embryogenesis, callus cultures were then moved to auxin-free media and further cultured in dark              

conditions to induce somatic embryogenesis. LEC2 expression is one of the earliest markers of calli               

that are competent to undergo somatic embryogenesis (Su et al. 2009). Thus, Magnani et al. purified                

nuclei from LEC2 expressing calli cells (+LEC2) with INTACT (Deal and Henikoff 2010) to profile               

somatic embryo transcriptomes upon their initiation. RNA-seq was then performed on the +LEC2             

samples together with isolated -LEC2 samples from the calli which served as a negative control. In the                 

Wickramasuriya study, direct somatic embryogenesis was performed on bent cotyledon embryos           

whereby embryos were cultured with auxin under long day conditions and somatic embryos that could               

be morphologically distinguished from the surrounding calli were harvested 5, 10 and 15 days after               

auxin treatment. We quantified transcript levels from these studies as described above (see also              

Methods).  

To assess whether transcriptomes of somatic embryos derived from late-stage zygotic           

embryos resemble those from early zygotic embryos, late zygotic embryos or another developmental             

phase, we first reanalyzed the published data to determine expressed protein-coding genes (>1 TPM)              

that were upregulated >4-fold (i.e. upregulated DEGs). The data from Magnani and colleagues was              

analyzed with DESeq2 (Love et al. 2014), allowing a FDR of 5%. We detected 236 upregulated DEGs                 

(Online Table S8) of which 185 (78%) overlapped with those reported in this study. Because the data                 
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published by Wickramasuriya and Dunwell does not include biological replicates, we regarded all             

expressed protein-coding genes with transcripts increased at least four-fold during somatic embryo            

development as significantly upregulated (i.e. 112 upregulated DEGs; Online Table S8).  

To determine which tissues the upregulated DEGs from somatic embryos are predominantly            

expressed in, we performed a tissue-enrichment test (TissueEnrich; (Jain and Tuteja 2018)). As a              

reference, we used the embryo time series described in this study together with the Klepikova               

expression data (Klepikova et al. 2015, 2016), and leaf and floral bud mRNA-seq datasets generated               

with Smart-seq2 by our group (Lutzmayer et al. 2017; Schon et al. 2018). To improve the ability to                  

detect more tissue-specific gene expression patterns, the Klepikova data was manually curated to             

remove organs composed of tissues also sequenced at the same developmental stage (Online Table              

S8). Upon analyzing the tissue-enrichments of the Wickramasuriya upregulated DEGs, we observed a             

significant enrichment for nine non-embryonic tissues. Seven corresponded to shoot-derived tissues,           

and two were root tissues (Fig. 6 A). Similarly, the tissue-enrichment analysis of the Magnani DEGs                

also revealed no significant enrichment for embryonic tissues. However, the top two significantly             

enriched tissue types were root tissues (Fig. 6 B). We also repeated the analysis with the list of DEGs                   

included in the original publications, and although we observed a trend towards a significant              

enrichment of heart stage embryos (p=0.06), no embryonic tissues passed the p<0.05 threshold             

(Online Fig. S6 & Online Table S8). In contrast, when the enrichment test was performed on                

upregulated DEGs from previously published early (Nodine and Bartel 2012) and late zygotic embryo              

datasets (Schneider et al. 2016), we detected a highly significant enrichment for the respective              

embryonic stages as expected (Online Fig. S6).  

In order to further estimate which tissues resemble somatic embryos derived from late-staged             

zygotic embryos, we performed a correlation analysis in which we compared their expression data              

against the mean expression of the previously identified tissue clusters (Fig. 6 C). Although somatic               

embryos are well-correlated with transcripts characteristic of transition and mature phases at their             

earliest time point (r=0.85), this similarity decreases over time. Moreover, as somatic embryos             

develop they appear to more resemble calli, as well as more specific tissues such as the shoot apical                  

meristems and roots. We detected a very low correlation between the LEC2+ transcriptomes and all               
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zygotic embryo stages. In fact, transcript abundances during the pre-cotyledon phase had the second              

lowest correlation of all 17 tissue clusters. When looking at a few select transcription factors (Lau et                 

al. 2012) in more detail we also observed conflicting trends. We found that transcripts encoding               

several key developmental regulators such WOX2, WOX8, LEC1 and LEC2 were lowly abundant in              

the somatic embryos (< 5 TPM), or not at all in the LEC2+ cells (< 1 TPM), while others such as the                      

PLETHORA family of transcription factors (PLT1,PLT2,PLT3 and BBM) were highly abundant (> 30             

TPM) (Online Fig. S7). Furthermore, we found a high correlation between both somatic embryo              

datasets and germinating seeds. 

 

 

 

Figure 6. Somatic embryogenesis has limited resemblance to zygotic embryogenesis 
Tissue-specific gene enrichment (Jain and Tuteja 2018) of DEGs from somatic embryos (Wickramasuriya and              
Dunwell 2015) (A ) and calli expressing LEC2 (+LEC2) (Magnani et al. 2017) (B ). DEGs were tested for                 
enrichment against the embryo time series produced in this study and the Klepikova atlas (Klepikova et al. 2015,                  
2016). A significance level of p=0.05 is indicated by the dotted line. (C) Correlation analysis of the somatic                  
embryo and LEC2+ transcriptomes against the tissue clusters established in Fig. 3 . For a detailed overview                
which samples contribute to each cluster see Online Table S1 .  
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Discussion 

A variety of low-input mRNA sequencing (mRNA-seq) methods have been developed for            

tissue-specific and single-cell sequencing (Chen et al. 2018). Here we performed a side-by-side             

comparison of three low-input mRNA-seq protocols on Arabidopsis embryos and evaluated their            

performance. Our analysis showed that the substantially less-expensive Smart-seq2 method using           

off-the-shelf reagents significantly outperformed two commercially available kits when applied to           

low-input plant embryo RNA. We used Smart-seq2 to profile the transcriptomes of eight stages              

spanning embryonic development. Our data are consistent with other published transcriptomes and            

bridges an important gap previously missing in the field. While other studies were able to profile                

either early or late Arabidopsis embryos, we obtained a more comprehensive time series, from the               

preglobular to the mature green stages. Our analysis has shown that these transcriptomes are of high                

quality and free of contamination from maternal tissues. Moreover, because the embryonic            

transcriptomes presented here were generated with Smart-seq2 technology and deeply sequenced, they            

also have an increased number of detectable genes with more uniform coverage along the transcripts,               

and a larger dynamic range relative to other early embryonic datasets.  

We observed that embryos have a unique transcriptome compared to other Arabidopsis tissue             

types. We speculate that this is due to the unique differentiation processes occurring during              

embryogenesis. This is supported by the results of our model-based clustering analysis, which             

indicates that different biological processes are enriched during the four different phases of             

embryogenesis. For example, model-based clustering correctly i) co-clustered all ERCC spike-in           

controls, ii) identified a functional enrichment of mitochondria related transcripts in the pre-cotyledon             

stages (Gao et al. 2018), and iii) also correctly detected timing of accumulation of chlorophyll               

accumulation (Kim et al. 2002). 

Analysis of the embryonic transcriptomes produced in this and other studies indicates that             

Arabidopsis embryonic development can be partitioned into either pre-cotyledon, transition, mature           

green or post-mature green phases, each of which are characterized by distinct biological processes.              

Based on these results, we propose that embryos progress through these four distinct phases of               
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development prior to the onset of germination. We were also able to establish a set of stringently                 

defined temporal markers. In addition to several known important developmental regulators, this set             

of stage-specific markers contains many uncharacterized candidates for follow-up gene expression           

and mutagenesis studies.  

Although somatic embryos are often thought to be a suitable model to study gene-regulatory              

processes occurring during zygotic embryogenesis, we observed significant differences between the           

transcriptomes of zygotic and somatic embryos. Based on our analysis, this appears to be at least                

partially due to the culturing conditions used to generate somatic embryos. For example, we observed               

a significant enrichment for green tissues in the DEG set from the Wickramasuriya et al. study (long                 

day light conditions), and a predominant enrichment of non-green tissues in the DEGs from Magnani               

et al. (cultured in dark). Furthermore, we detected a strong correlation of both somatic embryos and                

LEC+ cells with germinating seeds, which tentatively suggest that somatic embryogenesis may more             

closely resemble processes occurring during germination rather than embryogenesis. However, we           

could not detect the expression of several select transcription factors in the somatic embryo datasets               

including LEC2 transcripts which were <1 TPM in the LEC2+ cells. Therefore, our analysis suggests               

that zygotic and somatic embryos are transcriptionally distinct. However, the field would benefit from              

further transcriptome comparisons between zygotic embryos and additional datasets of somatic           

embryos derived from either late-staged zygotic embryos or explants from mutants or stress-treated             

tissues (Mozgová et al. 2017; Kadokura et al. 2018).  
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Materials & Methods 

Plant material and growth 

Col-0 seeds were grown in a climate controlled growth chambers set at 20-22˚ C temperature with a                 

16h light/8h dark cycle. 

RNA extraction, cDNA library preparation and next-generation sequencing 

Embryos were dissected as described in (Nodine and Bartel 2010) except that embryos were dissected               

and washed 3× in 10% RNAlater (ThermoFisher). RNA was isolated from 50 embryos per sample               

collected in approximately 30 µl of 100% RNAlater by adding 500 µl of TRIzol (Life Tech) followed                 

by brief vortexing and incubating at 60˚ C for 30 minutes. Sterile nuclease-free pestles were used to                 

crush bent-cotyledon and mature green staged embryos (50×) within a 1.5 ml tube. ERCC spike-ins               

(LifeTech) were added during the TRIzol preparation after the addition of chloroform. Precipitated             

RNA was resuspended with 5-12 µl of nuclease-free water, and 1 µl was used for mRNA-seq library                 

construction. mRNA-seq libraries were prepared with SMARTer Ultra Low Input RNA Kit for             

sequencing - v3 (Clontech) or Ovation PicoSL WTA System V2 (Nugen) according to the              

manufacturer’s recommendations. Smart-seq2 libraries were generated according to (Picelli et al.           

2013). To control for library quality, length distributions of both amplified cDNA and final libraries               

were inspected using an Agilent DNA HS Bioanalyzer Chip. Libraries were diluted and sequenced              

with paired-end 50 base mode on an Illumina HiSeq 2500 machine.  

Pseudo-alignment & mRNA-seq quantification 

The pseudoaligner Kallisto was used for quantification of all mRNA-seq datasets (v0.44.0, (Bray et al.               

2016)). An index was generated for all transcripts in the Ensembl build of the TAIR10 annotation set                 

(release version 40,   

ftp://ftp.ensemblgenomes.org/pub/plants/release-40/gff3/arabidopsis_thaliana/Arabidopsis_thaliana.T

AIR10.40.gff3.gz), including all 92 ERCC RNA spike-in sequences        
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(https://www-s.nist.gov/srmors/certificates/documents/SRM2374_putative_T7_products_NoPolyA_v

1.fasta). First, a FASTA file containing each transcript model was built by running bedtools getfasta               

(v2.17.0, (Quinlan and Hall 2010)) with the TAIR10 GFF3 above and the TAIR10 genome              

(ftp://ftp.ensemblgenomes.org/pub/plants/release-40/fasta/arabidopsis_thaliana/dna/Arabidopsis_thali

ana.TAIR10.dna.toplevel.fa.gz). Then, kallisto index was run on the transcript FASTA file to generate             

an index file. 

Before quantification, the appropriate adapter sequences for each mRNA-seq library were trimmed            

from the FASTQ files using Cutadapt with a minimum match length of five nucleotides (v1.9.1,               

(Martin 2011)). Cutadapt was also used to trim all oligo-A or oligo-T sequences that were at least five                  

nucleotides long from the ends of reads. All reads longer than 18 nucleotides after trimming were used                 

as input for kallisto quant . kallisto quant was run on paired-end samples using default settings. For                

single-end samples, the arguments --fragment-length 200 --sd 100 were used. Gene-level transcripts            

per million (TPM) were estimated by combining the TPM of all isoforms of protein-coding genes.               

Gene IDs mapping to mitochondria and chloroplast genomes, as well as the 270 kilobase              

mitochondrial insertion on chromosome 2 (Stupar et al. 2001), were discarded. Last, abundances were              

renormalized to a sum of 1 million for each sample. 

Quality control & tissue enrichment testing 

Seed tissue enrichment tests were performed with the previously published tissue-enrichment-test           

(Schon and Nodine 2017) using default parameters and gene-level TPM tables described above as              

input. For comparison of mRNA-seq data to microarray data from (Belmonte et al. 2013), a table of                 

raw mRNA-seq read counts mapping to each gene was combined with the mean-centered signal              

intensity scores from the Series Matrix File for GEO series GSE11262. Genes not represented on the                

Ath1 array by a single unambiguous prober were discarded. The samples in this table were normalized                

with the varianceStabilizingTransformation function of the R library DEseq2 (Love et al. 2014).             

Values from this table were reduced by five, and all negative values were set to zero in order to set a                     

uniform baseline between samples. Principal Component Analysis (PCA) was performed with the R             

function prcomp(center = T, scale = F) . 
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To identify genes enriched or depleted in a cluster of tissue samples, a hierarchical tree of all                 

samples was first established. Pearson correlation of log2(TPM+1) was calculated between all pairs of              

samples, and hierarchical clustering was performed on this correlation matrix with the R library              

pheatmap, using clustering_method = ‘ward.D’ . An ANOVA model was built with the R function              

aov() to compare each tissue cluster to its nearest neighbor and to the outgroup of all other samples.                  

Any gene whose expression is significantly higher than the neighboring cluster (ANOVA p-value             

<0.05, Benjamini-Hochberg multiple testing correction), as well as significantly higher than the            

global expression with a minimum fold change of 4 and ANOVA adjusted p-value <0.05, is               

considered enriched for that tissue. In contrast, a gene is considered depleted for that tissue if it is                  

significantly lower in expression than both the global average and the neighboring cluster is              

considered depleted for that tissue. If a gene is enriched in one tissue and no other tissues, it is                   

considered “exclusively enriched” in that tissue. Likewise, exclusively depleted tissues are not            

significantly depleted in any other tissue cluster. 

Identification of marker genes 

For the identification of phase-specific markers, we imported the TPM values from this study and               

previously published data (Nodine and Bartel 2012; Schneider et al. 2016) into R (v3.5.1). We then                

applied the MGFR (v1.6) tool (El Amrani et al. 2015) with default settings using these TPM values                 

and treating different samples from the same developmental phase (pre-cotyledon, transition, mature            

green, post-mature green) as independent replicates. The resulting gene list was then subsetted for              

markers with a score lower than 0.2, which corresponds to a 5-fold increase in marker expression                

compared to its background (the respective other stages). The heatmap in Fig. 5 C was generated with                 

the ComplexHeatmap  package (Gu et al. 2016). 

Model-based clustering 

The R library Mclust (Scrucca et al. 2016) was used to partition expressed genes into covariance                

clusters. First, a mean TPM value was calculated across the three biological replicates of each stage in                 

the Smart-seq2 embryo time series. These mean TPM values were converted to z-score, or (x i - x̄ )/s ,                 

25 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 27, 2018. ; https://doi.org/10.1101/479584doi: bioRxiv preprint 

https://paperpile.com/c/B2KlAo/4zC1+htsV
https://paperpile.com/c/B2KlAo/GnUfo
https://paperpile.com/c/B2KlAo/UVB8D
https://paperpile.com/c/B2KlAo/YUgC7
https://doi.org/10.1101/479584


 

where xi is the TPM value for a gene in a stage, x̄ is the mean of TPM values across all stages in the                        

time series, and s is the standard deviation of TPM across all stages. The z-scores for all genes with a                    

mean TPM of at least 1 in ≥1 stage were analyzed with the function mclustBIC(modelNames =                

“VVV”, G = seq(2,50,by=2)) to calculate the Bayesian Information Content (BIC) for models with 2               

to 50 components.(Online Fig. S4). The first step-wise increase in the number of components that               

decreased BIC was chosen as the optimal number of components (24). Then the function Mclust was                

run with the settings data = 24, modelNames = “VVV”, prior = priorControl(). 

Somatic embryo differentially expressed gene testing 

First, Kallisto output files from either the Wickramasuriya and Dunwell, or the Magnani et al. study                

were imported into R (v3.5.1) with the tximport package (v1.8) (Soneson et al. 2015). The count data                 

were then subsetted for nuclear protein-coding genes (see genes column in Online Table S2) and               

variance stabilized via DESeq2 (v1.20) (Love et al. 2014). Identification of differentially expressed             

genes in the Wickramasuriya and Dunwell study was performed similar as in the original publication               

(Wickramasuriya and Dunwell 2015). We calculated the VST fold changes between the 5 and 10 day                

samples, and the 10 and 15 day samples, respectively. All genes with transcripts > 1 TPM at one stage                   

and VST fold changes > 2 were kept as DEGs. For the Magnani et al. data we used DESeq2’s (v1.20)                    

pairwise Wald-test (Love et al. 2014) to detect DEGs between the callus and the LEC2 intact purified                 

callus nuclei (Magnani et al. 2017). DEGs where then further subsetted as described above (transcripts               

> 1 TPM, VST fold change  > 2). 

Somatic embryo tissue enrichment testing 

The TPM expression values of all samples were imported to R (v3.5.1) and then subsetted for our                 

embryo time series and the Klepikova expression data. To avoid obfuscation of more specific gene               

expression patterns, the Klepikova data was manually curated to remove composite tissues, that had              

more specific subtissues sequenced at the same developmental age (Online Table S8). We then used               

this data to train the R package TissueEnrich (v1.0.6) (Jain and Tuteja 2018) with default parameters.                

We then used this package to test in which tissues DEGs are predominantly enriched/overexpressed.   
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