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ABSTRACT

Copy number alterations (CNAs) are a hallmark of cancer. Large-scale cancer genomic
studies have already established the CNA landscape of most human tumor types and some
CNAs are recognized as cancer-driver events. However, their precise role in
tumorigenesis as well as their clinical and therapeutic relevance remain undefined, thus
computational and statistical approaches are required for the biological interpretation of
these data. Here, we describe CNApp, a user-friendly web tool that offers sample- and
cohort-level association analyses, allowing a comprehensive and integrative exploration
of CNAs with clinical and molecular variables. CNApp generates genome-wide profiles,
calculates CNA levels by computing broad, focal and global CNA scores, and uses
machine learning-based predictions to classify samples by using segmented data from
either microarrays or next-generation sequencing. In the present study, using copy
number data of well-annotated 10,635 genomes from The Cancer Genome Atlas spanning
33 cancer subtypes, we showed that patterns of CNAs classified tumor subtypes
according to their tissue-of-origin and that broad and focal CNA scores correlated
positively in those samples with low levels of chromosome and arm-level events.
Moreover, CNApp allowed the description of recurrent CNAs in hepatocellular
carcinoma further confirming previous results identified using other methods. Finally, we
established machine learning-based models to predict colon cancer molecular subtypes
and microsatellite instability based on broad and focal CNA scores and specific genomic
imbalances. In summary, CNApp facilitates data-driven research and provides a unique
framework to comprehensively assess CNAs and perform integrative analyses that enable

the identification of relevant functional implications.
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INTRODUCTION

The presence of somatic copy number alterations (CNAs) is a ubiquitous feature in
cancer. Indeed, the distribution of such CNAs is sufficiently tissue-specific to distinguish
and enable the classification of tumor entities (Ried et al. 2012; Taylor et al. 2018a), and
may allow identifying groups of tumors responsive to particular therapies(Cairncross et
al. 2013; Davoli et al. 2017). Moreover, high levels of CNAs, which result from
aneuploidy and chromosome instability, are generally associated with high-grade tumors
and poor prognosis (Sansregret et al. 2018). Two main subtypes of CNAs can be
discerned: broad CNAs, which are defined as whole-chromosome and chromosomal arm-
level alterations, and focal CNAs, which are alterations of limited size ranging from part
of a chromosome-arm to few kilobases (Krijgsman et al. 2014; Zack et al. 2013).
Recently, it has been uncovered that while focal events mainly correlate with cell cycle
and proliferation markers, broad aberrations are mainly associated with immune evasion
markers (Taylor et al. 2018b; Davoli et al. 2017; Buccitelli et al. 2017). Nevertheless, the
precise role of CNAs in tumor initiation and progression, as well as their clinical
relevance and therapeutic implications remain still poorly understood.

Characterization and interpretation of CNAs is time-consuming and very often requires
complex integrative analyses with clinical and molecular information. Moreover,
visualization of complex data is usually essential to discriminate key results. Well-
established CNA algorithms, such as the gold-standard circular binary segmentation,
determine the genomic boundaries of copy number gains and losses based on signal
intensities or read depth obtained from array comparative genomic hybridization and
SNP-array or next-generation sequencing data, respectively (Olshen et al. 2004).
Variability within gain or loss levels can be addressed with the algorithm CGHcall, which
enables the identification of single copy number changes (van de Wie et al. 2007). In

order to overcome the complex nature of tumor samples (Stratton et al. 2009), more recent
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segmentation methods improved the accuracy to identify copy number segments either
by considering the B allele frequency (BAF), such as ExomeCNV (Sathirapongsasuti et
al. 2011), Control-FREEC (Boeva et al. 2012) and SAAS-CNV (Zhang and Hao 2015),
or through adjusting by sample purity and ploidy estimates, such as GAP (Popova et al.
2009), ASCAT (Van Loo et al. 2010) and ABSOLUTE (Carter et al. 2012). However, the
state-of-the-art computational approach for CNA analysis is GISTIC2.0 (Mermel et al.
2011), which is a gene-centered probabilistic method that enables to define the boundaries
of recurrent putative driver CNAs in large cohorts (Beroukhim et al. 2010). Nevertheless,
despite ongoing progress on identifying CNAs, to our knowledge there is no
bioinformatic tool readily available for integrative analyses to unveil the biological
interpretation of these CNAs.

To address this issue, we developed CNApp, the first open-source application to
comprehensively analyze and integrate CNA profiles with molecular and clinical
variables. CNApp was built in Shiny R package (Chang et al. 2018) and provides the user
with high-quality interactive plots and statistical correlations between CNAs and
annotated variables in a fast and easy-to-explore interface. In particular, CNApp uses
genomic segmented data to quantify CNA levels based on broad and focal genomic
alterations, assess differentially altered genomic regions, and perform machine learning-
based predictions to classify tumor samples. A dataset including 160 colon cancer
samples with clinical annotation is loaded for demonstration purposes. To exemplify the
applicability and performance of CNApp, we used publicly available segmented data
from The Cancer Genome Atlas (TCGA) to (i) measure the burden of global, broad, focal
CNAs as well as generate CNA profiles in a pan-cancer dataset spanning 33 cancer
subtypes, (ii) identify cohort-based recurrent CNAs in hepatocellular carcinoma and
compare it with previously reported data using different methods, and (iii) assess

predicting models for colon cancer molecular subtype and microsatellite instability status
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classification based on CNA scores and specific genomic imbalances. CNApp is hosted
at http://bioinfo.ciberehd.org/CNApp and the source code is freely available at GitHub

(https://github.com/aitS/CNApp).

RESULTS

Implementation and basic usage

Functions of CNApp comprise three main sections: 1- Re-Seg & Score: re-segmentation,
CNA scores computation and variable association, 2- Region profile: genome-wide CNA
profiling, and 3- Classifier model: machine learning classification model predictions,
(Figure 1). Each of these sections and their key functions are described below. The input
file consists of a data frame with copy number segments provided by any segmentation
algorithm. Mandatory fields and column headers are sample name (/D), chromosome
(chr), start (loc.start) and end (loc.end) genomic positions, and the log?2 ratio of the copy
number amplitude (seg.mean) for each segment. If available, it is recommended to
include sample purity (purity) and BAF values (BAF), which can improve the accuracy
of CNA calls and will provide information of copy number neutral loss-of-heterozygosity
(CN-LOH) events. Annotation of variables can be included in the input file (tagged in
every segment from each sample) or by loading an additional file specifying new

variables to every sample.

Section 1. Re-Seg & Score: re-segmentation, CNA scores computation and variable
association

First, CNApp applies a re-segmentation approach aiming at correcting potential
background noise and amplitude divergence due to technical variability. Default re-
segmentation settings include minimum segment length (100 Kbp), maximum distance

between segments (1 Mbp), maximum amplitude (seg.mean) deviation between segments
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(0.16), minimum amplitude (seg.mean) deviation from segment to zero (0.16), and
maximum BAF deviation between segments (0.1). These parameters can be customized
by the user to better adjust the re-segmentation and CNA calling for each particular
dataset. Re-segmented data are then used to calculate the focal (FCS), broad (BCS) and
global (GCS) CNA scores, which provide three different quantification of CNA levels for
each sample. To compute these scores, CNApp classifies and weights CNAs based on
amplitude and length. A weight is given to each segment according to its seg.mean value
and by applying low-, medium- and high-level copy number amplitude thresholds. By
considering the relative length of each segment to the whole-chromosome or chromosome
arm, segments are tagged as chromosomal -by default, 90% or more of the chromosome
affected-, as arm-level -50% or more of the chromosome arm affected-, or as focal -less
than 50% of the chromosome arm affected. Percentages for relative lengths are also
customizable. For each sample, BCS is computed by considering chromosome and arm-
level segment weights according to the amplitude value. Likewise, calculation of FCS
takes into account weighted focal CNAs and the amplitude and length of the segment.
Finally, GCS is computed by considering the sum of normalized FCS and BCS values,
providing an overall assessment of the CNA burden for each sample. To assess the
reliability of CNA scores, we compared each score with the corresponding fraction of
altered genome using a TCGA pan-cancer set of 10,635 samples. Both FCS (values
ranging from 5 to 2,466) and BCS (ranging from 0 to 44) highly correlated with the
fraction of altered genome by focal and broad copy number changes, respectively
(Spearman's rank correlation for BCS = 00957 and for FCS = 0.938)
(Supplemental Fig S1 A and B). As expected, GCS (values ranged from -1.93 to 12.60)
highly correlated with the fraction of altered genome affected by both focal and broad

CNAs (Spearman’s rank correlation for GCS = 0.963) (Supplemental Fig S1C).
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Additionally, parametric and non-parametric statistical tests are used to establish

associations between CNA scores and annotated variables from the input file.

Section 2. Region profile: genome-wide CNA profiling

This section utilizes re-segmented data obtained from section 1 or uploaded segmented
data without re-segmentation to generate genomic region profiling and sample-to-sample
correlations. To conduct this, re-segmented data are transformed into genome region
profiles according to a user-selected genomic window (i.e., chromosome arms, half-arms,
cytobands, sub-cytobands or 40-1 Mbp windows). All segments, or either only broad or
only focal can be selected for this analysis. Length-relative means are computed for each
window by considering amplitude values from those segments included in each specific
window. Default thresholds for low-level copy number gains and losses (i.e., |0.2|) are
used as cutoffs to classify genome regions and to calculate their frequencies in this
section. Genome-region profiles are presented in genome-wide heatmaps to visualize
general copy number patterns. Up to six annotation tracks can be added and plotted
simultaneously allowing visual comparison and correlation between CNA profiles and
different variables, including the CNA scores obtained in section 1. Generation of
hierarchical clusters by samples and regions is optional. CNA frequency summaries by
genomic region and by sample are represented as stacked bar plots.

Importantly, assessing differentially altered regions between sample groups might
contribute to discover genomic regions associated with annotated variables and thus
unveil the biological significance of specific CNAs. To do so, CNApp interrogates
descriptive regions associated with any sample-specific annotation variable provided in
the input file. Student's t-test or Fisher's test are applied when considering CNAs as
continuous alterations (seg.mean values) or as categorical events (presence of gains and

losses), respectively. Default statistical significance is set to P-value lower than 0.1.
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However, p-value thresholds can be defined by the user and adjusted P-value is optional.
A heatmap plot allows the visualization and interpretation of which genome regions are
able to discriminate between sample groups. By selecting a region of interest, box plots
and stacked bar plots are generated comparing seg.mean values and alteration counts in
Student’s t-test and Fisher’s test tabs, respectively. Additionally, genes comprised in the

selected region are indicated.

3. Classifier model: Machine learning classification model predictions

This section allows the user to generate machine learning-based classifier models by
choosing a variable to define sample groups and one or multiple classifier variables. To
do so, CNApp incorporates the randomForest R package (Liaw and Wiener 2002). The
model construction is performed 50-times and bootstrap set is changed in each iteration.
By default, only annotation variables from the input file are loaded to work either by
group defining or by classifier variables. If Re-Seg & Score and/or Region profile sections
have been previously completed, the user can upload data from these sections (i.e., CNA
scores and genomic regions). Predictions for the model performance are generated and
the global accuracy is computed along with sensitivity and specificity values by group.
Classifier models can be useful to point out candidate clinical or molecular variables to
classify sample subgroups. A summary of the data distribution and plots for real and
model-predicted groups are visualized. A table with prediction rates throughout the 50-

times iteration model and real tags by sample is displayed and can be downloaded.

Genomic characterization of cancer subtypes
First, we evaluated the capacity of CNApp to analyze and classify cancer subtypes
according to distinct patterns of CNA scores, and assess whether CNApp was able to

reproduce the distribution of cancer subtypes based on specific CNA profiles. To do so,
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level 3 publicly available Affymetrix SNP 6.0 array data from 10,635 tumor samples
spanning 33 cancer types from TCGA pan-cancer database were used. We applied Re-
Seg & Score and Region profile using default parameters to obtain re-segmented data,
CNA scores, and cancer-specific CNA profiles. Correlations between CNA scores were
assessed by computing Spearman’s rank test, obtaining values of 0.59 between BCS and
FCS, 0.90 between BCS and GCS, and 0.85 between FCS and GCS. In addition, we
further assessed the correlation between BCS and FCS for each individual BCS value.
While tumors with low BCS displayed a positive correlation between broad and focal
alterations, tumors did not maintain such correlation in higher BCS values
(Supplemental Fig S2A). BCS, FCS and GCS distributions across cancer subtypes
supported the existence of distinct CNA levels between tumors from different origin
(Figure 2A). While cancer subtypes such as acute myeloid leukemia (LAML), thyroid
carcinoma (THCA) or thymoma (THYM) showed low levels of broad and focal events
(GCS median values of -1.67 for LAML, -1.68 for THCA, and -1.52 for THYM), uterine
carcinosarcoma (UCS), ovarian cancer (OV) and lung squamous cell carcinoma (LUSC)
displayed high levels of both types of genomic imbalances (GCS median values of 2.55,
2.44, and 0.97 for UCS, OV, and LUSC, respectively). Some cancer subtypes displayed
a preference for either broad or focal copy number alterations. For example, kidney
chromophobe (KICH) tumors showed the highest levels of broad events (median BCS
value of 27); however, they were amongst those subtypes with less focal CNAs (median
FCS value of 49). In contrast, breast cancer (BRCA) samples displayed high values for
FCS (median FCS value of 150), while BCS values were intermediate (median BCS value
of 7).

Subsequent analysis aimed at generating genome-wide patterns for each cancer subtype
based on chromosome-arm genomic windows and the overall corresponding frequencies

(Figure 2B). We found that chromosome arms altered in more than 25% across all


https://doi.org/10.1101/479667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/479667; this version posted December 2, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

samples were 1q, 7p, 7q, 8q and 20q for copy number gains, and 8p and 17p for copy
number losses. Conversely, chromosome arms affected by CNAs in less than 10% of all
cancer subtypes included 2q and 19p (Figure 2C). By using a subset of 20 out of the 33
cancer types for which tumor type information was available, we asked CNApp to
compute the average arm-region for each cancer type to assess if they clustered according
to their CNA profile (Supplemental Fig S2B). Our analysis showed that correlation
profiles resulting from Pearson’s test were hierarchically clustered according to their
tumor type (Figure 2D). Gastrointestinal (colon, rectum, stomach and pancreatic),
gynecological (ovarian and uterine) and squamous (cervical, head and neck, and lung)
cancers clustered together based on specific CNA profiles for each group (Figure S2B).
These results strongly correlated with previously reported findings (Taylor et al. 2018b;

Hoadley et al. 2018).

Identification of recurrent CNAs in liver hepatocellular carcinoma

Next, we attempted to test the ability of CNApp to identify recurrent broad and focal
CNAs in a large cohort of samples. For that reason, we chose to perform CNA analysis
of 370 samples from TCGA corresponding to the Liver Hepatocellular Carcinoma
(LIHC) cohort, robustly reproducing previous findings reported by GISTIC2.0 (Ally et
al. 2017). The overall pattern of recurrent broad and focal CNAs described in the TCGA
study was similar to earlier reports, confirming the specific copy number profile for
hepatocellular carcinoma (HCC) (Chiang et al. 2008; Guichard et al. 2012; Wang et al.
2013; Totoki et al. 2014; Schulze et al. 2015). By using GISTIC2.0, the most frequent
broad alterations in LIHC were gains at 1q (61%) and 8q (52%), and losses at 8p (70%)
and 17p (56%) (Supplemental Table S1). Recurrent focal amplifications involved the
well-characterized driver oncogenes CCNDI and FGF19 (11ql3.3), MYC (8q24.21),

MET (7q31.2), VEGFA (6p21.1) and MCL1 (1q21.3), and the most recurrent deletions
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included tumor suppressor genes such as RB/ (13q14.2) and the CDKN24 (9p21.3) genes
(Supplemental Table S2).

By applying the default parameters of CNApp to the LIHC dataset and selecting
chromosome arms as genomic regions to assess broad events, we consistently found copy
number gains at 1q (56%) and 8q (46%), and copy number losses at 8p (62%) and 17p
(47%) as the most frequent alterations (Figure 3A). The slightly lower rate tendency of
broad CNAs from CNApp as compared to GISTIC2.0 also appeared in the subsequent
recurrent broad alterations (Supplemental Table S1). For instance, GISTIC2.0
significantly detected gains with rates between 25-40% on eight additional chromosome-
arms, including 5p, 5q, 6p, 20p, 20q, 7p, 7q, and 17q, which were identified by CNApp
in 20-30% of the samples. Similarly, GISTIC2.0 significantly detected broad deletions at
frequencies between 20-40% on 18 additional chromosome-arms, of which 4q, 6q, 9p,
13q, 16p, and 16q losses were observed at >20% by CNApp, and the rest of them
displayed rates between 10-20%. In this case, discrepancies in CNA frequencies were
expected considering the lower copy number amplitude thresholds used by GISTIC2.0 in
comparison with the CNApp default cutoffs (|0.1| vs |0.2|, corresponding to ~2.14/1.8
copies vs 2.3/1.7 copies, respectively). Indeed, previous reports analyzing CNAs in other
HCC cohorts and using greater copy number thresholds, showed frequencies of
alterations similar to those estimated by CNApp (Chiang et al. 2008; Guichard et al. 2012;
Wang et al. 2013; Schulze et al. 2015). To assess the impact of modifying CNApp
amplitude thresholds, we next re-run the software dropping the minimum copy number
values to [0.1|. As expected, the overall number of broad alterations increased, reaching
frequency values similar or even higher than those reported by GISTIC2.0 (Figure 3B
and Supplemental Table S1). Of note, such drop from 0.2 to 0.1 might facilitate the
identification of subclonal genomic imbalances, which are very frequent among tumor

samples (McGranahan and Swanton 2017), though it can also increase the number of false
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positive calls. Furthermore, we assessed whether the identification of broad events was
affected by two additional parameters: (i) the relative length to classify a segment as arm-
level alteration, and (ii) the re-segmentation provided by CNApp. As expected, increasing
the percentage of chromosome arm required to classify a CNA segment as arm-level
(from > 50% to > 70%) or skipping the re-segmentation step led to an underestimation of
some broad events, whereas decreasing the percentage of chromosome arm (from >50%
to >40%) resulted in the opposite  (Supplemental Fig S3A-C  and
Supplemental Table S1).

As far as focal CNAs are concerned, CNApp and GISTIC2.0 use different strategies to
quantify their recurrence. Therefore, the comparison between the two methods was
evaluated in a more indirect manner. GISTIC2.0 constructs minimal common regions
(also known as ‘peaks’) that are likely to be altered at high frequencies in the cohort,
which are scored using a Q-value and may present a wide variety of genomic lengths
(Mermel et al. 2011). Instead, CNApp allows dividing the genome in windows of
different sizes, calculating an average of the copy number amplitudes of segments
included within the selected windows. We reasoned that considering the length of
GISTIC2.0 reported ‘peaks’, CNApp might also be capable to identify focal recurrently
altered regions by dividing the genome in windows of a relatively small size. To test our
hypothesis, we asked CNApp to calculate the frequency of focal gains and losses by
dividing the genome by sub-cytobands. As a result, CNApp consistently localized the
most frequently altered sub-cytobands (found in 10-25% of samples), including gains at
1921.3 (25%), 8q24.21 (17%, MYC), 5p15.33 (13%, TERT), 11ql3.3 (12%,
CCNDI1/FGF19) and 6p21.1 (11%, VEGFA), and losses at 13q14.2 (20%, RB1), 1p36.11
(18%, ARIDI1A), 4q35.1 (17%, IRF2) and 9p21.3 (14%, CDKN24), which are in
agreement with previous studies in HCC (Figure 3C and Supplemental Table S2)

(Chiang et al. 2008; Guichard et al. 2012; Wang et al. 2013; Schulze et al. 2015).
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Compared to GISTIC2.0, CNApp reported 14 of the 27 significant amplifications and 14
of the 34 significant deletions at rates >10%, and the remaining alterations displaying
rates between 4-10% (Supplemental Table S3) (Wang et al. 2013). Most importantly,
regions with the highest frequency detected by CNApp showed a good match with lowest
GISTIC2.0 Q-residual values, indicating that the most significant ‘peaks’ identified by
GISTIC2.0 were actually included in the most recurrently altered sub-cytobands reported
by CNApp.

As previously suggested, recurrent focal alterations often occur at lower frequencies than
broad events (Beroukhim et al. 2010). However, previous studies describing the genomic
landscape of HCC mostly focused on high-level focal CNAs (from >3 copies for gains
and from <1.3 copies for losses), thus reporting lower frequencies than those estimated
by CNApp (Chiang et al. 2008; Guichard et al. 2012; Schulze et al. 2015). Interestingly,
excluding the low-level alterations and evaluating only the moderate and high-amplitude
events (>3 and <I copies), frequencies dropped to values closer to those previously
reported (Figure 3D and Supplemental Table S2). Amplifications reached maximum
rates of 11%, whereas losses ended up at rates of ~2%, in consistence with the observation
that high-level CNAs are relatively rare (Zack et al. 2013). Top recurrent gains involved
sub-cytobands 1g21.3 (11%) and 8q24.21 (11%, MYC), 11q13.3 (7%, CCND1/FGF19),
and 5p15.33 (5%, TERT). Recurrent losses estimated at ~2% of the samples included
13q14.2 (RBI), 9p21.3 (CDKN24), 4q35.1 (IRF2), and 8p23.1. Slight discrepancies
between frequencies might be explained by minimal variability in the copy number

threshold.

Classification of colon cancer according to CNA scores and genomic regions

A proposed taxonomy of colorectal cancer (CRC) includes four consensus molecular

subtypes (CMS), mainly based on differences in gene expression signatures. Accordingly,
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each CMS shows specific molecular features such as microsatellite instability (MSI)
status, CpG island methylator phenotype (CIMP) levels, somatic CNAs and non-
synonymous mutations. Briefly, CMSI1 includes the majority of hypermutated tumors
showing MSI, high CIMP, and low levels of CNAs; CMS2 and 4 typically comprise
microsatellite stable (MSS) tumors with high levels of CNAs; and finally, mixed MSI
status and low levels of CNAs and CIMP are associated with CMS3 tumors (Guinney et
al. 2015). Using a representative cohort of 309 colon cancers from the TCGA Colon
Adenocarcinoma (COAD) cohort (Cancer and Atlas 2012) with known CMS
classification (CMS1, N = 64; CMS2 N = 112; CMS3 N = 51; CMS4 N = 82) and MSI
status, we asked CNApp to generate a genome-wide frequency plot after re-segmentation
using the default copy number thresholds and excluding segments smaller than 500 Kbp
to avoid technical background noise. CNA profiles were generated using genomic regions
defined by chromosome arms. As expected, the frequency plot displayed the most
commonly altered genomic regions in sporadic CRC (Camps et al. 2008; Cancer and
Atlas 2012; Ried et al. 1996; Meijer et al. 1998; Nakao et al. 2004). By assessing the
broad CNA events in the entire cohort, we observed that the most frequently altered
chromosome arms were gains of 7p, 7q, 8q, 13q, 20p, and 20q, and losses of 8p, 17p,
18p, and 18q, occurring in more than 30% of the samples (Figure 4A). Focal CNAs were
obtained by generating genomic regions by sub-cytobands. Of note, five out of six
genomic losses and five out of 18 genomic gains contained deletions and amplifications,
respectively, identified by GISTIC2.0 in the COAD TCGA cohort.

Subsequently, we performed integrative analysis of genomic imbalances, CMS groups,
and CNA scores. By using CNApp, we assessed whether CNA scores were able to
classify colon cancer samples according to their CMS. While BCS established significant
differences between CMS paired comparisons (P < 0.0001, Student’s t-test), FCS poorly

discern CMSI1 from 3 and CMS2 from 4 (Figure 4B and Supplemental Fig S4A). Thus,
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we reasoned that broad CNAs rather than focal were able to better discriminate between
different CMS groups. In fact, the distribution of CMS groups based on BCS resembled
the distribution of somatic CNA counts defined by GISTIC2.0 (Guinney et al. 2015),
which agrees with the observation that BCS highly correlates with the fraction of altered
genome (Supplemental Fig S1A). Subsequently, we integrated the BCS and the CMS
groups with the microsatellite status. Our results showed an average BCS of 1.51012.11
and 10.25115.92 for MSI (N = 72) and MSS (N = 225) tumors, respectively. In addition,
a BCS of 4, corresponding to the 90th percentile in the MSI sample set, was able to
differentiate MSI and MSS tumors. Applying this cutoff, 186 out of 225 (83%) of MSS
tumors showed a BCS greater than 4 (Figure 4C). In contrast, 39 (17%) MSS tumors
showed a BCS value of 4 or lower, corresponding to three CMS1, six CMS2, 18 CMS3
and 12 CMS4 tumors, further demonstrating the existence of MSS tumors with a very
low CNA burden. When we assessed the level of focal alterations in this subset of MSS
samples by considering the 90th percentile of FCS in the MSI group (37.2), we could
determine that eight of these MSS tumors showed high FCS, thus reducing the percentage
of MSS tumors with overall low copy number changes to 13%. On the other hand, seven
MSI tumors showed BCS higher than 4. Among these, five samples displayed genomic
imbalances typically associated with the CRC canonical pathway, including a focal
amplification of MYC, unveiling tumors with co-occurrence of MSI and extensive
genomic alterations (Trautmann et al. 2006). Our dataset comprised nine out of 51 CMS3
tumors with MSI. Intriguingly, two of them showed focal deletions on chromosome 2
involving MSH?2 and MSHG6, suggesting the inactivation of these mismatch repair genes
through a focal genomic imbalance. In fact, 46% of CMS3 MSS tumors showed BCS
below 4, in agreement with the finding that CMS3 tumors display low levels of somatic

CNA:s.

15


https://doi.org/10.1101/479667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/479667; this version posted December 2, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

CNApp enable the identification of possible sample misclassifications by integrating
CMS annotation and BRAF-mutated sample status.. As expected, CMS1 cases were
enriched for BRAF mutation. Nevertheless, two CMS4 samples also showed mutations in
BRAF. One of these samples showed a BCS of 11, displaying canonical CNAs. In
contrast, the other CMS4 BRAF-mutated sample showed MSI and a BCS of 0, similar
features as in CMSI. Likewise, four BRAF WT samples, classified within the CMS4
group, displayed MSI and a BCS of 0, thus being candidates to be labeled as CMS1 based
on the levels of CNAs (Figure 4D). These disparities are of utmost importance since
recent studies reported that high copy number alterations correlate with reduced response
to immunotherapy (Davoli et al. 2017). Importantly, it has been suggested that MSI status
might be predictive of positive immune checkpoint blockade response in advanced CRC,
probably due to the low levels of CNA usually presented by MSI tumors (Le et al. 2015).
We next asked CNApp to compare genomic regions differentially represented in the four
CMS groups based on a Student's t-test or Fisher's test with adjusted p-value. By applying
a Student's t-test, we could observe that CMS1 resembled CMS3, except for the gain of
chromosome 7 and the loss of 18q, which were the alterations that commonly appeared
in CMS3 samples with BCS above 4 (P < 0.001, Student's t-test)
(Supplemental Fig S4B). Even though only subtle CNA differences between CMS2 and
CMS4 were identified, the loss of 14q was significantly more detected in CMS2 (42%)
than in CMS4 (17.1%) (P < 0.005, Student's t-test) (Supplemental Fig S4B). Visually
exploring the heatmap plot and further analyzing specific regions, we observed that the
gain of 12q was more frequently associated with CMS1 than CMS2 (P < 0.005, Student's
t-test), in agreement with previous studies reporting that the gain of chromosome 12 is
associated with microsatellite unstable tumors (Supplemental Fig S4B) (Trautmann et
al. 2006). Intriguingly, the gain of the chromosome arm 20q alone mimicked the

distribution of somatic CNAs defined by GISTIC2.0 across consensus subtype samples
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(Figure 4E) (Guinney et al. 2015). In fact, chromosome arm 20q was gained in 99.1%,
70.7%, 39.2%, and 10.9% of CMS2, CMS4, CMS3 and CMSI1 tumors, respectively.

Finally, we applied machine learning-based prediction models to classify samples by their
MSI status or CMS. BCS predicted MSI status with a global accuracy of 82.2%. This was
consistent with the fact that BCS was able to distinguish CMS1 from CMS2 with 89.2%
of accuracy. However, when we tested the performance of BCS to predict any CMS
group, the accuracy was only 47.5%, indicating that BCS alone is a poor predictive
variable to assess CMS. We then used the most discriminative descriptive regions among
CMS groups (i.e., 13q, 17p, 18, and 20q), and reached an accuracy to correctly predict
CMS of 55%. In fact, the occurrence of these genomic alterations was able to differentiate
CMS2 from CMS4 with an accuracy of 70%, and CMS1 from CMS3 with a 72.3%
accuracy. As expected, this set of genomic alterations distinguished CMS1 from CMS2
samples with an accuracy of 95%. Altogether, these data suggest that CNApp might

provide insight into further classifying CRC samples in CMS groups.

DISCUSSION

Here we present CNApp, a web-based computational approach to analyze and integrate
CNAs associated with molecular and clinical variables. CNApp calculates CNA scores
to quantify focal, broad and global levels of alterations for each individual sample after
an optional process of re-segmentation. Moreover, CNApp utilizes genomic imbalances
selected by the user to assess classifier variables by computing machine learning-based
models. Although CNApp has been developed using segmented genomic copy number
data obtained from SNP-arrays, the software is also able to accommodate segmented data
from next-generation sequencing.

Overall, CNApp was benchmarked by analyzing a pan-cancer TCGA dataset with more

than 10,000 samples, being able to cluster major tumor types according to CNA patterns.
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Moreover, our results demonstrate the reliability of CNApp in identifying regions
encompassing the most recurrent CNAs. The software successfully reproduced the well-
characterized genomic profile of HCC and CRC, considering both broad and focal events.
Although CNApp has not been developed to define the precise boundaries of focal events,
the software is capable to detect which regions are likely to contain the most recurrent
alterations. However, we acknowledge that the characterization of focal alterations
potentially containing driver events performed by GISTIC2.0 is more accurate than the
genomic windows provided by CNApp. Thus, despite the in-depth comparison described
here, we consider CNApp as a complementary tool rather than a replacement for
GISTIC2.0.

Finally, applying CNApp to a colon cancer dataset for which clinical features were known
allowed the determination of a BCS value of 4 to potentially discriminate MSI from MSS
tumors. Most importantly, due to the inverse correlation between MSI and aneuploidy in
CRC, our results suggest that this BCS value could be established as a cutoff to define
the edge between low and high aneuploid tumors. Nevertheless, these results ought to be
further validated in an independent cohort. Since high levels of aneuploidy correlate with
immune evasion markers, quantification of CNAs and their association with molecular
and clinical features might be of extreme relevance. In fact, specific genomic regions
defined by CNApp contributed to classify the consensus molecular subtypes. This is of
clinical interest as it is known that CMS1 microsatellite unstable tumors might show a
positive response to immuno-related treatments. Therefore, we believe that CNApp
enables not only the fundamental analysis of CNA profiles, but also the functional
understanding of CNAs in the context of clinical samples and their potential use as

biomarkers.

METHODS
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Data set availability

CNA data from TCGA: pan-cancer cohort

Affymetrix SNP6.0 array copy number segmented data (Level 3) from 10,635 samples
spanning 33 cancer types from TCGA pan-cancer dataset were downloaded from
Genomic Data Commons (National Cancer Institute, NIH) (Grossman et al. 2016). This
dataset included the 370 Liver Cancer-Hepatocellular Carcinoma (LIHC) samples used
for the analysis of recurrent CNAs and the subset of 309 samples from Colon
Adenocarcinoma (COAD) for which the colorectal cancer consensus molecular subtype
(CMS) was known (Guinney et al. 2015).

GISTIC data from TCGA: LIHC cohort

GISTIC 2.0.22 (Ally et al. 2017) copy number results (Level 4) of the 370 LIHC samples,
were downloaded from the Broad Institute GDAC Firehose. Parameters used for the
analysis are detailed in the same GDAC repository. Specifically, parameters conditioning
the definition of the CNAs and of interest for our comparison were publicly reported with
the following values: amplification and deletion thresholds: 0.1; broad length cutoff: 0.7,

Jjoint segment size: 4.

Software and tool availability

CNApp can be accessed at http://bioinfo.ciberehd.org/CNApp. It was developed using
Shiny R package (version 1.1.0), from R-Studio (Chang et al. 2018). The tool was applied
and benchmarked while using R version 3.4.2 (2017-09-28) -- "Short Summer". List of
packages, libraries and base coded are freely available at GitHub, and instructions for

local installation are also specified.

CNA scores computation
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Segments resulted from re-segmentation (or original segments from input file when re-
segmentation is skipped) are classified in chromosomal, arm-level and focal events by
considering the relative length of each segment to the whole-chromosome or chromosome
arm. Using default parameters, segments are tagged as chromosomal when 90% or more
of the chromosome is affected; as arm-level when 50% or more of the chromosome arm
affected; and as focal when affecting less than 50% of the chromosome arm. Percentages
for relative lengths are customizable. Broad (chromosomal and arm-level) and focal
alterations are then weighted according to their amplitude values (seg.mean) and taking
into account copy number amplitude ranges defined by CNA calling thresholds and
specified in Supplemental Methods.

Broad CNA Score (BCS): for a total N of broad events in a sample (x), it equals to the
summation of segments weights (4) in that corresponding sample and being i the

corresponding segment:

N
BCS(x) = ZAi
i=1

Focal CNA Score (FCS): same as in BCS, with an additional pondering value L included
to the summation, which captures the relative size of the chromosome-arm coverage of

each focal CNA (according to weights specified in Supplemental Methods):

N
FCS(X') = ZAL . Li
i=1

Global CNA Score (GCS): for a sample x, it is calculated as the summation of normalized
BCS and FCS values, where meanBCS and meanF' CS stand for mean values of BCS and
FCS from total samples, respectively, and sdBCS and sdFCS stand for standard deviation
values of BCS and FCS from total samples, respectively:

BCS(x) — meanBCS FCS(x) — meanFCS

normBCS(x) = <dBCS normFCS(x) = ~dFCS
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N
GCS(x) = z normBCS; + normFCS;

i=1

Genomic windows computation

Region profiling section allows genome segmentation analysis by user-selected windows
(i.e. arms, half-arms, cytobands, sub-cytobands, and 40Mb till 1Mb). In order to do that,
windows files were generated for each option and genome build (hg/9 and hg38).
Cytobands file cytoBand.txt from UCSC page and for both genome builds was used as
mold to compute regions (Casper et al. 2017).

Segmented samples are transformed into genome region profiles using genomic windows
selected by user. Segments from each sample are consulted to assess whether or not
overlap with the window region. Thus, window-means (W) are computed for each
genomic window by collecting segments (f) overlapping with window-region (i).
Segments with loc.start or loc.end position falling within the region are collected, as well
as those segments embedding the entire region. At this point, the summation of each
segment-mean (S) corrected by the relative window-length (L) affected by the segment

length (/) is performed:

LN b
W(l)—;st'm

Descriptive regions assessment

Potential descriptive regions between groups defined by the annotated variables provided
in the input file can be studied and P-values are presented to evaluate significance in
differentially altered regions between those groups. The alterations can be considered as
(1) numerical continuous (seg.mean values) and (2) categorical variables (gains, losses

and non-altered). In the first case, to assess statistical significance between groups
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Student’s T-test is applied, whereas in the second situation the significance is assessed by

applying the Fisher’s exact test. False discovery rate (FDR) adjustment is performed

using the Benjamini-Hochberg (BH) procedure in both cases and corrected P-values

(Adj.p-value) or non-corrected P-values (p-values) are displayed by user selection.

Machine learning-based classifier models

We used the randomForest R package (Liaw and Wiener 2002) to compute machine

learning classifier models. Variables to define sample groups must be selected, as well as

at least one classifier variable. Model construction is performed 50-times and training set

is changed by iteration. In order to compute model and select training set, multiple steps

and conditions have to be accomplished:

L

ii.

iii.

1v.

total N samples divided by G groups depicted by group-defining variable must

be higher than n samples from the smaller group:

If condition above is not accomplished, then P is set to 75% of n:

if P<n then P=n-0.75

P term must be higher than one, and N must be equal or higher than 20:

P>1or N>20

Classifier variables, when categorical, shall not have higher number of tags (2)
than groups defined (G) by group-defining variable:

Z<G
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v.  Training set (7) is computed and merged for each group (g) from groups (G)

defined by group variable, extracting P samples from g as follows:
)

t (g) = P samples from g T = z t;

=1

l

After model computation, contingency matrix with prediction and reference values by

group is created to compute accuracy, specificity and sensitivity by group.
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FIGURE LEGENDS

Figure 1: CNApp workflow. The diagram depicts the overall processes performed by

CNApp and indicates the output for each section.

Figure 2: Analysis of the TCGA pan-cancer dataset and clustering by tumor type.
CNApp outputs to characterize pan-cancer 10,635 samples including 33 TCGA cancer
types. A) Broad, Focal and Global CNA scores (BCS, FCS and GCS, respectively)
distribution across the 33 cancer types. B) Genome-wide chromosome arm CNA profile
heatmap for 10,635 samples considering broad and focal events. Annotation tracks for
FCS, BCS and GCS are presented. C) Arm regions frequencies as percentages relative to
the TCGA pan-cancer dataset (red for gains and blue for losses). D) Heatmap plot
showing 20 out of the 33 TCGA cancer type profile correlations, by Pearson's method,
hierarchically clustered by tumor type. Gastrointestinal, gynecological and squamous

types are clustering consistently in their respective groups.

Figure 3: Identification of recurrent broad and focal CNAs. Calculation of broad and
focal CNA frequencies using several parameters in CNApp in order to describe the
genomic landscape of LIHC. A) CNApp frequencies for chromosome arm regions using
default cutoffs, corresponding to 2.3/1.7 copies for gains and losses, respectively. B)
CNApp frequencies for chromosome arm regions relaxing cutoffs to make them
equivalent to those of GISTIC2.0. C) CNApp frequencies of focal events using default
thresholds and sub-cytobands genomic regions. D) Frequencies of focal events from

moderate- to high-amplitude levels using sub-cytobands genomic regions.

Figure 4: Genomic characterization of colon cancer according to the CMS

30


https://doi.org/10.1101/479667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/479667; this version posted December 2, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

classification. A) Arm-region frequencies of 309 colon cancer samples using CNApp
default thresholds for CNAs. B) BCS distribution by CMS sample groups. Significance
is shown as p-value < 0.001 (***); p-value <0.01 (**); p-value <0.05 (*); p-value > 0.05
(ns). C) Number of gained and lost chromosome arms for each sample distributed
according to the BCS values. Note that a cutoff at 4 is indicated with a black line.
Annotation tracks for microsatellite instability (msi), BRAF mutated samples (braf mut),
CMS groups (cms_label), FCS and BCS are displayed. D) Genome-wide profiling by
chromosome arms distributed according to the CMS group. Annotation tracks for
microsatellite instability (msi), BRAF mutated samples (braf mut), CMS groups
(cms_label), FCS and BCS are displayed. Sample-to-sample correlation heatmap plot by
Pearson’s method is shown below. E) Distribution of CNA values affecting 20q
according to the CMS groups. Significance is shown as p-value < 0.001 (***); p-value <

0.01 (**); p-value < 0.05 (*); p-value > 0.05 (ns).
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