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ABSTRACT 

Copy number alterations (CNAs) are a hallmark of cancer. Large-scale cancer genomic 

studies have already established the CNA landscape of most human tumor types and some 

CNAs are recognized as cancer-driver events. However, their precise role in 

tumorigenesis as well as their clinical and therapeutic relevance remain undefined, thus 

computational and statistical approaches are required for the biological interpretation of 

these data. Here, we describe CNApp, a user-friendly web tool that offers sample- and 

cohort-level association analyses, allowing a comprehensive and integrative exploration 

of CNAs with clinical and molecular variables. CNApp generates genome-wide profiles, 

calculates CNA levels by computing broad, focal and global CNA scores, and uses 

machine learning-based predictions to classify samples by using segmented data from 

either microarrays or next-generation sequencing. In the present study, using copy 

number data of well-annotated 10,635 genomes from The Cancer Genome Atlas spanning 

33 cancer subtypes, we showed that patterns of CNAs classified tumor subtypes 

according to their tissue-of-origin and that broad and focal CNA scores correlated 

positively in those samples with low levels of chromosome and arm-level events. 

Moreover, CNApp allowed the description of recurrent CNAs in hepatocellular 

carcinoma further confirming previous results identified using other methods. Finally, we 

established machine learning-based models to predict colon cancer molecular subtypes 

and microsatellite instability based on broad and focal CNA scores and specific genomic 

imbalances. In summary, CNApp facilitates data-driven research and provides a unique 

framework to comprehensively assess CNAs and perform integrative analyses that enable 

the identification of relevant functional implications. 
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INTRODUCTION 

The presence of somatic copy number alterations (CNAs) is a ubiquitous feature in 

cancer. Indeed, the distribution of such CNAs is sufficiently tissue-specific to distinguish 

and enable the classification of tumor entities (Ried et al. 2012; Taylor et al. 2018a), and 

may allow identifying groups of tumors responsive to particular therapies(Cairncross et 

al. 2013; Davoli et al. 2017). Moreover, high levels of CNAs, which result from 

aneuploidy and chromosome instability, are generally associated with high-grade tumors 

and poor prognosis (Sansregret et al. 2018). Two main subtypes of CNAs can be 

discerned: broad CNAs, which are defined as whole-chromosome and chromosomal arm-

level alterations, and focal CNAs, which are alterations of limited size ranging from part 

of a chromosome-arm to few kilobases (Krijgsman et al. 2014; Zack et al. 2013). 

Recently, it has been uncovered that while focal events mainly correlate with cell cycle 

and proliferation markers, broad aberrations are mainly associated with immune evasion 

markers (Taylor et al. 2018b; Davoli et al. 2017; Buccitelli et al. 2017). Nevertheless, the 

precise role of CNAs in tumor initiation and progression, as well as their clinical 

relevance and therapeutic implications remain still poorly understood. 

Characterization and interpretation of CNAs is time-consuming and very often requires 

complex integrative analyses with clinical and molecular information. Moreover, 

visualization of complex data is usually essential to discriminate key results. Well-

established CNA algorithms, such as the gold-standard circular binary segmentation, 

determine the genomic boundaries of copy number gains and losses based on signal 

intensities or read depth obtained from array comparative genomic hybridization and 

SNP-array or next-generation sequencing data, respectively (Olshen et al. 2004). 

Variability within gain or loss levels can be addressed with the algorithm CGHcall, which 

enables the identification of single copy number changes (van de Wie et al. 2007). In 

order to overcome the complex nature of tumor samples (Stratton et al. 2009), more recent 
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segmentation methods improved the accuracy to identify copy number segments either 

by considering the B allele frequency (BAF), such as ExomeCNV (Sathirapongsasuti et 

al. 2011), Control-FREEC (Boeva et al. 2012) and SAAS-CNV (Zhang and Hao 2015), 

or through adjusting by sample purity and ploidy estimates, such as GAP (Popova et al. 

2009), ASCAT (Van Loo et al. 2010) and ABSOLUTE (Carter et al. 2012). However, the 

state-of-the-art computational approach for CNA analysis is GISTIC2.0 (Mermel et al. 

2011), which is a gene-centered probabilistic method that enables to define the boundaries 

of recurrent putative driver CNAs in large cohorts (Beroukhim et al. 2010). Nevertheless, 

despite ongoing progress on identifying CNAs, to our knowledge there is no 

bioinformatic tool readily available for integrative analyses to unveil the biological 

interpretation of these CNAs. 

To address this issue, we developed CNApp, the first open-source application to 

comprehensively analyze and integrate CNA profiles with molecular and clinical 

variables. CNApp was built in Shiny R package (Chang et al. 2018) and provides the user 

with high-quality interactive plots and statistical correlations between CNAs and 

annotated variables in a fast and easy-to-explore interface. In particular, CNApp uses 

genomic segmented data to quantify CNA levels based on broad and focal genomic 

alterations, assess differentially altered genomic regions, and perform machine learning-

based predictions to classify tumor samples. A dataset including 160 colon cancer 

samples with clinical annotation is loaded for demonstration purposes. To exemplify the 

applicability and performance of CNApp, we used publicly available segmented data 

from The Cancer Genome Atlas (TCGA) to (i) measure the burden of global, broad, focal 

CNAs as well as generate CNA profiles in a pan-cancer dataset spanning 33 cancer 

subtypes, (ii) identify cohort-based recurrent CNAs in hepatocellular carcinoma and 

compare it with previously reported data using different methods, and (iii) assess 

predicting models for colon cancer molecular subtype and microsatellite instability status 
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classification based on CNA scores and specific genomic imbalances. CNApp is hosted 

at http://bioinfo.ciberehd.org/CNApp and the source code is freely available at GitHub 

(https://github.com/ait5/CNApp). 

 

RESULTS 

Implementation and basic usage 

Functions of CNApp comprise three main sections: 1- Re-Seg & Score: re-segmentation, 

CNA scores computation and variable association, 2- Region profile: genome-wide CNA 

profiling, and 3- Classifier model: machine learning classification model predictions, 

(Figure 1). Each of these sections and their key functions are described below. The input 

file consists of a data frame with copy number segments provided by any segmentation 

algorithm. Mandatory fields and column headers are sample name (ID), chromosome 

(chr), start (loc.start) and end (loc.end) genomic positions, and the log2 ratio of the copy 

number amplitude (seg.mean) for each segment. If available, it is recommended to 

include sample purity (purity) and BAF values (BAF), which can improve the accuracy 

of CNA calls and will provide information of copy number neutral loss-of-heterozygosity 

(CN-LOH) events. Annotation of variables can be included in the input file (tagged in 

every segment from each sample) or by loading an additional file specifying new 

variables to every sample. 

 

Section 1. Re-Seg & Score: re-segmentation, CNA scores computation and variable 

association 

First, CNApp applies a re-segmentation approach aiming at correcting potential 

background noise and amplitude divergence due to technical variability. Default re-

segmentation settings include minimum segment length (100 Kbp), maximum distance 

between segments (1 Mbp), maximum amplitude (seg.mean) deviation between segments 
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(0.16), minimum amplitude (seg.mean) deviation from segment to zero (0.16), and 

maximum BAF deviation between segments (0.1). These parameters can be customized 

by the user to better adjust the re-segmentation and CNA calling for each particular 

dataset. Re-segmented data are then used to calculate the focal (FCS), broad (BCS) and 

global (GCS) CNA scores, which provide three different quantification of CNA levels for 

each sample. To compute these scores, CNApp classifies and weights CNAs based on 

amplitude and length. A weight is given to each segment according to its seg.mean value 

and by applying low-, medium- and high-level copy number amplitude thresholds. By 

considering the relative length of each segment to the whole-chromosome or chromosome 

arm, segments are tagged as chromosomal -by default, 90% or more of the chromosome 

affected-, as arm-level -50% or more of the chromosome arm affected-, or as focal -less 

than 50% of the chromosome arm affected. Percentages for relative lengths are also 

customizable. For each sample, BCS is computed by considering chromosome and arm-

level segment weights according to the amplitude value. Likewise, calculation of FCS 

takes into account weighted focal CNAs and the amplitude and length of the segment. 

Finally, GCS is computed by considering the sum of normalized FCS and BCS values, 

providing an overall assessment of the CNA burden for each sample. To assess the 

reliability of CNA scores, we compared each score with the corresponding fraction of 

altered genome using a TCGA pan-cancer set of 10,635 samples. Both FCS (values 

ranging from 5 to 2,466) and BCS (ranging from 0 to 44) highly correlated with the 

fraction of altered genome by focal and broad copy number changes, respectively 

(Spearman's rank correlation for BCS = 0.957 and for FCS = 0.938) 

(Supplemental_Fig_S1 A and B). As expected, GCS (values ranged from -1.93 to 12.60) 

highly correlated with the fraction of altered genome affected by both focal and broad 

CNAs (Spearman’s rank correlation for GCS = 0.963) (Supplemental_Fig_S1C). 
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Additionally, parametric and non-parametric statistical tests are used to establish 

associations between CNA scores and annotated variables from the input file. 

 

Section 2. Region profile: genome-wide CNA profiling 

This section utilizes re-segmented data obtained from section 1 or uploaded segmented 

data without re-segmentation to generate genomic region profiling and sample-to-sample 

correlations. To conduct this, re-segmented data are transformed into genome region 

profiles according to a user-selected genomic window (i.e., chromosome arms, half-arms, 

cytobands, sub-cytobands or 40-1 Mbp windows). All segments, or either only broad or 

only focal can be selected for this analysis. Length-relative means are computed for each 

window by considering amplitude values from those segments included in each specific 

window. Default thresholds for low-level copy number gains and losses (i.e., |0.2|) are 

used as cutoffs to classify genome regions and to calculate their frequencies in this 

section. Genome-region profiles are presented in genome-wide heatmaps to visualize 

general copy number patterns. Up to six annotation tracks can be added and plotted 

simultaneously allowing visual comparison and correlation between CNA profiles and 

different variables, including the CNA scores obtained in section 1. Generation of 

hierarchical clusters by samples and regions is optional. CNA frequency summaries by 

genomic region and by sample are represented as stacked bar plots. 

Importantly, assessing differentially altered regions between sample groups might 

contribute to discover genomic regions associated with annotated variables and thus 

unveil the biological significance of specific CNAs. To do so, CNApp interrogates 

descriptive regions associated with any sample-specific annotation variable provided in 

the input file. Student's t-test or Fisher's test are applied when considering CNAs as 

continuous alterations (seg.mean values) or as categorical events (presence of gains and 

losses), respectively. Default statistical significance is set to P-value lower than 0.1. 
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However, p-value thresholds can be defined by the user and adjusted P-value is optional. 

A heatmap plot allows the visualization and interpretation of which genome regions are 

able to discriminate between sample groups. By selecting a region of interest, box plots 

and stacked bar plots are generated comparing seg.mean values and alteration counts in 

Student’s t-test and Fisher’s test tabs, respectively. Additionally, genes comprised in the 

selected region are indicated.  

 

3. Classifier model: Machine learning classification model predictions 

This section allows the user to generate machine learning-based classifier models by 

choosing a variable to define sample groups and one or multiple classifier variables. To 

do so, CNApp incorporates the randomForest R package (Liaw and Wiener 2002). The 

model construction is performed 50-times and bootstrap set is changed in each iteration. 

By default, only annotation variables from the input file are loaded to work either by 

group defining or by classifier variables. If Re-Seg & Score and/or Region profile sections 

have been previously completed, the user can upload data from these sections (i.e., CNA 

scores and genomic regions). Predictions for the model performance are generated and 

the global accuracy is computed along with sensitivity and specificity values by group. 

Classifier models can be useful to point out candidate clinical or molecular variables to 

classify sample subgroups. A summary of the data distribution and plots for real and 

model-predicted groups are visualized. A table with prediction rates throughout the 50-

times iteration model and real tags by sample is displayed and can be downloaded. 

 

Genomic characterization of cancer subtypes 

First, we evaluated the capacity of CNApp to analyze and classify cancer subtypes 

according to distinct patterns of CNA scores, and assess whether CNApp was able to 

reproduce the distribution of cancer subtypes based on specific CNA profiles. To do so, 
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level 3 publicly available Affymetrix SNP 6.0 array data from 10,635 tumor samples 

spanning 33 cancer types from TCGA pan-cancer database were used. We applied Re-

Seg & Score and Region profile using default parameters to obtain re-segmented data, 

CNA scores, and cancer-specific CNA profiles. Correlations between CNA scores were 

assessed by computing Spearman’s rank test, obtaining values of 0.59 between BCS and 

FCS, 0.90 between BCS and GCS, and 0.85 between FCS and GCS. In addition, we 

further assessed the correlation between BCS and FCS for each individual BCS value. 

While tumors with low BCS displayed a positive correlation between broad and focal 

alterations, tumors did not maintain such correlation in higher BCS values 

(Supplemental_Fig_S2A). BCS, FCS and GCS distributions across cancer subtypes 

supported the existence of distinct CNA levels between tumors from different origin 

(Figure 2A). While cancer subtypes such as acute myeloid leukemia (LAML), thyroid 

carcinoma (THCA) or thymoma (THYM) showed low levels of broad and focal events 

(GCS median values of -1.67 for LAML, -1.68 for THCA, and -1.52 for THYM), uterine 

carcinosarcoma (UCS), ovarian cancer (OV) and lung squamous cell carcinoma (LUSC) 

displayed high levels of both types of genomic imbalances (GCS median values of 2.55, 

2.44, and 0.97 for UCS, OV, and LUSC, respectively). Some cancer subtypes displayed 

a preference for either broad or focal copy number alterations. For example, kidney 

chromophobe (KICH) tumors showed the highest levels of broad events (median BCS 

value of 27); however, they were amongst those subtypes with less focal CNAs (median 

FCS value of 49). In contrast, breast cancer (BRCA) samples displayed high values for 

FCS (median FCS value of 150), while BCS values were intermediate (median BCS value 

of 7). 

Subsequent analysis aimed at generating genome-wide patterns for each cancer subtype 

based on chromosome-arm genomic windows and the overall corresponding frequencies 

(Figure 2B). We found that chromosome arms altered in more than 25% across all 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 2, 2018. ; https://doi.org/10.1101/479667doi: bioRxiv preprint 

https://doi.org/10.1101/479667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

samples were 1q, 7p, 7q, 8q and 20q for copy number gains, and 8p and 17p for copy 

number losses. Conversely, chromosome arms affected by CNAs in less than 10% of all 

cancer subtypes included 2q and 19p (Figure 2C). By using a subset of 20 out of the 33 

cancer types for which tumor type information was available, we asked CNApp to 

compute the average arm-region for each cancer type to assess if they clustered according 

to their CNA profile (Supplemental_Fig_S2B). Our analysis showed that correlation 

profiles resulting from Pearson’s test were hierarchically clustered according to their 

tumor type (Figure 2D). Gastrointestinal (colon, rectum, stomach and pancreatic), 

gynecological (ovarian and uterine) and squamous (cervical, head and neck, and lung) 

cancers clustered together based on specific CNA profiles for each group (Figure S2B). 

These results strongly correlated with previously reported findings (Taylor et al. 2018b; 

Hoadley et al. 2018). 

 

Identification of recurrent CNAs in liver hepatocellular carcinoma 

Next, we attempted to test the ability of CNApp to identify recurrent broad and focal 

CNAs in a large cohort of samples. For that reason, we chose to perform CNA analysis 

of 370 samples from TCGA corresponding to the Liver Hepatocellular Carcinoma 

(LIHC) cohort, robustly reproducing previous findings reported by GISTIC2.0 (Ally et 

al. 2017). The overall pattern of recurrent broad and focal CNAs described in the TCGA 

study was similar to earlier reports, confirming the specific copy number profile for 

hepatocellular carcinoma (HCC) (Chiang et al. 2008; Guichard et al. 2012; Wang et al. 

2013; Totoki et al. 2014; Schulze et al. 2015). By using GISTIC2.0, the most frequent 

broad alterations in LIHC were gains at 1q (61%) and 8q (52%), and losses at 8p (70%) 

and 17p (56%) (Supplemental_Table_S1). Recurrent focal amplifications involved the 

well-characterized driver oncogenes CCND1 and FGF19 (11q13.3), MYC (8q24.21), 

MET (7q31.2), VEGFA (6p21.1) and MCL1 (1q21.3), and the most recurrent deletions 
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included tumor suppressor genes such as RB1 (13q14.2) and the CDKN2A (9p21.3) genes 

(Supplemental_Table_S2). 

By applying the default parameters of CNApp to the LIHC dataset and selecting 

chromosome arms as genomic regions to assess broad events, we consistently found copy 

number gains at 1q (56%) and 8q (46%), and copy number losses at 8p (62%) and 17p 

(47%) as the most frequent alterations (Figure 3A). The slightly lower rate tendency of 

broad CNAs from CNApp as compared to GISTIC2.0 also appeared in the subsequent 

recurrent broad alterations (Supplemental_Table_S1). For instance, GISTIC2.0 

significantly detected gains with rates between 25-40% on eight additional chromosome-

arms, including 5p, 5q, 6p, 20p, 20q, 7p, 7q, and 17q, which were identified by CNApp 

in 20-30% of the samples. Similarly, GISTIC2.0 significantly detected broad deletions at 

frequencies between 20-40% on 18 additional chromosome-arms, of which 4q, 6q, 9p, 

13q, 16p, and 16q losses were observed at ≥20% by CNApp, and the rest of them 

displayed rates between 10-20%. In this case, discrepancies in CNA frequencies were 

expected considering the lower copy number amplitude thresholds used by GISTIC2.0 in 

comparison with the CNApp default cutoffs (|0.1| vs |0.2|, corresponding to ~2.14/1.8 

copies vs 2.3/1.7 copies, respectively). Indeed, previous reports analyzing CNAs in other 

HCC cohorts and using greater copy number thresholds, showed frequencies of 

alterations similar to those estimated by CNApp (Chiang et al. 2008; Guichard et al. 2012; 

Wang et al. 2013; Schulze et al. 2015). To assess the impact of modifying CNApp 

amplitude thresholds, we next re-run the software dropping the minimum copy number 

values to |0.1|. As expected, the overall number of broad alterations increased, reaching 

frequency values similar or even higher than those reported by GISTIC2.0 (Figure 3B 

and Supplemental_Table_S1). Of note, such drop from 0.2 to 0.1 might facilitate the 

identification of subclonal genomic imbalances, which are very frequent among tumor 

samples (McGranahan and Swanton 2017), though it can also increase the number of false 
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positive calls. Furthermore, we assessed whether the identification of broad events was 

affected by two additional parameters: (i) the relative length to classify a segment as arm-

level alteration, and (ii) the re-segmentation provided by CNApp. As expected, increasing 

the percentage of chromosome arm required to classify a CNA segment as arm-level 

(from ≥ 50% to ≥ 70%) or skipping the re-segmentation step led to an underestimation of 

some broad events, whereas decreasing the percentage of chromosome arm (from ≥50% 

to ≥40%) resulted in the opposite (Supplemental_Fig_S3A-C and 

Supplemental_Table_S1).  

As far as focal CNAs are concerned, CNApp and GISTIC2.0 use different strategies to 

quantify their recurrence. Therefore, the comparison between the two methods was 

evaluated in a more indirect manner. GISTIC2.0 constructs minimal common regions 

(also known as ‘peaks’) that are likely to be altered at high frequencies in the cohort, 

which are scored using a Q-value and may present a wide variety of genomic lengths 

(Mermel et al. 2011). Instead, CNApp allows dividing the genome in windows of 

different sizes, calculating an average of the copy number amplitudes of segments 

included within the selected windows. We reasoned that considering the length of 

GISTIC2.0 reported ‘peaks’, CNApp might also be capable to identify focal recurrently 

altered regions by dividing the genome in windows of a relatively small size. To test our 

hypothesis, we asked CNApp to calculate the frequency of focal gains and losses by 

dividing the genome by sub-cytobands. As a result, CNApp consistently localized the 

most frequently altered sub-cytobands (found in 10-25% of samples), including gains at 

1q21.3 (25%), 8q24.21 (17%, MYC), 5p15.33 (13%, TERT), 11q13.3 (12%, 

CCND1/FGF19) and 6p21.1 (11%, VEGFA), and losses at 13q14.2 (20%, RB1), 1p36.11 

(18%, ARID1A), 4q35.1 (17%, IRF2) and 9p21.3 (14%, CDKN2A), which are in 

agreement with previous studies in HCC (Figure 3C and Supplemental_Table_S2) 

(Chiang et al. 2008; Guichard et al. 2012; Wang et al. 2013; Schulze et al. 2015). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 2, 2018. ; https://doi.org/10.1101/479667doi: bioRxiv preprint 

https://doi.org/10.1101/479667
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Compared to GISTIC2.0, CNApp reported 14 of the 27 significant amplifications and 14 

of the 34 significant deletions at rates >10%, and the remaining alterations displaying 

rates between 4-10% (Supplemental_Table_S3) (Wang et al. 2013). Most importantly, 

regions with the highest frequency detected by CNApp showed a good match with lowest 

GISTIC2.0 Q-residual values, indicating that the most significant ‘peaks’ identified by 

GISTIC2.0 were actually included in the most recurrently altered sub-cytobands reported 

by CNApp. 

As previously suggested, recurrent focal alterations often occur at lower frequencies than 

broad events (Beroukhim et al. 2010). However, previous studies describing the genomic 

landscape of HCC mostly focused on high-level focal CNAs (from >3 copies for gains 

and from <1.3 copies for losses), thus reporting lower frequencies than those estimated 

by CNApp (Chiang et al. 2008; Guichard et al. 2012; Schulze et al. 2015). Interestingly, 

excluding the low-level alterations and evaluating only the moderate and high-amplitude 

events (≥3 and ≤1 copies), frequencies dropped to values closer to those previously 

reported (Figure 3D and Supplemental_Table_S2). Amplifications reached maximum 

rates of 11%, whereas losses ended up at rates of ~2%, in consistence with the observation 

that high-level CNAs are relatively rare (Zack et al. 2013). Top recurrent gains involved 

sub-cytobands 1q21.3 (11%) and 8q24.21 (11%, MYC), 11q13.3 (7%, CCND1/FGF19), 

and 5p15.33 (5%, TERT). Recurrent losses estimated at ~2% of the samples included 

13q14.2 (RB1), 9p21.3 (CDKN2A), 4q35.1 (IRF2), and 8p23.1. Slight discrepancies 

between frequencies might be explained by minimal variability in the copy number 

threshold. 

 

Classification of colon cancer according to CNA scores and genomic regions 

A proposed taxonomy of colorectal cancer (CRC) includes four consensus molecular 

subtypes (CMS), mainly based on differences in gene expression signatures. Accordingly, 
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each CMS shows specific molecular features such as microsatellite instability (MSI) 

status, CpG island methylator phenotype (CIMP) levels, somatic CNAs and non-

synonymous mutations. Briefly, CMS1 includes the majority of hypermutated tumors 

showing MSI, high CIMP, and low levels of CNAs; CMS2 and 4 typically comprise 

microsatellite stable (MSS) tumors with high levels of CNAs; and finally, mixed MSI 

status and low levels of CNAs and CIMP are associated with CMS3 tumors (Guinney et 

al. 2015). Using a representative cohort of 309 colon cancers from the TCGA Colon 

Adenocarcinoma (COAD) cohort (Cancer and Atlas 2012) with known CMS 

classification (CMS1, N = 64; CMS2 N = 112; CMS3 N = 51; CMS4 N = 82) and MSI 

status, we asked CNApp to generate a genome-wide frequency plot after re-segmentation 

using the default copy number thresholds and excluding segments smaller than 500 Kbp 

to avoid technical background noise. CNA profiles were generated using genomic regions 

defined by chromosome arms. As expected, the frequency plot displayed the most 

commonly altered genomic regions in sporadic CRC (Camps et al. 2008; Cancer and 

Atlas 2012; Ried et al. 1996; Meijer et al. 1998; Nakao et al. 2004). By assessing the 

broad CNA events in the entire cohort, we observed that the most frequently altered 

chromosome arms were gains of 7p, 7q, 8q, 13q, 20p, and 20q, and losses of 8p, 17p, 

18p, and 18q, occurring in more than 30% of the samples (Figure 4A). Focal CNAs were 

obtained by generating genomic regions by sub-cytobands. Of note, five out of six 

genomic losses and five out of 18 genomic gains contained deletions and amplifications, 

respectively, identified by GISTIC2.0 in the COAD TCGA cohort. 

Subsequently, we performed integrative analysis of genomic imbalances, CMS groups, 

and CNA scores. By using CNApp, we assessed whether CNA scores were able to 

classify colon cancer samples according to their CMS. While BCS established significant 

differences between CMS paired comparisons (P ≤ 0.0001, Student’s t-test), FCS poorly 

discern CMS1 from 3 and CMS2 from 4 (Figure 4B and Supplemental_Fig_S4A). Thus, 
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we reasoned that broad CNAs rather than focal were able to better discriminate between 

different CMS groups. In fact, the distribution of CMS groups based on BCS resembled 

the distribution of somatic CNA counts defined by GISTIC2.0 (Guinney et al. 2015), 

which agrees with the observation that BCS highly correlates with the fraction of altered 

genome (Supplemental_Fig_S1A). Subsequently, we integrated the BCS and the CMS 

groups with the microsatellite status. Our results showed an average BCS of 1.51�2.11 

and 10.25�5.92 for MSI (N = 72) and MSS (N = 225) tumors, respectively. In addition, 

a BCS of 4, corresponding to the 90th percentile in the MSI sample set, was able to 

differentiate MSI and MSS tumors. Applying this cutoff, 186 out of 225 (83%) of MSS 

tumors showed a BCS greater than 4 (Figure 4C). In contrast, 39 (17%) MSS tumors 

showed a BCS value of 4 or lower, corresponding to three CMS1, six CMS2, 18 CMS3 

and 12 CMS4 tumors, further demonstrating the existence of MSS tumors with a very 

low CNA burden. When we assessed the level of focal alterations in this subset of MSS 

samples by considering the 90th percentile of FCS in the MSI group (37.2), we could 

determine that eight of these MSS tumors showed high FCS, thus reducing the percentage 

of MSS tumors with overall low copy number changes to 13%. On the other hand, seven 

MSI tumors showed BCS higher than 4. Among these, five samples displayed genomic 

imbalances typically associated with the CRC canonical pathway, including a focal 

amplification of MYC, unveiling tumors with co-occurrence of MSI and extensive 

genomic alterations (Trautmann et al. 2006). Our dataset comprised nine out of 51 CMS3 

tumors with MSI. Intriguingly, two of them showed focal deletions on chromosome 2 

involving MSH2 and MSH6, suggesting the inactivation of these mismatch repair genes 

through a focal genomic imbalance. In fact, 46% of CMS3 MSS tumors showed BCS 

below 4, in agreement with the finding that CMS3 tumors display low levels of somatic 

CNAs. 
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CNApp enable the identification of possible sample misclassifications by integrating 

CMS annotation and BRAF-mutated sample status.. As expected, CMS1 cases were 

enriched for BRAF mutation. Nevertheless, two CMS4 samples also showed mutations in 

BRAF. One of these samples showed a BCS of 11, displaying canonical CNAs. In 

contrast, the other CMS4 BRAF-mutated sample showed MSI and a BCS of 0, similar 

features as in CMS1. Likewise, four BRAF WT samples, classified within the CMS4 

group, displayed MSI and a BCS of 0, thus being candidates to be labeled as CMS1 based 

on the levels of CNAs (Figure 4D). These disparities are of utmost importance since 

recent studies reported that high copy number alterations correlate with reduced response 

to immunotherapy (Davoli et al. 2017). Importantly, it has been suggested that MSI status 

might be predictive of positive immune checkpoint blockade response in advanced CRC, 

probably due to the low levels of CNA usually presented by MSI tumors (Le et al. 2015). 

We next asked CNApp to compare genomic regions differentially represented in the four 

CMS groups based on a Student's t-test or Fisher's test with adjusted p-value. By applying 

a Student's t-test, we could observe that CMS1 resembled CMS3, except for the gain of 

chromosome 7 and the loss of 18q, which were the alterations that commonly appeared 

in CMS3 samples with BCS above 4 (P ≤ 0.001, Student's t-test) 

(Supplemental_Fig_S4B). Even though only subtle CNA differences between CMS2 and 

CMS4 were identified, the loss of 14q was significantly more detected in CMS2 (42%) 

than in CMS4 (17.1%) (P ≤ 0.005, Student's t-test) (Supplemental_Fig_S4B). Visually 

exploring the heatmap plot and further analyzing specific regions, we observed that the 

gain of 12q was more frequently associated with CMS1 than CMS2 (P ≤ 0.005, Student's 

t-test), in agreement with previous studies reporting that the gain of chromosome 12 is 

associated with microsatellite unstable tumors (Supplemental_Fig_S4B) (Trautmann et 

al. 2006). Intriguingly, the gain of the chromosome arm 20q alone mimicked the 

distribution of somatic CNAs defined by GISTIC2.0 across consensus subtype samples 
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(Figure 4E) (Guinney et al. 2015). In fact, chromosome arm 20q was gained in 99.1%, 

70.7%, 39.2%, and 10.9% of CMS2, CMS4, CMS3 and CMS1 tumors, respectively. 

Finally, we applied machine learning-based prediction models to classify samples by their 

MSI status or CMS. BCS predicted MSI status with a global accuracy of 82.2%. This was 

consistent with the fact that BCS was able to distinguish CMS1 from CMS2 with 89.2% 

of accuracy. However, when we tested the performance of BCS to predict any CMS 

group, the accuracy was only 47.5%, indicating that BCS alone is a poor predictive 

variable to assess CMS. We then used the most discriminative descriptive regions among 

CMS groups (i.e., 13q, 17p, 18, and 20q), and reached an accuracy to correctly predict 

CMS of 55%. In fact, the occurrence of these genomic alterations was able to differentiate 

CMS2 from CMS4 with an accuracy of 70%, and CMS1 from CMS3 with a 72.3% 

accuracy. As expected, this set of genomic alterations distinguished CMS1 from CMS2 

samples with an accuracy of 95%. Altogether, these data suggest that CNApp might 

provide insight into further classifying CRC samples in CMS groups. 

  

DISCUSSION 

Here we present CNApp, a web-based computational approach to analyze and integrate 

CNAs associated with molecular and clinical variables. CNApp calculates CNA scores 

to quantify focal, broad and global levels of alterations for each individual sample after 

an optional process of re-segmentation. Moreover, CNApp utilizes genomic imbalances 

selected by the user to assess classifier variables by computing machine learning-based 

models. Although CNApp has been developed using segmented genomic copy number 

data obtained from SNP-arrays, the software is also able to accommodate segmented data 

from next-generation sequencing. 

Overall, CNApp was benchmarked by analyzing a pan-cancer TCGA dataset with more 

than 10,000 samples, being able to cluster major tumor types according to CNA patterns. 
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Moreover, our results demonstrate the reliability of CNApp in identifying regions 

encompassing the most recurrent CNAs. The software successfully reproduced the well-

characterized genomic profile of HCC and CRC, considering both broad and focal events. 

Although CNApp has not been developed to define the precise boundaries of focal events, 

the software is capable to detect which regions are likely to contain the most recurrent 

alterations. However, we acknowledge that the characterization of focal alterations 

potentially containing driver events performed by GISTIC2.0 is more accurate than the 

genomic windows provided by CNApp. Thus, despite the in-depth comparison described 

here, we consider CNApp as a complementary tool rather than a replacement for 

GISTIC2.0.  

Finally, applying CNApp to a colon cancer dataset for which clinical features were known 

allowed the determination of a BCS value of 4 to potentially discriminate MSI from MSS 

tumors. Most importantly, due to the inverse correlation between MSI and aneuploidy in 

CRC, our results suggest that this BCS value could be established as a cutoff to define 

the edge between low and high aneuploid tumors. Nevertheless, these results ought to be 

further validated in an independent cohort. Since high levels of aneuploidy correlate with 

immune evasion markers, quantification of CNAs and their association with molecular 

and clinical features might be of extreme relevance. In fact, specific genomic regions 

defined by CNApp contributed to classify the consensus molecular subtypes. This is of 

clinical interest as it is known that CMS1 microsatellite unstable tumors might show a 

positive response to immuno-related treatments. Therefore, we believe that CNApp 

enables not only the fundamental analysis of CNA profiles, but also the functional 

understanding of CNAs in the context of clinical samples and their potential use as 

biomarkers. 

  

METHODS 
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Data set availability 

CNA data from TCGA: pan-cancer cohort 

Affymetrix SNP6.0 array copy number segmented data (Level 3) from 10,635 samples 

spanning 33 cancer types from TCGA pan-cancer dataset were downloaded from 

Genomic Data Commons (National Cancer Institute, NIH) (Grossman et al. 2016). This 

dataset included the 370 Liver Cancer-Hepatocellular Carcinoma (LIHC) samples used 

for the analysis of recurrent CNAs and the subset of 309 samples from Colon 

Adenocarcinoma (COAD) for which the colorectal cancer consensus molecular subtype 

(CMS) was known (Guinney et al. 2015). 

GISTIC data from TCGA: LIHC cohort 

GISTIC 2.0.22 (Ally et al. 2017) copy number results (Level 4) of the 370 LIHC samples, 

were downloaded from the Broad Institute GDAC Firehose. Parameters used for the 

analysis are detailed in the same GDAC repository. Specifically, parameters conditioning 

the definition of the CNAs and of interest for our comparison were publicly reported with 

the following values: amplification and deletion thresholds: 0.1; broad length cutoff: 0.7; 

joint segment size: 4. 

 

Software and tool availability 

CNApp can be accessed at http://bioinfo.ciberehd.org/CNApp. It was developed using 

Shiny R package (version 1.1.0), from R-Studio (Chang et al. 2018). The tool was applied 

and benchmarked while using R version 3.4.2 (2017-09-28) -- "Short Summer". List of 

packages, libraries and base coded are freely available at GitHub, and instructions for 

local installation are also specified.  

 

CNA scores computation 
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Segments resulted from re-segmentation (or original segments from input file when re-

segmentation is skipped) are classified in chromosomal, arm-level and focal events by 

considering the relative length of each segment to the whole-chromosome or chromosome 

arm. Using default parameters, segments are tagged as chromosomal when 90% or more 

of the chromosome is affected; as arm-level when 50% or more of the chromosome arm 

affected; and as focal when affecting less than 50% of the chromosome arm. Percentages 

for relative lengths are customizable. Broad (chromosomal and arm-level) and focal 

alterations are then weighted according to their amplitude values (seg.mean) and taking 

into account copy number amplitude ranges defined by CNA calling thresholds and 

specified in Supplemental_Methods. 

Broad CNA Score (BCS): for a total N of broad events in a sample (x), it equals to the 

summation of segments weights (A) in that corresponding sample and being i the 

corresponding segment: 

𝐵𝐶𝑆(𝑥) =(𝐴*

+

*,-

 

Focal CNA Score (FCS): same as in BCS, with an additional pondering value L included 

to the summation, which captures the relative size of the chromosome-arm coverage of 

each focal CNA (according to weights specified in Supplemental_Methods):  

𝐹𝐶𝑆(𝑥) =(𝐴* · 𝐿*

+

*,-

 

Global CNA Score (GCS): for a sample x, it is calculated as the summation of normalized 

BCS and FCS values, where meanBCS and meanFCS stand for mean values of BCS and 

FCS from total samples, respectively, and sdBCS and sdFCS stand for standard deviation 

values of BCS and FCS from total samples, respectively: 

𝑛𝑜𝑟𝑚𝐵𝐶𝑆(𝑥) =
𝐵𝐶𝑆(𝑥) − 𝑚𝑒𝑎𝑛𝐵𝐶𝑆

𝑠𝑑𝐵𝐶𝑆 											𝑛𝑜𝑟𝑚𝐹𝐶𝑆(𝑥) =
𝐹𝐶𝑆(𝑥) − 𝑚𝑒𝑎𝑛𝐹𝐶𝑆

𝑠𝑑𝐹𝐶𝑆  
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𝐺𝐶𝑆(𝑥) =(𝑛𝑜𝑟𝑚𝐵𝐶𝑆* + 𝑛𝑜𝑟𝑚𝐹𝐶𝑆*

+

*,-

 

 

Genomic windows computation  

Region profiling section allows genome segmentation analysis by user-selected windows 

(i.e. arms, half-arms, cytobands, sub-cytobands, and 40Mb till 1Mb). In order to do that, 

windows files were generated for each option and genome build (hg19 and hg38). 

Cytobands file cytoBand.txt from UCSC page and for both genome builds was used as 

mold to compute regions (Casper et al. 2017). 

Segmented samples are transformed into genome region profiles using genomic windows 

selected by user. Segments from each sample are consulted to assess whether or not 

overlap with the window region. Thus, window-means (W) are computed for each 

genomic window by collecting segments (t) overlapping with window-region (i). 

Segments with loc.start or loc.end position falling within the region are collected, as well 

as those segments embedding the entire region. At this point, the summation of each 

segment-mean (S) corrected by the relative window-length (L) affected by the segment 

length (l) is performed: 

𝑊(𝑖) =(𝑆? ·
𝑙?
𝐿(𝑖)

A

?,-

 

 

Descriptive regions assessment 

Potential descriptive regions between groups defined by the annotated variables provided 

in the input file can be studied and P-values are presented to evaluate significance in 

differentially altered regions between those groups. The alterations can be considered as 

(1) numerical continuous (seg.mean values) and (2) categorical variables (gains, losses 

and non-altered). In the first case, to assess statistical significance between groups 
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Student’s T-test is applied, whereas in the second situation the significance is assessed by 

applying the Fisher’s exact test. False discovery rate (FDR) adjustment is performed 

using the Benjamini-Hochberg (BH) procedure in both cases and corrected P-values 

(Adj.p-value) or non-corrected P-values (p-values) are displayed by user selection.  

 

Machine learning-based classifier models 

We used the randomForest R package (Liaw and Wiener 2002) to compute machine 

learning classifier models. Variables to define sample groups must be selected, as well as 

at least one classifier variable. Model construction is performed 50-times and training set 

is changed by iteration. In order to compute model and select training set, multiple steps 

and conditions have to be accomplished: 

i. total N samples divided by G groups depicted by group-defining variable must 

be higher than n samples from the smaller group: 

𝑃 =
𝑁
𝐺 		; 		𝑃 > 𝑛 

 

ii. If condition above is not accomplished, then P is set to 75% of n: 

if		𝑃 ≤ 𝑛			then			𝑃 = 𝑛 · 0.75 

 

iii. P term must be higher than one, and N must be equal or higher than 20: 

𝑃 > 1		or		𝑁 ≥ 20 

 

iv. Classifier variables, when categorical, shall not have higher number of tags (Z) 

than groups defined (G) by group-defining variable: 

𝑍 < 𝐺 
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v. Training set (T) is computed and merged for each group (g) from groups (G) 

defined by group variable, extracting P samples from g as follows: 

𝑡	(𝑔) = 𝑃	samples	from	𝑔																																𝑇 =(𝑡*

`

*,-

 

 

After model computation, contingency matrix with prediction and reference values by 

group is created to compute accuracy, specificity and sensitivity by group. 
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FIGURE LEGENDS 

 

Figure 1: CNApp workflow. The diagram depicts the overall processes performed by 

CNApp and indicates the output for each section. 

 

Figure 2: Analysis of the TCGA pan-cancer dataset and clustering by tumor type. 

CNApp outputs to characterize pan-cancer 10,635 samples including 33 TCGA cancer 

types. A) Broad, Focal and Global CNA scores (BCS, FCS and GCS, respectively) 

distribution across the 33 cancer types. B) Genome-wide chromosome arm CNA profile 

heatmap for 10,635 samples considering broad and focal events. Annotation tracks for 

FCS, BCS and GCS are presented. C) Arm regions frequencies as percentages relative to 

the TCGA pan-cancer dataset (red for gains and blue for losses). D) Heatmap plot 

showing 20 out of the 33 TCGA cancer type profile correlations, by Pearson's method, 

hierarchically clustered by tumor type. Gastrointestinal, gynecological and squamous 

types are clustering consistently in their respective groups.  

 

Figure 3: Identification of recurrent broad and focal CNAs. Calculation of broad and 

focal CNA frequencies using several parameters in CNApp in order to describe the 

genomic landscape of LIHC. A) CNApp frequencies for chromosome arm regions using 

default cutoffs, corresponding to 2.3/1.7 copies for gains and losses, respectively. B) 

CNApp frequencies for chromosome arm regions relaxing cutoffs to make them 

equivalent to those of GISTIC2.0. C) CNApp frequencies of focal events using default 

thresholds and sub-cytobands genomic regions. D) Frequencies of focal events from 

moderate- to high-amplitude levels using sub-cytobands genomic regions. 

 

Figure 4: Genomic characterization of colon cancer according to the CMS 
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classification. A) Arm-region frequencies of 309 colon cancer samples using CNApp 

default thresholds for CNAs. B) BCS distribution by CMS sample groups. Significance 

is shown as p-value ≤ 0.001 (***); p-value ≤ 0.01 (**); p-value ≤ 0.05 (*); p-value > 0.05 

(ns). C) Number of gained and lost chromosome arms for each sample distributed 

according to the BCS values. Note that a cutoff at 4 is indicated with a black line. 

Annotation tracks for microsatellite instability (msi), BRAF mutated samples (braf_mut), 

CMS groups (cms_label), FCS and BCS are displayed. D) Genome-wide profiling by 

chromosome arms distributed according to the CMS group. Annotation tracks for 

microsatellite instability (msi), BRAF mutated samples (braf_mut), CMS groups 

(cms_label), FCS and BCS are displayed. Sample-to-sample correlation heatmap plot by 

Pearson’s method is shown below. E) Distribution of CNA values affecting 20q 

according to the CMS groups. Significance is shown as p-value ≤ 0.001 (***); p-value ≤ 

0.01 (**); p-value ≤ 0.05 (*); p-value > 0.05 (ns). 
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