1	
2	
3	Structures of TOG1 and TOG2 From the Human Microtubule Dynamics Regulator
4	CLASP1
5	Jonathan B. Leano ^{1,2} , Kevin C. Slep ^{2,3*}
6	
7	
8	1 Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill,
9	North Carolina, 27599, United States of America
10	2 Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel
11	Hill, North Carolina, 27599, United States of America
12	3 Department of Biology, University of North Carolina, Campus Box 3280, Chapel Hill,
13	North Carolina, 27599, United States of America
14	
15	¤ Current address: Department of Biochemistry and Biophysics, University of California,
16	San Francisco, California, 94143, United States of America
17	* <u>kslep@bio.unc.edu</u>
18	
19	Running Title: Structures of CLASP1 TOG1 and TOG2

Structures of CLASP1 TOG1 and TOG2

20 Abstract

21

22	Tubulin-binding TOG domains are found arrayed in a number of proteins that regulate
23	microtubule dynamics. While much is known about the structure and function of TOG
24	domains in the XMAP215 microtubule polymerase family, less in known about the TOG
25	domain array found in the CLASP family. The CLASP TOG array promotes microtubule
26	pause, potentiates rescue, and limits catastrophe. How distinct the TOG domains of
27	CLASP are from one another, from XMAP215 TOG domains, and whether they are
28	positionally conserved across CLASP family members is poorly understood. We present
29	the x-ray crystal structures of human CLASP1 TOG1 and TOG2. The structures of
30	CLASP1 TOG1 and TOG2 are distinct from each other, from CLASP TOG3, and are
31	positionally conserved across species. While studies have failed to detect CLASP TOG1
32	tubulin-binding activity, TOG1 is structurally similar to the free-tubulin binding TOG
33	domains of XMAP215. In contrast, though CLASP TOG2 and TOG3 have tubulin
34	binding activity, they are structurally distinct from the free-tubulin binding TOG domains
35	of XMAP215. CLASP TOG2 has a convex architecture, predicted to engage a hyper-
36	curved tubulin state. CLASP TOG3 has unique structural elements in the C-terminal half
37	of its α -solenoid domain that modeling studies implicate in binding to laterally-associated
38	tubulin subunits in the microtubule lattice in a mode similar to, yet distinct from
39	XMAP215 TOG4. These findings highlight the structural diversity of TOG domains
40	within the CLASP TOG array and provide a molecular foundation for understanding
41	CLASP-dependent effects on microtubule dynamics.

Structures of CLASP1 TOG1 and TOG2

42 Introduction

43

44	Microtubules are highly dynamic, polarized eukaryotic cellular polymers [1–4].
45	Microtubules are composed of $\alpha\beta$ -tubulin heterodimers that polymerize through lateral
46	and longitudinal associations to form a cylindrical, polarized lattice with α -tubulin and β -
47	tubulin exposed the microtubule minus and plus end respectively. Microtubule dynamics
48	occur at both the plus and minus ends, but are primarily focused at the plus end. During
49	phases of polymerization, tubulin heterodimers with GTP bound at the exchangeable site
50	on β -tubulin incorporate into the lattice and define the "GTP cap". Once incorporated into
51	the lattice, the GTP in the exchangeable site is hydrolyzed to GDP. It is the structural
52	transition of tubulin subunits in the microtubule lattice from a GTP-bound state to a
53	GDP-bound state that underlies the polymer's dynamic instability. Collectively, dynamic
54	instability includes phases of polymerization, depolymerization, and pause, with the
55	transition to depolymerization termed catastrophe, and the transition out of
56	depolymerization termed rescue. While dynamic instability is inherent to microtubules it
57	is highly regulated in space and time by a host of microtubule associated proteins
58	(MAPs). A key subset of MAPs include microtubule plus end binding proteins that
59	localize to polymerizing microtubule plus ends [5-8].
60	

60

Many microtubule plus end binding proteins form a complex network of
interactions both with each other and the microtubule polymer. A master plus end binding
protein family is the end binding (EB) protein family (EB1, EB2, and EB3) that
preferentially binds the post-hydrolysis GDP·P_i microtubule state, best-mimicked by

Structures of CLASP1 TOG1 and TOG2

65	GTP _γ S-bound microtubules [9]. EB members use a dimerization domain to recruit SxIP
66	or LxxPTPh motif-containing proteins to the microtubule plus end [7,10–12]. Two prime
67	factors that bind tubulin and are recruited to microtubule plus ends by EB1 (either
68	directly or indirectly) are Cytosolic Linker-Associated Protein (CLASP) and ch-TOG
69	[13–17]. Both ch-TOG and CLASP are critical for proper interphase microtubule
70	dynamics as well as mitotic spindle structure and dynamics [13,18–20]. While ch-TOG
71	promotes microtubule polymerization, CLASP promotes microtubule pause and rescue
72	and limits catastrophe [13,21–26]. Mutations in CLASP family members result in
73	aberrant microtubule dynamics that manifest in phenotypes ranging from abnormal
74	mitotic spindle structure to defects in axon guidance [20,27–29]. How CLASP and ch-
75	TOG mechanistically regulate microtubule dynamics is poorly understood.
76	
70	
77	While ch-TOG and CLASP differentially affect microtubule dynamics, they both
	While ch-TOG and CLASP differentially affect microtubule dynamics, they both employ an array of tubulin-binding TOG domains to regulate the microtubule polymer
77	
77 78	employ an array of tubulin-binding TOG domains to regulate the microtubule polymer
77 78 79	employ an array of tubulin-binding TOG domains to regulate the microtubule polymer [13,19,30,31]. TOG domain structures were first determined from ch-TOG family
77 78 79 80	employ an array of tubulin-binding TOG domains to regulate the microtubule polymer [13,19,30,31]. TOG domain structures were first determined from ch-TOG family members, revealing a 220-250 residue α -solenoid comprising six HEAT repeats (HRs) (A
77 78 79 80 81	employ an array of tubulin-binding TOG domains to regulate the microtubule polymer [13,19,30,31]. TOG domain structures were first determined from ch-TOG family members, revealing a 220-250 residue α -solenoid comprising six HEAT repeats (HRs) (A through F) that form a paddle-like structure [30,32]. The intra-HEAT loops that line one
77 78 79 80 81 82	employ an array of tubulin-binding TOG domains to regulate the microtubule polymer [13,19,30,31]. TOG domain structures were first determined from ch-TOG family members, revealing a 220-250 residue α -solenoid comprising six HEAT repeats (HRs) (A through F) that form a paddle-like structure [30,32]. The intra-HEAT loops that line one face of the TOG domain are highly conserved and are used to engage the tubulin
 77 78 79 80 81 82 83 	employ an array of tubulin-binding TOG domains to regulate the microtubule polymer [13,19,30,31]. TOG domain structures were first determined from ch-TOG family members, revealing a 220-250 residue α -solenoid comprising six HEAT repeats (HRs) (A through F) that form a paddle-like structure [30,32]. The intra-HEAT loops that line one face of the TOG domain are highly conserved and are used to engage the tubulin heterodimer [30,32]. Structural work involving TOG1 and TOG2 from the
 77 78 79 80 81 82 83 84 	employ an array of tubulin-binding TOG domains to regulate the microtubule polymer [13,19,30,31]. TOG domain structures were first determined from ch-TOG family members, revealing a 220-250 residue α -solenoid comprising six HEAT repeats (HRs) (A through F) that form a paddle-like structure [30,32]. The intra-HEAT loops that line one face of the TOG domain are highly conserved and are used to engage the tubulin heterodimer [30,32]. Structural work involving TOG1 and TOG2 from the <i>Saccharomyces cerevisiae</i> ch-TOG family member Stu2 demonstrated that TOG domain
 77 78 79 80 81 82 83 84 85 	employ an array of tubulin-binding TOG domains to regulate the microtubule polymer [13,19,30,31]. TOG domain structures were first determined from ch-TOG family members, revealing a 220-250 residue α -solenoid comprising six HEAT repeats (HRs) (A through F) that form a paddle-like structure [30,32]. The intra-HEAT loops that line one face of the TOG domain are highly conserved and are used to engage the tubulin heterodimer [30,32]. Structural work involving TOG1 and TOG2 from the <i>Saccharomyces cerevisiae</i> ch-TOG family member Stu2 demonstrated that TOG domain HRs A-D and HRs E-F engage regions of β - and α -tubulin respectively that are exposed

Structures of CLASP1 TOG1 and TOG2

88	subsequent confirmation that CLASP also contains an array of cryptic TOG domains that
89	underlies its regulatory action on microtubule dynamics [30,31]. While human ch-TOG
90	contains an N-terminal pentameric TOG domain array, CLASP1 contains three TOG
91	domains (TOG1-3) followed by a C-terminal CLIP-170 interaction domain (CLIP-ID)
92	(Fig 1A) [13,19,35]. TOG structures determined to date from ch-TOG and CLASP family
93	members show dramatically different curvatures along the TOG domain's α -solenoid axis
94	that predict distinct interactions with tubulin [22,23,30-39]. Of note, the structure of
95	CLASP1 TOG2 revealed a unique bent architecture that would require a significant
96	conformational change in either the TOG domain and/or tubulin to enable each
97	component to fully engage [31]. While TOG domains have diverse architectures,
98	structural data collected to date indicates that distinct architectures are conserved within
99	an array and play position-specific roles in the regulation of microtubule dynamics [35].
100	This has led to the hypothesis that ch-TOG and CLASP families use a common TOG
101	array-based paradigm to regulate microtubule dynamics, but employ distinct TOG
102	architectures along their respective arrays to differentially regulate the polymer's
103	dynamics.
104	
105	Structural studies of CLASP family members to date have presented the structures
106	of Drosophila melanogaster MAST TOG1, human CLASP2 TOG1, CLASP1 TOG2,
107	CLASP2 TOG2, S. cerevisiae Stu1 TOG2, and mouse CLASP2 TOG3 [22,23,31,38,39].
108	D. melanogaster MAST TOG1 has a flat TOG architecture similar to Stu2 TOG1 [38].
109	Structures of human TOG2 from CLASP1 and CLASP2 are similar to one another and
110	exhibit the bent architecture described above [31,39]. The structure of mouse CLASP2

Structures of CLASP1 TOG1 and TOG2

111	TOG3 reveals a bent architecture, albeit not in the plane observed in CLASP TOG2, but
112	perpendicular to this, such that the TOG3 HR D-F triad likely engages unique
113	determinants on α -tubulin [39]. A similar, yet distinct, orthogonally bent architecture was
114	observed in structures of TOG4 from ch-TOG family members [36]. These structural
115	findings indicate that TOG domains in the CLASP family array each have distinct
116	architectures and likely play distinct roles in tubulin-binding, microtubule affinity, and
117	effects on microtubule dynamic instability. In support, recent studies of CLASP family
118	members have implicated CLASP TOG2 as necessary and sufficient to limit microtubule
119	catastrophe, and ascribes microtubule rescue activity to TOG3 [22,23]. While significant
120	gains have been made in elucidating CLASP TOG structures, additional TOG structures
121	from distinct family members are required to determine if these distinct TOG domain
122	architectures are positionally conserved along the array.
123	
124	Here we structurally characterize the first two TOG domains of human CLASP1.

125 We present the X-ray crystal structure of CLASP1 TOG1 as well as a high-resolution 126 structure of CLASP1 TOG2 (relative to our previously reported CLASP TOG2 structure 127 [31]). These structures demonstrate that TOG architectures are positionally conserved 128 across the CLASP family, but have non-equivalent architectures along the array. While 129 tubulin-binding activity has not been detected for CLASP TOG1, CLASP1 TOG1 does 130 conform to a tubulin-binding TOG architecture as observed in the structures of Stu2 131 TOG1 and TOG2 in complex with tubulin [33,34,40]. In contrast, CLASP1 TOG2, while 132 containing Stu2 TOG-like tubulin binding determinants, adheres to a convex architecture 133 across its tubulin-binding surface that predicts a unique tubulin-binding mode. The

- 134 structures of CLASP1 TOG1 and CLASP1 TOG2 are architecturally distinct from one
- another as well as from the previously reported structure of CLASP2 TOG3. Modeling
- analyses suggest that TOG2 and TOG3 each engages tubulin in the microtubule lattice in
- a distinct fashion. This work highlights the emerging paradigm of a structurally diverse
- 138 TOG domain array in which architecturally distinct domains each play unique roles in
- 139 regulating microtubule dynamics.

Structures of CLASP1 TOG1 and TOG2

140 Materials and methods

141

142 **Protein expression and purification**

143 Human CLASP1 TOG1 (residues 1-257) and TOG2 (residues 284-552) bacterial

144 expression constructs were generated using the polymerase chain reaction method and

145 individually sub-cloned into pET28 (Millipore Sigma, Burlington, MA). TOG1 and

146 TOG2 construct expression and purification protocols were identical except as noted for

the growth of TOG1 in minimal media containing selenomethionine, ion exchange

148 chromatography, and final exchange buffer. Constructs were transfected into Escherichia

coli (TOG1: B834 cells; TOG2: BL21 DE3 pLysS cells), grown to an optical density at

150 600 nm of 1.0 in media (TOG1: minimal media supplemented with seleno-L-methionine

as described [41]; TOG2: Luria Broth) containing 50 µg/l kanamycin, the temperature

152 lowered to 18° C, and protein expression induced with 100 μM Isopropyl β-D-1-

thiogalactopyranoside for 16 hours. Cells were harvested by centrifugation, resuspended

154 in buffer A (25 mM Tris pH 8.0, 200 mM NaCl, 10 mM imidazole, 0.1% β-ME) at 4° C,

and lysed by sonication. Phenylmethylsulfonyl fluoride was added to 1 mM final

156 concentration. Cells debris was pelleted by centrifugation at 23,000 x g for 45 minutes

and the supernatant loaded onto a 5 ml Ni²⁺-NTA column (Qiagen, Hilden, Germany).

158 The column was washed with 500 ml buffer A and protein eluted over a 250 ml linear

gradient from 100% buffer A to 100% buffer B (buffer B = buffer A supplemented with

160 290 mM imidazole). Peak fractions were pooled, CaCl₂ added to 1 mM final

161 concentration, and 0.1 mg bovine α-thrombin added to proteolytically cleave off the N-

162 terminal His₆ tag on each construct. After a 24 hour incubation period at 4° C, protein

Structures of CLASP1 TOG1 and TOG2

163	was filtered over 0.5 ml of benzamadine sepharose (GE Healthcare Bio-Sciences,
164	Pittsburgh, PA) and concentrated in a Millipore 10k MWCO centrifugal concentrator
165	(Millipore Sigma, Burlington, MA). TOG1 was diluted into 100 ml buffer C (25 mM Tris
166	pH 8.0, 0.1 % β -ME), and loaded onto a 10 ml Q-sepharose Fast Flow column (GE
167	Healthcare Bio-Sciences, Pittsburgh, PA). Protein was washed with 200 ml buffer C and
168	eluted using a 250 ml linear gradient between 100% buffer C and 100% buffer D (buffer
169	D = buffer C + 1 M NaCl). Peak fractions were pooled and protein was concentrated and
170	exchanged into storage buffer (10 mM Tris pH 8.0, 150 mM NaCl, 0.1% β -ME). TOG2
171	was diluted into 100 ml buffer E (25 mM Hepes pH 7.0, 0.1 % β -ME), and loaded onto a
172	10 ml SP-sepharose Fast Flow column (GE Healthcare Bio-Sciences, Pittsburgh, PA).
173	Protein was washed with 200 ml buffer E and eluted using a 250 ml linear gradient
174	between 100% buffer E and 100% buffer F (buffer F = buffer E + 1 M NaCl). Peak
175	fractions were pooled and protein was concentrated and exchanged into storage buffer
176	(25 mM Hepes pH 7.0, 200 mM NaCl, 0.1% β-ME).
177	
178	Crystallization, data collection, and structure determination
179	Selenomethionine-substituted TOG1 was crystallized via hanging drop: 2 ul of 10 mg/ml

179 Selenomethionine-substituted TOG1 was crystallized via hanging drop: 2 µl of 10 mg/ml

180 protein plus 2 μ l of a 1 ml well solution containing 0.1 M 2-(N-

- 181 morpholino)ethanesulfonic acid (MES) pH 6.5, 30% PEG 600, 10% glycerol, 18 °C.
- 182 Crystals were grown from microseeds that originally crystallized in 1.5 M sodium
- 183 malonate, pH 6.25, 18 °C. TOG2 was crystallized via hanging drop: 2 μl of 10 mg/ml
- protein plus 2 µl of a 1 ml well solution containing 22% PEG 3350 and 200 mM sodium
- 185 citrate (pH 8.25), 18 °C. TOG1 and TOG2 crystals were frozen in paratone-N (Hampton

Structures of CLASP1 TOG1 and TOG2

186	Research, Aliso Viejo, CA) and diffraction data sets collected on single crystals at the
187	Advanced Photon Source 22-ID beamline at 100 K. Data were processed using HKL2000
188	[42]. Attempts to determine phases for the TOG1 structure using single wavelength
189	anomalous dispersion (SAD) phasing methods failed from crystals grown in 1.5 M
190	sodium malonate, pH 6.25. Attempts to obtain phasing via molecular replacement (TOG1
191	search model: Drosophila MAST TOG1, PDB accession code 4G3A, chain A [38]) also
192	failed. Thus, crystals grown in 0.1 M MES pH 6.5, 30% PEG 600, 10% glycerol, seeded
193	from the original crystals grown in sodium malonate, were used for anomalous
194	diffraction experiments and provided the SAD phasing for structure determination. The
195	TOG2 structure was determined via molecular replacement using a TOG2 search model:
196	human CLASP1 TOG2, PDB accession code 4K92, chain A [31].
197	
198	Initial models were built using AutoBuild (PHENIX) followed by reiterative
199	buildings in Coot [43] and subsequent refinement runs using phenix.refine (PHENIX)
200	[44]. Refinement runs used real space, simulated annealing refinement protocols
201	(temperatures: 5,000 K start, 300 K final, 50 steps), and individual B-factor refinement,
202	using a maximum-likelihood target. Atomic displacement parameters were calculated for
203	the TOG2 structure. The final refinement runs produced an $R_{\rm free}$ value of 24.4% for the
204	TOG1 structure and an R_{free} value of 22.1% for the TOG2 structure. The final TOG1
205	model includes residues 1-234 for chain A, residues 1-236 for chain B, and 201 water
206	molecules. The final TOG2 model includes residues 295-538 for chains A and B and 678
207	water molecules. Data collection and refinement statistics are summarized in Table 1.
208	Structure images were generated using the PyMOL Molecular Graphics System, version

- 209 1.5.0.5 (Schrödinger, LLC, New York, NY). Electrostatic calculations used the PyMOL
- 210 plugin APBS [45]. Pairwise structure comparisons and root mean square displacement
- 211 (rmsd) values were calculated using the Dali server [46].

Structures of CLASP1 TOG1 and TOG2

212 Results and discussion

213

214 The α-solenoid HEAT repeat structure of CLASP1 TOG1

- 215 To determine the structure of human CLASP1 TOG1 we crystallized a selenomethionine-
- substituted construct embodying residues 1 to 257 and collected a 2.15 Å resolution

single wavelength anomalous dispersion dataset. Crystals belong to the space group $P2_1$

218 and contain two protomers in the asymmetric unit. The structure was refined to R and

219 R_{free} values of 19.0% and 24.4% respectively. Data collection and refinement statistics

are presented in Table 1.

221

222 CLASP TOG1 is an α-solenoid structure, consisting of six HRs designated HR A 223 through F (Fig 1B). We delineate the helices of each HR α and α ', followed by the 224 number of the TOG domain in the array and the letter of the HR to which the helix 225 belongs. The HRs conform to a general TOG-domain architecture. The first HR triad 226 (HRs A-C) has a right-handed supercoil. The second HR triad (HRs D-F) is translated 227 relative to the axis of the first HR triad, introducing a jog in the supercoil that gives the 228 domain a flat, paddle-like architecture, rather than an elongated spiral common to other 229 α -solenoid structures. HRs D and E are oriented with a right-handed twist relative to one 230 another, while HRs E and F are oriented with a left-handed twist (Fig 1B, lower panel). 231 The architecture of CLASP1 TOG1 is similar to that of *Homo sapiencs* CLASP2 TOG1 232 and D. melanogaster MAST TOG1 [22,38], with overall pairwise Ca rmsd values of 1.2 233 and 2.4 Å for the CLASP1-CLASP2 and CLASP1-MAST comparisons respectively (Fig

Structures of CLASP1 TOG1 and TOG2

234	1C, calculated using the Dali server [46]). CLASP1 TOG1 aligns best to MAST TOG1
235	(the more divergent comparison) across the TOG face composed of intra-HR loops.
236	
237	TOG1 is highly conserved across the surface defined by intra-HR loops
238	To examine TOG1 surface residue conservation, we generated a sequence alignment
239	involving H. sapiens CLASP1, Xenopus laevis Xorbit, D. melanogaster MAST, and
240	Caenorhabditis elegans CLS-1. We contoured conservation at 100% identity (dark
241	green), 100% similarity (light green), and 75% similarity (yellow) and mapped this
242	scheme on the H. sapiens CLASP1 TOG1 structure (Fig 2A,B). The domain face formed
243	by intra-HR loops displayed the highest degree of conservation (Fig 2B, upper right),
244	with additional conservation mapping to the face formed by the α ' helices of each HR
245	(Fig 2B, upper left). TOG domains of the XMAP215 family are known to engage tubulin
246	using the intra-HR loop surface. While CLASP1 TOG1 has a subset of intra-HR residues
247	that are positionally similar to those found in XMAP215 TOG tubulin binding
248	determinants, there are also significant differences. Specifically, XMAP215 family TOG
249	domains primarily contain a tryptophan in the HR A loop. The homologous position in
250	CLASP1 TOG1 is a valine (V17) that is not conserved (Fig 2C,D); D. melanogaster
~	

251 MAST TOG1 and *C. elegans* CLS-1 TOG1 have a methionine and proline in the

equivalent position respectively (Fig 2A). Interestingly, while XMAP215 family TOG

253 domains are primarily conserved across the HR A-C intra-HEAT loops, CLASP TOG1

- 254 conservation is primarily focused along the surface formed by the HR C-E intra-HR
- 255 loops. Collectively, CLASP1 TOG1 has a canonical TOG domain architecture, but its

Structures of CLASP1 TOG1 and TOG2

- 256 unique surface residue conservation pattern suggests a binding function distinct from
- 257 XMAP215 family TOG domains.
- 258

259 Mammalian CLASP TOG2 forms a conserved convex architecture

- 260 Previous structural work analyzing CLASP TOG2 revealed a highly bent, convex TOG
- architecture [31,39]. To determine if this architecture was due to crystal packing, we
- determined the structure of CLASP1 TOG2 in a different space group, P2₁, as compared
- to the initial structure that was determined in the space group $P2_12_12_1[31]$. Native
- 264 diffraction data was collected to a resolution of 1.78 Å. The crystal contains two
- 265 protomers in the asymmetric unit. The structure was solved by molecular replacement
- using the structure of *H. sapiens* CLASP1 TOG2 as a search model (PDB accession code
- 4K92 [31]). The structure was refined to R and R_{free} values of 17.7 % and 22.1%
- respectively. Data collection and refinement statistics are presented in Table 1.
- 269

270 The CLASP1 TOG2 structure determined in space group P2₁ conforms to the bent 271 TOG architecture observed in space group $P2_12_12_1$ (Fig 3A). As previously observed, 272 TOG2 has a bend between the HR A-C and HR D-F triads that orients the HR D-F intra-273 HR loop surface at ~30° relative to the plane established by the HR A-C intra-HR loops. 274 This deviates significantly from the flat surface observed across XMAP215 family TOG 275 intra-HR loops used to engage tubulin (discussed further below). In addition to its bent 276 architecture, TOG2 has a conserved N-terminal helix, $\alpha 2N$, which is positioned 277 alongside, and orthogonal to the $\alpha 2B'$ and $\alpha 2C'$ helices (Fig 3A). The two protomers in 278 the P2₁ asymmetric unit have an overall C α rmsd of 1.4 Å. Comparing protomers

Structures of CLASP1 TOG1 and TOG2

279	determined in the $P2_1$ space group to those determined in the $P2_12_12_1$ space group showed
280	little structure deviation with low overall C α pairwise rmsd values that ranged from 0.3 to
281	1.3 Å. Comparison of the CLASP1 TOG2 protomers with the structure of CLASP2
282	TOG2, which has 81% sequence identity, yielded overall C α rmsd values that ranged
283	from 1.0-1.3 Å (Fig 3B). Collectively, the bent architecture of CLASP TOG2 domains is
284	conserved and reflects a key structural state of the domain.
285	
286	TOG2 is highly conserved across the convex intra-HR loop surface
287	We next examined TOG2 surface residue conservation using the same species and
288	conservation criteria laid forth in our TOG1 analysis (Fig 4A,B). As observed with
289	TOG1, the domain face formed by intra-HEAT loops displayed the highest degree of
290	conservation (Fig 4B, upper right), with additional conservation mapping to the
291	orthogonally-positioned $\alpha 2N$ helix (Fig 4B, upper left). A significant amount of surface
292	residue conservation mapped to the remaining faces of the domain, pertaining primarily
293	to the 75% similarity criteria. Of the highly conserved intra-HR loops, most of the
294	conservation maps to the first triad, HR A-C. The HR A loop contains a conserved
295	tryptophan, positioned equivalent to the conserved HR A loop tryptophan found in
296	XMAP215 family TOG domains that engage β -tubulin (Fig 4C,D) [30,32–34]. A
297	significant, yet lower degree of conservation maps to the second triad's (HR D-F) intra-
298	HR loops. Overall, TOG2 conservation implicates the intra-HR loops surface as a prime
299	protein-protein interaction surface (implications for tubulin binding are discussed further
300	below) while conservation across the remaining faces implicate these regions as likely
301	protein-interaction surfaces as well. The degree of conservation across TOG2's surfaces

Structures of CLASP1 TOG1 and TOG2

302	likely reflects the extent to which its cognate binding partners can co-evolve their
303	interaction determinants. Specifically, the extent to which tubulin is conserved across
304	species demands high cross-species conservation for the interaction determinants of its
305	binding partners while additional factors that may bind other TOG2 surfaces (e.g. those
306	involved in the auto-inhibition of TOG2 activity [22]) may be less evolutionarily
307	constrained, permitting more variability and co-evolution of their respective binding
308	interfaces.
309	
310	The CLASP TOG array is structurally diverse
311	We next analyzed structural diversity across the CLASP TOG array, comparing our
312	structures of CLASP1 TOG1, TOG2, as well as the previously reported structure of
313	CLASP2 TOG3. We used the Dali server to structurally align the domains and calculate
314	and overall rmsd value for corresponding C α atoms [46]. Comparative analysis yielded

the following high rmsd values: CLASP1 TOG1 versus CLASP1 TOG2: 3.3 Å rmsd;

316 CLASP1 TOG1 versus CLASP2 TOG3: 2.9 Å rmsd; and CLASP1 TOG2 versus

317 CLASP2 TOG3: 3.4 Å rmsd (Fig 5A). To determine whether specific subdomains

318 contributed to this structural diversity, we again used the Dali server and analyzed the Ca

319 rmsd across the TOG domains for each HR triad: HR A-C and HR D-F. The HR A-C

320 triads aligned best, with rmsd values ranging from 1.9 Å (CLASP1 TOG1 versus

321 CLASP2 TOG3) to 2.2 Å (CLASP1 TOG1 and CLASP2 TOG3 versus CLASP1

322 TOG2)(Fig 5A). In contrast, the HR D-F triads had a higher degree of structural variance,

323 with rmsd values ranging from 2.3 Å (CLASP1 TOG1 versus CLASP1 TOG2) to 2.9 Å

324 (CLASP1 TOG2 versus CLASP2 TOG3)(Fig 5A). Thus, while the first triad is

Structures of CLASP1 TOG1 and TOG2

325	structurally conserved across the CLASP TOG array, the second triad exhibits a higher
326	degree of structural diversity. To determine if the relative positioning of the triads in each
327	TOG domain also contributes to structural diversity across the CLASP TOG array, we
328	structurally aligned the full TOG domains using the C α coordinates from each domain's
329	respective HR A-C triad (Fig 5B). While TOG1 is relatively flat across the intra-HR loop
330	surface, the alignment highlighted the relative bend between TOG2's two triads that
331	angles HR D-F downwards (Fig 5B, top panel). While TOG3 is flat across the HR A-E
332	intra-HR loop surface, the HR F intra-HR loop region is positioned downward from the
333	HR A-E intra-HR loop surface. When the intra-HR loop surfaces of TOG3 are viewed
334	from above (Fig 5B, bottom panel), additional shifts (orthogonal to the relative bend
335	observed in TOG2) are evident. While TOG1 bends to the side of the domain defined by
336	the HR α ' helices, TOG2 is relatively straight. In contrast, TOG3 bends in the opposite
337	direction, towards the side of the domain defined by the HR $\boldsymbol{\alpha}$ helices. Collectively, the
338	CLASP TOG array is structurally diverse, driven primarily by architectural diversity in
339	the HR D-F triads as well as the relative positioning of the triads in the respective TOG
340	domain. While each TOG domain in the array is architecturally distinct, the intra-HR
341	loop surface of each domain is dominated by basic electrostatics and hydrophobic content
342	(Fig 5C), suggesting that these conserved surfaces interact with the surface of a cognate
343	partner that is negatively charged.
344	

345 Varied CLASP TOG architectures suggest distinct tubulin binding modes

346 While structures of XMAP215 family TOG domains from the yeast member Stu2 bound

to tubulin have informed how these TOG domains engage tubulin [33,34], how CLASP

Structures of CLASP1 TOG1 and TOG2

348	TOG domains bind tubulin remains unknown. Studies to date have implicated CLASP
349	TOG2 and TOG3 in tubulin-binding, however, binding between TOG1 and tubulin (free
350	or lattice bound) has not been detected [30,31,38-40]. To gain insight into CLASP TOG-
351	tubulin binding modes and the potential basis for the lack of detectable TOG1-tubulin
352	binding, we superimposed CLASP TOG domains on the Stu2 TOG2-tubulin structure
353	and analyzed the modeled complexes. To generate these models, we aligned CLASP
354	TOG domains to Stu2 TOG2 by superpositioning the first HR triads of each domain
355	using the Dali server [46]. The basis for this was the structural conservation noted across
356	the first HR A-C triad, which extended to Stu2 TOG2's first triad. Stu2 TOG2 engages
357	the curved state of the $\alpha\beta$ -tubulin heterodimer, which reflects tubulin's free state found in
358	solution and at polymerizing and depolymerizing microtubule plus ends, as compared to
359	the straight conformation found along the length of a microtubule [33,47,48]. Stu2 TOG2
360	HRs A-D engage β -tubulin while HRs E-F engage α -tubulin (Fig 6A) [33]. Key Stu2
361	TOG2-tubulin interaction determinants are a HR A loop tryptophan, an alanine and
362	asparagine in the HR B loop, basic residues in the HR C, E, and F loops, and a threonine
363	and proline residue in the HR D loop (Fig 6B). While there is no evidence that CLASP
364	TOG1 interacts with tubulin, CLASP1 TOG1 superimposes surprisingly well on the Stu2
365	TOG2- $\alpha\beta$ -tubulin structure, with all intra-HEAT loops assuming an interaction mode that
366	complements the surface of the tubulin heterodimer with HR E intercalating the grove
367	between α - and β -tubulin in a mode similar to Stu2 TOG2 HR E. Similarities between
368	CLASP1 TOG1 and Stu2 TOG2 tubulin-binding determinants include the following:
369	CLASP1 TOG1 has an asparagine in the HR B loop (N63), as well as basic residues in
370	HR C, E, and F, that are positionally equivalent to Stu2 TOG2 K428, R519, and K549.

Structures of CLASP1 TOG1 and TOG2

371	While CLASP1 TOG1 does not have a basic residue in HR C equivalent to K427, it does		
372	have an arginine in HR D (R142), the guanidinium group of which is positioned to		
373	occupy the same relative space as the Stu2 TOG2 K427 side chain amine. CLASP1		
374	TOG1 also has residues that are distinct from Stu2 TOG2 tubulin-binding determinants:		
375	as noted above, CLASP1 TOG1 lacks the conserved HR A loop tryptophan commonly		
376	found in XMAP215 TOG domains. Instead, CLASP1 TOG1 has a valine (V17) at the		
377	equivalent position. Additional intra-HR residues that are distinct to CLASP TOG1 are		
378	highlighted by conserved determinants in the HR D-F triad including HR D K139 and		
379	F141, HR E P178, and HR F S213 and R214 (Figs 2D and 6B). Overall, CLASP1 TOG1		
380	has an architecture that aligns well with the tubulin-binding TOG domains of Stu2, some		
381	residues are similar in nature to XMAP215 family tubulin-binding determinants, but		
382	others are unique to the CLASP family. Why CLASP1 TOG1 does not bind tubulin, and		
383	what the identity of its binding partner is remains to be determined. Recent studies have		
384	implicated TOG1 in non-tubulin binding roles including kinetochore localization and		
385	regulating CLASP-dependent effects on microtubule dynamics by inhibiting the activity		
386	of TOG2 [22,40].		

387

Unlike CLASP1 TOG1, the modeling of CLASP TOG2 and TOG3 onto tubulin using the Stu2 TOG2-tubulin complex as a guide yielded significant gaps between the second HR triad and αβ-tubulin (Fig 6A). For CLASP1 TOG2, the bent architecture of the domain angles HRs D-F away from αβ-tubulin. Interestingly, CLASP1 TOG2 has many Stu2 TOG2-like tubulin binding determinants across its intra-HR loops including HR A W338 (equivalent to Stu2 W341), HR D S457 and V458 (equivalent to Stu2 T470

Structures of CLASP1 TOG1 and TOG2

394	and P471 respectively), HR E R503 (equivalent to Stu2 R519), and HR F K534
395	(equivalent to Stu2 R551)(Fig 6B). This suggests that CLASP TOG2 may engage tubulin
396	across all of its intra-HR loops. If CLASP TOG2 adheres to a rigid conformation upon
397	tubulin binding, this may in turn drive tubulin into a hyper-curved conformation that
398	exceeds the curve observed in structures solved to date (e.g. see [33,49]). Recent work
399	has demonstrated that CLASP TOG2 is necessary and sufficient for CLASP-dependent
400	microtubule anti-catastrophe activity [22,23]. The unique bent architecture of CLASP
401	TOG2 and its role limiting catastrophe may reflect the dynamic, curved protofilament
402	architecture observed in both polymerizing and depolymerizing microtubules [48]. In
403	contrast to the anti-catastrophe activity of CLASP TOG2, CLASP TOG3 has been found
404	to promote microtubule rescue events [22]. Aligned with a distinct activity, our
405	superpositioning model of TOG3 onto tubulin yields a distinct interaction mode (Fig 6A).
406	CLASP TOG3 HR D is positioned away from β -tubulin and HR F is angled away from α -
407	tubulin. The unique positioning of TOG3's two HR triads relative to one another, and in
408	comparison to the HR triads of Stu2 TOG2, leads to a unique positioning of the second
409	HR triad on the surface of α -tubulin. While CLASP TOG3 has a unique TOG
410	architecture, it retains a set of key intra-HR residues that are position equivalent to the
411	tubulin-binding determinants of Stu2 TOG2 and are well oriented to engage $\alpha\beta$ -tubulin.
412	These include HR A loop W660 (equivalent to Stu2 W341), HR B P699 and H700
413	(equivalent to Stu2 A384 and N385 respectively), HR D S781 and L782 (equivalent to
414	Stu2 T470 and P471 respectively), and HR E R830 (equivalent to Stu2 R519) (Fig 6B).
415	

Structures of CLASP1 TOG1 and TOG2

416	The distinct architecture of TOG3, modeled with a unique lateral shift on the
417	tubulin heterodimer (Fig 6A) suggests that it may be involved in engaging a laterally
418	associated tubulin subunit on the microtubule. To examine this, we superimposed the
419	model generated of TOG3 bound to free tubulin (Fig 6A) onto the lattice coordinates of
420	GMPCPP-bound tubulin (PDB accession code 3JAT [50]). As modeled, CLASP TOG3
421	makes contacts with the laterally-associated tubulin subunit on the adjacent
422	protofilament. These contacts involve determinants in TOG3 HR B and the unique
423	extended intra-HEAT loop of HR D (Fig 7A,B). The potential ability of CLASP TOG3 to
424	bridge adjacent protofilaments may underlie its ability to promote rescue.
425	

Structures of CLASP1 TOG1 and TOG2

427 Conclusion

428

429	We have used crystallography to determine the structures of human CLASP1 TOG1 and
430	TOG2. Our comparison of these structures to other CLASP TOG domain structures and
431	to XMAP215 tubulin-binding TOG domains has highlighted a number of features of the
432	CLASP TOG array: 1) each TOG domain along the CLASP TOG array has a unique
433	architecture, 2) the structure of each specific TOG domain along the CLASP TOG array
434	is well conserved across species, across paralogs, and across different crystal space
435	groups, 3) the unique structures of these TOG domains and their respective conserved
436	determinants correlates with each TOG domain having unique activities: TOG1 plays a
437	non-tubulin binding role in kinetochore localization and relieving the auto-inhibition of
438	TOG2's anti-catastrophe activity, TOG2 plays a role in limiting catastrophe, and TOG3
439	plays a role in promoting rescue, 4) the unique structures of TOG2 and TOG3 predict
440	distinct modes of tubulin binding on the microtubule lattice: TOG2 may preferentially
441	engage a hyper-curved tubulin state and TOG3 may bridge adjacent tubulin subunits on
442	neighboring protofilaments.

443

While our work highlights distinct structural features of the TOG array, a number
of key questions remain outstanding. 1) What factor does TOG1 bind? While CLASP
TOG1 has an architecture that is similar to the tubulin-binding architecture of Stu2 TOG2
bound to tubulin and has intra-HR determinants that are similar to those Stu2 TOG2 uses
to bind tubulin, no tubulin-binding activity has been ascribed to CLASP TOG1. Instead
of binding tubulin, CLASP TOG1's conserved intra-HR loops may be involved in

Structures of CLASP1 TOG1 and TOG2

450	binding a kinetochore factor [40,51], relieving the auto-inhibition of CLASP TOG2
451	activity [22], binding actin [52], or a yet to be determined factor. 2) What is the structural
452	conformation of a TOG2- and a TOG3-tubluin complex as found on a microtubule? Will
453	these structures yield insight into novel structural states of the tubulin heterodimer and
454	will these states inform the mechanisms by which TOG2 and TOG2 affect microtubule
455	dynamics? 3) While the CLASP TOG array is composed of structurally distinct TOG
456	structures arranged in a specific order, can the array function properly if shuffled or do
457	the unique architectures play synergistic position- and spatial-specific roles along the
458	polarized microtubule lattice? 4) While the structural nature of CLASP's three TOG
459	domains (TOG1-3) has been elucidated, little is known about the C-terminal CLIP-ID
460	[13]. The CLIP-ID is predicted to be composed of HRs and analysis suggests that it may
461	conform to a TOG architecture as found in XMAP215 TOG5 [35]. Whether this is the
462	case, whether the CLIP-ID has tubulin- or microtubule-binding activity, and how CLIP-
463	170 binds the CLIP-ID remains to be determined.
464	
465	Our work highlights the structural diversity of the known TOG domains that
466	comprise the CLASP TOG array. This adds to our growing understanding of TOG
467	domain structural diversity and the specific role these structures play when arrayed in
468	different regulators of microtubule dynamics, including the CLASP family, the
469	XMAP215 family of microtubule polymerases, and the Crescerin family that regulates
470	microtubule dynamics in cilia [53–55].
471	

Structures of CLASP1 TOG1 and TOG2

472 Accession numbers

- 473
- 474 **RSCB Protein Data Bank.** Coordinate and structure factors for the CLASP1 TOG1 and
- 475 have been deposited with the accession code 6MQ5. Coordinate and structure factors for
- the CLASP1 TOG2 structure and have been deposited with the accession code 6MQ7.

477

478 Acknowledgments

- 479
- 480 We thank the staff at the Argonne National Laboratory Advanced Photon Source SER-
- 481 CAT beamlines 22-ID and 22-BM for support. Use of the Advanced Photon Source was
- 482 supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy
- 483 Sciences, under Contract No. DE-AC02-06CH11357.

Structures of CLASP1 TOG1 and TOG2

485 Author Contributions

- 487 Conceptualization: Jonathan B. Leano, Kevin C. Slep
- 488 Data Curation: Jonathan B. Leano, Kevin C. Slep
- 489 Formal Analysis: Jonathan B. Leano, Kevin C. Slep
- 490 Funding Acquisition: Jonathan B. Leano, Kevin C. Slep
- 491 Investigation: Jonathan B. Leano, Kevin C. Slep
- 492 Methodology: Jonathan B. Leano, Kevin C. Slep
- 493 **Project Administration**: Kevin C. Slep
- 494 **Resources:** Kevin C. Slep
- 495 Supervision: Kevin C. Slep
- 496 Validation: Jonathan B. Leano, Kevin C. Slep
- 497 Visualization: Kevin C. Slep
- 498 Writing Original Draft Preparation: Kevin C. Slep
- 499 Writing Review & Editing: Jonathan B. Leano, Kevin C. Slep

500	Ref	References		
501				
502 503	1.	Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312: 237–242.		
504 505 506	2.	Horio T, Hotani H. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature. 1986;321: 605–607. doi:10.1038/321605a0		
507 508	3.	Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13: 83–117. doi:10.1146/annurev.cellbio.13.1.83		
509 510 511 512	4.	Walker RA, O'Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol. 1988;107: 1437–1448.		
513 514	5.	Perez F, Diamantopoulos GS, Stalder R, Kreis TE. CLIP-170 highlights growing microtubule ends in vivo. Cell. 1999;96: 517–527.		
515 516 517	6.	Mimori-Kiyosue Y, Shiina N, Tsukita S. The dynamic behavior of the APC- binding protein EB1 on the distal ends of microtubules. Curr Biol CB. 2000;10: 865–868.		
518 519 520	7.	Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H, et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell. 2009;138: 366–376. doi:10.1016/j.cell.2009.04.065		
521 522 523 524	8.	Jiang K, Toedt G, Montenegro Gouveia S, Davey NE, Hua S, van der Vaart B, et al. A Proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins. Curr Biol CB. 2012;22: 1800–1807. doi:10.1016/j.cub.2012.07.047		
525 526 527	9.	Maurer SP, Fourniol FJ, Bohner G, Moores CA, Surrey T. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell. 2012;149: 371–382. doi:10.1016/j.cell.2012.02.049		
528 529 530 531	10.	Kumar A, Manatschal C, Rai A, Grigoriev I, Degen MS, Jaussi R, et al. Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends. Struct Lond Engl 1993. 2017;25: 924-932.e4. doi:10.1016/j.str.2017.04.010		
532 533	11.	Slep KC, Rogers SL, Elliott SL, Ohkura H, Kolodziej PA, Vale RD. Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the		

534 535		microtubule plus end. J Cell Biol. 2005;168: 587–598. doi:10.1083/jcb.200410114
536 537 538	12.	Honnappa S, John CM, Kostrewa D, Winkler FK, Steinmetz MO. Structural insights into the EB1-APC interaction. EMBO J. 2005;24: 261–269. doi:10.1038/sj.emboj.7600529
539 540 541 542	13.	Akhmanova A, Hoogenraad CC, Drabek K, Stepanova T, Dortland B, Verkerk T, et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell. 2001;104: 923–935.
543 544 545	14.	Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol. 2005;168: 141–153. doi:10.1083/jcb.200405094
546 547 548 549	15.	van der Vaart B, Manatschal C, Grigoriev I, Olieric V, Gouveia SM, Bjelic S, et al. SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase. J Cell Biol. 2011;193: 1083–1099. doi:10.1083/jcb.201012179
550 551 552	16.	Li W, Moriwaki T, Tani T, Watanabe T, Kaibuchi K, Goshima G. Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. J Cell Biol. 2012;199: 849–862. doi:10.1083/jcb.201206101
553 554 555	17.	Li W, Miki T, Watanabe T, Kakeno M, Sugiyama I, Kaibuchi K, et al. EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells. J Cell Biol. 2011;193: 973–983. doi:10.1083/jcb.201101108
556 557 558 559	18.	Andersen SS. Xenopus interphase and mitotic microtubule-associated proteins differentially suppress microtubule dynamics in vitro. Cell Motil Cytoskeleton. 1998;41: 202–213. doi:10.1002/(SICI)1097-0169(1998)41:3<202::AID-CM2>3.0.CO;2-X
560 561 562	19.	Cullen CF, Deák P, Glover DM, Ohkura H. mini spindles: A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J Cell Biol. 1999;146: 1005–1018.
563 564 565	20.	Inoue YH, do Carmo Avides M, Shiraki M, Deak P, Yamaguchi M, Nishimoto Y, et al. Orbit, a novel microtubule-associated protein essential for mitosis in Drosophila melanogaster. J Cell Biol. 2000;149: 153–166.
566 567 568	21.	Lawrence EJ, Arpag G, Norris SR, Zanic M. Human CLASP2 specifically regulates microtubule catastrophe and rescue. Mol Biol Cell. 2018;29: 1168–1177. doi:10.1091/mbc.E18-01-0016

569 570 571	22.	Aher A, Kok M, Sharma A, Rai A, Olieric N, Rodriguez-Garcia R, et al. CLASP Suppresses Microtubule Catastrophes through a Single TOG Domain. Dev Cell. 2018;46: 40-58.e8. doi:10.1016/j.devcel.2018.05.032
572 573 574	23.	Majumdar S, Kim T, Chen Z, Munyoki S, Tso S-C, Brautigam CA, et al. An isolated CLASP TOG domain suppresses microtubule catastrophe and promotes rescue. Mol Biol Cell. 2018;29: 1359–1375. doi:10.1091/mbc.E17-12-0748
575 576 577	24.	Gard DL, Kirschner MW. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J Cell Biol. 1987;105: 2203–2215.
578 579 580	25.	Moriwaki T, Goshima G. Five factors can reconstitute all three phases of microtubule polymerization dynamics. J Cell Biol. 2016;215: 357–368. doi:10.1083/jcb.201604118
581 582 583 584	26.	Sousa A, Reis R, Sampaio P, Sunkel CE. The Drosophila CLASP homologue, Mast/Orbit regulates the dynamic behaviour of interphase microtubules by promoting the pause state. Cell Motil Cytoskeleton. 2007;64: 605–620. doi:10.1002/cm.20208
585 586 587 588 588	27.	Máthé E, Inoue YH, Palframan W, Brown G, Glover DM. Orbit/Mast, the CLASP orthologue of Drosophila, is required for asymmetric stem cell and cystocyte divisions and development of the polarised microtubule network that interconnects oocyte and nurse cells during oogenesis. Dev Camb Engl. 2003;130: 901–915.
590 591 592 593	28.	Pereira AL, Pereira AJ, Maia ARR, Drabek K, Sayas CL, Hergert PJ, et al. Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function. Mol Biol Cell. 2006;17: 4526– 4542. doi:10.1091/mbc.e06-07-0579
594 595 596 597	29.	Lee H, Engel U, Rusch J, Scherrer S, Sheard K, Van Vactor D. The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron. 2004;42: 913–926. doi:10.1016/j.neuron.2004.05.020
598 599 600	30.	Slep KC, Vale RD. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol Cell. 2007;27: 976–991. doi:10.1016/j.molcel.2007.07.023
601 602 603	31.	Leano JB, Rogers SL, Slep KC. A cryptic TOG domain with a distinct architecture underlies CLASP-dependent bipolar spindle formation. Struct Lond Engl 1993. 2013;21: 939–950. doi:10.1016/j.str.2013.04.018
604 605	32.	Al-Bassam J, Larsen NA, Hyman AA, Harrison SC. Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and

606		implications for tubulin binding. Struct Lond Engl 1993. 2007;15: 355–362.
607		doi:10.1016/j.str.2007.01.012
608 609 610	33.	Ayaz P, Ye X, Huddleston P, Brautigam CA, Rice LM. A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science. 2012;337: 857–860. doi:10.1126/science.1221698
611 612 613	34.	Ayaz P, Munyoki S, Geyer EA, Piedra F-A, Vu ES, Bromberg R, et al. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. eLife. 2014;3: e03069. doi:10.7554/eLife.03069
614 615 616	35.	Byrnes AE, Slep KC. TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation. J Cell Biol. 2017;216: 1641–1657. doi:10.1083/jcb.201610090
617 618 619	36.	Fox JC, Howard AE, Currie JD, Rogers SL, Slep KC. The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array. Mol Biol Cell. 2014;25: 2375–2392. doi:10.1091/mbc.E13-08-0501
620 621 622 623	37.	Howard AE, Fox JC, Slep KC. Drosophila melanogaster mini spindles TOG3 utilizes unique structural elements to promote domain stability and maintain a TOG1- and TOG2-like tubulin-binding surface. J Biol Chem. 2015;290: 10149– 10162. doi:10.1074/jbc.M114.633826
624 625 626 627	38.	De la Mora-Rey T, Guenther BD, Finzel BC. The structure of the TOG-like domain of Drosophila melanogaster Mast/Orbit. Acta Crystallograph Sect F Struct Biol Cryst Commun. 2013;69: 723–729. doi:10.1107/S1744309113015182
628 629 630	39.	Maki T, Grimaldi AD, Fuchigami S, Kaverina I, Hayashi I. CLASP2 Has Two Distinct TOG Domains That Contribute Differently to Microtubule Dynamics. J Mol Biol. 2015;427: 2379–2395. doi:10.1016/j.jmb.2015.05.012
631 632 633	40.	Funk C, Schmeiser V, Ortiz J, Lechner J. A TOGL domain specifically targets yeast CLASP to kinetochores to stabilize kinetochore microtubules. J Cell Biol. 2014;205: 555–571. doi:10.1083/jcb.201310018
634 635 636 637	41.	Leahy DJ, Erickson HP, Aukhil I, Joshi P, Hendrickson WA. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins. 1994;19: 48–54. doi:10.1002/prot.340190107
638 639	42.	Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276: 307–326.

640 641 642	43.	Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66: 486–501. doi:10.1107/S0907444910007493
643 644 645 646	44.	Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66: 213–221. doi:10.1107/S0907444909052925
647 648 649	45.	Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001;98: 10037–10041. doi:10.1073/pnas.181342398
650 651	46.	Holm L, Rosenström P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 2010;38: W545-549. doi:10.1093/nar/gkq366
652 653	47.	Nogales E, Wolf SG, Downing KH. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998;391: 199–203. doi:10.1038/34465
654 655 656 657	48.	McIntosh JR, O'Toole E, Morgan G, Austin J, Ulyanov E, Ataullakhanov F, et al. Microtubules grow by the addition of bent guanosine triphosphate tubulin to the tips of curved protofilaments. J Cell Biol. 2018;217: 2691–2708. doi:10.1083/jcb.201802138
658 659 660	49.	Gigant B, Curmi PA, Martin-Barbey C, Charbaut E, Lachkar S, Lebeau L, et al. The 4 A X-ray structure of a tubulin:stathmin-like domain complex. Cell. 2000;102: 809–816.
661 662 663	50.	Zhang R, Alushin GM, Brown A, Nogales E. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins. Cell. 2015;162: 849– 859. doi:10.1016/j.cell.2015.07.012
664 665 666 667	51.	Cheeseman IM, MacLeod I, Yates JR, Oegema K, Desai A. The CENP-F-like proteins HCP-1 and HCP-2 target CLASP to kinetochores to mediate chromosome segregation. Curr Biol CB. 2005;15: 771–777. doi:10.1016/j.cub.2005.03.018
668 669 670	52.	Tsvetkov AS, Samsonov A, Akhmanova A, Galjart N, Popov SV. Microtubule- binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell Motil Cytoskeleton. 2007;64: 519–530. doi:10.1002/cm.20201
671 672 673	53.	Bacaj T, Lu Y, Shaham S. The conserved proteins CHE-12 and DYF-11 are required for sensory cilium function in Caenorhabditis elegans. Genetics. 2008;178: 989–1002. doi:10.1534/genetics.107.082453

Structures of CLASP1 TOG1 and TOG2

- 54. Das A, Dickinson DJ, Wood CC, Goldstein B, Slep KC. Crescerin uses a TOG
 domain array to regulate microtubules in the primary cilium. Mol Biol Cell.
 2015; doi:10.1091/mbc.E15-08-0603
- 55. Louka P, Vasudevan KK, Guha M, Joachimiak E, Wloga D, Tomasi RF-X, et al.
 Proteins that control the geometry of microtubules at the ends of cilia. J Cell
 Biol. 2018; doi:10.1083/jcb.201804141
- 680 56. Holm L, Laakso LM. Dali server update. Nucleic Acids Res. 2016;44: W351-355.
 681 doi:10.1093/nar/gkw357

682

Structures of CLASP1 TOG1 and TOG2

684 **Table 1. Data processing and refinement statistics.**

685

Crystal	CLASP1 TOG1	CLASP1 TOG2	
Data Collection			
Wavelength (Å)	0.97964	1.0000	
Space group	P21	P21	
Cell dimensions: a,b,c (Å)	41.0, 114.0, 99.9	51.6, 67.4, 81.0	
Resolution (Å)	50.0-2.15 (2.23-2.15)	50.0-1.78 (1.84-1.78)	
# Reflections: Measured /	148,462 (11,001) / 41,883	319,655 (19,398) / 51,928	
Unique	(3,667)	(4,492)	
Completeness (%)	92.3 (81.2)	98.1 (85.4)	
Mean redundancy	3.5 (3.0)	6.8 (4.3)	
<i σi=""></i>	9.6 (1.96)	15.1 (2.8)	
R _{sym}	0.155 (0.646)	0.095 (0.278)	
Refinement	L		
Resolution (Å)	32.95-2.15 (2.20-2.15)	38.1-1.78 (1.83-1.78)	
R/ R _{free} (%)	19.0 (24.4) / 24.4 (33.3)	17.7 (29.5) / 22.1 (38.0)	
# Reflections, R/R _{free}	21,034 (1768) / 1930 (159)	48317 (3683) / 1874 (153)	
Total atoms: Protein / Water	3,868 / 183	3,920 / 659	
Stereochemical ideality	0.011 / 1.38	0.008 / 1.05	
(rmsd): Bonds / Angles (Å/°)			
Mean B-factors (Å ²): Overall	28.8 / 28.6 / 31.3	29.0 / 27.1 / 39.9	
/ Protein / Water			
Ramachandran Analysis:	98.1 / 1.7	99.2 / 0.8	
Favored / Allowed (%)			
PDB accession code	6MQ5	6MQ7	

686

Values in parentheses indicate statistics for the highest-resolution shell.

687

Structures of CLASP1 TOG1 and TOG2

689 Figure legends

690

691 Fig 1. CLASP1 TOG1 forms a structurally conserved α-solenoid composed of six

- 692 HRs. (A) Domain architecture of CLASP family members. H. sapiens (H.s.) CLASP1
- and CLASP2, X. laevis (X.l.) Xorbit, D. melanogaster (D.m.) MAST, C. elegans (C.e.)
- 694 CLS-1, and S. cerevisiae (S.c.) Stu1p. Stu1p's two C-terminal domains are uniquely
- 695 colored based on lack of homology to TOG3 and the CLIP-170 interaction domain
- 696 (CLIP-ID) of other CLASP family members. (B) Architecture of H. sapeins CLASP1
- 697 TOG1 shown in cartoon format. The helices of each of the six HRs (A-F) are colored
- 698 across the spectrum. The image at top is rotated 90° about the x-axis to present the view
- shown at bottom which focuses on the intra-HR loops. The HR α -solenoid is
- approximately 65 Å long. A translational shift between HR C and HR D prevents an
- 701 overall supercoiling, common to α -solenoid domains, thereby facilitating an overall flat,
- 702 paddle-like architecture for the TOG domain. (C) Structural alignment of CLASP1 TOG1
- 703 with H. sapeins CLASP2 TOG1 and D. melanogaster MAST TOG1 (PDB accession
- codes 5NR4 and 4G3A respectively, [22,38]). Pairwise alignment using the Dali server
- 705 [56] yields 1.2 Å rmsd across 220 Cα atoms for the CLASP1-CLASP2 TOG1
- comparison, and 2.4 Å rmsd across 224 Cα atoms for the CLASP1-MAST TOG1
- 707 comparison.

708

709 Fig 2. CLASP TOG1 has a conserved face delineated by intra-HR loops. (A)

- 710 Sequence alignment of CLASP TOG1 from *H. sapiens (H.s.)* CLASP1, *X. laevis (X.l.)*
- 711 Xorbit, D. melanogaster (D.m.). MAST, and C. elegans (C.e.) CLS-1. H. sapiens

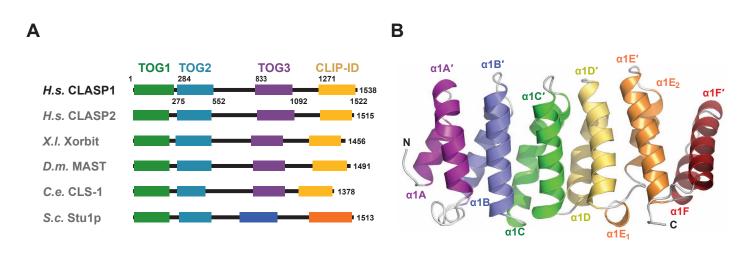
Structures of CLASP1 TOG1 and TOG2

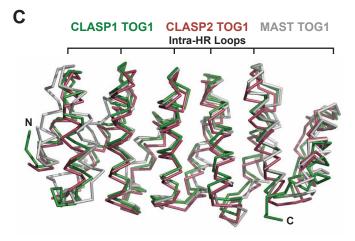
712	CLASP1 TOG1 2° structure and solvent accessible surface area (SASA) are shown above
713	the alignment. Residues are highlighted based on 100% identity (dark green), 100
714	similarity (light green), and 75% similarity (yellow). (B) Cross-species conservation
715	delineated in A, mapped on the CLASP1 TOG1 structure, and rotated in 90° steps about
716	the x-axis. The orientation at upper left corresponds to the upper orientation in Figure 1B.
717	Conservation primarily maps to the intra-HR loops that form the surface shown at upper
718	right. Additional conservation maps to the face of the α -solenoid delineated by the α '
719	helix of each HR (face presented at upper left). (C) View of the HR A loop residue V17
720	shown in stick format with $2F_0$ - F_c electron density shown in blue, contoured at 1.0 σ . (D)
721	Intra-HR residues shown in stick format with conservation color-coded as in A and B.
722	
723	Fig 3. CLASP1 TOG2 forms a convex α -solenoid, structurally homologous to
724	CLASP2 TOG2 (A) Architecture of <i>H. sapiens</i> CLASP1 TOG2 shown in cartoon
724 725	CLASP2 TOG2 (A) Architecture of <i>H. sapiens</i> CLASP1 TOG2 shown in cartoon format. The helices of each of the six HRs (A-F) are colored across the spectrum.
725	format. The helices of each of the six HRs (A-F) are colored across the spectrum.
725 726	format. The helices of each of the six HRs (A-F) are colored across the spectrum. CLASP1 TOG2 has a unique N-terminal helix, $\alpha 2N$, that runs orthogonal to and contacts
725 726 727	format. The helices of each of the six HRs (A-F) are colored across the spectrum. CLASP1 TOG2 has a unique N-terminal helix, α 2N, that runs orthogonal to and contacts the α ' helices of HRs B and C. The image at top is rotated 90° about the x-axis to present
725 726 727 728	format. The helices of each of the six HRs (A-F) are colored across the spectrum. CLASP1 TOG2 has a unique N-terminal helix, $\alpha 2N$, that runs orthogonal to and contacts the α ' helices of HRs B and C. The image at top is rotated 90° about the x-axis to present the view shown at bottom which focuses on the intra-HR loops. The HR α -solenoid is
725 726 727 728 729	format. The helices of each of the six HRs (A-F) are colored across the spectrum. CLASP1 TOG2 has a unique N-terminal helix, α 2N, that runs orthogonal to and contacts the α ' helices of HRs B and C. The image at top is rotated 90° about the x-axis to present the view shown at bottom which focuses on the intra-HR loops. The HR α -solenoid is approximately 65 Å long. In contrast to canonical TOG structures determined to date,
725 726 727 728 729 730	format. The helices of each of the six HRs (A-F) are colored across the spectrum. CLASP1 TOG2 has a unique N-terminal helix, α 2N, that runs orthogonal to and contacts the α ' helices of HRs B and C. The image at top is rotated 90° about the x-axis to present the view shown at bottom which focuses on the intra-HR loops. The HR α -solenoid is approximately 65 Å long. In contrast to canonical TOG structures determined to date, which form a relative straight surface across their intra-HR loops, CLASP TOG2 forms a
725 726 727 728 729 730 731	format. The helices of each of the six HRs (A-F) are colored across the spectrum. CLASP1 TOG2 has a unique N-terminal helix, α 2N, that runs orthogonal to and contacts the α ' helices of HRs B and C. The image at top is rotated 90° about the x-axis to present the view shown at bottom which focuses on the intra-HR loops. The HR α -solenoid is approximately 65 Å long. In contrast to canonical TOG structures determined to date, which form a relative straight surface across their intra-HR loops, CLASP TOG2 forms a bent, convex architecture across this surface (image at top). (C) Structural alignment of

Structures of CLASP1 TOG1 and TOG2

735

736	Fig 4. CLASP TOG2 has a conserved face delineated by intra-HR loops. (A)
737	Sequence alignment of CLASP TOG2 from H. sapiens (H.s.) CLASP1, X. laevis (X.l.)
738	Xorbit, D. melanogaster (D.m.) MAST, and C. elegans (C.e.). CLS-1. H. sapiens
739	CLASP1 TOG2 2° structure and solvent accessible surface area (SASA) are shown above
740	the alignment. Residues are highlighted based on 100% identity (dark green), 100%
741	similarity (light green), and 75% similarity (yellow). (B) Cross-species conservation
742	delineated in A, mapped on the CLASP1 TOG2 structure and rotated in 90° steps about
743	the x-axis. The orientation at upper left corresponds to the upper orientation in Figure 3A.
744	Conservation primarily maps to the intra-HR loops that form the surface shown at upper
745	right. (C) View of the HR A loop residue W338 shown in stick format with $2F_0$ - F_c
746	electron density shown in blue, contoured at 1.0 σ . (D) Intra-HR residues shown in stick
747	format with conservation color-coded as in A and B.
748	
749	Fig 5. CLASP TOG1, TOG2, and TOG3 have unique domain architectures. (A)
750	Comparison of CLASP1 TOG1, CLASP1 TOG2, and CLASP2 TOG3 (PDB accession
751	code 3WOZ, [39]) structures using rmsd analysis of corresponding C α atoms across the
752	three domains (Dali server [56]). Pairwise analysis was performed, comparing HRs A-C,
753	D-F, and all six HRs: A-F. The HR A-C triad exhibits a higher degree of pairwise
754	structural homology with rmsd values ranging from 1.9-2.2 Å while the HR D-F triad has
755	lower pairwise structural homology, with rmsd values ranging from 2.3-2.9 Å. (B)
756	Structural comparison of CLASP TOGs 1-3. The TOG2 and TOG3 HR A-C triad was
757	structurally aligned to the CLASP TOG1 HR A-C triad using the Dali server [56]. The


Structures of CLASP1 TOG1 and TOG2


758	alignment highlights the relative differential positioning of the HR D-F triads across the
759	CLASP TOG array. Image at top is oriented with the intra-HR loops at the top of the
760	domains. The image below was produced after a 90° rotation about the x-axis and focuses
761	on the surface composed of intra-HR loops. (C) Electrostatic surface potential mapped on
762	the structures of CLASP1 TOG1, TOG2, and CLASP2 TOG3. The surface of each
763	domain presented is the surface composed of intra-HR loops, oriented as presented in the
764	lower image of panel B.
765	
766	Fig 6. Distinct CLASP TOG architectures predict distinct tubulin binding
767	properties. (A) CLASP TOG domains modeled on tubulin based on the structure of the
768	XMAP215 microtubule polymerase family member Stu2 TOG2 in complex with $\alpha\beta$ -
769	tubulin (PDB accession code 4U3J [34], shown at top; Stu2 TOG2 in grey, α - and β -
770	tubulin shown in sand and lavender respectively). Stu2 TOG2 intra-HR loop residues are
771	involved in $\alpha\beta$ -tubulin binding. HRs A-D engage β -tubulin while HRs E-F engage α -
772	tubulin. To generate models of CLASP TOG domains bound to tubulin in a similar mode,
773	the first HR triad (A-C) from each of CLASP's TOG domains was structurally aligned to
774	the Stu2 TOG2 HR A-C triad using the Dali server [56]. TOG domains at left are shown
775	in cartoon format along with a transparent molecular envelope. The images at right were
776	generated after a 90° rotation about the y-axis and depict each TOG domain in surface
777	representation. The CLASP2 TOG3 structure is from PDB accession code 3WOZ [39].
778	(B) Comparative analysis of the intra-HR loop residues of each of CLASP's TOG
779	domains, which in Stu2 TOG2 are used to bind tubulin. The orientation of each domain,

Structures of CLASP1 TOG1 and TOG2

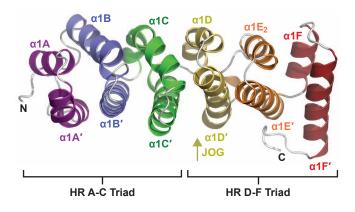
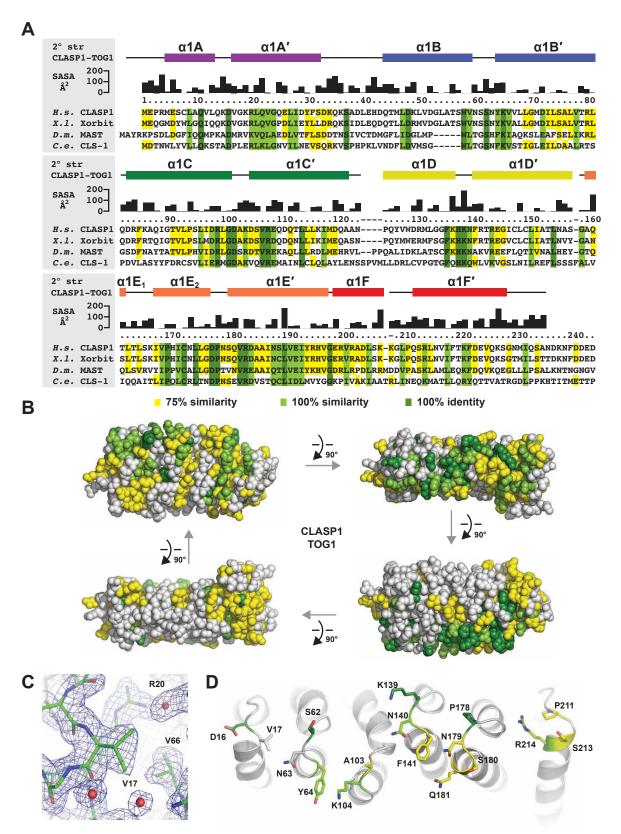

780	relative to the orientation shown in A (right panel) was generated after a 180° rotation
781	about the y-axis, followed by a 90° counterclockwise rotation about the z-axis.
782	
783	Fig 7. CLASP TOG3 is predicted to engage laterally associated tubulin on the
784	microtubule lattice. (A) Model of CLASP2 TOG3 superpositioned on a microtubule.
785	Shown are two laterally-associated tubulin heterodimers from neighboring
786	protofilaments. TOG3 is shown in dark purple and bound to the tubulin heterodimer
787	shown at right as in Fig 6A. The model generated of TOG3 bound to free tubulin (Fig 6)
788	was superpositioned onto the lattice coordinates of GMPCPP-bound tubulin (PDB
789	accession code 3JAT [50]). The tops of the β -tubulin subunits are shown (plus end
790	oriented towards the viewer), looking into the bore of the microtubule with the luminal
791	region oriented above and the microtubule exterior oriented below. CLASP TOG3 is
792	shown bound to the tubulin subunit at right, and can engage the laterally associated
793	tubulin subunit at left via intra-HR loop determinants in HR B and HR D. (B) Model as
794	shown in (A), viewed from the microtubule exterior with the plus end oriented up. β -
795	tubulin is shown in lavender, α -tubulin is shown in wheat. Potential TOG3 HR B and HR
796	D contacts with the laterally-associated tubulin subunit are demarcated with red arrows.
797	

FIGURE 1



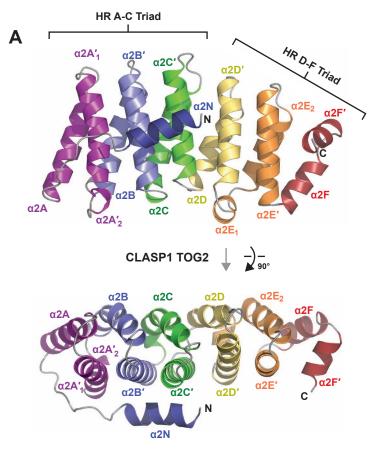
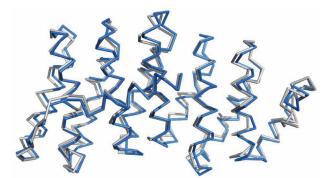
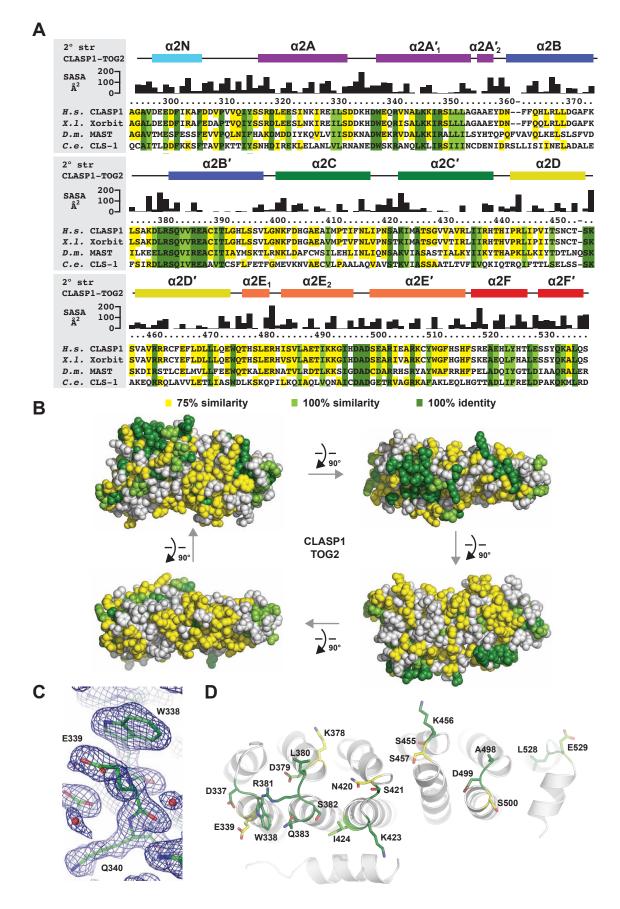


FIGURE 2





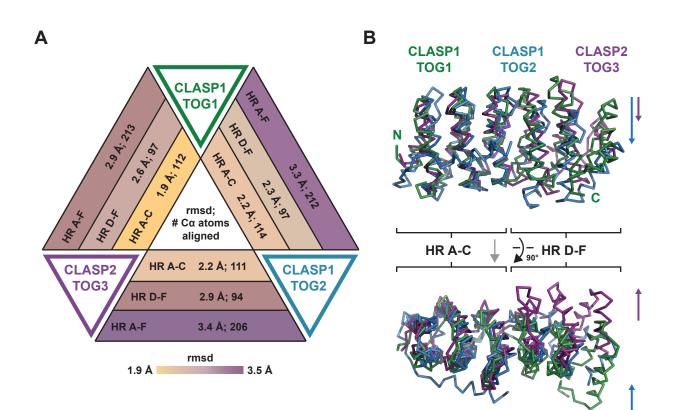

CLASP1 TOG2 CLASP2 TOG2

FIGURE 4

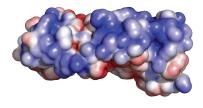
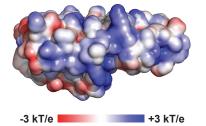
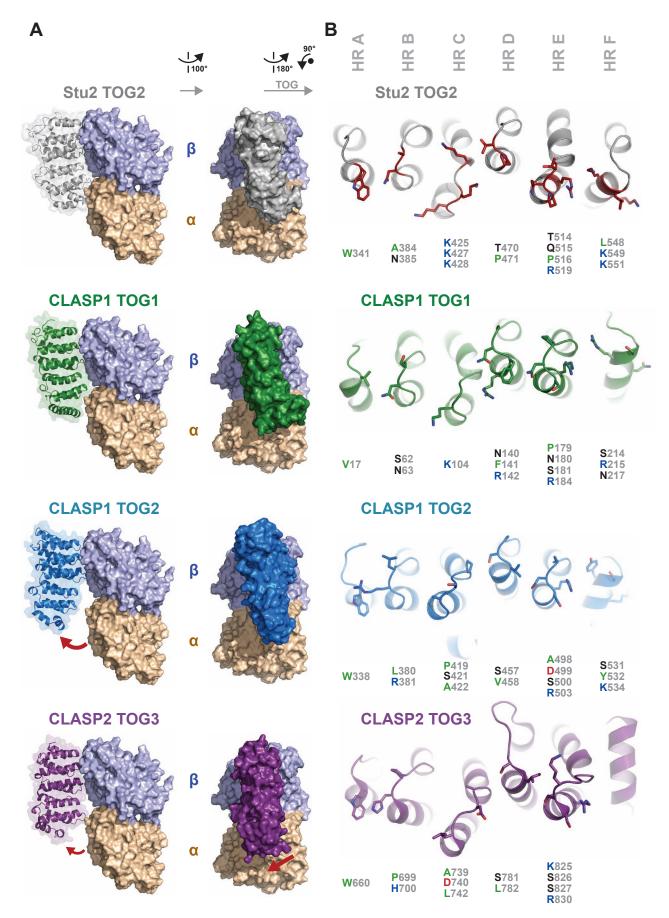


FIGURE 5

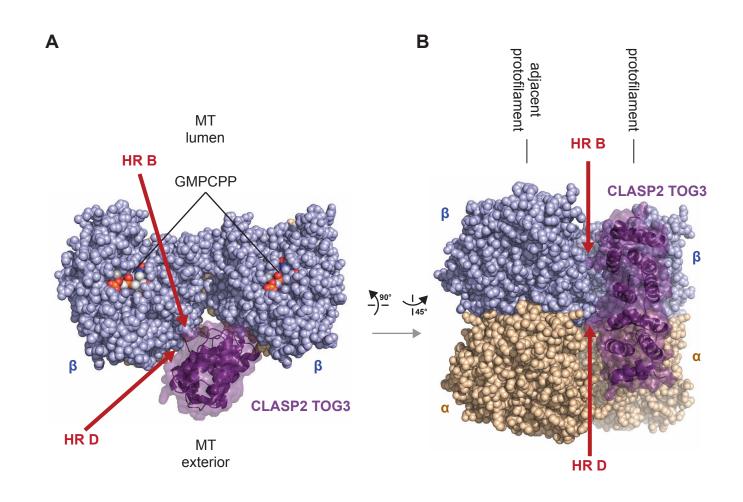


С

CLASP1 TOG1



Intra-HR Loop Surface CLASP1 TOG2



CLASP2 TOG3

FIGURE 6

FIGURE 7

