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Abstract
Motivation. Human leukocyte antigen (HLA) locus makes up the major compatibility complex
(MHC) and plays a critical role in host response to disease, including cancers and autoimmune
disorders. In the clinical setting, HLA typing is necessary for determining tissue compatibility.
Recent improvements in the quality and accessibility of next-generation sequencing have made
HLA typing from standard short-read data practical. However, this task remains challenging
given the high level of polymorphism and homology between the HLA genes. HLA typing
from RNA sequencing is further complicated by post-transcriptional splicing and bias due to
amplification.

Results. Here, we present arcasHLA: a fast and accurate in silico tool that infers HLA genotypes
from RNA sequencing data. Our tool outperforms established tools on the gold-standard
benchmark dataset for HLA typing in terms of both accuracy and speed, with an accuracy rate of
100% at two field precision for MHC class I genes, and over 99.7% for MHC class II. Importantly,
arcasHLA takes as its input pre-aligned BAM files, and outputs three-field resolution for all
HLA genes in less than 2 minutes. Finally, we discuss evaluate the performance of our tool on
a new biological dataset of 447 single-end total RNA samples from nasopharyngeal swabs, and
establish the applicability of arcasHLA in metatranscriptome studies.

Availability. arcasHLA is available at https://github.com/RabadanLab/arcasHLA.

1 Introduction

Human leukocyte antigens encode the proteins that make up themajor compatibility com-
plex (MHC). MHC class I (HLA-A, B, and C) presents endogenous antigens on the sur-
face of all nucleated, somatic cells to cytotoxic T-cells, triggering apoptosis if the protein
is not recognized as self. MHC class II (including HLA-DPB1, DQB1, and DRB1), con-
stitutively expressed by certain immune and epithelial cells, performs the same role but
presents exogenous proteins to helper T-cells which mediate adaptive immune response
[24].

HLA genes are the most polymorphic regions in the human genome with over 12,000
known alleles across 38 genes [30]. Pathogen-driven selection may explain this level
HLA diversity: variation of residues in the binding region allows for a greater variety of
peptides that can be bound and presented. Populations in areas with a wider variety of
pathogens show increased HLA diversity [29] and heterozygous individuals show both
greater resistance towards infectious agents and greater fitness than homozygotes [8; 34;
27].

With the advent of immunotherapy, HLA typing and expression level quantification
is increasingly important for cancer research. Immunotherapy depends on the ability of
the patient’s HLAs to effectively bind and present tumor neoantigens on the cell surface
[9]. Following immunotherapy, clonal selection favors tumor cells with a loss of HLA
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heterozygosity (LOH) or silencing of the HLA loci. Although past methods look to copy
number variations in whole exome sequencing to determine LOH [23], RNA sequenc-
ing may give a more accurate picture of HLA expression in tumor cells, particularly if
HLA expression is altered as a result of interruptions in HLA regulatory pathways due
to mutations or epigenetic modifications.

High resolution typing of HLA alleles is also imperative for the determination of tis-
sue compatibility. HLA nomenclature (e.g. A*02:01:01:02L) consists of four successive
fields: allele group, protein type, synonymous changes in coding regions, and changes
in non-coding regions. The addition of a suffix denotes alterations in expression. “High-
resolution” genotyping is used to determine an individual’s serotype, solving sequencing
ambiguities in the peptide-binding region (exons 2 and 3 for class I and exon II for class
II). Consequently, most sequenced HLA alleles are partial, missing exonic sequences out-
side of this region. However, differences in the peptide-binding sequence are not the only
source of variation between alleles: expression levels, particularly that of HLA-C, are as-
sociated with allotype. Differences in expression can be exploited to salvage a match: if
a donor has a single mismatched allele, there is decreased risk of transplant rejection
if this allele is expressed at lower levels [28]. In short, accurate typing is necessary to
determine compatibility between individuals.

Specialized methods of typing HLAs, including Sanger sequencing and PCR enrich-
ment of the HLA loci, are expensive and time-consuming, given the sample size nec-
essary for effective donor banks and association studies. Thus, methods using standard
NGS reads with minimal loss of accuracy and resolution are useful. However, typing
with short reads is made complicated by the high level of homology between both HLA
genes and alleles, some of which differ by only a single base. In addition, there exist par-
alogous HLA pseudogenes, one of which has been shown to interfere with typing from
genomic sequencing [17]. Some pseudogenes have detectable expression levels which
interfere with RNA typing [22].

In the last few years, multiple tools that type HLAs from whole genome sequenc-
ing (WGS), whole exome sequencing (WES), and RNA sequencing have been published,
with improving benchmark performance and resolution (see Table 1). These HLA typ-
ing tools attempt to find the one or two alleles that best explain the sampled reads, ei-
ther by comparing assembled contigs or aligning reads directly to an HLA reference.
Although a plethora of tools optimized for typing from WES and WGS fall into either
category, most current tools for RNA sequencing, including seq2HLA[5], OptiType[33],
PHLAT[3], are alignment-based. The latest RNA-dedicated HLA typer, HLAProfiler,
takes a novel approach to graph-based alignment, breaking the HLA transcripts into k-
mers and constructing a taxonomic tree used to filter reads [7]. To find an individual’s
genotype, observed k-mers are compared to profiles built from simulated reads. Tools
also differ in the construction of their HLA reference: some tools, such as seq2HLA and
OptiType, limit their reference to peptide-binding exons and flanking regions while oth-
ers use a combination of coding and genomic sequences. For the purposes of serotyping,
changes outside of the peptide-binding region should be considered because alleles with
the same peptide-binding sequence may have different protein types. In addition, limiting
the number of exons considered increases the occurrence of ambiguous typing.

arcasHLA takes an alignment-based approach, using both a codingDNA reference for
complete alleles and a reference including all known alleles with all exon combinations
of transcripts containing the peptide-binding region. This tool uses Kallisto [6], an RNA
quantifier with a graph-based alignment feature, to assign reads to their compatible HLA
transcripts. Allele abundance for each gene is quantified separately and the genotype
that maximizes the number of reads aligned is selected from the most abundant alleles.
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Finally, homozygosity is determined using the ratio of minor to major nonshared read
counts. As an optional step, partial alleles are typed in a similar fashion. Unlike other
tools, population-specific allele frequencies are used as priors to distribute sampled reads
within HLA compatibility classes in addition to breaking ties between ambiguous alleles
(see Methods). arcasHLA outperforms other popular HLA RNA-sequencing typers such
PHLAT, OptiType, seq2HLA, and HLAProfiler on paired-end benchmark samples (see
Table 2).

2 Materials and methods

2.1 Database construction

2.1.1 HLA reference

HLA and related sequences were obtained from the ImMunoGeneTics/HLA database,
IMGT/HLA, compiled by the Immuno Polymorphism Database project [30]. These se-
quences include both classical and nonclassical MHC class I genes, MHC class II genes,
HLA pseudogenes and some related non-HLA genes.

HLA nomenclature is divided into four fields: allele group, protein type, synonymous
changes in coding regions, and changes in noncoding regions. Due to post-transcription
splicing, changes in intronic regions cannot be confidently determined from mature mes-
senger RNA. Excluding introns, we constructed databases of coding DNA for HLA al-
leles. Sequenced untranslated regions (UTRs), missing for many alleles, were included
as noncontiguous sequences. Including these sequences in the reference identifies reads
that map to both untranslated regions and coding sequences. Alleles with insertions or
deletions causing a stop loss in the final exon were truncated if the sequence continuing
into the UTR contained no changes. Many alleles from the same gene share much of
their final exon and 3’ untranslated region, and reads containing this transition from cod-
ing to noncoding would only be attributed to the extended alleles. Thus, reads from the
untranslated regions of the true alleles would be improperly assigned to these stop-loss
alleles, interfering with typing.

A majority of the alleles archived in IMGT/HLA are not complete, missing exons,
introns, and untranslated regions. Some HLA typing tools include partial alleles by ex-
tending the sequence with an allele’s nearest neighbor (Optitype) or looks at each exon
individually. The method described here uses two separate references for typing com-
plete and partial alleles. The former contains only transcripts for alleles with complete
sequences, while the latter contains transcripts for all possible contiguous combinations
of exons for all known alleles (e.g. 2-3, 1-2-3, etc).

2.1.2 Allele frequencies

Two-field allele frequencieswere retrieved fromAlleleFrequenciesNet Database (AFND)
[13]. Only populations considered to be gold-standard, with allele frequencies that sum
to 1 and a sample size ≥ 50, were used to build the database. These sample populations
were grouped into broad population categories following the categorization laid out by
The National Marrow Donor Program [15]. To account for alleles not seen in the se-
lected population and those not reported on AFND, Dirichlet smoothing was applied to
the allele frequencies, treating the entirety of the AFND data and IMGT/HLA database
reference as priors.
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Figure 1. Overview of arcasHLA pipeline from alignment to genotyping. Visualization of HLA de Bruijn
graph constructed using Velvet and Bandage.

2.2 Genotyping

2.2.1 Read alignment

arcasHLA takes as input a mapped RNA-seq BAM file. After extracting chromosome 6
reads (and when applicable, extracting any additional reads aligned to HLA decoys, or
chromosome 6 alternate sequences as well) from input, we perform a pseudoalignment of
the extracted reads with Kallisto [6], a graph-based RNA-seq quantifier. Kallisto builds
a de Bruijn graph from the reference transcriptome, in which each k-mer represents a
k-length sequence and each edge adds an additional base, connecting the node to the
next k-mer seen in the sequence. Each read is decomposed into k-length sequences and
hashed into the reference index. The compatibility class of a given read is then defined
as the set of reference transcripts that are compatible with every one of its constituent
k-mers. This method avoids base-by-base alignment in favor of speed; thus the moniker
“pseudoalignment.“ Because Kallisto skips k-mers that provide no new information on
the compatibility class of a read, it is less sensitive to sequencing errors if they happen to
fall within any one of these redundant k-mers. Of note: this pseudoalignment method is
also insensitive to novel alleles if the corresponding new variants lie along one of these
conserved k-mer subsequences.

2.2.2 Transcript quantification

Like most HLA typers, arcasHLA seeks to find the pair of alleles with maximal sup-
port among the observed reads originating from the HLA locus. Given the thousands of
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possible alleles for a single gene, pairwise comparisons, however, are computationally
expensive and they fail to account for the similarity between different alleles. In order
to narrow down the pool of possible alleles, arcasHLA exploits k-mer structures in tran-
script quantification, which, when combined with culling low-support allele transcripts,
returns the allele pair (or possibly a single allele) that best explains the observed reads.

Division of counts. Traditionally, graph-based transcript quantifiers [26; 6] assign
reads to equivalence classes of reference alleles, further sub-dividing reads within each
compatibility class with equal weights among all the alleles in a given class. This ap-
proach may be beneficial when calculating differential expression of genes with many
possible, equally-likely isoforms present in a single sample. To formalize, the setup for
graph-based transcript quantifiers is as follows.

Let A be a set of reference alleles with lengths la for a ∈ A, and C a set of observed
compatibility classes consisting of subsets of A. For a given allele i ∈ A, we define
Ci ⊂ C as the set of compatibility classes which contain allele i. Each element ω ∈ Ci

is a compatibility class consisting of alleles in A with i ∈ ω. As such, the read count
attributed to an allele i ∈ A with equal weights sub-division is then simply:

ri =
∑
ω∈Ci

rω ·
1

|ω|
(1)

where |ω| denotes the number of alleles contained in the equivalence class ω, and rω is
the total count assigned to class ω.

arcasHLA performs genotyping calls with an iterative procedure that optimizes the
read assignment to individual alleles. At the first step, our genotyping algorithm gives
the option to distribute reads between alleles with weights proportional to population-
specific allele frequencies. The largest benefit of this approach is narrowing the pool of
possible alleles as well as breaking ties between alleles that are indistinguishable given
the sampled reads. Given such priors p = (pi)i∈A, the count attributed to allele i is thus

ri =
∑
ω∈Ci

rω ·
pi∑

a∈ω pa
(2)

Subsequently, these counts are normalized by the allele length and converted into tran-
script abundances 0 ≤ αi ≤ 1 for each allele i:

αi =
ri/li∑

a∈A ra/la
. (3)

Maximizing the proportion of explained reads. Aswith Kallisto [6], the likelihood
of a specific attribution of reads to alleles given by α = (αi)i∈A is proportional to

L(α) ∝
∏
ω∈C

(∑
a∈ω

αa

la

)rω

(4)

In order to find the allocation of reads to alleles that maximizes the likelihood func-
tion (Eq. 4), we follow an iterative procedure similar to Kallisto’s, with some essential
differences.

First, we restrict the equivalence classes obtained from the reference de Bruijn graph
construction gene by gene, and perform genotyping independently for each gene (namely,
using our notation, we consider separately AHLA−A, AHLA−B , AHLA−C , . . .).

Second, instead of numerically solving for the maximum likelihood of (Eq. 4), we
adopt a strong constrained approach consistent with our goal of outputting at most two
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alleles for each HLA gene. Reads in each class are iteratively reallocated based on abun-
dances from the previous iteration, but after an empirically optimized 10 and 4 iterations
for paired-end and single-end respectively, alleles with abundances lower than one tenth
of the maximum observed abundance are dropped according to the following constraint:

∀i ∈ AG : if αi < 0.1 ·
(

max
{j∈AG}

αj

)
then αi ← 0 (5)

for each gene G in MHC class I and class II.
The 10 % threshold, previously determined by HISAT-genotype [19] for use with

whole-genome sequencing, assumes that the abundance of the minor allele does not fall
below a tenth of the major allele’s abundance. When applied to RNA sequencing, this
allows for a large range in the natural variation betweenmajor andminor allele expression
as well as differences in read counts due to sequencing and amplification.

The iterative read re-allocation in arcasHLA is as follows:

rt+1
i ←

∑
ω∈C

rω ·
αt
i∑

a∈ω α
t
a

(6)

for all iterations t until convergence. Here, the upper indices denote the respective allele
abundances or reads at the specified iteration. Next, these counts are normalized by
transcript lengths and converted back into abundances:

αt+1
i ←

rt+1
i /li∑

a∈A r
t+1
a /la

(7)

With each updated estimate, a higher proportion of reads are distributed to the alleles
with the highest abundances and the lowest abundance alleles are culled, per (Eqn. 5).

Like HISAT-genotype [19], we use SQUAREM [35] to accelerate the convergence.
The read allocation is considered to converge when the difference in abundance from
the previous iteration to the current is below 10−7 with a maximum of 1000 iterations.
Indeed, arcasHLA has been shown to always meet the convergence criterion in both of
our test datasets, with the total number of iterations beneath 100 over all of runs. At the
end of the arcasHLA iteration procedure, the remaining alleles are those that explain the
highest proportion of reads aligned to a gene’s alleles.

2.2.3 Selecting the most likely genotype

Ideally, after convergence and filtering out the low abundance alleles, a single allele is
left for homozygous individuals and two alleles for the heterozygous ones. However,
due to high levels of homology between certain alleles, particularly beyond the two field
resolution, alleles may be indistinguishable given the observed reads and more than two
likely alleles may be returned. In order to further narrow down the pool to exactly two
alleles, the pair that explains the greatest proportion of reads is selected. Finally, we in-
clude a check for homozygosity by assessing the two alleles’ non-shared read counts. If
the minor-to-major ratio of non-shared allele counts lies below an empirically-optimized
threshold of 15%, the individual is predicted to be homozygous for the major allele. Oth-
erwise, the individual is predicted to be heterozygous for the top ranking pair.

2.2.4 Partial allele typing

Partial allele typing is included as an optional step. Extracted reads are aligned to the
reference containing transcripts for complete and partial alleles. Counts are divided by
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gene and by included exons. Possible partial alleles are first identified by running tran-
script quantification on the peptide-binding exon transcripts. Next, arcasHLA iterates
through the set of exon combinations represented in the returned partial alleles. If a par-
tial allele has fewer than 10 reads more than the complete minor allele in that region, it
is discarded as it cannot be confidently determined to be a valid allele. Next, all com-
binations of remaining partial alleles and the predicted complete alleles are considered.
If a pair with one or more partial alleles explains a greater proportion of reads in any of
these exon regions than the predicted complete genotype, it is returned as the most likely
genotype. If more than one partial-containing pairs explains the same amount of reads,
allele frequencies are used to break the tie.

2.3 Datasets

2.3.1 Benchmark dataset: 1000 Genomes

HLA-A, B, C, DRB1, and DQB1 for 1,267 of the 1000 Genomes individuals were typed
using Sanger sequencing based on the IMGT/HLA database from 2009 [14]. Only the
peptide-binding region for each gene was sequenced. As previously stated, multiple al-
leles can share the same binding region sequence, and thus a list of equivalent alleles is
reported. Since 2009, IMGT/HLA has expanded their database to more than four times
as many alleles. Like HLAProfiler, we used the latest list of ambiguous alleles provided
by IMGT/HLA to update the ground truth to reflect version 3.33.0.

mRNA sequencing for 358 of these samples is provided by the Geuvadis project,
representing five of the 1000 Genomes populations (CEU, FIN, GBR, TSI, and YRI)
[20]. These samples are generally high in quality with a mean RNA integrity number
(RIN [31]) of 9.1 (ranging from 6.2 to 10), and a mean of 58.5M reads mapped to the
hg19 reference (ranging from 17M to 163.5M reads). Reads are paired-end, and 75 base
pairs (bp) in length. 25.1% and 14.8% of these individuals are homozygous for at least
one gene at two fields in resolution for MHC class I and MHC class II respectively.

We ran arcasHLAon these samples IMGT/HLAv3.24.0, the version used byHLAPro-
filer [7]. This version was selected by Buchkovich, instead of the latest version at the
time of HLAProfiler’s development v3.26.0, to increase the number of partial alleles in
the dataset to demonstrate the tool’s ability to call partial alleles. In addition to updat-
ing the ground truth with allele ambiguities, calls were updated with the high-resolution
typing using Ilumina TruSight provided by HLAProfiler. For comparisons with the 1000
Genomes dataset, we report the concordance of arcasHLA with the updated truth along
with the rates of concordance of seq2HLA, OptiType, PHLAT, and HLAProfiler provided
by Buchkovich (Tab. 2).

As a further test of arcasHLA’s accuracy, we downsampled all 358 samples to 5 mil-
lion and 2.5 million reads. In addition, following PHLAT’s methodology, we treated the
1000 Genomes samples as single-end for both the original samples and the lower read
count samples.

2.3.2 New biological dataset: the Virome of Manhattan

We ran arcasHLA on a set of 447 single-end total RNA-sequencing samples collected
from nasopharyngeal swabs from 69 healthy individuals enrolled as part of a DARPA-
funded project entitled “The Virome of Manhattan: a Testbed for Radically Advancing
Understanding and Forecast of Viral Respiratory Infections” [4; 12].

Sample collection and preparation. Nasopharyngeal samples were collected using
minitip flock swabs and stored in tubes with 2 ml DNA/RNA Shield (Zymo Research,
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Table 1. Overview of tools cited in this paper.

Tool Input MHC class Resolution Method Partial Input Format

Polysolver DNA I 4 fields alignment Y BAM
HISAT-genotype DNA I and II 4 fields alignment followed Y FASTQ

by assembly
xHLA DNA I and II 4 fields protein-level Y BAM

alignment

OptiType DNA/RNA I 2 fields alignment Y FASTQ
PHLAT DNA/RNA I and II 4 fields alignment N FASTQ

seq2HLA RNA I and II 2 fields alignment N FASTQ
HLAProfiler RNA I and II 4 fields filtering followed Y FASTQ

by alignment
arcasHLA RNA I and II 3 fields pseudoalignment Y BAM

R1100-250) at 4-25 ◦C for up to 30 days and then aliquoted into two 2 ml cryovials
and stored at -80 ◦C. RNA was extracted from 200 µl of each stored sample using the
Quick-RNA MicroPrep Kit (Zymo Research, Irvine, CA). Eluted RNA was then quan-
tified and assessed for quality using Agilent Bioanalyzer (Santa Clara, CA), and the re-
maining quantity was sequenced with Illumina following the Ribo-Zero rRNA Removal
Kit, target 30M single-end 100bp reads.

Sample processing. The individuals in the Virome study represent a heterogeneous
cohort with self-reported and SNP-validated race/ethnicity (using the population clusters
from the ExAC data set, [21]) from the African-American, Caucasian, Asian, Hispanic
and Native American groups. As such, known population-specific allele frequency priors
were passed to arcasHLA on this dataset executed in single-end mode from input BAM
files mapped with STAR v.2.5.2b [11] to human reference GRCh37 [1]. In contrast to
the high quality, homogeneous samples from the benchmark dataset, the Virome samples
have a mean RNA integrity number (RIN [31]) of 7.0 (ranging from 1.0 to 9.9), and a
mean of 22.2M reads mapped to the human GRCh37 reference (ranging from 5.9M to
68.2M reads).

Ground truth for typing comparison. We established the HLA genotyping ground
truth for the Virome dataset using an assortment of in silico tools which attain high
concordance with deep targeted sequencing validation protocols: xHLA [37], HISAT-
genotype [19], OptiType [33] and Polysolver [32] – that we ran on whole exome se-
quencing (WES) data processed with the xGEN-Illumina platform (at 60× 25M target
PE 100bp reads) and extracted from saliva samples drawn independently from the na-
sopharyngeal swabs in our cohort.

Since we required both MHC class I and MHC class II predictions to test the full
capability of arcasHLA, we resorted to setting xHLA’s two-field calls as the true Vi-
rome genotypes. We checked the concordance on the Virome WES data between xHLA
and two other reliable tools: OptiType and Polysolver, which only return class I genes.
On average, for HLA-A, -B, and -C genes, the two HLA calling methods showed good
agreement with xHLA (97.9% for OpiType, 92.7% for Polysolver – see Table 3 for com-
plete results). Further, in order to optimize speed and memory usage, we first used the
HISAT-genotype extract_reads function (which builds on the HISAT aligner [18])
to extract reads mapping to the HLA locus before genotyping with xHLA. xHLA calls
MHC class I HLA-A, -B, and -C and MHC class II HLA-DPB1, -DQB1, and -DRB1.
HISAT-genotype and arcasHLA were run using IMGT/HLA databse v. 3.26.0. Accord-
ing to xHLA calls, the Virome individuals show lower rates of homozygosity than in the
benchmark set with rates of homozygosity of 14.5% and 10.1% for MHC class I and
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MHC class II respectively.

2.4 Implementation and availability

arcasHLA is as a command line tool written in Python available from the public GitHub
repository https://github.com/RabadanLab/arcasHLA. This software is divided into four
steps (Fig. 1). (1) Database construction takes fewer than 3 minutes on average and
allows for the selection of a specific IMGT/HLA version given the commit hash. (2)
Reads are extracted from previously sorted and indexed bam files. (3) Reads are aligned
and allele abundances are quantified, followed by prediction of the most likely genotype.
(4 optional) Reads are aligned to a reference containing partial alleles. Possible partial
alleles are selected then compared with the genotype from the previous step.

The Geuvadis RNA sequencing of the 1000 Genomes individuals is available from
ArrayExpress (E-GEUV-1). Pending consent from individuals enrolled in the Virome
study (currently underway), the extracted reads mapping to chromosome 6 will be pub-
licly released.

3 Results

3.1 Benchmark performance

Table 2. Concordance with gold-standard HLA typing of arcasHLA and other typers ran on 358 RNA-
sequencing samples.

Gene % complete OptiType seq2HLA PHLAT HLAProfiler arcasHLA

A 99.9% 99.6% 98.6% 99.4% 99.9% 100.0%
B 99.9% 99.4% 94.8% 93.4% 99.0% 100.0%
C 99.9% 100.0% 95.1% 94.3% 99.6% 100.0%
DQB1 96.8% - 96.0% 96.0% 99.9% 99.9%
DRB1 98.6% - 98.5% 98.5% 99.6% 99.7%

When run on the 1000 Genomes benchmark set, arcasHLA achieves 100% accuracy
for class I and above 99.7% accuracy for class II genes, outperforming other tools overall
(Tab. 2). Errors are due to missing calls for two partial alleles, one DRB1 and one
DQB1, incorrectly calling a complete allele for a single DRB1 allele. Overall, arcasHLA
provides high levels of concordance for the HLA region using this benchmark set. The
percent of complete alleles in the gold-standard set given the reference version 3.24.0
is provided in Table 1 as PHLAT and seq2HLA do not include partial alleles in their
references. Consequently, their concordance rates are lower than the tools capable of
partial allele typing.

3.1.1 Runtime analyses

For computational analysis of arcasHLA,we randomly selected 30 samples from the 1000
Genomes benchmark dataset (Fig. 2). These samples, typed without the optional partial
allele typing step, were analyzed on a Linux instance with 16 vCPUs and 64 GiB of
memory using 8 threads per sample. All samples were genotyped in less than 2 minutes.

HLAProfiler [7] is the top competitor for arcasHLA, as it is able to genotype both
class I and class II MHC with high accuracy. arcasHLA, however, effectively achieves
an order of magnitude runtime improvement over HLAProfiler when mapped RNA-seq
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Figure 2. Runtime analysis on 30 randomly selected samples from 1000 Genomes dataset for arcasHLA
(extract and genotype steps and overall runtime) and HLAProfiler.

reads are readily available, as HLAProfiler does not provide support for and does not
benefit from pre-aligned sample input.

3.2 Performance on the Virome of Manhattan dataset

In spite of the lower qualitymetrics in the Virome dataset, arcasHLA yields high accuracy
(Table 3): 94.8% for class I and 92.3% for class II.

Table 3. Concordance of calls from Virome samples with xHLA genotypes.

Input (#) RNA (447) WES (69)

Tool arcasHLA OptiType OptiTYpe HISAT

A 97.5% 95.2% 98.6% 99.4%
B 98.0% 94.5% 96.4% 98.6%
C 97.7% 97.4% 98.6% 100.0%
DPB1 94.2% - - -
DQB1 93.3% - - 94.9%
DRB1 94.9% - - 94.2%

arcasHLA used to type 447 RNA-sequencing samples from 69 individuals, while xHLA and HISAT-
genotype were run on WES for each of the individuals. The concordance rates shown denote agreement
with xHLA calls from WES.

Expression of MHC class II in the Virome samples can be attributed to the upper airway
epithelial cells which are known to constitutively express MHC class II [36], and to the
infiltration of leukocytes within the tissue lining the turbinates. Previous transcriptome
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Figure 3. Accuracy rates restricted to Virome samples that meet the specified threshold criteria for (a)
RIN and (d) log-normalized reads by HLA gene, truncated when the number of samples dropped below
89, approximately one fifth the total sample size. Panels (b) and (e) show the number of individuals with
samples that meet the respective criteria and (c) and (f) show the number of samples remaining. The drops
in accuracy rates for each gene at the highest read count threshold are explained by the one or two calling
errors arcasHLA makes in less than 3 % of the samples.

analyses have shown that leukocyte markers are indeed expressed at low but detectable
levels in samples from nasopharyngeal swabs [10].

Such specialized epithelial and immune cells are likely in the minority, however,
which which may explain our tool’s lower accuracy result for class II. In fact, although
arcasHLA was able to correctly predict MHC class II alleles for a majority of the sam-
ples, it failed to call HLA-DQB1 for several samples with an RIN of 1 and without any
mapped reads to the DQB1 reference alleles.

We highlight the fact that the Virome samples were extracted from nasopharyngeal
swabs and that they contain variable mixtures: human, bacterial and viral RNA (as de-
tected by a BLAST search of the un-mapped reads [2]). RIN score is impacted by the
proportion of human to prokaryotic reads, factoring in the 28S to 18S rRNA ratio. The
variable sampling depth of the nasal cavity is another source of RIN variation and it can
have a considerable impact, as mentioned above, on the read count and coverage of HLA
genes. It is likely that another source of error stems from the fact that the protocol used in
the Virome study was single-end sequencing (which is known to generate a less accurate
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mapping). Upon further analysis, arcasHLA occasionally misses calls because it fails to
distinguish between very similar alleles which only differ in a few bases. Although this
usually accounts for the variation of three field calls between typers, inability to resolve
difference between ambiguous alleles can be exacerbated by single-end reads.

In spite of these study limitations, we report that HLA calling can still be successfully
performed in silico from low-RIN samples with relatively low coverage of the HLA locus
(Fig. 3).

4 Discussion

Accurate high-resolutionHLA typing is imperative for determining tissue and hematopoi-
etic compatibility. Typing from NGS reads helps narrow down the field of donors in a
preliminary search, and is a boon to large-scale association studies where specialized
assays prove too time-consuming and expensive. However, typing from shorter reads is
made difficult by the high level of homology between HLA alleles and genes. Typers
must be able to resolve ambiguities even at times when information is limited, such as
when typing samples with low read count, short length reads, or single-end sequencing.

We have adapted transcript quantification algorithms to aid in typing of HLAs, a
method which could be extended to type other highly polymorphic regions. arcasHLA
performs at or near 100% accuracy on the gold-standard benchmark set, outperforming
all other typers that run on RNA sequencing data. We have also validated our tool on a
new biological dataset from ametatranscriptomic study of human nasopharyngeal swabs,
showing how low read counts and low quality reads (as measured by the RNA integrity
number) can affect the ability to type the MHC locus in silico.

A recent typer, HISAT-genotype, currently optimized for typing WGS, includes al-
lele abundance quantification using methods from transcript quantifiers such as Kallisto.
arcasHLA takes this approach further, adapting RNA-sequencing based transcript quan-
tification to the HLA region. Taking advantage of Kallisto’s ultra-fast pseudoalignment,
arcasHLA types HLA alleles both quickly and accurately. Like HISAT-genotype and the
earliest release of Sailfish, arcasHLA uses a method for accelerating EM, SQUAREM.
However, this method shows some level of instability in some rare cases. We plan to
update the transcript quantification method with other EM accelerating algorithms in the
future.

Although many typers use allele frequencies to break ties between ambiguous alleles,
arcasHLA uses them to aid in the division of reads before quantification. The use of allele
frequencies narrows down the pool of possible alleles, and lowers the impact of noisy
reads and sequencing errors due to forgoing base-by-base alignment. Despite relying
upon frequencies of alleles observed in particular populations, this method is still able to
call both rare and partial alleles.

As benchmark performance for new tools approach 100% accuracy for standard bench-
mark tests, other criteria must be used to distinguish between them. While HLAProfiler,
OptiType and arcasHLA perform similarly well, OptiType does not type class II genes
and HLAProfiler does not accept single-end reads. In addition, arcasHLA has substain-
tially faster runtimes on average. arcasHLA provides accurate, fast typing from RNA
sequencing for both paired-end and single-end reads with easily parsed output.

The development of HLA typing tools from DNA and RNA sequencing is limited by
the availability of gold-standard, benchmark data sets. These sets, used to both develop
and test these tools, have only two field resolution typing as well as unresolved ambigu-
ity between alleles beyond the peptide-binding region. The development of typers with
accurate calling beyond the second field is hampered by the lack of public data sets with
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quality NGS samples and highest resolution typing.
In recent years, aided by landmark developments in 16S rRNA sequencing, whole-

genome shotgun metagenomic sequencing and total RNA sequencing, a whole body
of work has begun to map out the critical importance of our microbiome in systemic
immunity, development, homeostasis, disease and patient responses to immunotherapy
[16; 25; 38]. As in our project on the Virome of Manhattan, we expect that future meta-
transcriptomic studies of the human host will rely on in silico methods in order to dis-
entangle human from bacterial reads and maximally extract biological signal from lower
quality and highly heterogeneous bulk samples. In this setting, HLA typing of the host,
which depends on such signals, is of important clinical relevence. arcasHLA has been
validated here for use with bulk total RNA samples containing eukaryotic and prokary-
otic mixtures, showing high concordance for MHC class I and class II with the top HLA
calling tools. Indeed, arcasHLA is impacted minimally by low read counts, low quality
(as measured by RIN) and single-end sequencing protocol.

In the future, we plan on adding confidence for the most likely genotype calls as well
as amore robust check for zygosity that takes expected levels of noise into account. Along
these lines, we are working on using arcasHLA for testing the loss of heterozygosity in
tumors and verifying mutations called from genomic sequencing. Because arcasHLA
is based on RNA transcript quantifiers, it is natural to extend its functionality to allele
specific quantification post genotyping – a feature in the works for the next version of
our software. Expression-level data may enable us to detect loss of HLA expression or
silencing as a possible mechanism of immune evasion.
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