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Abstract

Using observed neuronal activity, we try to unveil hidden microcircuits. A key requirement is the
knowledge of statistical input-output relation of single neurons in vivo. We use a recent exact
solution of spike-timing for leaky integrate-and-fire neurons under noisy inputs balanced near
threshold, and construct a framework that links synaptic type/strength, and spiking nonlinearity,
with statistics of neuronal activity. The framework explains structured higher-order interactions
of neurons receiving common inputs under different architectures. Comparing model’s prediction
with an empirical dataset of monkey V1 neurons, we find that excitatory inputs to pairs explain
the observed sparse activity characterized by negative triple-wise interactions, ruling out the
intuitive shared inhibition. We show that the strong interactions are in general the signature
of excitatory rather than inhibitory inputs whenever spontaneous activity is low. Finally, we
present a guide map that can be used to reveal the hidden motifs underlying observed interactions
found in empirical data.
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Introduction

One interest in neuroscience is to reveal in vivo neural circuitries using recorded neuronal ac-
tivities. The recent technological advances in Connectome projects do reveal complete wiring
diagrams of certain animals (Markram et al., 2015; Oh et al., 2014; Xu et al., 2020), nonethe-
less, to address what computation the neural circuitry performs, it is still important to identify
network architecture from in vivo recordings of multiple neurons. The simultaneous intracellu-

lar recordings are the most reliable way to identify physical connections in vivo (Allen et al.,
2018; Arroyo et al., 2018; Gentet et al., 2010; Poulet et al., 2019; Poulet and Petersen, 2008);
yet, using patch-clamp technique, one should record from neurons and all their presynaptic
inputs simultaneously, to successfully find the influential synapses which form the underlying
circuits, but this reliable method is limited to the small number of neurons. Instead, one
could use neuronal spiking activity simultaneously recorded from a large number of neurons
(Stringer et al., 2019). The cross-correlograms (Kobayashi et al., 2019; Perkel et al., 1967) or
constructing point-process network models are classical approaches to infer the connectivity
from spiking data (Pillow et al., 2008; Truccolo et al., 2005; Volgushev et al., 2015). However,
these approaches aim at discovering connections among the recorded neurons, despite that ma-
jority of the synaptic inputs to them come from unobserved neurons. Therefore, it remains a
challenge to successfully reveal the hidden neuronal circuitries, using the activity statistics of a
limited number of neurons, in vivo.

The hallmark of cortical spiking activity in vivo is its variability (Shadlen and Newsome,
1998; Softky and Koch, 1993). It was suggested that the variability of spiking activity is the
result of balanced inputs from excitatory and inhibitory neurons fluctuating near spiking thresh-

old (Shadlen and Newsome, 1998; Vreeswijk and Sompolinsky, 1996, 1998). Such balanced in-
puts were confirmed by intracellular recordings of in vivo neurons (Okun and Lampl, 2008), dur-
ing stimulus presentation (Tan et al., 2014). In this condition, even a moderate synaptic input
can result in the spiking of the postsynaptic neuron. This, however, does not mean we can safely
ignore strong synaptic inputs. Such strong synaptic connections are indeed observed in cortical
and hippocampal neurons, where a log-normal distribution for the synaptic strength, i.e., a few
strong synapses on top of a large number of weak synapses, is reported (Buzsáki and Mizuseki,
2014; Cossell et al., 2015; Lefort et al., 2009; Song et al., 2005). These influential synapses seem
to act as the backbone of microcircuits. Therefore, we need to find out the architecture of these
strong synapses to reveal the basic motifs of microcircuits. Previous models that link architec-
ture to statistics of neural activity, assume linear responses to the synaptic input (Hu et al.,
2013, 2014; Ocker et al., 2017a; Ostojic et al., 2009; Pernice et al., 2011; Rosenbaum et al., 2017;
Trousdale et al., 2012) (but see Curto and Morrison 2019; Ocker et al. 2017b). However, to iden-
tify the influential inputs, the nonlinearity of input-output relation does not let us use the linear
response methods, exclusively designed for weak synapses. There is a recent analytical solution
for the Leaky Integrate and Fire (LIF) neuron, which provides the dependency of output spikes
on arbitrary synaptic input of interest, while the effect of many weak synapses accumulates as
noisy background inputs, balanced near the spiking threshold. It certifies that a strong synaptic
input results in a very different and nontrivial response, compared to the weak/moderate inputs
(Shomali et al., 2018).

In this study, using the aforementioned analytic solution (Shomali et al., 2018), we investi-
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gate the problem of network identification from observed correlations among spiking activity
of neurons. We look at the simplest scenario: The experimentalist records spiking activity of
three neurons in vivo (e.g., (Ohiorhenuan et al., 2010)), while s/he cannot directly reveal any
synaptic connectivity. Will the three neurons spike independently or show correlations due to
possible shared inputs? In the latter case, are such inputs shared between each pair of them,
or among them all? Are shared inputs excitatory or inhibitory? And finally, does either of the
three observed neurons make any direct synaptic connection to another of them?

We obtain pairwise and triple-wise interactions (Amari, 2009a; Nakahara and Amari, 2002)
in the simultaneous spiking activity of three LIF neurons, and compare them with experimen-
tally observed results of Ohiorhenuan et al. in monkey V1. They found significant positive
pairwise and negative triple-wise interactions for spatially close neurons (Ohiorhenuan et al.,
2010; Ohiorhenuan and Victor, 2011). Negative triple-wise interactions, observed in cortical
and hippocampal neurons (Ohiorhenuan et al., 2010; Shimazaki et al., 2015; Yu et al., 2011),
indicate a significantly higher probability of simultaneous silence among three neurons than those
expected from their rates and pairwise correlations. Intuitively, excess simultaneous silence can
be induced by suppression of these neurons caused by common inhibitory inputs. However,
the analytical input-output relation quantitatively reveals that a non-intuitive architecture of
common excitatory inputs, each shared by a pair of neurons (excitatory-to-pairs), does explain
the observed negative triple-wise interactions, and rules out shared inhibition. We investigate
the robustness of our results to sub/suprathreshold regimes, directional/recurrent connections
among observed neurons, and to adaptative neurons. We confirm many of these results, partic-
ularly the significance of excitatory inputs to pairs’ motif, remain intact. Plotting triple-wise
versus pairwise interactions, for all basic motifs, we analytically provide a 2D guide map; each
motif occupies its own region there. This guide map can be used to identify the hidden motifs
underlying observed interactions found in empirical data.

Results

Spike probability of a leaky integrate-and-fire neuron: Near threshold regime

First, we introduce the statistical properties of our cortical neuron model operating under in-
vivo like conditions (Shomali et al., 2018). We evaluate the probability of spiking within a
given time window; it becomes the building block to construct the population activity of such
neurons. To this end, we begin with a Leaky Integrate and Fire (LIF) postsynaptic neuron with
membrane’s time constant of τm, and a resting potential of Vr:

τm
dV (t)

dt
= −(V (t)− Vr)+ I(t). (1)

The neuron spikes when its membrane potential, V (t), hits the spiking threshold, Vθ; then V (t)
resets to Vr. The input current of I(t), also, consists of two parts: (a) a transient signaling input
which represents the input from the influential synapses with arbitrary strength, ∆I(t, A, τb),
and (b) the effect of all other independent presynaptic inputs accumulated as a fluctuating

background input, I0(t):
I(t) = I0(t) + ∆I(t, A, τb). (2)
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Fig 1. Analysis of a postsynaptic neuron receiving signaling input on top of background noise.
(A) Left: A schematic model of a postsynaptic neuron driven by background Gaussian noise
and a transient signaling input. Right: Timing of postsynaptic spikes and the arrival time of
the signaling input. The postsynaptic neuron generates a spike (blue tick) then its membrane
potential resets. While the potential rises, a signaling input (red tick) arrives at τb after the
last spike, which changes the trajectory of the membrane potential. The postsynaptic spike
occurs at τ after arrival time of the signaling input. The gray shaded area of width ∆ indicates
the observation time window during which the probability of postsynaptic activity pattern is
computed. (B) The probability density of the first spike at time τ after arrival (Eq. 11) of
excitatory (left) and inhibitory (right) signaling input. The simulation results (red dots) and
the analytical solutions (dashed black line, Eq. 11) are well matched. The same results for a
signaling input with zero amplitude are depicted. Inset: The probability of spiking within ∆
after signaling input arrival, Eq. 12. The parameters are: Vθ = 20mV, τm = 20ms, A = 5mVms,
and the diffusion coefficient is D = 0.74 (mV)2ms. The values of the parameters are chosen from
the physiologically plausible range (McCormick et al., 1985).

We model the fluctuating background input as Gaussian white noise, so it well replicates the
synaptic inputs to V1 neurons when a visual stimulus is presented (Tan et al., 2014). Conclu-
sively, I0(t) has a mean drive of Ī and a variance of 2D/τm; here the diffusion coefficient of D
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measures I0(t)’s level of noise. The signaling input, ∆I(t, A, τb), is characterized by its amplitude
(or efficacy), A; and its arrival time, τb.

The fluctuating I0(t), is one important source of variability; its stochastic nature, however,
makes it impossible to solve Eq.(1) and find the exact spike-time deterministically. Thus, peo-
ple try to address the probability of spiking (Brunel and Hakim, 1999; Gerstner et al., 2014a;
Shomali et al., 2018). Their essential mathematical tool is the Fokker-Planck (or diffusion) equa-
tions (Risken and Eberly, 1985), which addresses the probability density that postsynaptic neu-
ron spikes at time t, given it had a known value of membrane potential at the initial time of t0.
However, even in the absence of any signaling input, the corresponding Fokker-Planck equation
has not been solved yet. There exists an analytical solution but for a very specific case Ī = Vθ
(Bulsara et al., 1996; Wang and Uhlenbeck, 1945), which is known as the threshold regime rep-
resenting a physiologically plausible situation for in vivo neurons. Recently, Shomali et al. were
able to extend that analytic solution for spike density when signaling inputs arrive on top of
background noise (Shomali et al., 2018). They considered a near threshold neuron, Ī ≃ Vθ, that
receives a transient signaling input (i.e., the synaptic time constant of τs is smaller enough than
the membrane time constant, τm). They solved the Fokker-Planck equation, and analytically

found the probability density of spiking (known also as Inter-Spike Interval distribution, ISI) for
arbitrary strength and shape of the signaling input.

Using that framework, we assess the effect of the signaling input on the activity of postsy-
naptic neurons (Fig. 1A, right). We ask two successive questions: First, what is the probability
density of a spike occurrence at time τ after signal arrival, f(τ)? And second, what is the
probability of observing one or more spikes in a time window of ∆, after the occurrence of presy-
naptic signal with a strength A, FA(∆)? Figure 1 depicts our results for these two questions (see
Methods for the detailed derivation of f(τ) and FA(∆)). Particularly, FA(∆) is the predictable
quantity that relates the neuron model to the observed spiking activity of neurons.

Figure 1B shows the marginalized spiking density at time τ after signaling input arrival
for the square shape input (Eq. 9, dashed black lines). Early spiking, i.e., small τ , after the
arrival of excitatory (or inhibitory) input is much more (or less) probable, compared with no-
signaling input case (dashed blue lines). However, the spiking densities with and without the
signaling input are virtually identical at sufficiently large τ ; indicating the short-lasting effect of
the signaling input. Accordingly, the cumulative distribution functions, FA(∆), (Fig. 1B insets)
with and without the signaling input differ for small ∆, but are indistinguishable for large ∆.
This result implies that we cannot discern the presence of signaling input if we use a large time
window.

Using FA(∆), one can find the probability of various spiking patterns for multiple neurons
receiving common signaling inputs, under the assumption that the neurons are conditionally
independent. This calculation is described in the next section.

Spike density of in-vivo LIF neurons can be used to model population activity
driven by common inputs

We provide a framework for computing the statistical properties of the population activity of the
LIF neurons that receive common excitatory or inhibitory inputs (Fig. 2). We investigate both
pairwise and triple-wise interactions among neurons while they are receiving common inputs
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Fig 2. Analysis of two neurons receiving common signaling input on top of background noise.
Top, left: A schematic model of two postsynaptic neurons (Neuron 1 and Neuron 2, blue circles)
driven by independent noise and a common signaling input (pink circle). Top, middle and
right: Spike trains of two postsynaptic neurons (blue spikes) receiving common signaling inputs
(red spikes) with rate λ. The gray shaded area of width ∆ indicates the time window during
which we compute the probabilities of postsynaptic activity patterns. Bottom, left: Timing of
postsynaptic spikes relative to the arrival time of the common input. The last spike of Neuron
1 (Neuron 2) has occurred τb1 (τb2) before the arrival of common input, and their next spikes
happen at τ1 (τ2). Bottom, middle: The conditional ISI density after input arrival is calculated
by Eq. 10. Marginalizing over previous spike (τb), one obtains the probability of spiking after
input arrival (ISI density, Eq. 11). The next step is to calculate the cumulative distribution
function (Eq. 12) that is the probability of having one or more spikes within window ∆. Bottom,
right: Based on the cumulative distribution function and the fact that neurons are conditionally
independent, the probability of having a particular pattern of spikes for two neurons is obtained.
Four possible binary activity patterns (00, 01, 10, 11) of two postsynaptic neurons and their
associated probabilities (Pij , i, j ∈ {0, 1}). The ’1’ denotes the occurrence of at least one spike
within the ∆ time window, whereas the ’0’ represents the silence of the neuron within this
window.

on top of noise in basic possible motifs. Firstly, we consider only two neurons for simplicity,
whereas the framework will be extended to three neurons in the next section. Suppose that
the two postsynaptic neurons receive a common signaling input in addition to independent
background noise. Figure 2 illustrates the timing of the postsynaptic spikes before and after the
common input arrival. By binning their spike sequences with a ∆ time window (Fig. 2, middle,
and left), we compute the probabilities of activity patterns of postsynaptic neurons. We assume
that neurons sparsely receive a random common input with firing rate λ in a Poissonian fashion.
We then, segment the spike sequences using bins aligned at the onset of common input. Let
xi = {0, 1} (i = 1, 2) be a binary variable, where xi = 1 means that the ith neuron emitted one
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Fig 3. Analysis of pairwise interaction of two neurons receiving common signaling input on
top of background noise: (A) The interaction (θ12, Eq. 14) of two postsynaptic neurons as a
function of bin size, ∆. We use a physiologically plausible range of parameters as: Vθ = 20mV,
τm = 20ms, A = 5mVms, and the diffusion coefficient D = 0.74 (mV)2ms (McCormick et al.,
1985). Left: The pairwise interaction computed from simulated spike sequences (gray lines: 50
individual trials each containing about 2500 spike occurrence of common input; dots and error
bars: mean± standard deviation) compared with the analytic result of the mixture model (red
line, Eq. 14) for common input rate λ = 5Hz. Right: Analytical value of θ12 as a function of
∆ for different common input rates, λ. (B) The pairwise interaction as a function of the scaled
diffusion coefficient, D/(τmV

2
θ ), and the shared signal strength, A/(τmVθ), for excitatory (right)

and inhibitory (left) common inputs, with λ = 5Hz and ∆ = 5ms.

or more spikes in the bin, while xi = 0 means that the neuron is silent.
To formally investigate the neuronal correlation, we use the information-geometric mea-

sure of interaction, θ12 (Amari, 2009b; Martignon et al., 2000; Nakahara and Amari, 2002;
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Fig 4. (A) A schematic of simultaneous recording of three postsynaptic neurons. The neurons
(blue circles) operate independently in the absence of any common input. A common input (pink
circle) can be an input to three of them (red connections), or at least two of them (green con-
nections). Right: Assuming symmetric architectures, we have two main families: One common
input to trio (star architecture, left), or three common inputs each to a pair (triangle architec-
ture, right). (B) A mixture model for three neurons in the star architecture is composed of two
conditions in which the neurons receive the common input (red lines) with probability λ∆ and
they do not receive it (gray dashed lines) with probability 1 − λ∆. (C) A mixture model for
three neurons with the symmetric triangle architecture is composed of four distinct conditions
that arise by the combination of the presence or absence of each common input (see main text).
(D) For asymmetric triangle architecture, the number of possible cases is reduced to three.

Tatsuno and Okada, 2004) (Eq. 14 in Methods). This information-geometric measure of the
correlation (SVI) is recommended over the classical covariance or correlation coefficient (Amari,
2009a; Martignon et al., 2000; Nakahara and Amari, 2002; Tatsuno and Okada, 2004) because
this measure is not affected by the estimated firing rates of neurons while other measures are
influenced by firing rates (i.e, this method is invariant or orthogonal to firing rates in terms
of the Fisher metric, see SVI). For two neurons, the probabilities of the activity patterns can
be constructed using the probability of spike occurrence in a bin ∆ (Eq. 12, Fig. 2). Since two
neurons receive common inputs, they are conditionally independent. Therefore, the probabilities
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of activity patterns in a bin are given by:

PA(x1, x2) = PA(x1)PA(x2) =
2
∏

i=1

FA(∆)xi(1− FA(∆))1−xi , (3)

where A stands for the amplitude of the common input current (A = 0 represents the absence
of common input). The rate of common input (λ) is applied at λ∆× 100% of the bins whereas
it is absent in (1− λ∆)× 100% of the bins. Accordingly, we consider the spike sequences of two
postsynaptic neurons as a mixture of the two conditions: Neurons either receive (A 6= 0) or do
not receive (A = 0) common input. Hence the probabilities of the activity patterns are given by

P (x1, x2) = (λ∆)PA(x1, x2) + (1− λ∆)P0(x1, x2). (4)

From this probability mass function, Eq. 4, one can compute the neuron’s pairwise interaction,
denoted as θ12 (Eq. 14). This mixture model provides approximated probabilities for the activity
patterns of the LIF neurons. This is an approximation of the actual dynamics because, if a
neuron does not spike within ∆ [ms] after the common input, the effect of the augmented
membrane potential is carried over to the next bin, and then the binary activities are no longer a
simple mixture of the two conditions. Such situations should happen often if the bin size is small
compared to the mean postsynaptic inter-spike interval. So we test if this approximation predicts
the interaction in the parallel sequences of the two LIF neurons, and examine reasonable bin
sizes. We compare the pairwise interaction predicted by the mixture model with the simulated
spike sequences in Figure 3A. It displays the interaction for different bin sizes, ∆, when the two
neurons receive common excitatory input. The pairwise interaction predicted by the mixture
model agrees with the simulation results (left panel, red and gray lines, respectively). The result
also shows θ12 increases with the rate of common input (Fig. 3A, Right). However, if we increase
the bin size, the probability of having one or more spikes within ∆ increases and saturates to
1 (Fig. 1B, Inset) regardless of the presence or absence of the signaling input. This means
FA(∆)/F0(∆) → 1, which results in vanishing pairwise interaction as the bin size increases.
Therefore, we can hardly discriminate between the presence and absence of common input if we
use a large bin size.

We examine the pairwise interactions by changing two independent parameters, the scaled
amplitude of the signaling input A/(τmVθ) and the scaled variability of the noisy background
input D/(τmV

2
θ ) (Fig. 3B). As expected, the pairwise interactions are positive for both com-

mon excitatory and inhibitory inputs. However, the interactions are significantly weaker in the
inhibitory case. This indicates that it is difficult to observe the effect of common inhibitory
input for this range of postsynaptic firing rates, and that the strong pairwise interactions are
the indicator of having common excitatory inputs.

For each value of normalized diffusion coefficient (level of inputs’ noise), D/(τmV
2
θ ), there

exists a critical normalized amplitude for common excitatory input, A/(τmVθ) ∼ 1. Upward
this critical value, the postsynaptic neuron’s spiking density, and consequently pairwise interac-
tion, does not change anymore (Fig. 3B, right). The saturation value of pairwise interaction is
inversely correlated with the normalized diffusion coefficient; since higher normalized diffusion
coefficient (level of the noise) disperses the voltage of the membrane, the probability of spik-
ing after common input arrival decreases. Similar behavior for θ12 is observed for inhibitory
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input (Fig. 3B, left). Nevertheless, in contrast to the common excitatory input case, pairwise
interaction and D/(τmV

2
θ ) are directly correlated.

Higher-order interaction of three neurons depends on types of common inputs
and network architecture

We now extend the analysis of neural interactions to three neurons. The motivation to investigate
the interactions among three neurons comes from experimental studies (Ohiorhenuan et al., 2010;
Ohiorhenuan and Victor, 2011) that investigated the activities of three neurons simultaneously
(Fig. 4A). For two neurons, there is one possible shared input’s architecture: A common input
to both of them. For three neurons to induce correlation among them, however, it can be either
(i) a shared input among three of them (red connections in Fig. 4A), or (ii) one or more shared
inputs to each pair among them (green connections). Assuming symmetry, the former one leads
to a star architecture or a ”common input to trio” (Fig. 4A, middle) while the latter one makes
a triangle architecture or ”common inputs to pairs” (Fig. 4A, right).

For investigation the neuronal correlation among three neurons, we use the information-
geometric measure of a triple-wise interaction, θ123 (Amari, 2009b; Martignon et al., 2000;
Nakahara and Amari, 2002) (Eq. 16 in Methods). As the pairwise interaction extracted a pure
interaction of two neurons, this triple-wise interaction measure is also not affected by firing
rates and joint firing rates of two neurons, and extracts a pure triple-wise effect that can not
be inferred from the first and second-order statistics of the population (SVI). There are two
basic motifs that can induce triple-wise interaction among neurons (Fig. 4A, middle and right)
as described below.

I. Common input is given to three neurons: Star architecture

In star architecture, three neurons receive a single common signaling input simultaneously
(Fig. 4B). The conditional probability of activity patterns when a common input generates a
spike given to all three neurons with probability λ∆ (red lines) is PA(x) =

∏3
i=1 FA(∆)xi(1 −

FA(∆))1−xi , where x = (x1, x2, x3) is the spiking activity for three neurons. Similarly, the
probability mass function for three neurons receiving no common input with probability 1−λ∆
(gray dashed lines), is obtained by P0(x) =

∏3
i=1 F0(∆)xi(1 − F0(∆))1−xi . Thus, we model

spike occurrence as a mixture of the two conditions in which neurons receive and do not receive
common input:

P (x) = λ∆PA(x) + (1− λ∆)P0(x). (5)

From this probability mass function, we can compute the triple-wise interaction of three neurons
according to Eq. 16.

II. Common inputs are given to pairs of three neurons: Triangle architecture

In triangular architecture, we assume that each pair of three neurons receives common sig-
naling input from an independent presynaptic neuron with frequency λ (Fig. 4C). The first,
second, and third common inputs project to neurons 1 and 2, neurons 2 and 3, and neurons
1 and 3, respectively (symmetric case). The three common inputs are independent, and occur
with equal frequency, λ. By taking into account the occurrence probabilities, one could obtain
the mixture model. The resulting mixture models are given in Methods, which also include the
asymmetric common input architecture in which there are only two common inputs out of three
(asymmetric case) (Fig. 4D).
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Triple-wise interactions: Architecture matters

Fig 5. Comparison of the triple-wise interaction of 3 LIF neurons, θ123, in the two leading
architectures: (A) The interaction when three postsynaptic neurons, blue ones, are in a star

architecture receiving a common excitatory signal A = 5mV ms, simultaneously. The parameters
are: τ = 20ms, Vθ = 20mV, A = 5mV ms, and D = 0.74 (mV)2ms. Left: The triple-
wise interaction computed from simulated spike sequences (gray lines: 50 individual trials each
containing about 2500 spike occurrence of common input; dots and error bars: mean± standard
deviation) compared with the analytic result of the mixture model (red line, Eq. 16 ) for λ = 5Hz.
Right: Analytical value of θ123 as a function of the bin size, ∆, for different common input
rates, λ. (B) The triple-wise interaction when the postsynaptic neurons, blue ones, are in
a triangular architecture. Each pair of postsynaptic neurons shares an independent common
excitatory input. All parameters are as in (A). (C) Triple-wise interactions of 3 neurons receiving
common excitatory or inhibitory inputs under star (top panel) and triangular (bottom panel)
architectures. θ123 is represented as a function of scaled diffusion coefficient, D/(τmV

2
θ ), and

scaled shared signal strength, A/(τmVθ); the other parameters are: ∆ = 5ms and λ = 5Hz. The
white region in the bottom left panel shows the numerically indeterminate region due to a very
small diffusion coefficient (level of noise) and strong inhibition. The right-hand side figures are
for excitatory and the left-hand side ones are for common inhibitory inputs.

The triple-wise interaction parameters computed from the simulated spike sequences of post-
synaptic neurons are compared with the theoretical predictions, using the mixture models
(Fig. 5A and B, left). The activities of neurons that receive a simultaneous common excita-
tory input (star architecture) are characterized by positive triple-wise interactions (Fig. 5A, left)
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whereas the activities of neurons that receive independent common excitatory inputs to pairs
(triangular architecture) are characterized by negative triple-wise interactions (Fig. 5B, left).
Figure 5A and B, right, show that triple-wise interaction decreases as the bin size increases
for the same reason given for pairwise interaction (Fig. 3A, right). The dependency of triple-
wise interaction on the common input rate is also shown in the right panels in Figure 5A and
Figure 5B.

Figure 5C shows triple-wise interactions under star (Top) and triangular (Bottom) architec-
tures for excitatory (right) and inhibitory (left) common input as a function of scaled diffusion
coefficient (level of input noise) D/(τmV

2
θ ) and scaled amplitude A/(τmVθ). A single common

excitatory input, in the star architecture, significantly increases the probability that all three
neurons spike in the observation time window of ∆, P (1, 1, 1), whereas a single common in-
hibitory input increases the probability of the reverse pattern, P (0, 0, 0). This simply changes
the sign of θ123 in Eq. 16. In the triangular architecture, with common excitatory input, how-
ever, each common input causes postsynaptic spikes for two neurons and does not drive the
other one. This primarily increases P (1, 1, 0) (or any of its permutations) and attenuates the
fraction (Eq. 16) that makes θ123 negative. For common inhibitory input, the probability of the
reversed pattern, P (0, 0, 1) (or any permutations) increases; this results in a larger numerator in
Eq. 16 and positive triple-wise interaction. These results demonstrate that not only the type of
common input (excitation or inhibition) but also the underlying architecture (star or triangular)
determines the sign of triple-wise interactions.

Network structure and common input type can be determined from neural
activity in vivo: Comparison with experimental data

The above observations raise a question: Is it possible to determine the type of common input
and the underlying architecture from the event activity of neuronal population? Figure 6A
shows the first-order parameter, θt1, in a star or triangular architecture receiving either common
excitatory or inhibitory inputs. The θt1 strongly depends on D/(τmV

2
θ ), which measures the

level of the noise in background inputs, but shows a weak dependence of the signal’s amplitude,
A/(τmVθ). More importantly, it does not show any conclusive dependence, neither on the choice
of architectures nor type of common input. Thus, it is not possible to identify the underlying
architecture nor the type of common input using the first-order parameter only.

Nonetheless, the 2D plane of θ123 versus θ12 does differentiate motifs, c.f. Fig. 6B; there,
each motif clearly occupies its distinct region. Figure 6B shows 5 = 2 + 3 motifs in the θ123
versus θ12 plane. Two inhibitory motifs (triangle and star) occupy tiny areas; thus are expressly
shown in two panels on its left (top and bottom). The three excitatory motifs cover much wider
areas. Here we have also considered the asymmetric excitatory-to-pairs; it is the only other
architecture with shared excitatory inputs, which can produce non-zero θ123. All five regions
initiate from origin, i.e., θ12 = θ123 = 0; simply because both interactions vanish for zero signal’s
amplitude, i.e., A/(τmVθ) = 0. As we increase the signal’s strength, both θ12 and θ123 deviate
from zero.

The example of excitatory-to-trio is the most visible case (SI, for comparable trends in
other architectures). Consider postsynaptic neurons with the fixed spontaneous rate of µ = 1Hz
(dashed-dotted purple curve); this curve shows how interactions change as we increase the shared
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Fig 6. Population activity of three neurons caused by hidden common inputs occupies distinct
regions in the plain of interactions, depending on the architecture and synaptic types. (A) The
natural parameter for individual neurons, θt1, in star and triangular architectures with common
excitatory or inhibitory inputs (four cases, shown by four symbols) versus scaled shared signal
strength A/(τmVθ). The θt1 significantly varies with D/(τmV

2
θ ), which measures background

spontaneous activity, µ. However θt1 does not show any significant dependence on the shared
signal strength, nor any conclusive dependence on the type of architecture. (B) In the plane of
the triple-wise versus pairwise interactions, the star and triangular architectures with common
excitatory or inhibitory inputs are distinguishable from each other. The regions associated with
motifs of excitatory common input are expressly shown: From top to bottom, they attribute to
excitatory-to-trio, asymmetric excitatory-to-pairs, and symmetric excitatory-to-pairs respectively.
The regions associated with inhibitory common input are confined to around origin (i.e., small
θ123 and θ12), hence are shown with higher resolution in left panels. Each region is bounded
by two analytic boundary lines; the gray solid lines attribute to the high signal amplitude, i.e.,
|A|/(τmVθ) ≫ 1, see SI; while the purple (gray) dashed boundary lines for motifs with excitatory
(inhibitory) common input attribute to low (high) diffusion limit. The low (high) diffusion limit
corresponds to background spontaneous activity of µ = 1 Hz (µ = 100 Hz), see SII. We choose
these limits to cover a wide range of postsynaptic spontaneous activity while maintaining the
assumption of low activity rates: µ∆ ≃ F0(∆) ≤ 0.5, see SI. The colored solid lines are numerical
results of the LIF neuron model for different scaled diffusions and signal amplitudes (Fig. S1).
The fixed parameters are the bin size of ∆ = 5ms and the presynaptic rate of λ = 5Hz.
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signal’s amplitude from zero to highest conceivable values, i.e., A/(τmVθ) ≫ 1. The pairwise
interaction monotonically increases with the signal’s strength; but eventually saturates at its
maximum of θ12 = 6.87, see the hollow black circle. The triple-wise interaction, however, shows
a non-linear behaviour: It initially increases to θ123 = +0.34, then decreases to the negative
value of −3.06, and finally increases to its saturation value of θ123 = +12.11, again the hollow
black circle. We analytically show that for any choice of the spontaneous firing rate µ, we reach
its corresponding saturation point, at the high enough signal’s strength (SI). The position of
each saturation point (i.e. its θ12 & θ123) is found to be independent of the neuron model, as
well as the near the threshold assumption. Conclusively, the saturation points (thick gray curve)
form a universal upper boundary in the θ123 versus θ12 plane; the corresponding point for any
excitatory-to-trio motif is placed below it (Fig. 6B). To address the lower boundary, we have
limited ourselves to spontaneous rates µ ≥ 1Hz. As seen in Fig. 6B, for any higher value of the
background activity (µ > 1Hz), the corresponding curve appears above the mentioned curve for
µ = 1Hz, yet below the upper boundary of saturation points. Thus, practically, the curve for
µ = 1Hz acts as the lower boundary.

A similar story holds for the other four motifs. Each corresponding region is composed of a
bunch of curves. To obtain each curve, we assume a certain value of postsynaptic spontaneous
rate, µ, then let the shared signal’s amplitude vary from zero to very high values. This produces
a curve that initiates from the origin and ends at its saturation point. Each region is the
accumulation of all these curves, and has two boundaries: One boundary is composed of all
saturation points (thick-gray boundary), while the other is the curve with the lowest firing rate
of µ = 1Hz (highest firing rate of µ = 100Hz), for motifs with excitatory (inhibitory) shared
inputs, see Fig. 6B.

One significant question is how much the obtained boundaries vary with change in the
neuronal model or the near threshold regime assumption. Can one region entirely displace,
or even two distinct regions overlap? Fortunately, the high amplitude boundaries (thick gray
curves) are analytically verified to be independent of the neuron model, as well as near threshold
assumption (see SI). The other boundaries of low (high) spontaneous rate, for the excitatory
(inhibitory) shared inputs, however, have a non-trivial behaviour. For the star architectures, they
remain independent of neuron model; while for the triangle architecture, they do depend on the
choice of neuron model, and the near threshold assumption (see SII). This dependence is actually
an important example of non-linearity of input-output relation: It wouldn’t exist, if increasing
the strength of presynaptic signal would linearly increase the probability of postsynaptic spike
(technically, FA(∆) = F0(∆) + cte × A, see SII). However, this is only correct for week signals.
In general, the probability of postsynaptic spike non-linearly varies with signal’s strength and
saturates for very strong signals; the accurate description of this dependency requires a full
knowledge of neuronal model (SII).

Figure 6 quantitatively answers the question we asked at the beginning of this part: It is
possible to identify the underlying architecture and even the type of shared inputs (excitation
or inhibition) for three homogeneous neurons, simply investigating their interaction parameters.
As a practical example, we consider a careful study on V1 neurons of anesthetized macaque

monkey; it investigated the relationship between the triple-wise interaction (Eq. 16) of three
neurons (ordinate), and the average marginal pairwise interactions (Eq. 14) of neuron pairs in
the group (abscissa) (Ohiorhenuan et al., 2010). They used extracellular recording of pyramidal
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Fig 7. Comparison of theoretical predictions about neural interactions with experimental evi-
dence extracted from (Ohiorhenuan and Victor 2011, Figure 4b). Ohiorhenuan et al. recorded
the spike data from V1 neurons of macaque monkeys using tetrodes and analyzed the relation
between triple-wise interaction (Eq. 16) of three neurons (ordinate) and an average marginal
pairwise interaction (Eq. 14) of neuron pairs in the group (abscissa). Red and blue filled symbols
represent the interactions of neurons within 300 and 600µm vicinity respectively while unfilled
grey symbol shows the interaction at > 1000 microns distance. The black lines show the region of
interactions theoretically obtained by assuming triangular architecture with common excitatory
inputs to each pair of neurons. The solid black line is the high amplitude limit for interactions
while the dashed black line is the boundary for the low spontaneous firing limit (µ = 1 Hz, low
diffusion limit). Similarly, the dark gray solid and dashed lines determine the boundaries of
region for triangular asymmetric architecture with common excitatory inputs given to two pairs
among three neurons. The light gray lines are the same asymmetric excitatory inputs to pairs
but all three pairwise interactions are taken into account for averaging while for the dark gray
graphs, only nonzero pairwise interactions (for one pair, θ12 = 0) are considered. The blue an-
alytic lines represent a narrow region for star architecture with common inhibitory input (high
common input’s amplitude limit and high diffusion limit) whereas the orange lines show the
wide region for excitatory inputs given to three neurons (dashed, low spontaneous activity limit,
µ = 1 Hz for scaled diffusion limit of D/(τmV

2
θ ) = 2 × 10−19 and solid, high common input’s

amplitude limit). The fixed parameters are ∆ = 10ms and common input’s rate, λ = 5Hz. The
data reveals that nearby neurons (red filled symbols) receive pair of excitatory inputs in the
triangular architecture rather than inhibitory or excitatory inputs in the star architecture.
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neurons and found that many neurons, with mutual separations less than 300 µm, exhibited
positive pairwise and strong negative triple-wise interactions (Fig. 7). The triple-wise interac-
tions weaken as the electrodes’ separations increase above 600µm. They attributed the observed
strong negative triple-wise at near distances, to the hidden activity of small GABA-ergic in-
hibitory neurons, which presumably provide shared input to the larger excitatory pyramidal
cells (Ohiorhenuan and Victor, 2011).

Fortunately, the spontaneous activity of V1 neurons are reported within 10-70Hz (Gur et al.,
1997; Ohiorhenuan et al., 2010; Ohiorhenuan and Victor, 2011), higher enough than the 1Hz
lower boundary which we considered for the excitatory-to-trio motif. Thus, we can safely com-
pare our theoretical predictions with the empirical observations. Figure 7 clearly shows that
empirical data coincides with regions associated with the motif of excitatory-to-pairs, neither
excitatory-to-trio nor any of the inhibitory motifs. It clearly rules out, the initial intuitive picture
that shared inhibition induces the observed strong negative triple-wise interactions.

Inevitably, the following question emerges: Why should the observed strong negative triple-
wise interaction, be associated with excitatory common inputs, and the inhibitory shared inputs
fail to produce any strong negative interactions? We will answer this question at the end of the
results section. However, we firstly verify the robustness of our excitatory-to-pairs scenario, to
the possible complication of the motifs due to recurrent interconnections, plausible change in
neuron model, and even violation of near threshold assumption.

Excitatory directional/recurrent connections among three neurons can explain
the observed negative triple-wise interaction

Although the previous section’s analysis seems valid for common inputs’ architecture among
three postsynaptic neurons, the question arises whether considering interconnections among the
three neurons can induce any change to our concluding result in Figure 7. We, therefore, simulate
all possible motifs that have directional or reciprocal connections, among the three neurons. At
first glance, the number of motifs for three neurons is 26 = 64 (each directed connection can be
present or absent; so for 6 possible interconnections, it yields 26). However, some of these motifs
are structurally the same; they turn into each other, simply with changing (i.e. permuting) labels
of three postsynaptic neurons. This means that 64 possible motifs could be further categorized
in 16 main structures (Fig. 8). Regarding 16 main structures, we ask whether the inhibitory-
to-trio with the help of either of them can reach the value of experimental data (red symbols
in Fig. 7). Figure 8 shows the result of triple-wise interaction for each motif averaging over
50, 000 runs. We see four clusters of motifs, which are ordered as the number of inputs to pairs
increases. The first cluster (blue, motifs 1 to 7) contains motifs with no simultaneous input
from one excitatory neuron to two others (to pairs). For this cluster, the average triple-wise
interaction is a small value. The second cluster (red, motifs 8 to 13) has motifs that have one
excitatory neuron as the input to pairs of neurons in their architecture. The third and fourth
clusters (green, motifs 14 and 15; and black, motif 16) contain architectures with respectively
two and three excitatory inputs to pairs of neurons. Clearly, as the number of excitatory-to-
pairs increases, the absolute value of triple-wise interaction boosts up, Fig. 8. The inset shows
triple-wise versus pairwise interactions for these four clusters. This picture is consistent with
our finding (shown in Fig. 7) that excitatory input to pairs induce large negative triple-wise
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Fig 8. Triple-wise interactions for 16 motifs of directional and/or reciprocal connections among
three neurons, when they receive independent noise and common inhibitory-to-trio. (A) The
architectures are divided into four clusters based on the number of excitatory inputs to pairs
in each motif. The first cluster (blue) contains directional connections that do not have any
excitatory-to-pairs in their architectures. The second cluster (red) has one excitatory-to-pair in
the motifs and the third and fourth (green and black) are related to two and three excitatory-
to-pairs in their motifs. Inset shows the triple-wise interaction versus pairwise interaction for all
16 motifs. (B) The mean and error bar (standard deviation) of triple-wise interaction for each
cluster as a number of excitatory-to-pairs. Clusters are separated from each other. (C) Triple-
wise interaction for the 16 motifs is a linear function of both the number of excitatory-to-pairs
motif and the number of loops. Each motif is simulated 50000 times, and each trial contains
500 seconds of spike trains with the time resolution of 0.05ms. The time window to calculate
the triple-wise and pairwise interactions is ∆ = 5ms, and the shape of presynaptic input is a
square function for both common input and directional connection’s input, the same as analytic
calculation. The parameters are: the scaled diffusionD/(τmVθ

2) = 9×10−5, the scaled amplitude
A/(τmVθ) = 0.0125, the common presynaptic input and input rate of directional connectivity
λ = 5Hz, the time delay for directional interconnection t′ = 6ms > ∆, and A′/A = 1, where A′

is the amplitude of the directional connections.
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and positive pairwise interactions. The excitatory input to pairs, either as common input or as
directional connectivity, can generate such activity and thus is the basic architecture behind the
data presented here.

Robustness: How does adaptation modulate the pairwise and triple-wise in-
teractions?

It is a valid question, that how much our suggested framework (Fig.6), as well as its confrontation
with the empirical data (Fig. 7), would change if we use a more physiologically plausible neuronal
model? Regarding the predicted triple-wise and pairwise interactions, in Fig.6, we analytically
prove that the curves for high signal amplitude are independent of the neuronal model, and the
threshold assumption (see SI). This also holds for the curves with excitatory/inhibitory to trio

architecture. Therefore, a good portion, not all, of the predictions would remain intact with
or without a more plausible model. However, since a more physiologically plausible model can
modify some predicted interactions for excitatory-to-pairs motifs; we have to study it, inevitably.
The LIF neuron model is a good reduced model, that can reproduce in vivo spiking activity
of neurons (Camera et al., 2004; Rauch et al., 2003). In comparison with data, however, it
has some limitations and restrictions (Izhikevich, 2004; Jolivet et al., 2008; Ostojic and Brunel,
2011; Shinomoto et al., 1999). To have a more biologically plausible model, we add adaptation

term to LIF (Brette and Gerstner, 2005; Gerstner et al., 2014a) and run simulation to see how
the result of triple-wise versus pairwise interaction would change (more details about the model
are in SIV). The simulation result shows adaptation reduces the firing rate of postsynaptic
neuron (Fig. S4 and Fig. S5, SIV). As is explicitly shown at the end of the Results section, the
lower background activity amplifies the effect of excitatory common inputs and diminishes that
of inhibitory ones. This is why, the simulation results show that in the presence of adaptation,
excitatory-to-pairs generates even stronger pairwise and triple-wise interactions, while inhibitory
inputs induce weaker interactions (Fig. S6). Therefore, based on experimental evidence for low
firing of V1 neurons (Ohiorhenuan et al., 2010), strong negative triple-wise interactions are
induced by excitatory inputs to pairs motif, and adaptation simply strengthens this picture.

Robustness: How do pairwise and triple-wise interactions change if we go
slightly away from the threshold regime?

Alongside the problem of the plausible neuronal model, one can ask if the particular assump-
tion of near threshold regime does reduce the scope of validity of our results. Fortunately, as
mentioned earlier, many of the boundaries we have found are independent of neuronal model,
hence independent of the near threshold assumption. Moreover, the particular near thresh-
old assumption is partly asserted by an empirical study (Tan et al., 2014) that shows during
sensory stimulation, V1 neurons operate near the threshold regime while background noise is
uncorrelated.

Nevertheless, we run simulation to see how deviation from the threshold regime, could
modify our results (see SIII). Comparing to the threshold regime, the simulations show that
in the subthreshold regime, excitatory common inputs produce stronger interactions while in-
hibitory common inputs produce weaker ones. This trend simply reverses in the suprathreshold
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regime (Fig. S3, SIII). Now, considering the particular experimental study on macaque’s V1
(Ohiorhenuan et al., 2010), we recognize other evidence that cortical neurons operate in the sub-
threshold (or near the threshold) regime (Shadlen and Newsome, 1998), depending on the state
of the animal, and stimulus arrival (Tan et al., 2014). Assigning this fact to Fig.(7), it means
that there is even a smaller region of inhibitory-to-trio which could be attributed to empirical
data, due to the shift to subthreshold. While there is a larger portion of excitatory-to-pairs re-
gion which we can safely attribute to that data. This reaffirms our original conclusion that the
observed strong negative triple-wise interactions are signature of excitatory-to-pairs, exclusively.

Finally, it is interesting to address why being in subthreshold (suprathreshold) results in in-
crease (decrease) of the higher-order interactions induced by excitatory common inputs, and just
do the reverse for interactions induced by inhibitory ones. Being in subthreshold (suprathresh-
old) mean lower (higher) spontaneous activity of postsynaptic neurons. As we show in the next
part, it is the spontaneous activity that well explains all these observations.

Excitation versus inhibition: Which one can produce stronger triple-wise in-
teractions?

So far, we have found that the empirical strong negative triple-wise combined with positive
pairwise interactions, for V1 neurons, are signature of microcircuits with excitatory common

inputs (Fig. 7). One crucial question is why should other microcircuits with inhibitory common

inputs have failed to produce such strong negative triple-wise interactions? Can we always
attribute strong higher-order interactions to excitatory common inputs, or does it depend on
certain features which vary from experiment to experiment?

The measured pairwise and triple-wise interactions depend on various features of the post-
synaptic neurons, as well as their possible shared inputs. For the analytically tractable regime
of strong signaling inputs, however, we can reduce many factors to a few decisive ones. Then,
analytical calculations show that, when the spontaneous rate of postsynaptic neurons in time-
window ∆ is low, i.e., F0(∆) ≪ 1, the excitatory common inputs can produce large pairwise
and triple-wise interactions, while inhibitory common inputs can’t (Fig. 9, SI). This picture
simply reverses if the spontaneous firing rate of postsynaptic neurons happen to be high, i.e.,
F0(∆) . 1. There is of course an intermediate regime, F0(∆) ≃ 0.5, where the strength of
interaction induced by inhibitory input to trio and excitatory inputs to pairs are nearly the same
(Fig. 9).

Figure 10 illustrates how postsynaptic neurons’ spontaneous activity, i.e. F0(∆), plays an
essential role in relating the hidden underlying architecture with the observed interactions. If
the regime of spontaneous rate is known, based on the statistics of neural data (pairwise and
triple-wise interactions), one can predict the predominant architecture that induces the observed
interactions. In a low spontaneous activity regime, motifs of excitatory inputs can induce strong
triple-wise and pairwise interactions (regions in Fig. 10A); whereas, in high spontaneous activity,
motifs with inhibitory inputs can generate strong interactions (Fig. 10B).

In the experiment by Victor and colleagues (Ohiorhenuan et al., 2010;
Ohiorhenuan and Victor, 2011) the neuronal firing rates ranged within 10Hz ≤ µ ≤ 70Hz (Fig.4
in (Ohiorhenuan and Victor, 2011)) while the time bin was ∆ = 10ms. The exact spontaneous
firing rate of postsynaptic neurons is F0 = 1− exp(−µ×∆); this yields 0.1 ≤ F0 ≤ 0.5. For such
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Fig 9. Pairwise and triple-wise interactions for strong excitatory and inhibitory inputs as
a function of a spontaneous spike rate of a postsynaptic neuron (F0(∆)) and an input rate
(λ) in a small time window ∆. (A) inhibitory inputs generate strong pairwise interaction if
the spontaneous rate of postsynaptic neuron is high (i.e., F0(∆) ≃ 1) while excitatory inputs
generate such strong interactions in a low spontaneous spiking regime, F0(∆) ≪ 1. (B) The
same story is true for triple-wise interaction independent of excitatory-to-pairs and inhibitory-
to-trio architectures. Excitatory-to-pairs can generate strong triple-wise interactions in low
spontaneous spiking but inhibitory-to-trio cannot induce such strong interaction in this regime.

values of F0, any observation of strong triple-wise interactions is an indication of excitatory
common inputs as opposed to inhibitory ones. Furthermore, there is an interesting fact in the
data from Ohiorhenuan and Victor (Ohiorhenuan and Victor, 2011): The neurons that have the
lower firing rate, generate stronger pairwise interactions; we particularly compare Fig.4c and 4a
in (Ohiorhenuan and Victor, 2011), each set of data that has the smaller firing rate, produces
larger pairwise interaction. This observed decrease of pairwise interaction with increasing the
spontaneous activity (firing rate), is also revisited for excitatory-to-pairs architecture in figure
9-right, and not for the inhibitory-to-trio, see Fig. 9-left. This is another fact which reaffirms
our original claim that the motif of excitatory inputs to pairs is the architecture behind this set
of data.
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Fig 10. Uncovering the underlying architecture from observed higher-order interactions. A

For spontaneous activity within the range µ = 1 − 100 Hz, three regions for excitatory inputs’
motifs are shown. The strong higher-order interactions regardless of their signs are the sole
signature of common excitatory inputs when the spontaneous rate is low. This scenario reverses
if the background spontaneous activity is high (for example, olfactory bulb (Burton and Urban,
2015)). B The regions for spontaneous activity within the range of µ = 100−1000 Hz show that
inhibitory inputs can induce strong interactions in a high spontaneous regime. The excitatory
inputs’ regions for high spontaneous activity (Fig. S2) shrink to a small size compared to the
low spontaneous activity regime. The method for drawing the boundaries is similar to Fig. 6
and SII. The fixed parameters are bin size, ∆ = 5 ms, and input rate, λ = 5 Hz.

Discussion

Overview

Our results point to the possibility of revealing the underlying neuronal architectures and the
type of common input by using pairwise and triple-wise neural interactions (Fig. 10). Fur-
thermore, for a specific set of empirical observations (Ohiorhenuan et al., 2010) in comparison
with our analytical result, we show that excitatory shared inputs to pairs rather than intuitive
inhibitory inputs to trio explain the data. Considering directional connections among three
neurons does not disturb this picture: Excitatory inputs to pairs either as hidden layer common
input or directional connectivity input are sufficient (and necessary) to explain the observed
strong negative triple-wise and positive pairwise interactions. We also investigate the robust-
ness of our result when the neuron’s voltage is slightly away from threshold (SIII) and when
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adaptation is present in the model (SIV). We analytically investigate how the extreme case of
strong common inputs influence pairwise and triple-wise interactions (see SI); the analysis is
independent of any neuron model, as well as the voltage’s distance from the threshold. It helps us
to analytically find a guide map: Distinct regions with clear boundaries for each basic motifs in
the triple-wise versus pairwise plane. This reveals that whenever spontaneous firing of neurons
is low, motifs that have excitatory inputs can induce strong triple-wise interactions (Fig. 9);
whereas when spontaneous firing rate is high, motifs with inhibitory common input can produce
strong interactions. Likewise, a person among many others, if the majority are silent (low spon-
taneous activity), the one talkative person (excitatory input) is clearly noticed; whereas if the
majority are talkative (high spontaneous activity), one silent person (inhibitory input) would
be conspicuous.

Comparison with other approaches

A classical approach to infer synaptic connectivity from extracellular spiking activity is to con-
struct cross-correlograms of simultaneous spike trains from pairs of neurons Perkel et al. (1967).
However, this approach aims at discovering connections among recorded neurons. In fact, re-
searchers made efforts to eliminate the effect of common drives from unobserved inputs on
this measure to avoid erroneously reporting pseudo-connections (Brody, 1999; Kobayashi et al.,
2019). Another approach is a model-based method that uses a stochastic model of neurons.
Among them, the point process - generalized linear model (GLM) is a standard tool for analyz-
ing the statistical connectivity of observed neurons (Pillow et al., 2008; Truccolo et al., 2005;
Volgushev et al., 2015). However, these models describe neuronal activity from their past ac-
tivities and/or known covariate signals such as stimulus and local field potential signals. Since
recorded neurons are embedded in larger networks, we need to take into account the effects of in-
puts from unobserved neurons in order to accurately describe the population activity. Although
there have been attempts to include common inputs from unobserved neurons into the GLM
framework by treating them as hidden variables (Kulkarni and Paninski, 2007; Vidne et al.,
2012), variations in the structure of hidden common inputs are limited. In addition, these
statistical models are not directly constrained by physiologically plausible membrane dynamics
and spiking threshold while the LIF neuron model is (Ladenbauer et al., 2019). Here, given
knowledge about the balanced network, we introduce hidden inputs as background noise and
additionally consider various architectures of arbitrarily strong hidden common inputs as shared
signals.

Another approach for modeling the input-output relation of a neural population under in-vivo
conditions is to use the dichotomized Gaussian (DG) model (Amari et al., 2003; Macke et al.,
2009, 2011) and its extensions (Montangie and Montani, 2015, 2017, 2018; Montani et al., 2013).
Previous studies have shown that this simple model exhibits positive pairwise and negative triple-
wise interactions, which results in the observed sparse population activity (Shimazaki et al.,
2015; Yu et al., 2011). The DG model is composed of threshold devices that receive inputs
sampled from a correlated multivariate Gaussian distribution to model shared synaptic in-
puts (Amari et al., 2003; Leen and Shea-Brown, 2015; Macke et al., 2011). Limited by such
a structure, one cannot test alternative hypotheses, e.g., if common inhibitory inputs can also
generate the same neural interactions (Ohiorhenuan and Victor, 2011; Shimazaki et al., 2015).
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In addition, the DG models do not incorporate the dynamics of synapses and membrane po-
tentials. Conversely, the aforementioned input-output relation for near threshold neurons does
address the dynamics of the membrane potential by using the LIF model neuron (Shomali et al.,
2018); it thus yields quantitative results with temporal accuracy, enabling us to infer the types
of common input under various architectures.

Assumptions, limitations, and justifications of the framework

The quantitative model we introduced here is based on two distinct network architectures (tri-
angle and star) with either excitatory or inhibitory shared inputs. It is crucial to see how
the directional connection among postsynaptic neurons alters the view. The observed sparse
connectivity of pyramidal neurons (Holmgren et al., 2003; Lefort et al., 2009; Markram et al.,
1997; Mizusaki et al., 2016) shows that pyramidal neurons in visual cortex - in mature animals
- are not interconnected (Jiang et al., 2015). However, the combination of directional connec-
tions with shared inputs is observed: Excitatory inputs from layer 4 are shared to layer 2/3
connected pairs of excitatory pyramidal neurons in cortex (Yoshimura et al., 2005). Hence, we
ran simulations for the directional connections among three neurons: The results reaffirm that
excitatory-to-pairs either in recurrent or common input’s motif, induces strong negative triple-
wise and positive pairwise interactions in low spontaneous regimes (see Fig. 8). There is also
another question, whether the simultaneous existence of common excitatory and inhibitory in-
puts in both triangle and star architectures damages this picture. We analyze the model in
which two architectures are mixed, i.e., existing together and functioning simultaneously. The
result shows the mixing of other motifs, while excluding excitatory-to-pairs, cannot induce strong
negative triple-wise and positive pairwise interactions (see SV). It reiterates that the observed
strong negative triple-wise interactions are the result of the excitatory-to-pairs motif. In other
experimental results, of course, it is possible that the divergent common inhibition is mixed
with the local common excitatory inputs. To extract evidence of the presence of such mixed
inhibitory to trios from the data, one should carefully examine deviations from those observed
interactions that are achieved solely by the excitatory inputs to pairs. As far as the spontaneous
activities of neurons are low, however, we expect such deviations would be unfortunately small.

One of the assumptions for the analytical framework we introduced is that the firing rate
of the signaling input is low (Wolfe et al., 2010) in comparison with postsynaptic neuron; so,
there is at most one signal arrival during two successive spikes of the postsynaptic neuron. It
is possible to consider cases with higher firing rates for signaling input (SIII in Shomali et al.
2018). However, as we consider a small time window, ∆ = 10ms, the assumption of having not

more than one signal arrival during such a short time window is practically acceptable. The other
assumption is that the synaptic inputs set the voltage of the neuron near the threshold regime,
which is reported to be the case when stimulus is presenting (Tan et al., 2014). We analytically
calculate the regions’ boundaries for each motif (see Fig. 6): High amplitude boundaries for all
motifs as well as low (high) diffusion boundary for excitatory-to-trio (inhibitory-to-trio) motif,
are shown to be independent of the neuron model, hence the near threshold assumption. The
other boundaries of triangle architecture, however, do depend on neuronal model, and the near
threshold assumption. Yet, we carried numerical simulations, plus many other verifications,
to make sure (i) the particular observed data on macaque V1 is signature of excitatory-to-
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pairs, and (ii) the suggested guide map practically remains reliable and intact, in more general
situations. What does change the suggested guide map, and regions corresponding to motifs,
are the spontaneous rate of neurons as well as bin size. Here, we compare the result for the
infrequent and high spontaneous activity of postsynaptic neurons (Fig. 10) while assuming the
low input rate, and small bin size. The bin size, on the other hand, cannot be too large, as it
would diminish the effect of shared input (Fig. 5), hence the overall reliability of our formalism.

Implication of the results and future challenges

Finally, we have attributed the observation of strong negative triple-wise interactions to a sim-
ple motif: Excitatory inputs to pairs. It is tempting to ask whether this microcircuit has any
specified computational advantage so has been boldly observed, or whether it is the overall set-
ting of a specific experiment that has resulted in this observation. On the one hand, there exist
independent empirical evidence that the motif of excitatory-to-pairs is overexpressed - compared
with a random network - in rat visual (Song et al., 2005) and somatosensory (Perin et al., 2011)
cortex. In a recent theoretical study, this overexpression is explained as a consequence of maxi-
mizing capacity of the associative memory (Zhang et al., 2019); these observations suggest that
the emergence of excitatory inputs to pairs is not an accidental observation. On the other hand,
common inhibitory input has a clear computational advantage as a well-known winner-take-all
network for sparse coding (de Almeida et al., 2009). There also exist experimental evidence
that a common inhibitory input innervate multiple postsynaptic pyramidal neurons closer to
each other than 100µm (Packer and Yuste, 2011); at greater distances, the probability of com-
mon inhibitory inputs to two (and hence more) neurons decreases (Fig.6B in Packer and Yuste
2011). This is attributed to the limited length of inhibitory neurons’ axons and simply means
that, if electrodes’ separation is greater than 100µm, the chance of capturing a common in-
hibitory input (to pair, or to trio) has already diminished. For the particular experiment of
Ohiorhenuan et al., the closest possible separation of recorded neurons is known to be less than
300 microns, i.e., recorded neurons are expected to be gathered in a circle of radius r ∼ 150µm
(Ohiorhenuan and Victor, 2011). Then, the probability of having neurons closer to each other
than 100µm is 32%, and that of having 3 neurons each closer than 100µm to two others would be
very low, less than 7% (see SVII). Thus, the probability of finding an inhibitory presynaptic neu-
ron, which innervates synapses to three reocorded postsynaptic neurons was already less than 7%.
Consequently, Ohiorhenuan et al. observation does not rule out the presence of inhibitory-to-trio
architecture in a more local microcircuitry less than 100µm, and cannot be used as empirical
proof for the excitatory-to-pairs as an exclusive computational motif in microcircuits.

There need to be more precise experiments with higher control on the separation of electrode
tips. If so, plotting how the observed triple-wise interaction varies with distances among neurons,
would lead to a clear conclusion. Such a dependency for pairwise interactions varied with neurons’
distance is observed in retina ganglion cells (Ganmor et al., 2011). If the chance of observing
a strong negative triple-wise interaction, for neurons closer than 100µm, reduces, it indicates
the absence of excitatory-to-pairs architecture in the local network less than 100µm; therefore
Ohiorhenuan et al.’s observation was a specific result of the experimental setting. However, if
prevailing of strong negative triple-wise interactions persists even for neurons closer than 100µm,
it means that the excitatory-to-pairs are prevailing architecture in the microcircuit (≤ 300µm),
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and would be another evidence to support for the computational advantage of excitatory-to-

pairs microcircuit. On the contrary, it would be difficult to find evidence that inhibitory-to-
trio exists or coexists with excitatory-to-pairs as computational units in the local microcircuits
from activities of the three neurons as long as the postsynaptic firing rate is low, because of
small negative values for triple-wise interactions induced by common inhibitory inputs (SI).
Furthermore, although it is quite challenging to perform in vivo patch-clamp of common inputs
and postsynaptic neurons at the same time, an experiment that can directly identify input types
and the network’s structure in living animals is helpful to improve the prediction of this method.

In summary, we have provided a theoretical tool based on the dynamics of a standard neuron
model, to predict network architecture and types of hidden input neurons (excitatory/inhibitory)
from the activity of neurons recorded in vivo. We define analytic regions for each motif, with
boundaries mostly independent of neuron model, to show the basic motifs can be distinguishable
from the statistical data. Our guide map helps to uncover hidden network motifs from neural
interactions observed in a variety of in vivo data.

Methods

Leaky integrate-and-fire neuron at the threshold regime

According to (Shomali et al., 2018), the first-passage time density (inter-spike interval density)
for the LIF neuron (Eq. 1) when neuron receives signaling input at time τb on top of noisy
background input is given as

J(t) =

√
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πτm
{ exp(−ϕ

2
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2
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√
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using r(t) = exp (−t/τm). Before the occurrence of signal, i.e., t < τb, the ISI density reduces to
the known formula (Tuckwell, 1988; Wang and Uhlenbeck, 1945):
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In this article, we use Eq. 6 with a square shape of signaling input given by:

∆I(t, A, τb) = A×











0 t < τb,

1/∆t τb ≤ t ≤ τb +∆t,

0 τb +∆t < t,

(9)

where ∆t measures the signal’s lasting time i.e., ∆t ∼ τs, which is much smaller than τm.

Spiking density of LIF neuron after signaling input arrival

We derive the probability density of postsynaptic spike after the arrival of a signaling input.
For this goal, we reset the time origin to signal arrival’s time. Following the aforementioned
formalism in Eq. 6, the last postsynaptic spike would have happened at τb before the new origin.
The conditional probability that the next postsynaptic spike happens at τ after signal arrival is
calculated easily (Shomali et al., 2018):

f(τ |τb) =
J(τ + τb)

1−
∫ τb
0 J(s)ds

, (10)

where the denominator is a normalization term to satisfy
∫∞
0 f(τ |τb)dτ = 1. Next, we compute

the probability density that the postsynaptic neuron has spiked at τb before signal arrival, but
has not spiked since then, pback(τb). It comes as the probability of backward recurrence time,
following renewal point process theory (Cox, 1962): pback(τb) = µ[1−

∫ τb
0 J0(Vθ, s) ds], where µ =

(
∫∞
0 sJ0(Vθ, s) ds)

−1 is the mean firing rate of the postsynaptic neuron when there is no signaling
input. By marginalizing Eq. 10 with respect to τb using pback(τb), we obtain (Shomali et al.,
2018):

f(τ) =

∫ ∞

0
f(τ |τb)× pback(τb) dτb

= µ

∫ ∞

0
J(τ + τb) dτb. (11)

Note that when the amplitude of the signaling input, A, is reduced to zero, J(Vθ, t) = J0(Vθ, t)
and f(τ) simplifies to f0(τ) =

∫∞
τ µJ0(Vθ, s) ds.

Now, we can address the probability of having one or more spikes in a specific time window

of ∆, after stimulus onset. It is given as the cumulative density function of f(τ):

FA(∆) =

∫ ∆

0
f(τ)dτ, (12)

where subscript A indicates that FA(∆) is a function of the amplitude of the signaling input.

Thus, in the absence of the signaling input (i.e., A=0) we have F0(∆) =
∫∆
0 f0(τ)dτ .

Pairwise and triple-wise interactions of neural populations

Using a binary representation of spiking activity for each postsynaptic neuron in a time window
of ∆ (schematically illustrated in Fig. 2), one can represent the population activity of the

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 27, 2021. ; https://doi.org/10.1101/479956doi: bioRxiv preprint 

https://doi.org/10.1101/479956
http://creativecommons.org/licenses/by-nc-nd/4.0/


postsynaptic neurons as a binary pattern. From the probabilities of the occurrence of all possible
patterns, one can assess pairwise or higher-order interactions of the neural population. For
example, let us consider two neurons. Let xi = {0, 1} (i = 1, 2) be a binary variable, where
xi = 1 means that the ith neuron emitted one or more spikes in the bin while xi = 0 means that
the neuron was silent.

We denote by P (x1, x2) the probability mass function of the binary activity patterns of the
two postsynaptic neurons. Here P (1, 1) and P (0, 0) are the probabilities that both neurons are,
respectively, active and silent within ∆. Similarly, P (1, 0) is the probability that neuron 1 emits
one or more spikes while neuron 2 is silent during ∆; P (0, 1) represents the opposite situation.
The probability mass function is represented in the form of an exponential family distribution:

P (x1, x2) = exp (θ1x1 + θ2x2 + θ12x1x2 − ψ), (13)

where (θ1, θ2, and θ12) are canonical parameters, and ψ is a log-normalization parameter. In
particular, θ12 is an information geometric measure of pairwise interaction (Amari, 2001, 2009b;
Nakahara and Amari, 2002). Accordingly, the pairwise interaction parameter is computed:

θ12 = log
P (1, 1)P (0, 0)

P (1, 0)P (0, 1)
. (14)

If the binary activities of two neurons are independent, θ12 = 0.
The same treatment is applied to three neurons. In an exponential form, the probability

mass function for three neurons is written as

P (x1, x2, x3) = exp (
3

∑

i=1

θtix1 +
∑

i<j

θtijxixj + θ123x1x2x3 − ψ). (15)

If θ123 (the triple-wise interaction parameter) is 0, the distribution reduces to the pairwise
maximum entropy model, i.e., the least structured model that maximizes the entropy given
that the event rates of individual neurons and joint event rates of two neurons are speci-
fied (Cover and Thomas, 1991). That is, a positive (negative) triple-wise interaction indicates
that the three neurons generate synchronous events more (less) often than the chance coinci-
dence expected from the event rates of individual neurons and their pairwise correlations. From
this equation, the triple-wise interaction among three neurons for the exponential family of
probability mass function is calculated using (Amari, 2009a; Nakahara and Amari, 2002):

θ123 = log
P (1, 1, 1)P (1, 0, 0)P (0, 1, 0)P (0, 0, 1)

P (0, 0, 0)P (0, 1, 1)P (1, 0, 1)P (1, 1, 0)
. (16)

Mixture model of three neurons receiving common inputs to their pairs (tri-
angle architecture)

Here we explain the mixture model of three neurons whose pairs receive independent common
inputs (a triangle architecture). As shown in Fig. 4D, there are 8 possible patterns to occur
for the 3 independent common inputs. When the first common input is active (and the other
two common inputs are silent), the pattern probabilities of three postsynaptic neurons are
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given by P 1
A(x) = [

∏2
i=1 FA(∆)xi(1 − FA(∆))1−xi ] × [F0(∆)x3(1 − F0(∆))1−x3 ]. This situation

happens in (λ∆)(1 − λ∆)2 × 100% of the bins. The probabilities of activity patterns in which
neurons receive the second (third) common input, P 2

A(x) (P 3
A(x)), are given similarly to this

equation. The common inputs may be simultaneously applied to the same bin due to their
independence. Namely, two common inputs coincide at (λ∆)2(1 − λ∆) × 100% of the bins.
The pattern probability in the bins at which common inputs 1 and 2 coincide is given by
P 12
A (x) = [

∏

i=1,3 FA(∆)xi(1− FA(∆))1−xi ]× [F2A(∆)x2(1− F2A(∆))1−x2 ]. Similarly, we define

P 23
A (x) and P 13

A (x) for the bins at which common inputs 2 and 3, and common inputs 1 and
3 coincide, respectively. Finally, all common inputs coincide at (λ∆)3 × 100% of the bins, for
which the pattern probability is given by P 123

A (x) =
∏

i=1,2,3 F2A(∆)xi(1 − F2A(∆))1−xi . The
parallel spike sequences are modeled as a mixture of these probability mass functions,

P (x) = (1− λ∆)3P0(x) +
3

∑

i=1

(λ∆)(1− λ∆)2P i
A(x)+

∑

i<j

(λ∆)2(1− λ∆)P ij
A (x) + (λ∆)3P 123

2A (x).

(17)

For the asymmetric case, when two common inputs are shared among three neurons (Fig. 4E),
the mixture model simplifies to:

P (x) = (1− λ∆)2P0(x) +

2
∑

i=1

(λ∆)(1− λ∆)P i
A(x) + (λ∆)2P 12

A (x). (18)
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Supplementary materials

SI: The pairwise and triple-wise interactions induced by strong inhibitory and
common excitatory inputs

One main message of this paper is that the observed strong negative triple-wise interactions
are signatures of excitatory-to-pairs (Fig. 7). The reasonable question is then why this should
happen. Is there any fundamental difference between excitatory-to-pairs and inhibitory-to-trio
such that the later one cannot produce strong negative triple-wise interactions? We approach
this question by considering the extreme case of very strong signaling input. We firstly consider
pairwise interactions and then extend the formalism to triple-wise interaction. Combining Eq. 14,
Eq. 3, and Eq. 4, the pairwise interaction reads:

θ12 = log
(bFA(∆)2 + (1− b)F0(∆)2)(b(1 − FA(∆))2 + (1− b)(1− F0(∆))2)

(bFA(∆)(1− FA(∆)) + (1− b)F0(∆)(1− F0(∆)))2
, (S.1)

where b = λ∆. If the postsynaptic neuron receives an extremely strong inhibitory signal, the
chance of its spike in a short time-window of ∆ immediately after signal arrival diminishes:
FA(∆) ≃ 0. This reduces Eq. S.1 to:

θ12 = log(1 +
a

{1− F0(∆)}2 ), (S.2)

where a = b/(1 − b) = λ∆/(1 − λ∆). Conversely, for an extremely strong excitatory signal, the
chance of spiking in the time window of ∆, immediately after signal arrival is almost 1; hence
FA(∆) ≃ 1. The pairwise interaction then simplifies to:

θ12 = log(1 +
a

F0(∆)2
). (S.3)

Comparing Eq. S.2 and Eq. S.3, we see that F0(∆) is simply replaced by 1− F0(∆). In Eq. S.3,
for excitatory signaling input and with a > 0, we obtain large θ12 when F0(∆) ≪ 1. In fact,
θ12 indefinitely increases as F0(∆) → 0+. On the other hand, for strong inhibitory signals in
Eq. S.2, this criteria changes to 1−F0(∆) ≪ 1; which means we need F0(∆) . 1 to obtain high
θ12. Consequently, in a regime of low activity i.e., F0(∆) ≪ 1, strong excitatory signals produce
large θ12; whereas in high activity regime i.e., F0(∆) . 1, strong inhibitory inputs produce
large pairwise interactions. The only approximation in the above reasoning is our assumption
of low firing rate: λ∆ ≪ 1. More accurately, the Poissonian probability of signal arrival in a
time window of ∆, is b = 1 − exp(λ∆), which simplifies to b ≃ λ∆ in the low firing rate limit.
Accordingly, the prefactor of a is, in general, a = {1 − exp(−λ∆)}/ exp(−λ∆) which simplifies
to a ≃ λ∆/(1 − λ∆) in the low firing rate limit. However, this correction does not disturb the
overall result of our analysis at all.

Figure 9A shows how the pairwise interaction depends on spontaneous spiking rate and also
the firing rate of signaling input in a small time window ∆ for both inhibitory (left panel) and
excitatory inputs (right panel). As the firing rate of signaling input increases, the amount of
interaction induced by both excitatory and inhibitory inputs, increases as well. However, by
increasing the spontaneous activity rate of F0(∆), interaction induced by excitatory inputs to
pairs decreases while that of inhibitory-to-pairs increases.
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We extend this analysis to triple-wise interaction. Firstly, we consider the case of strong
inhibitory-to-trio. Combining Eq. 15, Eq. 16, and Eq. 5 we have:

θ123 = log
P111P

3
100

P000P 3
110

, (S.4)

where

P111 = b× FA(∆)3 + (1− b)× F0(∆)3, (S.5a)

P000 = b× {1− FA(∆)}3 + (1− b)× {1− F0(∆)}3, (S.5b)

P100 = b× FA(∆){1 − FA(∆)}2 + (1− b)× F0(∆){1− F0(∆)}2, (S.5c)

P110 = b× FA(∆)2{1− FA(∆)}+ (1− b)× F0(∆)2{1− F0(∆)}, (S.5d)

and b = 1− exp(λ∆), which simplifies to b ≃ λ∆ for low firing rates. Here, we have considered
the aforementioned symmetry in the inhibitory-to-trio architecture, which enforces that P011 =
P101 = P110, etc. In the limit of strong inhibition, for small time-window of ∆ = 5 − 10ms,
FA(∆) ≃ 0. It drastically simplifies θ123 to:

θ123 = − log(1 +
a

(1− F0(∆))3
). (S.6)

Here a = {1 − exp(−λ∆)}/ exp(−λ∆), which is approximated to a = λ∆/(1 − λ∆) whenever
λ∆ ≪ 1. For the case of strong excitatory-to-trio, triple-wise interaction becomes:

θ123 = log(1 +
a

F0(∆)3
). (S.7)

Similarly, we can consider the triple-wise interaction for excitatory-to-pairs architectures. It
is a bit complicated compared to the inhibitory-to-trio case. Considering Eq. 15, Eq. 16 and
Eq. 17, the triple-wise interaction is:

θ123 = log
P111P

3
100

P000P 3
110

, (S.8)

where

P111 = (1− b)3 × F0(∆)3 + 3b(1− b)2 × FA(∆)2F0(∆)

+ 3b2(1− b)× FA(∆)2F2A(∆) + b3 × F2A(∆)3, (S.9a)

P000 = (1− b)3 × {1− F0(∆)}3 + 3b(1− b)2 × {1− FA(∆)}2{1− F0(∆)}
+ 3b2(1− b)× {1− FA(∆)}2{1− F2A(∆)}+ b3 × {1− F2A(∆)}3, (S.9b)

P100 = (1− b)3 × F0(∆){1− F0(∆)}2 + b3 × F2A(∆){1− F2A(∆)}2

+ b(1− b)2 × {2FA(∆){1 − FA(∆)}{1 − F0(∆)}+ F0(∆){1 − FA(∆)}2}
+ b2(1− b)× {2FA(∆){1− FA(∆)}{1 − F2A(∆)}+ F2A(∆){1 − FA(∆)}2},

(S.9c)

P110 = (1− b)3 × F0(∆)2{1 − F0(∆)}+ b3 × F2A(∆)2{1− F2A(∆)}
+ b(1− b)2 × {2F0(∆)FA(∆){1− FA(∆)}+ FA(∆)2{1− F0(∆)}}

+ b2(1− b)× {2FA(∆)F2A(∆){1 − FA(∆)}+ FA(∆)2{1− F2A(∆)}}. (S.9d)
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For extremely strong excitation to pairs, we have FA(∆) ≃ 1 and F2A(∆) ≃ 1; we thus have:

θ123 = − log ((1 +
a

F0(∆)2
)3 × 1

1 + 3a/F0(∆)2 + 3a2/F0(∆)3 + a3/F0(∆)3
), (S.10)

where a = {1 − exp(−λ∆)}/ exp(−λ∆), as before. We can show that for the case of strong
inhibitory inputs to pairs out of three neurons (FA(∆) ≃ 0), the triple-wise interaction is:

θ123 = log ((1+
a

(1− F0(∆))2
)3 × 1

1 + 3a/(1 − F0(∆))2 + 3a2/(1− F0(∆))3 + a3/(1− F0(∆))3
),

(S.11)
For asymmetric excitatory-to-pairs architecture (two common inputs instead of three), the

pattern probabilities S.9a changes as:

P111 = (1− b)2 × F0(∆)3 + 2b(1 − b)× FA(∆)2F0(∆) + b2 × FA(∆)2F2A(∆), (S.12a)

P000 = (1− b)2 × {1− F0(∆)}3 + 2b(1− b)× {1− FA(∆)}2{1− F0(∆)}
+ b2 × {1− FA(∆)}2{1− F2A(∆)}, (S.12b)

P100 = (1− b)2 × F0(∆){1 − F0(∆)}2 + b2 × F2A(∆){1 − FA(∆)}2

+ 2b(1 − b)× FA(∆){1 − FA(∆)}{1 − F0(∆)}
P010 = P001 = (1− b)2 × F0(∆){1− F0(∆)}2 + b2 × FA(∆){1 − FA(∆)}{1 − F2A(∆)}

+ b(1− b)× {FA(∆){1− FA(∆)}{1 − F0(∆)}+ F0(∆){1− FA(∆)}2}
P110 = P101 = (1− b)2 × F0(∆)2{1 − F0(∆)} + b2 × F2A(∆)FA(∆){1− FA(∆)}

+ b(1− b){FA(∆)2{1− F0(∆)}+ FA(∆)F0(∆){1 − FA(∆)}}
P011 = (1− b)2 × F0(∆)2{1− F0(∆)}+ b2 × FA(∆)2{1− F2A(∆)}

+ 2b(1 − b)FA(∆)F0(∆){1− FA(∆)}
(S.12c)

For a high amplitude limit of asymmetric excitatory inputs given to pairs of neurons
(FA(∆) ≃ 1), the triple-wise interaction becomes

θ123 = − log ((1 +
a

F0(∆)2
)2 × 1

1 + 2a/F0(∆)2 + a2/F0(∆)3
), (S.13)

The marginalized θ12 for symmetric excitatory-to-pairs is (for inhibitory-to-pairs replace
F0(∆) with 1− F0(∆)):

θ12 = log ((1 + 2a/F0(∆) + a/F0(∆)2 + 3a2/F0(∆)2 + a3/F0(∆)2)/(1 + a/F0(∆))2) (S.14)

and for asymmetric excitatory-to-pairs is :

θ12 = log ((1 + a/F0(∆) + a/F0(∆)2 + a2/F0(∆)2)/(1 + a/F0(∆))) (S.15)

Figure 9B shows, for the low activity of a postsynaptic neuron, i.e., F0(∆) ≪ 1, the motif
of excitatory-to-pairs generates strong negative triple-wise interaction (right panel); whereas for
high spontaneous activity, i.e., F0(∆) ≃ 1, inhibitory-to-trio produces such strong results.
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SI-a: The limits of high amplitude approximation

In the high amplitude limit for excitatory inputs given to trio or pairs, the relations obtained for
triple-wise and pairwise interactions (Eq. S.3 and Eq. S.7) in the limit of F0(∆) → 1, diverge.
For this regime, we take the limit of pairwise and triple-wise interactions (Eq. S.1, Eq. S.4 and
Eq. S.5), considering FA(∆) → 1 and F0(∆) → 1 simultaneously. The pairwise equation, Eq. S.1,
will be:

θ12 = log
b(1− FA(∆))2 + (1− b)(1 − F0(∆))2

(b(1 − FA(∆)) + (1− b)(1− F0(∆)))2
, (S.16)

where b = λ∆. Assuming z = (1− FA(∆)/(1 − F0(∆)), it becomes

θ12 = log
az2 + 1

(az + 1)2
, (S.17)

where a = b/(1 − b) and z varies within the range of [0, 1]. The triple-wise interaction (Eq. S.4
and Eq. S.5) in the limit of FA(∆) → 1 and F0(∆) → 1 is:

θ123 = log
(az2 + 1)3

(az3 + 1)(az + 1)3
. (S.18)

Similarly for inhibitory input given to three neurons, the limit is taken when FA(∆) → 0
and F0(∆) → 0 simultaneously. In this limit, we put 1−FA(∆) → 1 and 1− F0(∆) → 1. Then,
pairwise interaction in Eq. S.1 reduces to:

θ12 = log
ax2 + 1

(ax+ 1)2
, (S.19)

where x = FA(∆)/F0(∆). The triple-wise interactions (Eq. S.4 and Eq. S.5) will be:

θ123 = log
(ax3 + 1)(ax+ 1)3

(ax2 + 1)3
. (S.20)

SII: Defining the analytic regions for motifs of excitatory/inhibitory inputs to
trios/pairs in the plane of θ123/θ12

Here we describe in brief how to achieve the boundaries for each motif in the plane of θ123/θ12.
For all motifs, the first boundary arises from the limit of high amplitude (FA(∆) → 1 for
excitatory signaling inputs and FA(∆) → 0 for inhibitory signaling inputs, see SI) when the
spontaneous activity F0(∆) changes within [0, 1]. This boundary is shown in Figure 6 by solid
gray lines.

For the star architecture with common excitatory input, the second boundary (dashed purple
line, Fig.6) is defined by the lowest plausible spontaneous firing rate of a postsynaptic neuron
when CDF (FA(∆)) varies from zero (no common input) to one (high amplitude of common
input). One can easily find how spontaneous postsynaptic neuron’s firing rate relates to the
level of background synaptic activities from a stationary distribution of voltage trajectory for

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 27, 2021. ; https://doi.org/10.1101/479956doi: bioRxiv preprint 

https://doi.org/10.1101/479956
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.5

0

0.5

1

1.5

2

 

 

Pairwise interaction, θ12

θ
1
2
3

T
ri
p

le
-w

is
e

 i
n

te
ra

c
ti
o

n
,

0 0.01 0.02 0.03 0.04

0

2

4

6

8

10

12

14

16 x 10−4

 

 

0 0.02 0.04 0.06 0.08 0.1

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

 

 

Pairwise interaction, θ12 Pairwise interaction, θ12

0.004, 0.02, 0.04, 0.08.D τm Vθ
)/ ( 2

=

Exc to trio 

Inh to trio

Exc to pairs 

Inh to pairs

Fig S1. The triple-wise interaction versus pairwise interaction for star and triangular architec-
tures with common excitatory and inhibitory inputs as a function of the scaled diffusion and
scaled shared signal strength. The color codes are for four scaled diffusion coefficients and the
symbols show the motifs. The arrows indicate increasing directions of the scaled amplitude
parameter (i.e. A/(τmVθ)) and the symbols on graphs show the saturation points. The mid-
dle and right panels illustrate the interactions in the neighborhood of origin for negative and
positive triple-wise interactions which correspond to inhibitory-to-trio and inhibitory-to-pairs
motifs, respectively. The only fixed parameters are the bin size of ∆ = 5ms and presynaptic
rate of λ = 5Hz.

LIF model neuron (Brunel, 2000; Brunel and Hakim, 1999). We have (SV in (Shomali et al.,
2018)):

Ps(V ) =
µτ2m
D

∫ Ī

V
Θ(Vs − Vr) exp (

−τm
2D

(V 2 − V 2
s − 2Ī(V − Vs)))dVs, (S.21)

where Θ(V ) is the Heaviside step function: Θ(V ) = 1 for V > 0 and otherwise Θ(V ) = 0. µ
is the mean firing rate: µ = (

∫∞
0 sJ0(Vθ, s) ds)

−1 and Vr is the resting voltage that we assume
to be zero here. Ī is the mean current which is equal to Vθ for the threshold regime. Since the
stationary distribution is normalized (

∫∞
0 Ps(V )dVs = 1), µ can be obtained explicitly (Brunel,

2000):

µ−1 = τm
√
π

∫ (Vθ−Ī)
√

τm
2D

(Vr−Ī)
√

τm
2D

ey
2

(1 + erf(y))dy, (S.22)

where erf(x) = (2/
√
π)

∫ x
0 exp(−t2)dt. For Vr = 0 and Ī = Vθ (the threshold regime), the firing
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Fig S2. The regions of triple-wise interaction versus pairwise interaction for star and triangular
architectures with common excitatory and inhibitory inputs for high spontaneous firing rates
of postsynaptic neurons µ = 100 − 1000 Hz (magnification of Fig. 10B). In this regime, the
excitatory inputs’ motifs induce small interactions and their regions shrink compared to the low
spontaneous firing of the postsynaptic neuron (Fig. 6). The only fixed parameters are the bin
size of ∆ = 5ms and the presynaptic rate of λ = 5Hz.

rate becomes

µ = (2τm

∫ 0

−Ī
√

τm
2D

∫ x

−∞
exp (x2 − t2)dt dx)−1. (S.23)

Using Eq. S.23, each level of background noise (diffusion coefficient) gives us a specific sponta-
neous firing rate that we can use to calculate F0(∆). So by changing FA(∆) within the valid
range of [0, 1], we can calculate the whole range of triple-wise and pairwise interactions for exci-
tatory inputs to trio (green to purple dashed lines in Fig.6). We observe that, as the background
noise decreased, the region for excitatory-to-trio expands, so we use the lowest plausible sponta-
neous activity (here we use µ = 1Hz for D = 5.5 × 10−17ms, mV 2). This gives us the CDF of
spontaneous activity, F0(∆). By changing FA(∆) within the range [0, 1], we obtain the second
boundary for the motif of excitatory input to trio (Fig.6, purple line).

For inhibitory inputs given to trios, higher spontaneous activity shows higher interactions.
So the second boundary is the limit of high spontaneous activity. Since we are restricted to a low
activity regime (i.e., F0(∆) ≤ 0.5), for this limit we choose the background noise for F0(∆) = 0.5
that is (D = 190ms, mV 2 and µ = 100Hz for ∆ = 5ms). Here, like excitatory-to-trio case,
FA(∆) varies within the range of [0, 1], but this time for high spontaneous activity (µ = 100
Hz). The two boundaries for inhibitory-to-trio, lie very close to each other and we get a narrow
region in the plane of triple-wise/pairwise interactions.

For inhibitory inputs given to pairs of neurons, again the high spontaneous activity (here,
(D = 190ms, mV 2 and µ = 100Hz) defines the second boundary (F0(∆) = 0.5 for ∆ = 5ms)
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which is achieved by our analytic input-output method and depends on the neuron model (Eq. 12,
from Eq. 14 and Eq. 16).

Finally, the second boundary for the motif of excitatory-to-pairs in the low activity regime
comes from very low diffusion (µ = 1Hz for D = 5.5 × 10−17ms, mV 2). The solution of
postsynaptic neuron’s CDF after signal arrival (i.e. (FA(∆) and F2A(∆))) for very low diffusion
regime is:

FA =

∫ Vθ

Vθ−A/τm

Ps(V )dV, (S.24)

where Ps(v) is the stationary distribution (Eq. S.21). When A
τm

≤ Vθ, the CDF is:

FA = µτm

∫ A/
√
Dτm

0

1

u
(e−

u2

2 − e
u2

2
− uA√

Dτm )du, (S.25)

and for A
τm

> Vθ :

FA = µτm

∫ A√
Dτm

−Vθ

√
τm
D

0

1

u
(e−

u2

2 −e−u2

2
−uVθ

√
τm
D )du+

∫ A√
Dτm

A√
Dτm

−Vθ

√
τm
D

1

u
(e−

u2

2 −eu2

2
−uA/

√
τmD)du.

(S.26)
For a specific spontaneous firing rate of the postsynaptic neuron, from Eq. S.25 and Eq. S.26,
pairwise and triple-wise interactions are calculated (Eq. 14 and Eq. 16) and drawn in lines in
Fig.6. So the boundary is determined (µ = 1 Hz) for both symmetric and asymmetric excitatory
inputs given to pairs of neurons (purple dashed lines in regions of excitatory inputs to pairs,
Fig.6). In high spontaneous activity (Fig. 10B), the boundary for lowest spontaneous activity
(µ = 100 Hz) of excitatory-to-pairs, is achieved by calculating the FA(∆) and F2A(∆) from input-
output relation of a LIF neuron model in our method (Eq. 12) and then calculating interactions
from Eq. 14 and Eq. 16. So just this boundary of excitatory-to-pairs like one boundary of
inhibitory-to-pairs depends on the neuron model (here LIF).

SII-a: When the motif of excitatory inputs to trio has negative triple-wise
interaction?

We observe that when the spontaneous activity of the postsynaptic neuron is less than µ = 5
Hz, the triple-wise interaction in the motif of excitatory inputs given to three neurons, for some
values of common input’s amplitude, becomes negative (Fig. 6). We can rewrite the pattern
probabilities and triple-wise interaction for excitatory inputs given to three neurons from Eq. S.4
and Eq. S.5:

P111 = F0(∆)3(ax3 + 1), (S.27a)

P110 = F0(∆)2(1− F0(∆))(ax2(
1− xF0(∆)

1− F0(∆)
) + 1), (S.27b)

P100 = F0(∆)(1 − F0(∆))2(ax(
1− xF0(∆)

1− F0(∆)
)2 + 1), (S.27c)

P000 = (1− F0(∆))3(a(
1 − xF0(∆)

1− F0(∆)
)3 + 1), (S.27d)
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And triple-wise interaction is:
θ123 = logϕ1 × ϕ3

2, (S.28)

that

ϕ1 =
ax3 + 1

a(1−xF0(∆)
1−F0(∆) )

3 + 1
, (S.29)

and

ϕ2 =
ax(1−xF0(∆)

1−F0(∆) )
2 + 1

ax2 1−xF0(∆)
1−F0(∆) + 1

, (S.30)

where a = b/(1 − b) and x = FA(∆)/F0(∆). For excitatory inputs to trio, x varies within
the range 1 ≤ x ≤ 1/F0(∆). The term that makes the triple-wise negative in some values of
common input’s amplitude, is ϕ2, which is the fraction of pattern probability P100 over P110.
By investigation, we find that when η < 0.25 where η = F0(∆)(1 − F0(∆))/a2/3 , the triple-
wise interaction becomes negative in motif of excitatory-to-trio. For this condition, negative
triple-wise interaction occurs when the cumulative density function FA(∆) is in the range of
F−(∆) ≤ FA(∆) ≤ F+(∆), where F±(∆) = 0.5 ± √

0.25 − η. For example when the common
input rate is λ = 5 Hz and time window is ∆ = 5 ms, postsynaptic spontaneous rate below
µ = 4.4 Hz, satisfy η < 0.25 and the triple-wise interaction becomes negative.

SIII: What happens to triple-wise and pairwise interactions when we go be-
yond threshold regime?

Here we investigate how the results change when we go beyond the threshold regime. We per-
formed simulations when the postsynaptic neurons are in the subthreshold and suprathreshold
regimes, and compare the results with simulations at the threshold regime. Figure S3 shows the
interactions arisen from the simulations in the plane of pairwise versus triple-wise interaction
parameters. The circles and rectangles marked in orange display the results when the postsy-
naptic neurons operate at the threshold regime. With the same parameters, those marked in
yellow and pink are obtained when the mean inputs to postsynaptic neurons reach 2 and 10 per-
cent below the threshold (δI/Ī = −0.02,−0.1). The circles show the interactions obtained for
the inhibitory-to-trio motifs, whereas the rectangles are for the excitatory-to-pairs motifs. The
result is for three scaled amplitudes of the signaling inputs at A/τmVθ = 0.2, 0.4, 1 shown with
no line, one line, and two crossed lines inside the symbols respectively. These results show that,
as the mean input goes away from the threshold in the subthreshold regime, the interactions
for excitatory-to-pairs motifs get stronger while those for inhibitory-to-trio get weaker. These
results are interpreted as follows. At the threshold regime, the mean input to a postsynaptic
neuron is set very close to the threshold. Thus, even a small amount of noise induces spikes of
the postsynaptic neuron. In subthreshold regime where the mean input given to the postsynap-
tic neuron is set below the threshold, the neuron generates a spike as far as the variance of the
noise helps the voltage to reach the threshold. In this case, the postsynaptic neuron fires less
frequently (smaller amount of F0(∆)) compared to the case at the threshold regime. Since the
neuron is in a regime of lower spontaneous activity, the interactions induced by the excitatory
inputs increase while the interactions caused by inhibitory inputs decrease (see SI). Therefore,
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Fig S3. Modulation of interaction parameters in subthreshold and suprathreshold regimes,
where mean synaptic input given to membrane potential is set below or above threshold. Left:
Changes in interactions among inhibitory-to-trios are shown in subthreshold and suprathreshold
regimes. Each color is for one deviation (see the color code) from the threshold regime at three
scaled amplitudes of the signaling inputs at A/τmVθ = 0.2, 0.4, 1 shown by no line, one line
and two crossed lines inside symbols respectively. Middle and Right: The interactions are
shown for the motif of excitatory inputs given to pairs of neurons. When a neuron is in the
subthreshold regime, the interactions are reduced for inhibitory-to-trio of neurons (compare
orange with pink and yellow circles) while they are increased for excitatory-to-pairs motifs
(compare orange with pink and yellow rectangles). In the suprathreshold regime, the excitatory-
to-pairs motif generates weaker interactions (green and blue rectangles) while the inhibitory-to-
trio motif generates stronger interactions especially for stronger input (green and blue circles
with crossed lines inside). Fixed parameters are ∆ = 10 ms, D/τmV

2
θ = 0.002, and λ = 5 Hz.

Each symbol results from at least 1010 steps of run to keep the mean squared error in order of
10−3 − 10−4.

the hypothesis that the excitatory-to-pairs motif is behind the empirically observed strong triple-
wise and pairwise interactions is not only unchanged but also more strongly supported when the
neuron operates in the subthreshold regime rather than the threshold regime.

We then move on to the suprathreshold regime, where the mean input is set above the
threshold of postsynaptic neuron’s voltage (Figure S3). Those marked in green and blue are
obtained when the mean inputs to postsynaptic neurons reach 2 and 10 percent above the
threshold (δI/Ī = 0.02, 0.1). In the suprathreshold regime, the picture mentioned above reverses.
Since the mean input is set above the threshold, a neuron generates regular spikes with high
frequency, changing the regime of spontaneous activity from low to high firing rates F0(∆) > 0.5.
In this regime, the inhibitory signaling input can induce stronger interactions while excitatory
signaling input cannot. We can reconfirm this interpretation in the simulation study (Fig. S3).
For the range of scaling amplitudes of signaling inputs A/τmVθ = 0.2, 0.4, 1, we observe the
interactions induced by inhibitory inputs get stronger as the mean input increases to 2 and 10
percent above the threshold (compare orange circle with the green and blue circle for symbols
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with crossed lines, for example).

SIV: Does adaptation render inhibitory-to-trio to induce strong negative triple-
wise and positive pairwise interaction?

Here we want to use a more physiologically plausible model of the neuron and see how it affects
the interaction parameters. For this aim, we add adaptation effect to the leaky integrate-and-fire
neuron model (Brette and Gerstner, 2005; Gerstner et al., 2014b):

τm
dV (t)

dt
= −(V (t)− Vr)− w + I(t), (S.31)

τw
dw

dt
= a(V (t)− Vr)− w + bτk

∑

tf

δ(t− tf ), (S.32)

where the adaptation current is w, the coupling term of voltage to adaptation is a, and τw is
the time constant of the adaptation variable. When the neuron generates a spike, the voltage
is reset to Vr and the adaptation variable w is increased by b which is a parameter for the
spike-triggered adaptation. We use adaptation parameters consistent with Brette and Gerstner
(Brette and Gerstner, 2005). Figure S4 shows the result with and without the adaptation at
the threshold regime for the two motifs of excitatory-to-pairs (rectangles) and inhibitory-to-trio
(circles) for three scaling amplitudes of signaling inputs A/τmVθ = 0.05, 0.1, 0.25 shown with
no line, one line and two crossed lines inside the symbols respectively. For adaptation, we
consider two cases in that the coupling between voltage and adaptation current (a) is present or
absent. The former (i.e. a > 0) considers subthreshold adaptation in addition to spike-triggered
adaptation (b) while the latter (i.e. a = 0) assumes just the effect of spike-frequency adaptation.

Figure S4 shows how adaptation modulates the pairwise and triple-wise interactions for
inhibitory-to-trio and excitatory-to-pairs motifs. We observe that the modulation by adapta-
tion make the triple-wise (pairwise) interactions for the excitatory-to-pairs motif more negative
(positive), while the triple-wise (pairwise) interactions in the inhibitory-to-trio motif get less neg-
ative (positive) for strong inhibitory signaling inputs. It makes a larger difference in triple-wise
and pairwise interactions between these two motifs.

The result shows adding the effect of adaptation differentiates, even more, the triple-wise
interactions between the excitatory-to-pairs and inhibitory-to-trio motifs in a way that the exci-
tatory input to pairs can induce the strong negative triple-wise and positive pairwise interactions,
while the strength of inhibitory-to-trio’s interactions for strong common input decreases. This
is attributed to decreasing the spontaneous activity of postsynaptic neurons in the presence of
adaptation (Fig. S5). We observed that adding the effect of adaptation renders the firing rate
of the postsynaptic neuron receiving common inputs on top of noisy background input, from
22 Hz (excitatory-to-pairs motif) and 19 Hz (inhibitory-to trio motif) to around 5 Hz and 3 Hz
respectively (also Fig. S6, middle and right panels). When common input is off, adaptation also
decreases the firing rate of postsynaptic neuron from 22 Hz to around 3 Hz (compare number 1
blue with red in Fig. S6, middle). Therefore by reducing the spontaneous activity, adaptation
increases the strength of interactions in excitatory-to-pairs motifs but decreases the interactions’
strength in inhibitory-to-trio motifs (Fig. S6, middle and right panels).
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Fig S4. Modulation of interaction parameters in the presence of adaptation. The left panel
shows the changes of interactions among the inhibitory inputs given to trios in the presence of
adaptation (blue and green circles) compared with no adaptation case (purple circles). Each
case is shown for three scaled amplitudes of the signaling inputs at A/τmVθ = 0.05, 0.1, 0.25
shown with no line, one line and two crossed lines, inside the symbols respectively; the larger
the amplitudes, the stronger the interactions. When the adaptation is involved, the interactions
are weaker for strong inhibitory input given to three postsynaptic neurons (left: blue and green
circles) while they are stronger for excitatory-to-pairs motifs (right: blue and green rectangles).
The adaptation parameters are consistent with Brette and Gerstner paper (Brette and Gerstner,
2005). Fixed parameters are a = 4 nS (for a > 0 cases), b = 0.0805 nA, τm = 10 ms, gL = 30
nS, C = 281 pF , Vr = −70 mV , Vθ = −50 mV , τw = 144 ms, ∆ = 10 ms, D = 0.74 msmV 2,
and λ = 5 Hz. Each symbol results from at least 1010 steps of run to keep the mean squared
error in order of 10−4.

The other interesting effect we observe is that excitatory inputs given to pairs of neurons
with the help of adaptation can generate the observed CV (coefficient of variation) in V1 neu-
rons (Gur et al., 1997), and by increasing the amplitude of signaling input, the CV reaches high
values (Fig. S6 A) consistent with some experimental studies reporting high variability for neu-
rons (Shadlen and Newsome, 1998). On the other side, the motif of inhibitory-to-trio cannot
generate such a result of high CV (Fig. S6).

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 27, 2021. ; https://doi.org/10.1101/479956doi: bioRxiv preprint 

https://doi.org/10.1101/479956
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6x 10
−3

Time

IS
I 

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6 x 10−3

TimeTime

0 50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Exc to pairs, No Adaptation Exc to pairs, Adaptation: b > 0 , a = 0 Exc to pairs, Adaptation: b > 0 , a > 0

In
te

r-
s
p

ik
e

 i
n

te
rv

a
l 
d

is
tr

ib
u

ti
o

n

0 50 100 150 200 250 300 350 400

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Time

In
te

r-
s
p

ik
e

 i
n

te
rv

a
l 
d

is
tr

ib
u

ti
o

n

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7

8

9 x 10
−3

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6
x 10

−3

Time Time

Inh to trio, No Adaptation Inh to trio, Adaptation: b > 0 , a = 0 Inh to trio, Adaptation: b > 0 , a > 0

μ =  22 Hz

CV = 0.27

μ =  5.8 Hz

CV = 0.45
μ =  5.3 Hz

CV = 0.47

μ =  19 Hz

CV = 0.27

μ =  3.5 Hz

CV = 0.17

μ =  2.7 Hz

CV = 0.2

0 50 100 150 200 250 300 350

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time

In
te

r-
s
p

ik
e

 i
n

te
rv

a
l 
d

is
tr

ib
u

ti
o

n

μ =  19.9 Hz

CV = 0.23

No common input, No Adaptation

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9
x 10

−3

Time

μ =  3.6 Hz

CV = 0.16

No common input, Adaptation: b > 0 , a = 0

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6 x 10
−3

No common input, Adaptation: b > 0 , a > 0

μ =  2.8 Hz

CV = 0.19

Time

Fig S5. Inter-spike interval (ISI) distributions of postsynaptic neurons for motifs of excitatory-
to-pairs and inhibitory-to-trio in the presence and absence of adaptation. The first row shows
the ISI when there is no common (signaling) input and the postsynaptic neuron receives mean
input which sets the voltage very near to the threshold in addition to a certain level of noise.
In the presence of adaptation, when there is no common (signaling) input, the firing rate of
postsynaptic neuron decreases, compared to no adaptation case. In the presence of common
inputs under excitatory-to-pairs and inhibitory-to-trio motifs, the adaptation decreases the firing
rate (second and third row). However, the adaptation increases the coefficient of variation (CV)
when excitatory inputs are given to pairs, but decreases the CV in the inhibitory-to-trio case.
Fixed parameters are A/τmVθ = 0.1, ∆ = 10 ms, D/τmV

2
θ = 0.0002, and λ = 5 Hz.
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Fig S6. Adaptation can change the coefficient of variation (CV) and interaction parameters
in both excitatory-to-pairs and inhibitory-to-trio motifs. (Left) By increasing the amplitude of
excitatory inputs given to pairs of neurons, CV can reach high values with the adaptation (red
solid line) compared to without the adaptation (left, red dashed line). The adaptation under
the inhibitory-to-trio motif decreases the CV (blue lines). (Middle and right) The graph shows
θ12 in the positive domain of the ordinate and θ123 in the negative domain, as a function of the
neurons’ firing rate for excitatory-to-pairs (middle) and inhibitory-to-trio (right) motifs. The red
lines present the interactions in the presence of adaptation while the blue is for no adaptation.
The numbers 1, 2, 3, 4, 5 assigns to the amplitude of common inputs A = 0, 10, 20, 50, 100, respec-
tively. The firing rate is decreased in the presence of adaptation for both excitatory-to-pairs and
inhibitory-to-trio motifs (compare each number in blue and red graphs) and even when there is
no common input (compare number 1 in blue with red graphs). Nevertheless, θ12 and θ123 of
excitatory-to-pairs motif are increased for each amplitude of common inputs (middle, compare
each number in blue and red graphs). The inhibitory-to-trio motif with adaptation induces
smaller interactions, compared with the non-adaptation case (right, compare each number’s in-
teraction in blue with red). Fixed parameters are ∆ = 10 ms, D/τmV

2
θ = 0.0002, τm = 10ms,

Vθ = 20 and λ = 5 Hz.

SV: Does mixing motifs, excluding the excitatory-to-pairs motif, can generate
strong negative triple-wise interactions?

We have four architectures, common inputs given to pairs or trio of postsynaptic neurons with
either common excitatory or common inhibitory inputs. Based on our analysis in this paper
about common input and also recurrent activity, we know that the motif of excitatory-to-pairs
if exists, can induce strong interactions of θ12 > 0 and θ123 < 0. However, we can ask the
following question: By mixing the other motifs (i.e, inhibitory-to-trio, excitatory-to-trio and
inhibitory-to-pairs), can we reach the large magnitude of θ12(> 0) and θ123(< 0)? For this
purpose, we mix the three motifs, two by two to see whether such a case exists. We mix two
motifs with firing rates of λ1 = 5Hz and λ2 = 5Hz for a range of common input’s amplitude
in each motif (i.e. from A = 0 to A = 50) (Fig. S7). The result for mixing excitatory input
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Fig S7. Mixing the motifs of excitatory-to-trio, inhibitory-to-trio, and inhibitory-to-pairs. The
result of interactions are shown for the mixture of excitatory and inhibitory inputs each given
to trio (left), excitatory-to-trio with inhibitory-to-pairs (middle), and inhibitory-to-trio with
inhibitory-to-pairs (right). In the mixture, the amplitude of common input in each motif varied
from 0 (i.e. the motif is inactive) to 50 (arrow shows increasing the amplitude in each panel),
and the interactions (θ123 and θ12) are calculated for different amplitudes of motifs. Along each
colored line (following the arrow in each panel), one motif’s amplitude is fixed while the other
mixed motif’s amplitude varied from 0 to 50. For example in the left panel, for each colored line,
the amplitude of inhibitory-to-trio is fixed (see color box), while the amplitude of excitatory-to-
trio has changed along the line from 0 to 50. The color box shows in each panel which motif
has the fixed amplitude. Fixed parameters are ∆ = 10 ms, D/τmV

2
θ = 0.003, τm = 10ms,

Vθ = 5mV, λ1 = 5Hz and λ2 = 5Hz.

to trio with inhibitory input to trio is shown in the left panel. Although the inhibitory-to-trio
architecture induces negative triple-wise interactions, we observed mostly positive triple-wise
interactions when it is mixed with excitatory-to-trio. The only region that the mixing triple-
wise interaction are negative is under weak or near zero amplitudes of excitatory inputs given
to trio (Fig. S7, left). The mixture of excitatory-to-trio and inhibitory-to-pairs induce positive
triple-wise interactions (Fig. S7, middle) as expected from its each individual motif. The result
for mixing inhibitory input given to trio and inhibitory input given to pairs is shown in the
right panel. Although the inhibitory-to-pairs induces positive triple-wise interactions, when it
is mixed with inhibitory-to-trio, for most amplitudes of mixing, negative triple-wise interactions
are observed (Fig. S7, right). The interactions induced in this mixing is in the range of inhibitory-
to-trio’s interaction which is not strong and does not interfere with excitatory-to-pairs’ range of
interactions. The triple-wise and pairwise interactions in each case, are saturated for a specific
amplitude of common inputs.
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SVI: Why the information-geometric measure is suitable for quantifying pair-
wise and higher-order interactions

In this study, we analyze the pairwise and higher-order (i.e., triple-wise) statistical dependency
among the two and three neurons by using the information-geometric measure that is obtained
from the neurons’ interactions expressed in the form of exponential family distribution (Eqs. 13
and 15) (Amari, 2009b; Martignon et al., 2000; Nakahara and Amari, 2002). Here we explain
why we employ this measure instead of the other alternatives.

For a system with two neurons (Eq. 13), the information-geometric measure θ12 of the pair-
wise interaction expresses the dependency of the two neurons, similarly to the Pearson’s correla-
tion coefficients computed for the binary patterns. Although the zero values of both measures
indicate that the two neurons are uncorrelated, their mathematical expressions are different. The
information-geometric measure of the pairwise interaction can take an unconstrained real-value
whereas the Pearson’s correlation coefficients are bounded in −1 and 1.

It is known that the information-geometric measures have a statistically suitable property
to extract the pairwise and higher-order dependency of the binary representation of neural
activity (Amari, 2009b; Martignon et al., 2000), compared to conventional measures such as
Pearson’s correlations, pairwise and triple-wise cross-correlations (Shlens et al., 2006), cumu-
lants (Staude et al., 2010), and mutual information (Amari, 2009b; Martignon et al., 2000;
Ohiorhenuan and Victor, 2011). For example, in the two neurons’ system, the estimation of
θ12 from the data is not affected by estimation of the activity rates of individual neurons. This
property does not hold for the other measures such as the classical Pearson’s correlation coeffi-
cient (Amari, 2009b). Namely, the simultaneous estimation of the firing rates and the neurons’
dependency measured by the Pearson’s correlation coefficients are correlated. On the contrary,
the information-geometric measure of the correlation θ12 is independent of the estimated firing
rates of neurons. In this sense, it quantifies the genuine interaction that we cannot obtain from
activities of individual neurons, rather that can be inferred only if we simultaneously observe
the two neurons. In information geometry, this property is known as the orthogonality of the
interaction to the activity rates of neurons.

For a system with three neurons, the interaction among the three neurons (triple-wise inter-
action, θ123) is obtained by Eq. 15. Similar to the information-geometric measure of the pairwise
interaction, the triple-wise interactions estimated from the spike data are not correlated with
the lower-order statistics, namely activity rates of individual neurons and joint activity rates of
the two neurons. It quantifies a genuine triple-wise activity of the three neurons that can be
inferred only if we observe the three neurons simultaneously.

The meaning of the non-zero triple-wise interaction becomes clear if we compare it with
the neural activity that expresses no triple-wise interaction. Suppose the triple-wise interaction
is fixed at zero. In that case, the model corresponds to the maximum entropy model that is
derived as the most unstructured model when the individual firing rates and joint firing rates
of pairs of neurons (equivalently, pairwise correlations) are given. Such a model produces the
joint activities or in-activities of all three neurons (i.e., the pattern ’111’ or ’000’) with non-zero
probabilities, but they occur as a chance coincidence given the neurons’ firing rates and pairwise
correlations. The non-zero information-geometric measure of the triple-wise interaction θ123
precisely measures the deviation of the joint activity or inactivity of the three neurons from this
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expected level. If it is positive, the three neurons are jointly active more frequently than the
chance level expected from their activity rates and pairwise correlations. If it is negative, the
neurons are simultaneously silent more frequently than the chance level.

Comparison of the other methods with the information-geometric measure to calculate
the triple-wise (or higher-order) dependency, such as covariance and mutual information (or
Kullback-Leibler (KL) divergence), are also summarized in (Amari, 2009b). The former method
(covariance) depends on firing rates, and the latter KL-divergence cannot show the sign of
correlation. Ohiorhenuan and Victor compared the KL divergence and information-geometric
measure, which pointed to the superiority of the information-geometric measure in practice
(Ohiorhenuan and Victor, 2011): It can distinguish whether the interactions are less or more
synchronous comparing with the chance level while the KL divergence can measure the magni-
tude only. The information-geometric measure is also easier to calculate the confidence bound,
and it was reported that it is robust to spike-sorting errors (Ohiorhenuan and Victor, 2011). In
summary, although information-geometric measure needs data to be binarized, its statistical
and practical advantages make it suitable for measuring the dependency of neural population.

SVII: How geometrical constraints modify the probability of finding various
microcircuits: A simple Monte Carlo approach

We wrote a simple Matlab code, using 108 times uniform random number generator. It put
points on the XY-plane, in a 2r×2r square, with r = 150µm. Then, excluding any point further
from the origin (i.e. at x = 0 and y = 0) than r, we simply have a pool of random points all
sitting in a circle of radius r= 150µm. Then, picking each pair (or trio), we verified if two (or
three) picked points are closer to each other than the critical length of lc = 100µm. It simply
produces two populations among all possible choices of two (or three) points. Out of 4.8 × 107

choices of pairs, we found that the probability of the two points being closer to each other than
lc = 100µm was 0.32; and the probability of finding three points, each closer to two others than
100µm was 0.07.
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