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Abstract: We present a scheme for implementing a version of task switching in engineered bacteria,1

based on the manipulation of plasmid copy numbers. Our method allows for the embedding of2

multiple computations in a cellular population, whilst minimising resource usage inefficiency. We3

describe the results of computational simulations of our model, and discuss the potential for future4

work in this area.5
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1. Introduction7

Synthetic biology [1,2] is often broadly defined as the rational engineering of biological systems,8

with the aim of implementing novel computational functions in living organisms. Cells such as9

bacteria may host engineered networks of regulatory proteins - so-called genetic circuits - that sense10

inputs, perform processing, and generate outputs according to human-defined rules.11

These artificial cellular computers are often necessarily single-purpose, in that they perform one12

well-defined task, such as the production of drug precursors [3] or the detection of environmental13

pollutants [4]. Interestingly, the representation of information by physical properties of a biological14

system (such as levels of gene expression) immediately suggests a parallel with analogue computers15

[5,6], which also used physical quantities (such as hydraulic pressure or the elasticity of a spring)16

to model specific problems. Importantly, analogue computers were also geared towards specific17

applications (such as calculating bomb trajectories), and this did not limit their usefulness.18

However, we are also interested in the possibility of engineering biological systems that are19

capable of task switching (that is, moving between a number of pre-programmed behaviours (or20

“tasks") according to specific rules or signals). This allows for the possibility of embedding different21

tasks into a cellular population, but essentially performing dynamical resource allocation to ensure22

that the cells do not become metabolically over-burdened. We might compare this to the computer23

memory management strategy of “paging", whereby inactive processes are moved from (limited)24

main memory onto secondary storage (such as a disk). In our model, active processes are represented25

by plasmids which exist in high numbers, and plasmids that are relatively few in number are26

considered to be “inactive”.27

Here, we present a system in which multiple genetic circuits coexist, and control strategies select28

which one is functional (i.e., which task runs) at a given time. Our method is based on controlling the29

replication of plasmids, which are small DNA molecules which exist (and may be replicated inside)30

the cell independently of the main chromosomal material.31

The rest of this paper is organized as follows: in Section 2 we provide some background to and32

motivation for our proposed method. In Section 3 we then present our main experimental results,33

describing our methodology in Section 4. We then conclude in Section 5 with a discussion of our34

findings, and propose future work.35
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2. Background36

Synthetic biology is a rapidly-growing scientific area, with applications in many significant37

domains, including health, energy, and the environment [7]. One branch of synthetic biology, which38

we call “cellular computing” [8], is specifically concerned with the construction of computational39

parts and devices using living cells [9,10]. These implementations include Boolean logic gates [11,12],40

switches [13], oscillators [14], and counters [15].41

A fundamental tool in genetic engineering (and, thus, synthetic biology) are plasmids; these are42

small circular DNA molecules used to introduce new genetic material into bacteria and other cells43

[16–18]. Typically, new genetic circuits are encoded as a number of genes, the sequences of which are44

then synthesised and inserted into the plasmid. Plasmids may also naturally be moved between cells45

via conjugation, facilitating a process known as Horizontal Gene Transfer (HGT) [19,20].46

Horizontal gene transfer via conjugation has previously been proposed as a useful mechanism47

for performing computations [21], by using plasmids to transmit signals between cells. Here, we48

instead embed entire computational circuits within individual plasmids [12], and then manipulate49

their properties to dynamically switch between them. This allows us to potentially run a number of50

different “programs” within the cell population, whilst ensuring that only active processes consume51

scarce system resources. This is the most important aspect of our proposal; while it is, in principle,52

possible to engineer multiple functional circuits into bacteria (and switch between them), in practice53

this is difficult to achieve, and inactive circuits place a significant metabolic overhead on the hosts.54

By dynamically switching between active circuits, and having only active circuits present in the host55

bacteria in significant numbers, we allow for flexible computational behaviour, whilst minimising the56

burden on the hosts. In the next Section, we describe our model in detail.57

2.1. Our task switching model58

In previous work, we showed how individual cells may be engineered to exhibit different59

computational behaviours according to the type of input received [22]. This essentially “flipped”60

a single genetic circuit between Boolean NAND and NOR, depending on input thresholds. Here, we61

maintain multiple circuits within a population of cells, and (de)activate them according to need.62

A high-level description of our model is shown in Figure 1A. We have two basic levels of control;63

the lowest level concerns individual genetic circuits encoded in plasmids, and the higher (control)64

level switches between these circuits (by manipulating the population dynamics of the plasmid pool).65

We focus mainly on this control level, as the embedding of computational circuits in plasmids is66

well-understood and standard [12].67
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Figure 1. Overall design for a multi-purpose cellular computer. A. The bottom control level encodes
a single genetic circuit in a plasmid vector, which executes a single “program". The top control level
handles switching strategies for regulating the numbers of such plasmids in a cellular population.
This is done via inhibiting plasmid replication or by promoting plasmid horizontal transfer (i.e.
extra replication). B. Deterministic analysis of a two-plasmid system (where plasmid A represses
the replication of B, which, in turn, replicates via positive feedback) shows that the system is highly
unstable, i.e., plasmid B tends to either increase indefinitely or disappear.

Plasmid replication occurs using the host cell’s DNA replication machinery; plasmids contain68

sequences known as origins of replication (ori), which “instruct" the host cell to initiate its69

own replication. Importantly, a plasmid ori sequence may be activated or deactivated by70

initiator/repressor proteins that bind to it, thus turning on or off the replication of that plasmid71

[23]. In turn, initiator/repressor proteins may be expressed by genes in other plasmids, allowing one72

plasmid to effectively turn another on or off. Plasmids propagate in a system through either horizontal73

transfer via cell-cell conjugation, or vertically, when a cell divides into two daughter cells (Figure74

2A. Plasmids that are being repressed are not transmitted vertically, but may still be transferred75

horizontally between siblings. Two specific attributes of plasmids are of direct interest; their copy76

number, and their stability. Copy number refers to the expected number of instances of a specific77

plasmid within a single host cell, and this may be “low” (15-20 copies per cell), “medium” (20-10078

copies per cell) or “high” (>500 copies per cell). Engineered plasmids may be “set" to any preselected79

copy number, but there is an attendant trade-off: the higher the copy number, the higher the metabolic80

burden on the cell. Plasmid stability [24] exists when, at cell division, each daughter cell receives at81

least one copy of the plasmid.82

In the next Section, we describe the results of modelling and simulation experiments to83

investigate the properties and behaviour of systems constructed within our scheme.84

3. Results85

Continuous modelling86

In Figure 1B, we show the behaviour of a two-plasmid system, modelled using ordinary87

differential equations, in which plasmid A represses (i.e., “turns off”) the replication of plasmid B,88

which, in turn, replicates via positive feedback. We note a fragile equilibrium for the stability of89

plasmid B; there is only one scenario, k1/k2 = number of A (100) where the copy number of B does not90

either increase indefinitely or decrease to zero. This highlights the need for a stabilisation mechanism91

in such systems, which we describe below.92
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Discrete simulation93

In Figure 2 we show the results of discrete simulation of a population of cells containing two94

plasmids, A and B. Each plasmid’s computational “task" is not specified, since we focus here on the95

dynamics of copy numbers over time (red for plasmid A, and green for plasmid B). We emphasise96

the fundamental principle that plasmids that are repressed are not spread vertically (through cell97

division), but may still propagate horizontally (Figure 2A). The significance of this is shown in Figure98

2B; for an imagined single plasmid (initial copy number of 10), we consider its representation (in99

terms of its presence in cells) after a number of periods, with conjugation both disabled (left-hand100

panel) and enabled (right-hand panel). If conjugation is disabled, then plasmids are essentially101

rapidly “flushed” from the system, as they are not transferred vertically. However. if we enable102

conjugation in our simulation, then plasmids are retained for longer within the system, suggesting103

that conjugation offers an important mechanism for stabilising a system long enough for switchable104

computations to occur. For details on the simulation of conjugation, please see [25] and the Methods105

section of the current paper.106

Figure 2. Switchable control of plasmid copy number through horizontal (conjugation) and vertical
gene transfer. A. A basic principle guides the following theoretical model: plasmids whose replication
is being repressed will not be spread through vertical transfer (i.e. mother to daughters) but can
still be copied within siblings via horizontal transfer. B. Distributions representing the number of
plasmids in individual cells across a population. The rate of plasmid loss (when its replication is being
repressed) is much faster when conjugation is disabled i.e. plasmids are not transferred horizontally.
This suggests that conjugation is a powerful tool for stabilizing the systems long enough to allow for
switchable computations. C. Simulation of a population where all cells start with two plasmids, A and
B. The overall number of B plasmids (bar plots) decreases over time, since its replication is repressed
by A. D. Same simulation as in C but the replication of plasmid A can be externally repressed. This
repression over A happens after when the overall number of plasmids B is very low (but not zero).
As a result, the scenario is reversed and it is plasmid B which predominates over A. Time in all plots
is measured in generations (gen.) - details on the simulation of conjugation in Methods.

In Figure 2C we show the results of spatially-explicit simulations of our system, in which107

plasmid A represses the replication of plasmid B. Both plasmids start off at roughly equal numbers,108

but we see that the red plasmid A rapidly dominates the population.109

We then show (Figure 2D) how the system may be “switched”, such that an alternative110

computational task is selected for the population. Replication of plasmid A is repressed by an external111
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signal, which leads to both a gradual loss of the red plasmid A, and an increase in the representation112

of the green plasmid B (since its replication is no longer being repressed by plasmid A). If we remove113

the external signal repressing plasmid A, then the system will gradually switch back to a dominant114

“red” state, and this process is indefinitely repeatable.115

Figure 3. Plasmid copy numbers are not homogeneously distributed across a population, but highly
clustered. Dots in the right-hand plot show the positions of those cells with more of plasmid B (green)
in the simulation snapshot shown to the left. There is one dot per cell with high B concentration; the
colour of dots is meaningless; diameter of dots are directly proportional to the plasmid copy number
in each cell. Some dots are perfectly aligned, which suggest vertical transfer, while groups of cells (for
example, in the bottom right) increased the copy number via conjugation.

The spatially-explicit nature of our simulation means that it is possible to analyse further the116

distribution of plasmids in the system. In Figure 3 we show a snapshot of a simulation in which117

plasmid B (green) predominates. We see that the distribution of plasmid B is certainly not uniform,118

and observe clusters that are suggestive of both vertical and horizontal transfer. This clustering119

is responsible for stabilising the simulation, compared to the situation shown in Figure 1B (i.e.,120

parameter values do not need to be unique). Clusters essentially act like plasmid reservoirs and121

generate non-linear dynamics around overall plasmid copy number, which favours robustness. In122

addition, these clusters add a different viewpoint to the analysis of bacterial differentiation within a123

population [26] - often a knowledge gap - which is advantageous to us.124

Distributed computations using cell consortia125

An important recent development in synthetic biology and biocomputing has been the126

development of computational consortia; that is, computations that are distributed over a number of127

different cells, each of which performs a specific role [27–29]. This approach potentially allows for128

much more scalable cellular computation, as a large and potentially complex circuit may be broken129

down into smaller communicating components, each of which is placed in a specific cell. A common130

structure involves “sender” and “receiver” bacterial strains, each of which either transmit or act upon131

specific signals, and we adopt that model here.132

In Figure 4 we depict our scheme for multi-cellular computation of the Boolean NOR function,133

using four cell strains that interact to evaluate the gate. Recall that NOR is a negated OR function,134

so it returns “1” only when both of its inputs are zero, and “0” in all other cases (usefully, NOR is a135

universal gate, which means that any other Boolean function may be constructed using it).136
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Figure 4. Multicellular computation in a 4-strain consortia. A different approach is adopted to design
a 3-plasmid system that responds to a NOR logic function: both input plasmids A and B repress the
replication of output plasmid C. We have one strain per plasmid, plus another computing strain - the
input/output strains are able to transfer plasmids horizontally to the computing strain but cannot
receive plasmids from others. Simulations of the four logic cases highlight the spatial localization
of the computation. Only the computing strain is shown - black spaces in-between correspond to
different “sender" strains.

Our system is composed of three plasmids; A (red) and B (green) represent the inputs to the NOR137

gate, and plasmid C (which defaults to blue) representing output=1. Both A and B repress the output138

plasmid C, so C is only present (corresponding to an output value of “1") if both A and B are absent139

(i.e., both input values are equal to zero). Each plasmid is represented by its own bacterial strain (the140

input plasmids in the “sender" strains), and we also use a fourth “computing” (or “receiver") strain,141

which is engineered to express the appropriate fluorescent protein, according to the plasmid that it142

receives.143

We show the results of simulations for each of the four input cases (00, 01, 10 and 11); in the144

first case, we see only blue cells, as that is the only situation in which we can expect to see an output145

value of 1. In the other cases, we see a preponderance of green (where the B input dominates), red146

(where the A input dominates), or a mixture (where both input plasmids are represented equally).147

This confirms the in-principle possibility of engineering plasmid copy numbers for the purposes of148

distributed cellular computation.149

Usecasing the potential of task switching.150

We developed two simple models to demonstrate the potential of the suggested strategy (Figure151

5). There are two different approaches to the use of task switching: (1) switch between two completely152

different tasks, and (2) repurpose the meaning of the inputs to the same task.153

In the population simulated in Figure 5A, two plasmids coexist, each encoding an different154

inducible promoter with a fluorescent reporter downstream (red for plasmid A, green for plasmid B).155

These two tasks are different in that they respond to different input signals (s1 and s2 respectively).156

Depending on which task runs at a given time, the cells will be sensing the corresponding signal.157

Therefore, this approach allows us to encode different tasks (e.g., biosensors) that will be active on158

demand. Figure 5A shows the performance of the simulation over 50 generations. Plasmids A are159

predominant until t = 40, when they are externally repressed; as a result, plasmids B take their place.160

Simultaneously, the two input signals are changed over time; note that values 0 and 1 indicate their161

absolute absence and their saturation, respectively. We see that during the first 40 generations, only162

the dynamics of signal s1 are captured by the population, while signal s2 is ignored or captured at163

residual levels. The reverse situation occurs from t = 40 onwards, when only signal s2 is sensed.164
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The repurposing of the device (i.e., the same implementation, but different functions) is165

illustrated in Figure 5B, by changing the effects of the input on the circuit. Similar tasks as before166

coexist in a population, where both plasmids express a reporter. In this example, there is only one167

input signal, which is an inducer for the circuit in plasmid A and a repressor for that of plasmid B. By168

changing the meaning of inputs, the computation returns a different output. The simulated population169

reads the signal as an inducer until t = 40, when plasmid A is externally repressed. From then on,170

plasmids B will be present in higher copy numbers, and the same signal will be read as a repressor.171

Figure 5. Usecasing the potential of multitasking. A. Reduction of cellular workload. Two input
signals, s1 and s2, trigger the expression of different circuits - in this case a simple reporter gene.
By controlling plasmid copy number, the population reacts to one of either two input signals. Cells
will not have both circuits at the same time, thus reducing the metabolic cost. B. Repurposing input
signals. One input, s1, acts as an inducer for the circuit in plasmid A and a repressor for the circuit
in plasmid B. Multitasking control allows for switching the population from using s1 as an inducer to
using s2 as an inhibitor (and vice-versa).

4. Materials and Methods172

Differential models173

Ordinary Differential Equations (ODEs) were used to perform deterministic simulations of174

plasmid dynamics in the non-spatial (Figure 1) and spatial (Figure 5) scenarios. The first set of ODEs175

describe the reactions A + B
k2→ A and B

k1→ 2 · B:176

dA
dt

= 0 (1)

dB
dt

= k1 · B− k2 · A · B (2)

where plasmid A is constant, k1 = 0.05, k2 = 0.005, and initial conditions are A = B = 100 (all units177

dimensionless). Equilibrium is found at k1/k2 = 100 (Figure 1).178
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The circuits of Figure 5 were also simulated deterministically. Both models run inside cells of a179

spatial, discrete simulation. The set of ODEs that govern the performance of the first circuit (Figure180

5A) is:181

dpA
dt

= k2 · pAa − k1 · s1 · pA (3)

dpB
dt

= k2 · pBa − k1 · s2 · pB (4)

ds1

dt
= k2 · pAa − k1 · s1 · pA (5)

dAa

dt
= −k2 · pAa + k1 · s1 · pA (6)

dRFP
dt

= k3 · pAa − k4 · RFP (7)

ds2

dt
= k2 · pBa − k1 · s2 · pB (8)

dpBa

dt
= −k2 · pBa + k1 · s2 · pB (9)

dGFP
dt

= k3 · pBa − k4 · GFP (10)

where pA and pB are the promoter in plasmids A and B, respectively, k1 = 1 is the rate of binding182

of the signals to their cognate promoters in either plasmid, denoted by pAb or pBb, k2 = 50 rates the183

reversed reaction (unbinding) back to pA or pB, k3 = 200 is the expression (merged transcription and184

translation) of the target gene in each plasmid, and k4 = 1 the degradation of the proteins GFP and185

RFP. The number of plasmids A and B is determined by the discrete simulation.186

The circuit in Figure 5B was based on the same equations as above, but with the following187

changes: signal s2 is removed from the system, signal s1 inhibits B and GFP is expressed from pB188

rather than pBa. Therefore, equations 5 and 10 change into:189

ds1

dt
= k2 · pAa − k1 · s1 · pA− kr

1 · s1 · k2 · pBa (11)

dGFP
dt

= k3 · pB− k4 · GFP (12)

where kr
1 = 30, which is the rate of repression of pB by signal s1. All rates are expressed in molecules190

and hours, following values commonly used in mathematical models [30,31]. In any case, signals s1191

and s2 are abundant or absent, therefore their derivatives can be considered null.192

Stochastic models193

Gillespie’s algorithm [32] was used to calculate the intracellular performance of plasmid stability194

in Figures 2-4. In Figures 2-3 the reactions simulated were A + B
kb→ A + Bb and its reversed A + B ku←195

A + Bb, where kb is the rate of plasmid A to block the replication of B, and ku is the rate of unblocking196

such repression. Their values are 1 and 0.5 respectively.197

Figure 4 includes a third plasmid, C to perform a NOR logic function. The reactions for this198

simulation are: A + C
kb→ A + Cb, A + C ku← A + Cb, B + C

kb→ B + Cb and B + C ku← B + Cb.199
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Spatial simulations200

For spatially-explicit simulations we used the agent-based tool DiSCUS [25]. This platform has201

previously been used to study the spread and growth of bacterial populations [33], and has been202

included in design-build-test synthetic biology life cycles [34]. In DiSCUS, a population of rod-shaped203

cells grows on a 2D surface. Each cell was coded to run a copy of either the stochastic or deterministic204

simulation under study. The spatial simulation resolved plasmid loss due to vertical transfer and205

plasmid gain due to horizontal transfer. After each division and conjugation event, plasmid copy206

numbers were updated, and the intracellular simulations adjusted the final numbers of repressed207

elements accordingly.208

Time was measured in theoretical doubling-times, what we called generations (Figure 2), which209

is the time it takes for a rod-shaped body to grow and divide in DiSCUS. During each conjugation210

event, 2 or 3 (random) plasmids are transferred. Conjugation frequencies where fitted to experimental211

observations (see [25] for details). DiSCUS implements the probability that a cell will conjugate with212

a neighbour cell at any time-point during its lifetime (probabilities range from 0.001 to 0.05). This213

parameter was fitted to frequencies obtained experimentally, both in liquid cultures [35] and on 2D214

surfaces [36].215

5. Discussion and conclusions216

The engineering of increasingly complex tasks (i.e., genetic circuits) in cells is a major challenge,217

and a very active research topic. However, the design of management strategies for the execution of218

these tasks has received relatively little attention. Computer science, commonly used to frame the219

development of genetic circuits, has successfully achieved strategies to this end that can be of use to220

synthetic biology. Here, we present a task switching method in bacteria as a way of managing cellular221

resources.222

Task switching is designed by controlling plasmid copy number (CN). Since each plasmid223

will encode for a specific task, the control of CN will result in the population running one task or224

another, without the need to re-design and re-engineer the cells. As envisioned here, this control225

is achieved via transcription factors [23]; that is, by making plasmid replication dependent on a226

repressor (for instance, using the LacI repressor to inhibit the replication of a replicon modified with227

the LacI operator (LacO)). The control of the repressor-operator interplay (e.g. fine-tuning the level of228

repressor or the noise patterns [37]) can avoid a situation that ends in plasmid loss. We use Horizontal229

Gene Transfer (HGT) as a tool to solve this issue. According to our simulations, HGT generates230

plasmid reservoirs that restore the equilibrium to an otherwise collapsing (i.e., inevitable plasmid231

loss) scenario. Another possibility would be to engineer a second replicon, corresponding to low232

CN, on the plasmids. This way, plasmids will never be completely lost. Nevertheless, the potential233

control mechanisms over HGT [38] means that it lends itself to both single-strain and multicellular234

computations based on this approach.235

Plasmids and HGT may play a major role in interbacterial relationships and the evolution of236

microbial communities [39]. Such powerful tools should not be left out of the synthetic biology237

toolbox. This study demonstrates the in-principle feasibility of using them to achieve complex238

human-defined computations in cellular systems, and provides baseline information for their future239

wet-lab implementation.240
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