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Abstract 

Our cerebellum has been proposed to generate prediction signals that may help us plan and execute our motor 
programs. However, to what extent our cerebellum is also actively involved in perceiving the action of others 
remains to be elucidated. Using fMRI, we show here that observing goal-directed hand actions of others 
bilaterally recruits cerebellar Lobules VI, VIIb and VIIIa. Moreover, whereas healthy subjects (n=31) were 
found to be able to discriminate subtle differences in the kinematics of observed limb movements of others, 
patients suffering from spinocerebellar ataxia type 6 (SCA6; n=21) were severely impaired in performing such 
tasks. Our data suggest that the human cerebellum is actively involved in perceiving the kinematics of the 
hand actions of others and that SCA6 patients’ deficits include a difficulty in perceiving the actions of other 
individuals. This finding alerts us to the fact that cerebellar disorders can alter social cognition. Given that 
impairments in social cognition have been reported to be one of the most debilitating consequences of 
neurological disorders, this finding may be relevant to improving the quality of life of patients and their 
families.  
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Introduction  

The ability to perceive hand actions of others plays a key role in our ability to learn fine motor skills from 
conspecifics and interact successfully with them in cooperative and competitive settings. Cerebral cortical 
regions involved in motor control, including the premotor cortex and inferior parietal cortex where mirror 
neurons were found in the monkey (di Pellegrino et al., 1992; Gallese et al., 1996; Rizzolatti et al., 1996; 
Kohler et al., 2002; Keysers et al., 2003; Fogassi et al., 2005; Rozzi et al., 2008), and the primary 
somatosensory cortex (SI) (Gazzola and Keysers, 2009; Caspers et al., 2010; Keysers, Kaas and Gazzola, 
2010), have been shown to be necessary for extracting subtle information from the observed kinematics of 
hand actions (Urgesi, Candidi and Avenanti, 2014; Keysers, Paracampo and Gazzola, 2018). A powerful task 
to reveal the impact of disturbing these cortical regions requires participants to judge the weight of an object 
lifted by another individual. This task depends on the ability to transform subtle kinematic cues into a weight 
estimate. Perturbing activity in the premotor cortex and SI disrupts the ability to perceive the weight (Pobric, 
De and Hamilton, 2006; Valchev et al., 2017), suggesting a causal role of premotor and somatosensory region 
in action perception. 

The cerebellum is a key partner of these neocortical brain regions during motor control, where its role is well 
established (Kelly and Strick, 2003; Gao et al., 2018). It is perhaps not surprising that some have speculated 
that the cerebellum may also play a role in the perception and prediction of the kinematics of observed hand 
actions. Specifically, it has been proposed that the cerebellum could leverage its forward models (i.e. neural 
computations that transform motor signals into expected sensory consequences) to predict the actions of others 
(Miall, 2003; Wolpert, Doya and Kawato, 2003; Fuentes and Bastian, 2007; Gazzola and Keysers, 2009; 
Rizzolatti and Sinigaglia, 2010). Although this proposal is intuitively appealing, we still have little evidence 
for the cerebellum being a reliable and even necessary node of the action observation network (Sokolov, Miall 
and Ivry, 2017). This is because fMRI evidence for its recruitment during action observation is mixed, and 
very few neuro-modulation or lesion studies have explored the impact of cerebellar disruptions on hand action 
observation.  

With a few exceptions, imaging studies on action perception have typically focused on the involvement of the 
neocortex, leaving the information about cerebellar activity limited to what the field of view of fMRI of these 
studies usually included, i.e. the dorsal cerebellum (e.g. (Aziz-Zadeh, 2006; Gazzola et al., 2007a; Gazzola et 
al., 2007b; Catmur et al., 2008; Gazzola and Keysers, 2009; Agnew, Wise and Leech, 2012; Brunner et al., 
2014; Plata Bello et al., 2014; Di Cesare et al., 2015; Jelsone-Swain et al., 2015; Thomas et al., 2018)). Several 
other experimental studies fail to observe cerebellar activation to hand action observation (Iacoboni et al., 
1999, 2001; Buccino et al., 2004; Orr et al., 2008; Rocca and Filippi, 2010; Jastorff, Abdollahi and Orban, 
2012; Sasaki et al., 2012; Horan et al., 2014). This inconsistency is also reflected in meta-analyses of action 
observation studies, with some finding no (Caspers et al., 2010) or very limited cerebellar activations 
(Molenberghs, Cunnington and Mattingley, 2012), and others finding several clusters (Van Overwalle et al., 
2014). In their extensive meta–analysis, Van Overwalle et al. found that only 28% of the reviewed studies 
investigating action observation report cerebellar activity. The degree to which these inconsistencies depend 
on data-acquisition and data-analysis pipelines not optimized for the cerebellum is difficult to estimate post-
hoc, and experiments that optimize methods for the cerebellum, assess the reliability of activations in 
individual participants, and assess replicability across studies are required. Part I of the current manuscript 
will therefore present four fMRI experiments that map and replicate the recruitment of cerebellar voxels during 
hand action observation using MRI acquisition and analysis methods optimized for the cerebellum. These 
studies highlight that lobules VI and VIII are consistently recruited by action observation.  

However, to establish whether the cerebellum causally contributes to hand action observation, its activity must 
be perturbed and the impact on action perception measured. Unfortunately, only two studies have taken that 
route so far. First, Sokolov (Sokolov et al., 2010) showed that four patients with tumours in the left lateral 
cerebellum (but not those with lesions in the vermis) were impaired in their ability to detect whether a point-
light walking motion was embedded in random dot motion of that locomotor activity. However, the motor 
control of routine walking and of skilled hand actions is fundamentally different, as demonstrated by the fact 
that lesioning the pyramidal tract that transmits the cortical output to the spinal cord leaves routine treadmill 
walking unaltered (Eidelberg and Yu, 1981), but severely impairs skilled hand actions (Forssberg et al., 1999; 
Duque et al., 2003; Hermsdörfer et al., 2003). Second, Cattaneo (Cattaneo et al., 2012) tested the involvement 
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of the cerebellum in the perception of action sequences. They showed eight participants affected by cerebellar 
ischemia sets of four still photographs taken during an action (e.g. opening a bottle and pouring a glass of 
water). One out of the four pictures was not fitting the temporal sequence of the action, and the task was to 
identify which one was the intruder. They found the performance of five of the cerebellar patients to be below 
the range of the sixteen healthy controls. While this study does not explore the processing of the subtle 
kinematic cues, it provides the first evidence that cerebellar impairments can affect the ability of participants 
to identify acts not belonging to a particular action sequence. However, while dozens of studies in hundreds 
of participants establish that premotor and parietal regions of the neocortex are necessary for the optimal 
perception of observed actions (Urgesi, Candidi and Avenanti, 2014; Keysers, Paracampo and Gazzola, 2018), 
the necessary role of the cerebellum in hand action observation hinges on a single study with 8 patients. In 
part II of the current study we therefore aim to provide new evidence for a contribution of the cerebellum to 
action perception, and the first evidence for its role in processing subtle kinematic cues during hand action 
perception. To this aim, we tested the ability of 21 patients with spinocerebellar ataxia of subtype 6 (SCA6) 
to detect the weight of a box by observing the kinematics of a hand lifting the box in a video setting. SCA6 is 
a rare late-onset neurodegenerative disorder characterized by ataxia and associated with a loss of Purkinje 
cells in the cerebellum. A Voxel-based morphology study points to loss of gray matter in the hemispheres of 
lobule VI (Rentiya et al., 2017) as being the primary cause of the upper limb ataxia – adjacent to regions in 
which we find cerebellar activations to action observation in part I. Task performance was compared with that 
of 31 age matched controls. Participants were tested in (i) a condition in which a sleeve on the actor’s arm 
occluded muscle shape information, forcing participants to focus on the arm’s kinematics to judge the weight 
of the box (Sleeve condition), and in (ii) a condition in which the sleeve was removed to reveal information 
on the appearance of muscle contractions, which complements the arm’s kinematic information (NoSleeve). 
Comparing the two groups in the Sleeve condition will reveal whether the cerebellum is necessary for 
kinematic processing. Comparing the gain in performance across the two conditions (i.e. the NoSleeve-Sleeve 
performance difference) across groups will reveal whether the cerebellum is necessary to extract additional 
information from biological shape. 

The two main aims of our work are therefore to establish: (a) whether and where hand action observation 
reliably activates the cerebellum and (b) whether perturbations of cerebellar functioning impair the ability to 
process the kinematic and/or shape of observed actions. 
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Materials and Methods 

General overview of the experiments and participants (Table 1) 

Experiment #1 was aimed at localizing cerebellar activity to action observation using different analysis 
pipelines, and at comparing the results between pipelines and to those found in the literature. Experiment #2 
and #3 tested the replicability of the results of Experiment #1 on two independent samples of participants, and 
on a different MRI scanner. Experiment #4 tested the impact of the weight discrimination task on the 
previously identified action observation network, and Experiment#5 was aimed at directly testing the 
involvement of the cerebellum in action perception by comparing the accuracy in weight estimation between 
SCA6 patients and matched controls.  

All tested healthy participants had a normal or corrected to normal vision, and none had a history of 
neurological conditions or treatments. The participants tested in the MRI also met MRI safety requirements.   

The SCA6 patient group was recruited in collaboration with the department of Neurology at the Erasmus MC 
Rotterdam (see Supplementary method 1.0). The severity of disease progression was clinically assessed by a 
licensed neurologist using the Scale of the Assessment and Rating of Ataxia (SARA) (Schmitz-Hubsch et al., 
2006; Saute et al., 2012). SARA includes 8 items (gait, stance, sitting, speech disturbance, finger chase, nose-
finger test, fast alternating hand movements and heel-shin slide) reflecting neurological manifestations of 
cerebellar ataxia (Weyer et al., 2007). SARA scores range from 0 to 40, with higher scores corresponding to 
higher progression. The average SARA score for our patients group (NSARA=17) was 11.38 ± 5.75 (SD; range: 
2 to 21.5). The thirty-one healthy participants that were recruited as control group, matched the SCA6 group 
for age (t(50)=0.96, p=0.34), handedness (SCA6: 19 right handed and 2 left handed, Controls: 27 right and 4 
left handed, Yates corrected X2=0, p=0.94) and gender (SCA6 15f:6m, ctrl 15f:16m, Yates corrected X2=1.86, 
p=0.17). However, our patient group contained numerically fewer males, an issue that is addressed in control 
analyses. Controls did not receive a clinical assessment. 

All participants signed an informed consent in accordance with the declaration of Helsinki. The fMRI study 
protocols were approved by the medical ethical committee of the University of Groningen (METc2012/380), 
the ethics review board of the University of Amsterdam (2015-BC-4697), the Academic Medical Center of 
Amsterdam (W15_243#15.0288), and the clinical study protocol was approved by the Medical Ethical 
Committee of the Erasmus MC Rotterdam (MEC-2013-095). 

 

Exp.		 No	Subj.	
incl.,	
(recruited)
subj.	type		

Mean	Age±SD	
[range]	

GenderF,	
M	

Technique	 Task	 Experimental	aim	

Exp. #1, 
AO 

31 (35) 
healthy 

23±4 [19-40] 21, 10 fMRI Action 
observation  

Localize cerebellar voxels 
responding to action observation  

Exp. #2, 
AOrep1 

25* (25) 
healthy 

25.2±4 [19-32] 13, 12 fMRI Action 
observation 

Replicability of cerebellar 
activations to action observation 

Exp. #3, 
AOrep2 

23 (23) 
healthy 

25.5±3.6 [21-33] 11, 12 fMRI Action 
observation 

Replicability of cerebellar 
activations to action observation 

Exp. #4, 
WD 

25* (23) 
healthy 

25.2±4 [19-32] 13, 12 fMRI Weight 
estimation 

Localize cerebellar activations to 
the weight discrimination task 

Exp. #5, 
SCA6 

19WD, and 
17SARA (21) 
SCA6 

62±7 [49-80]; 
60.8±7 [49-68] 

WD 14, 5 
SARA 12, 5 
Total 15, 6 

Behav + eye 
tracking (N=4) 

Weight 
estimation  

Investigate whether cerebellar 
deficits are reflected in decreased 
accuracy in perception  

 
 31 healthy 61±7 [43-74] 15, 16 Behav + eye 

tracking (N=7) 
Weight 
estimation  

Table 1: Experiments overview. From left to right: the acronym of each experiment (AO=action observation; 
AOrep=action observation replication; SCA6=spinocerebellar ataxia type 6; WD=weight discrimination; SARA= Scale 
of the Assessment and Rating of Ataxia); the number of participants included in the analyses and their characterization 
(number in brackets indicate the number of initially recruited participants); the average age of the group, its standard 
deviation and range in brackets; the number of females and males within each group of included participants; the 
technique involved in the experiment; the task used for each experiment; the aim of each experiment. All groups of 
participants are independent except the ones marked with *, in which the same 25 participants underwent both the 
passive observation and the weight estimation task in separate sessions. In Exp. #1, four participants were excluded 
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from the statistical analysis: two due to excessive head motion (displacement of more than the 3.5 mm voxel 
dimension), one reported sleepiness, and one because of image distortion. In Exp. #5, two participants were excluded 
from the weight lifting task because pre-symptomatic, and two more were excluded from the correlation with SARA 
because did not have SARA scores. 

Stimuli, tasks and paradigms 

Action observation task (Fig. 1A). During the observation task participants watched 39 unique movies  of a 
human right hand interacting with objects displayed on a table (ActionOBS). The 39 control movies displayed 
a hand movement without a meaningful object interaction (CtrlOBS). Exp. #1 and 2 also contained a third 
static condition, in which the hand rested close to the object (stimuli also shown in Arnstein et al., 2011; 
Valchev et al., 2016). This static condition was not included in Exp. 3, and therefore not included in the group 
analyses. Conditions were randomized across participants and presented using the Presentation® software 
(Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com) in a single fMRI run. 
Participants were instructed to pay close attention to the movies shown.  

Weight discrimination task (WD, Fig. 1B): Participants performed a two-alternative forced-choice task, in 
which at every trial, participants had to choose in which of the two presented videos the heaviest object was 
lifted. The 4 seconds video-clips showed a human arm lifting an object. In order to avoid participants to deduce 
the weight from object movement only (e.g. differences in object shaking during the lifting phase), a black 
panel occluded both the object and the hand from vision. To disentangle whether the contribution of 
cerebellum mainly comes from computation of action kinematics or from arm shape information, two versions 
of the task were created: (i) in half of the trials, the arm lifting the object was sleeved thus making the kinematic 
of the arm the only information available to perform the task (Sleeve); (ii) in the other half, the arm was 
uncovered thus allowing both kinematic and shape information to be used (NoSleeve; Fig. 1B). During the 
video recording, the actor was instructed to lift one of three weights (2850g, 900g and 180g) within 4 seconds. 
A metronome was used to time the lift, and a reference line was marked on the wall in front of the actor to 
help maintaining the same lifting height throughout all videos. The actor was aware of the object weight to 
avoid hesitation in the lifting. Videos were recorded using a digital video camera (Sony DSRPDX10P) and 
edited using Adobe Premiere Pro (Version CS5, Adobe System Incorporated, San Jose, USA). Clips showing 
the same lifted weight were never paired. In half of the trials the heaviest object was lifted first, in the other 
half as second. The order was randomized in Psychopy2 (Peirce, 2009). After the second clip, the task 
instruction was presented until the subject indicated his/her response. Before the beginning of the task 
participants performed four training trials.  

Some minor task differences were present between Exp#4 and #5 (Fig. 1B).  

Exp. #5 (behaviour).  Participants gave the response by pressing the arrow keys on a standard QWERTY 
keyboard using their right hand. Ninety-six trials were presented in total, and participants had the option to 
take a short voluntary break after the first half of the trials. 

Exp. #4 (fMRI). Participants indicated their responses by means of a MRI compatible button box. Participant 
used their left hand to select the first clip and their right hand to select the second. Stimuli were presented 
using Presentation® software. For the fMRI experiment, a numerosity task was additionally introduced and 
intermixed with the weight discrimination task. Participants had to estimate and compare the number of 
moving dots shown in video 1 and 2 instead of weight. The movement of the dots followed the kinematic of 
the arm presented in the Sleeve and NoSleeve conditions, but the arm was not visible. Since an error occurred 
in the randomization of this condition, and this task was not performed by the SCA6 group, the numerosity 
condition was not included in the group analyses. Seventy-two trials were presented in total (24 for each of 
the three conditions). 
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fMRI data acquisition  

All MRI data sets included an anatomical scan. Exp. #1 then included one functional scan of the action 
observation task. Exp. #2 and 3 aimed at comparing the effect of different numbers of simultaneous slice 
acquisition on task based fMRI, and included four and five functional scans of action observation respectively. 
The results of this comparison are the subject of a separate manuscript. Because participants of Exp. #1 only 
saw the movies once, we only included the first view of the action observation task, independently of the 
number of simultaneously acquired slices. Exp. #4 included two functional runs of the weight lifting task. 
These two runs were randomly presented between the four observation runs of Exp. #2. The scanning 
parameters were chosen to achieve a coverage of the entire cerebrum and cerebellum (Supplementary Table 
1).  

Localization of cerebellar activations, impact of different analysis pipelines and replicability. 

The impact of different pipelines on cerebellar task-based responses was analysed on data from Exp. #1. The 
four considered pipelines mainly differed in the order in which the pre-processing and first level subject 
statistics were computed, and in the normalization template. Because the comparison revealed a no clear 
advantage of using pipelines optimized for the cerebellum compared to the traditional one, the method and 
results of this comparison are presented in the supplementary material.  

All the analyses included in the main text therefore follow the traditional approach which includes: slice-time 
correction, realignment of functional images to the computed mean, co-registration of the anatomical image 
to the mean, whole brain normalization to the MNI template (final voxel size: 2 × 2 × 2 mm) based on the 

Fig. 1. Experimental tasks. (A) Action 
observation task. Example of one out of the 39 
possible actions and its control, followed by the 
task structure. Ctrl= control. OBS=observation. 
A=action. C=control.  The ActionOBS and CtrlOBS 
movies were grouped in blocks of 7 seconds. Each 
block contained three actions from the same 
condition, with a total of 13 blocks for each 
condition. Blocks were separated by a fixation 
cross for a random period of 8 to 12 seconds, 
displayed on a background that was visually similar 
to the table. (B) Weight discrimination task. 
Frame extracted from the NoSleeve (top) and 
Sleeve (bottom) weight lifting condition, followed 
by the trial structure for the fMRI (top) and 
behavioral experiments (bottom). In the fMRI task 
the window of time participants were requested to 
answer was indicated by a weighing scale. In the 
behavioural task clips were preceded by the 
number 1 or 2 denoting whether it was the first or 
second clip of the pair. The sentence following the 
video was translated from Dutch for illustration 
purposes. RT=participant’s reaction time. 
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parameter generated during the segmentation of the co-register anatomy, a smoothing with a 6 mm FMHW 
Gaussian kernel followed by a general linear model (GLM). Analyses testing the possibility of activation 
leakage between the anterior cerebellum and the temporal cortex due to smoothing are reported in the 
supplementary material.  

For Exp.#1 to 3, the GLM included two standard box car predictors that modelled the ActionOBS and CtrlOBS 
video presentation. Exp. #1-2 also included a predictor modelling the static conditions. All predictors were 
convolved with the canonical hemodynamic response function (HRF). The last six regressors of no interest 
included the displacements and rotations along the three axes, determined during image realignment. The 
ActionOBS-CtrlOBS contrast was computed at the subject-level to generate action specific activations for 
observation. Analyses of variance on the ActionOBS-CtrlOBS contrast values from Exp. #1-3 were also 
implemented to directly compare the results of the three experiments to each other (within-subjects ANOVA) 
as well as to baseline (one-way ANOVA).  

All analyses were run in SPM8 and 12 (Wellcome Trust Centre for Neuroimaging, UCL, UK) using Matlab 
7.14 (The MathWorks Inc., Natick, USA) with a bounding box size adjusted to include the entire cerebellum 
[-90 -126 -72; 91 91 109], complemented by custom Matlab scripts. Unless specified otherwise, all analyses 
were estimated within the cerebellar mask using the cerebellar anatomical map from the Anatomy toolbox 
(http://www.fz-juelich.de/ime/spm_anatomy_toolbox) (Geyer et al., 1996, 2000; Amunts et al., 1999; Geyer, 
Schleicher and Zilles, 1999; Grefkes et al., 2001; Geyer, 2004; Eickhoff et al., 2005, 2006, 2007; Caspers et 
al., 2006; Choi et al., 2006).  The Anatomy toolbox was also used to define regions of interests, and guide 
anatomical descriptions of clusters of activity. 

Unless specified otherwise, all statistical maps were thresholded at pFWE<0.05 with a minimal cluster size of 
10 voxels. We chose peak-level FWE-correction, because we wished to (i) interpret activation of individual 
voxels, and, motivated by the inconsistencies of cerebellar activations in the literature, (ii) to limit the risks of 
Type I errors.   

In order to investigate the consistency in location of voxels responding to action observation between 
participants and studies, we computed consistency maps (Gazzola and Keysers, 2009, and Supplementary 
method 1.2). However, as the consistency maps cannot confirm that voxels responding to action observations 
are present in all participants, we counted the number of activated voxels within each participant. This 
counting was done separately for the four cerebellar anatomical regions of interest (left and right lobule VI, 
and VIIb/VIIIa), and for the cerebellum as a whole. To compare the reliability of cerebellar activations with 
that of the cortex, the counting was done for three additional cortical regions, typically associated with the 
action observation network (Gazzola and Keysers, 2009; Caspers et al., 2010; Molenberghs, Cunnington and 
Mattingley, 2012): the premotor area BA44, the inferior parietal complex PF and the primary somatosensory 
cortex SI.  

Localization of the weight discrimination task 

The GLM of Exp. #4 included eight boxcar predictors: three modelled the video presentation (i.e. from the 
beginning of Video 1 to the end of Video 2) associated to the Sleeve, NoSleeve and Numerosity conditions; 
two captured the participants responses at the time the weighting scale was presented separately for the left 
and right hand; one captured text information given to our participants at the beginning and the end of the 
each session; one included button presses that happened outside the response window; and one included the 
four videos used for training (only for the first session). The six head motion parameters were again added as 
covariate of no interest. Analyses of variance were used to compare the Sleeve and NoSleeve conditions to 
each other (within-subjects ANOVA), and to baseline (one-way ANOVA). As for Exp.#1-3, unless specified 
otherwise, the ANOVAs were computed within the cerebellar mask, at pFWE<0.05. 

To test whether the videos used for the weight estimation task elicited activity in the areas to be found active 
for general action observation, an additional GLM was computed within a binary mask obtained by the global 
null conjunction of Exp. #1, 2 and #3 [Exp#1ActionOBS-CtrlOBS OR Exp#2ActionOBS-CtrlOBS OR Exp#3ActionOBS-

CtrlOBS] (tFWE=2.06) from the one-way ANOVAs that included the ActionOBS-CtrlOBS from all three 
experiments. Results are shown at pFWE <0.05.  

Analyses of behavioral data 
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Task performance scores were calculated as proportion of correct responses. We checked their normality using 
the Lilliefors test. Performance for the Sleeve and for the NoSleeve-Sleeve difference were normally 
distributed (both p>0.12). The performance in the NoSleeve condition and the average score of Sleeve and 
NoSleeve violated normality (both p<0.002). Accordingly, we used nonparametric tests as our main approach, 
and parametric analyses (ANOVAs and Bayesian analyses) were only used to supplement analyses for the 
Sleeve and NoSleeve-Sleeve difference.  

To make sure the deficits in action perception did not occur because of visual tracking problems, eye tracking 
data were collected from four patients and seven healthy subjects; these control data as well as the methods 
for eye tracking are presented in the supplementary material. 
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Results 

Localization of Action Observation Activations in the Cerebellum and their reliability 

Viewing goal directed hand actions compared to control stimuli (ActionOBS-CtrlOBS) in Exp. #1 bilaterally 
recruited cerebellar Lobules VI, VIIb and VIIIa (Table 2, Fig. 2A and S1).   

Overlapping our activations with action observation maps from the meta-analysis of Van Overwalle and 
colleagues (Van Overwalle et al., 2014) (blue clusters of Fig. 2A, and Supplementary results 2.1) reveals only 
a small portion of the right lobule VI is common among the two maps. To test whether the limited overlap is 
due to subtracting our control condition, we overlapped the meta-analysis map with a global null conjunction 
of our conditions (i.e. ActionOBS OR CtrlOBS, pFWE<0.05, t=2.8). The overlap remained limited to right 
Lobule VI (Fig. 2B). 

Considering this inconsistency, we (1) replicated the experiment on a different scanner in two new groups of 
participants and (2) explored how many of our participants had activations in the cerebellum. 

Replicating the analysis in new participants confirmed the cerebellar recruitment, despite differences in 
scanning location and parameters (Fig. 2C-E, Table 2-3).  

Looking at individual participants revealed that all but four (all from Exp. #1) of the 79 participants had 
significant activations to the ActionOBS-CtrlOBS contrast when tested at p<0.001 (t=3.1) within the 
cerebellum (blue circles in Fig. 2G). The majority (68/79, 86.1%) additionally had >10 voxels activated (Fig. 
2G and first 5 columns of Supplementary Table 4) and most had at least 10 voxels in each of the cerebellar 
lobules identified in the group (ROIs encompassing lobule VI or lobule VIIb+VIIIa). A binomial distribution 
indicates that finding 10 or more voxels significant by chance at p=0.001 in a ROI of 2085 voxels (the largest 
ROI we have) is highly unlikely (p<2x10-5).  

To compare the reliability of cerebellar activations with those of the cerebrum, we took three regions 
consistently associated with the action observation system, BA44, the PF complex and SI (Keysers and 
Gazzola, 2009; Caspers et al., 2010; Molenberghs, Cunnington and Mattingley, 2012), and counted activated 
voxels in these regions subject by subject (Supplementary Table 4, last 6 columns). Chi2 tests comparing the 
proportion of participants with zero voxels activated in the 4 cerebellar and 6 cerebral regions using Fisher’s 
exact test in R indicated that for Exp#1 and #2 the proportion with zero voxels activated was larger in the 
cerebellum (Exp1, p=0.001; Exp2, p=0.004; Exp3, p=0.86). When combining all three experiments, the 
difference in proportion became highly significant (p<0.001), with the cerebral ROIs hosting significant 
voxels in a larger proportion of participants than the cerebellar ROIs.   

Consistency maps indicated that the right Lobule VI hosted the most consistently activated voxel with 30 
participants having significant activations in that specific voxel (Fig. 2F).  

In summary we find that our task reliably activates the cerebellum at the individual and group level, and across 
scanning location and pipelines. Despite the high reliability of our task the results however only overlap with 
those in the literature in a small part of right Lobule VI, and remain less reliable than cerebral activations.  

 

Cluster 
size  

# Voxels 
in cyto 

% 
Cluster 

Hem Cyto or anatomical 
description 

% 
Area 

Peak Information 
T x y z 

Exp. #1 ActionOBS-CtrlOBS pFWE<0.05, t=4.31 

655 523 79.8 R   Lobule VI (Hem)  29  9.06 28 -54 -26 
       7.72 20 -70 -22 
 61.8 9.4 R   Area FG4  12.6  5.60 24 -44 -18 
 14.4 2.2 R   Lobule VIIa crusI (Hem)  0.4     
 11.9 1.8 R   Area hOc3v [V3v]  1.4     
 11.9 1.8 R   Area FG1  4.8     

340 328.6 96.7 L   Lobule VI (Hem)  17.5  -28 -54 -26 
       6.20 -20 -68 -24 

249 103.4 41.5 R   Lobule VIIIa (Hem)  14.2  6.38 28 -60 -54 
       6.08 20 -66 -54 
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       5.51 30 -54 -52 
 97.1 39 R   Lobule VIIb (Hem)  14.8  8.23 16 -76 -50 
 24.1 9.7 R   Lobule VIIIb (Hem)  3.4     
 12.9 5.2 R   Lobule VIIIa (Verm)  6.1     

162 85.9 53 L   Lobule VIIIa (Hem)  11.3  7.18 -22 -62 -52 
 51.9 32 L   Lobule VIIb (Hem)  7.6  6.68 -18 -70 -50 
       6.59 -16 -74 -48 
 22 13.6 L   Lobule VIIIb (Hem)  3.6     

Exp. #2 ActionOBS-CtrlOBS pFWE<0.05, t=4.31 

398 131.3 33 R   Lobule VIIIb (Hem)  18.3  8.66 20 -58 -52 
 105.1 26.4 R   Lobule VIIIa (Hem)  14.5  8.10 12 -70 -48 
 50.4 12.7 R   Lobule IX (Hem)  7.2     
 38.4 9.6 R   Lobule VIIb (Hem)  5.9  8.28 16 -72 -52 
 20.5 5.2 R   Lobule VIIIa (Verm)  9.8     

262 205.9 78.6 R   Lobule VI (Hem)  11.4  7.69 30 -50 -24 
       5.03 20 -68 -22 
 44.9 17.1 R   Area FG4  9.2     
 10.4 4 R   Area  FG3  1.6     

153 67.1 43.9 L   Lobule VIIIa (Hem)  8.8  7.53 -16 -66 -48 
       4.78 -24 -52 -50 
 53.4 34.9 L   Lobule VIIIb (Hem)  8.8  5.31 -18 -58 -52 

126 94.8 75.2 L   Lobule VI (Hem)  5.1  7.01 -30 -48 -22 
       5.40 -26 -56 -18 
 23.4 18.6 L   Area FG4  4     

Exp. #3 ActionOBS-CtrlOBS pFWE<0.05, t=4.31 

514 433.8 84.4 L   Lobule VI (Hem)  23.2  8.45 -26 -52 -18 
       6.72 -18 -68 -22 
 43.3 8.4 L   Area FG4  7.3     
 15.8 3.1 L   Lobule V (Hem)  2.2     
 12.9 2.5 L   Area  FG3  1.6     

452 372.8 82.5 R   Lobule VI (Hem)  20.7  6.89 28 -52 -22 
       5.96 18 -70 -22 
       5.88 20 -68 -24 
 61.3 13.6 R   Area FG4  12.5     

402 139.9 34.8 R   Lobule VIIIa (Hem)  19.3  8.34 26 -58 -54 
 99.8 24.8 R   Lobule VIIIb (Hem)  13.9  5.32 18 -52 -50 
 76.5 19 R   Lobule VIIb (Hem)  11.7  8.88 14 -74 -50 
 22.6 5.6 R   Lobule VIIIa (Verm)  10.8     

85 47.8 56.2 L   Lobule VIIIa (Hem)  6.3  6.19 -10 -74 -50 
 32.5 38.2 L   Lobule VIIb (Hem)  4.8     

75 35.1 44.5 L   Lobule VIIIa (Hem)  4.6  6.11 -22 -58 -46 
       6.10 -32 -52 -50 
 24.8 31.3 L   Lobule VIIIb (Hem)  4.1     

Table 2. Cerebellar activations to ActionOBS-CtrlOBS for Exp. #1 to #3. Regions with ActionOBS-
CtrlOBS≥4.31 labelled using SPM Anatomy Toolbox. Results are shown at pFWE < 0.05 with cluster size 
>10 voxels. From left to right: the cluster size in number of voxels, the number of voxels falling in a cyto-
architectonic area, the percentage of the cluster that falls in the cyto-architectonic area, the hemisphere 
(L=left; R=right), the name of the cyto-architectonic area when available or the anatomical description, 
the percentage of the area that is activated by the cluster, the t values of the peaks associated with the 
cluster followed by their MNI coordinates in mm. 

 

 

 Number of voxels Min Euclidean distance 
 Exp1 Exp2 Exp3 Exp1&2&3 Exp1,Exp2 Exp1,Exp3 Exp2,Exp3 

Lob VI R 336 115 454 88 2.0 2.0 2.0 
Lob VI L 537 216 391 202 7.5 2.8 4.0 

LobVIIIa/VIIb R 148 84 130 20 4.5 2.8 3.5 
LobVIIIa/VIIb L 223 198 265 120 4.9 6.3 7.2 

OutsideROIs 179 344 299 56    
Table 3: Comparison between Exp #1, #2 amd #3 in number of voxel and peak distance per cluster 
of activity. For each of the four cerebellar clusters, and for each experiment separately, the number of 
voxels surviving pFWE<0.05 for the contrast ActionOBS-CtrlOBS is reported. The fourth column reports the 
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number of voxels counted within the conjunction of the three experiments. The last row indicates the number 
of cerebellar voxels not falling within the region of interest. Columns 5-7 indicate the minimum Euclidean 
distance between the activation-peaks identified belonging to the four clusters by the Anatomy toolbox for 
SPM. 

 

  

Fig. 2: Reliability of cerebellar action 
observation activations. (A-B). In blue the 
maps presented by Van Overwalle and 
colleagues in 2014, and the results of the 
ActionOBS-CtrlOBS contrast of Exp. #1 in 
the hot color scale in (A) and of the global 
null conjunction ActionOBS OR CtrlOBS for 
Exp. #1 in (B), both at pFWE<0.05. (C-D) 
ActioOBS-CtrlOBS related activity for Exp. 
#2 and #3 respectively. pFWE<0.05, t=4.3. 
(E) Activations common to Exp. #1-3. 
Yellow, blue and green contours indicate the 
borders of the clusters shown in A, C and D 
to facilitate the qualitative comparison. (F) 
Consistency map computed on the 
smoothed data for the ActionOBS-CtrlOBS 
(punc<0.001, t=3.1) contrast across the three 
experiments. The hot scale indicates the 
number of participant for which a particular 
voxel was significantly activated by the 
ActionOBS-CtrlOBS contrast. (G) Circles 
indicate the number of voxel a given subject 
had in each of the four cerebellar clusters 
(first four columns, black circles), in total in 
the cerebellum (fifth column, gray circles), 
and in three cortical regions also commonly 
activated by the ActionOBS-CtrlOBS 
contrast. The median is indicated by the red 
lines and numbers. Data are presented on a 
logarithmic scale and the number of 
participants having no voxels in a particular 
cluster is indicated on the x-axis.  
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Cerebellar activation to the weight discrimination task 

Observing an arm lifting an object to judge its weight activates several regions of the cerebellum (Fig. 3A,B 
and Table 4, pFWE<0.05, t=2.8). The responses to lifting movements overlap with the ALE-meta-analysis maps 
(Van Overwalle et al., 2014) beyond Lobule VI, in bilateral Lobule VIIa crusI. Computing the GLM of the 
weight discrimination experiment within the global null mask of the previous three experiments shows that 
all clusters observed in Exp. #1-3 were activated by the observation of lifting movement (Fig. 3C,D, Table 4). 

 

Cluster 
size 

#Voxels 
in cyto 

% 
Cluster 

Hem 
Cyto or anatomical 

description 
% 

Area 

Peak Information 

T x y z 

Sleeve OR NoSleeve, pFWE<0.05, t>2.8 
6254 898.6 14.4 L Lobule VI (Hem)  48 7.02 -8 -76 -28 

      6.87 -6 -78 -24 
      6.22 -30 -58 -30 
 797.1 12.7 R  Lobule VI (Hem)  44.2 6.86 28 -64 -24 
      6.37 36 -46 -32 
 793.3 12.7 L Lobule VIIa crusI (Hem)  26.1 7.09 -36 -64 -30 
      7.07 -40 -64 -32 
      6.33 -44 -58 -28 
 573.9 9.2 R  Lobule VIIa crusI (Hem)  17.7     

 373 6 L Lobule VIIIa (Hem)  49 6.73 -8 -72 -46 
 296.8 4.7 L Lobule VIIb (Hem)  43.7     

 230.3 3.7 R  Lobule VIIIa (Hem)  31.7     
 199.9 3.2 L Lobule VIIa crusII (Hem)  12.2     
 169.6 2.7 R  Lobule VIIb (Hem)  25.9 6.09 30 -64 -50 

 146.1 2.3 R  Lobule VIIIa (Verm)  69.7     
 132.6 2.1 L Lobule VIIIb (Hem)  21.9     
 130.8 2.1 L Lobule VIIIa (Verm)  88.3     
 121.3 1.9 L Lobule IX (Hem)  19.5     
 73.1 1.2 R  AreaFG3  11.2     
 72.6 1.2 R  Lobule VIIa crusII (Hem)  5.1     
 69.4 1.1 R  Lobule VIIIb (Hem)  9.7     
 64.4 1 L Lobule VI (Verm)  30.7     
 59.6 1 R  Lobule VI (Verm)  25.7     
 46.5 0.7 R  Area FG4  9.5     
 46.3 0.7 R  Lobule IX (Hem)  6.6     
 42.5 0.7 R  Area FG2  13.1     
 38.1 0.6 R  Area FG1  15.3     
 36 0.6 L Lobule VIIb (Verm)  117.6     
 33.6 0.5 L Lobule VIIIb (Verm)  54.5     
 32.5 0.5 R  Lobule VIIIb (Verm)  45.1     
 31.9 0.5 R  Lobule VIIb (Verm)  97.3     
 24.3 0.4 L AreaFG3  2.9     
 17.5 0.3 R  Lobule VIIa crusII (Verm)  30.8     
 16.9 0.3 R  Area hOc4v [V4(v)]  2.7 6.23 36 -74 -22 
  14.3 0.2 L Area FG2  2.8         
Sleeve OR NoSleeve, masked with Exp. #1-3, pFWE<0.05, t>2.4 

585 451.8 77.2 R  Lobule VI (Hem)  25 6.95 28 -64 -24 
      5.83 34 -46 -32 
      5.64 30 -54 -32 
      4.82 24 -72 -22 
      4.26 16 -72 -22 
 56.9 9.7 R  Area FG4  11.6 5.1 32 -50 -22 
 33.4 5.7 R  AreaFG3  5.1 5.2 36 -40 -26 
      4.72 40 -46 -26 
 16.4 2.8 R  Area FG2  5 5.91 44 -58 -26 
 12.6 2.2 R  Area FG1  5.1 6.04 34 -60 -20 

  11.1 1.9 R  Lobule VIIa crusI (Hem)  0.3         
393 93.8 23.9 R  Lobule VIIIa (Hem)  12.8 4.36 28 -60 -52 

 72.3 18.4 R  Lobule VIIIb (Hem)  10     
 59.7 15.2 R  Lobule VIIb (Hem)  9 5.39 28 -64 -52 

      4.82 26 -66 -50 
      4.61 24 -68 -48 
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 57.4 14.6 R  Lobule VIIIa (Verm)  27.1 4.6 6 -72 -38 
      6.13 10 -72 -44 
 32 8.2 R  Lobule IX (Hem)  4.5 5.03 16 -56 -46 
      4.55 14 -54 -50 

  11.2 2.9 R  Lobule VIIb (Verm)  34 4.92 0 -76 -34 
390 348.5 89.4 L Lobule VI (Hem)  18.6 5.57 -26 -68 -24 

      4.91 -32 -52 -30 
      4.64 -36 -46 -28 
      4.59 -34 -48 -26 
      2.91 -24 -50 -24 
 16 4.1 L AreaFG3  1.9     

 10 2.6 L Lobule VIIa crusI (Hem)  0.3 5.48 -44 -54 -30 
            4.73 -38 -52 -34 

262 111.5 42.6 L Lobule VIIIa (Hem)  14.6 6.81 -8 -72 -46 
      4.89 -28 -52 -50 
      5.41 -22 -60 -48 
 72.4 27.6 L Lobule VIIIb (Hem)  11.9     

 27.1 10.4 L Lobule VIIb (Hem)  4 5.69 -20 -72 -48 
      5.65 -22 -70 -46 

            5.49 -22 -66 -44 
Sleeve AND NoSleeve, pFWE<0.05, t>4.5 

1742 418.1 24 L Lobule VIIa crusI (Hem)  13.8 7.09 -36 -64 -30 
      7.07 -40 -64 -32 
 338.8 19.4 L Lobule VI (Hem)  18.1 7.02 -8 -76 -28 
      6.87 -6 -78 -24 
      6.22 -30 -58 -30 
 194.6 11.2 L Lobule VIIIa (Hem)  25.6 6.73 -8 -72 -46 
 179.3 10.3 L Lobule VIIb (Hem)  26.4     

 52.5 3 R Lobule VIIb (Hem)  8 6.09 30 -64 -50 
 51.4 2.9 L Lobule VIIa crusII (Hem)  3.1     

 37.4 2.1 L Lobule VIIIa (Verm)  25.3     
 32.5 1.9 R Lobule VIIIa (Hem)  4.5     
 31.9 1.8 L Lobule VI (Verm)  15.2     
 29.6 1.7 R Lobule VIIIa (Verm)  14.1 6.06 10 -72 -44 

 27.6 1.6 L Lobule VIIb (Verm)  90.2 5.93 -22 -70 -44 
 24.1 1.4 R Lobule VI (Verm)  10.4     

 22.6 1.3 L Lobule IX (Hem)  3.6     
 20.1 1.2 L Lobule VIIIb (Hem)  3.3     
 16.1 0.9 R Lobule VI (Hem)  0.9     
 13.8 0.8 L Area FG2  2.7     
 13.3 0.8 R Lobule VIIa crusII (Hem)  0.9 6.33 -44 -58 -28 
  10.3 0.6 R Lobule VIIb (Verm)  31.3         

593 307.8 51.9 R Lobule VI (Hem)  17.1 6.86 28 -64 -24 
      6.37 36 -46 -32 
      5.68 32 -54 -34 
      5.5 24 -76 -20 
 178.4 30.1 R Lobule VIIa crusI (Hem)  5.5 5.67 38 -62 -30 
 33.3 5.6 R Area FG2  10.2 5.99 40 -68 -22 
      5.88 44 -60 -26 
 29.3 4.9 R AreaFG3  4.5 5.42 36 -40 -28 
 25.3 4.3 R Area FG1  10.2 5.98 34 -60 -20 
 11.3 1.9 R Area hOc4v [V4(v)]  1.8 6.23 36 -74 -22 

Sleeve AND NoSleeve, masked with Exp. #1-3 pFWE<0.05, t>3.9 
321 237.1 73.9 R Lobule VI (Hem)  13.1 6.95 28 -64 -24 

      5.83 34 -46 -32 
      5.64 30 -54 -32 
      4.82 24 -72 -22 
      4.26 16 -72 -22 
 27 8.4 R AreaFG3  4.1 5.2 36 -40 -26 
      4.72 40 -46 -26 
 21.9 6.8 R Area FG4  4.5 5.1 32 -50 -22 
 16.4 5.1 R Area FG2  5 5.91 44 -58 -26 

  10 3.1 R Lobule VIIa crusI (Hem)  0.3         
210 93.4 44.5 L Lobule VIIIa (Hem)  12.3 6.81 -8 -72 -46 

      5.41 -22 -60 -48 
 44 21 L Lobule VIIIb (Hem)  7.3 5.69 -20 -72 -48 
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     4 5.65 -22 -70 -46 
      5.49 -22 -66 -44 

  27.1 12.9 L Lobule VIIb (Hem)    4.89 -28 -52 -50 
127 38.3 30.1 R Lobule VIIIa (Verm)  17.9 6.13 10 -72 -44 

      4.6 6 -72 -38 
 26.4 20.8 R Lobule VIIIa (Hem)  3.6 4.36 28 -60 -52 
 26.3 20.7 R Lobule VIIb (Hem)  3.9 5.39 28 -64 -52 
      4.92 0 -76 -34 
      4.82 26 -66 -50 

            4.61 24 -68 -48 
70 52.4 74.8 L Lobule VI (Hem)  2.8 4.91 -32 -52 -30 

      4.64 -36 -46 -28 
            4.59 -34 -48 -26 

66 64.4 97.5 L Lobule VI (Hem)  3.4 5.57 -26 -68 -24 
15 11.4 75.8 R Lobule IX (Hem)  1.6 5.03 16 -56 -46 

            4.55 14 -54 -50 
Table 4. Cerebellar activations to the weight discrimination task. Results are shown at pFWE<0.05 
with cluster size >10 voxels. Conventions as in Table 3. 

What aspect of action observation is processed in the cerebellum? By disentangling the activity common to 
the Sleeve and NoSleeve conditions mentioned above (Conjunction Sleeve & NoSleeve) from that specific to 
the NoSleeve condition (NoSleeve-Sleeve), we can attempt to identify regions involved in kinematic and 
shape processing, respectively. The eye-tracking maps from the control participants show that the two 
conditions are indeed explored differently (Supplementary Fig. 2A). When the arm was covered participants 
focussed similarly on the proximal and distal part of the arm (t(12)=1.523, p=0.154) but if no sleeve was present 
participants focused significantly more on the proximal part of the arm (t(12)=-9.482, p<0.001) that reveals 
shape information in the upper arm musculature. Results from the fMRI data indicate that in contrast to the 
conjunction that revealed consistent cerebellar involvement for kinematic processing, at FWE correction at 
peak level nothing survive for both the Sleeve-NoSleeve and the NoSleeve-Sleeve contrast within the 
cerebellum (t=4.42, p>0.05), while 22 voxels in the fusiform area FG4 become apparent for the contrast 
NoSleeve-Sleeve when the analyses is run for the whole brain (t=5.4, p<0.05). Accordingly, the cerebellum 
is significantly recruited by the kinematic cues common to both conditions (Fig. 3), but not by the differential 
shape cue that the NoSleeve-Sleeve contrast situates in the ventral visual stream instead. 

 

Cerebellar contribution to action perception 

Fig. 3. fMRI results of the weight discrimination 
task. (A) Voxels significantly activated by either the 
Sleeve (only kinematic information available) or the 
NoSleeve (both kinematic and shape information) 
condition (global null conjunction in SPM at pFWE<0.05, 
t=2.8, min 10 vx). In blue the clusters identified by Van 
Overwalle et al. 2014, as responding to action 
perception. (B) Voxels activated by both (conjunction-
conjunction in SPM) by the NoSleeve and Sleeve 
conditions (pFWE<0.05; t=4.5, min 10 voxels). (C) Same 
as in (A) but within the clusters of activation found in 
Exp. #1 to #3 (Exp.#1>0 OR Exp.#2>0 OR Exp.#3>0). 
Results are shown at pFWE<0.05, t=2.8, min 10 voxel. 
(D) Same as in (C) but within the clusters of activation 
found in Exp. #1 to #3 (pFWE<0.05; t=3.9, min 10 voxels). 
All activations are shown on the flat map of the 
cerebellum offered by the SUIT toolbox. 
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The Mann-Whitney U test on task performance revealed a significant difference between SCA6 and controls 
for the Sleeve condition (NSCA6=21; Nctrl=31; U=199.5; p<0.009), in which participants depend on the 
kinematic information (Fig. 4A). The same test revealed that the gain of performance in the NoSleeve 
compared to the Sleeve condition (i.e. NoSleeve performance – Sleeve performance) did not differ 
significantly across groups (NSCA6=21; Nctrl=31; U=274.5; p>0.34). Not surprisingly, the two groups therefore 
also differed when the total performance was considered, including both the Sleeve and NoSleeve trials 
(NSCA6=21; Nctrl=31; U=183; p<0.004). Using d’ instead of percent correct led to similar conclusions. To 
explore whether our pattern of findings, which included a significant group difference for the Sleeve condition 
and a lack of significant group difference in the gain of performance, was evidence that the cerebellum 
contributes to kinematic but not shape processing in our experiment, we performed a Bayesian t-test in JASP. 
The Bayes factors in favour of the alternative hypothesis Ctrl>SCA6 were BF=14.7 (Sleeve) and BF=0.19 
(NoSleeve-Sleeve performance). Accordingly, we have strong evidence for a group difference in kinematic 
processing (Sleeve), and moderate evidence for a lack of difference for shape processing (NoSleeve-Sleeve).  

To explore if this group difference in the performance could be due to the less than ideal matching on gender, 
we performed two further analyses. First, we performed a parametric ANOVA on the performance in the 
Sleeve condition with 2 Groups (SCA6 vs Ctrl) x 2 Genders. The interaction of Gender x Group was not 
significant (F(1,48)=2.66, p=0.11), suggesting that the group difference does not depend on gender. Second, we 
created control groups that were exactly matched in gender to the SCA6 group by sub-selecting 6 males out 
of the 16 available in the control group, keeping all the 15 females. There are 8008 ways to subsample 6 males 
out of 16, and for each of them, we calculated the p-value for the group difference in total performance using 
the Mann-Whitney U one tailed test. The median p-value across the 8008 subsamples was p=0.016 and 7675 
of the 8008 (96%) had p<0.05 (Fig. 4B). This confirms that compared to the majority of randomly subsampled, 
gender matched control groups, the SCA6 group shows impaired performance in our task. 

To explore whether there is a significant association between the severity of the degenerative disorder and the 
performance in our task, we calculated the Spearman rank order correlations between the total performance 
score and the SARA score for the 17 patients for which we do have the SARA score (Fig. 4C). We found that 
the association is significant: R=-0.55, t(15)=-2.54, p<0.022.  

Finally, to explore whether the perceptual impairment we observe in SCA6 patients would also be visible in 
implicit measures, we added eye tracking in our last participants (4 SCA6 and 7 controls), which did not show 
any significant group difference (Supplementary results 2.3). Given the small sample size only large group 
differences could have been detected, however, the qualitatively similar pattern in the two groups suggests 
that SCA6 did not severely alter how subjects explored the stimuli in space and time. 
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Fig. 4. (A) Violin plot of the 
performance (percent correct 
responses) in the weight-
discrimination task for the 21 SCA6 
patients (red) and 31 controls 
(green) for the different conditions. 
*:p<0.05, **:p<0.01 using Mann-
Witney U-tests to compare SCA6 
vs controls group in each 
condition. (B) Distribution of p-
values obtained from the 8008 
possible subsamples of gender 
matched control groups, again 
using the Mann-Whitney U test to 
compare the total score (Sleeve 
and NoSleeve trials together) 
across groups. (C) The significant 
negative association between 
symptom severity (SARA) and total 
score in the weight perception 
task. The r-value reflects the non-
parametric Spearman rank-order 
correlation. Higher SARA scores 
reflect more severe symptoms and 
predict more perceptual 
impairment.   
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Discussion 

Our primary aims were (a) to explore whether and where the cerebellum is robustly activated by the 
observation of other individual’s hand actions, of others, and (b) whether disrupting the cerebellum leads to 
significant impairments in hand action observation. 

Regarding activations, using scanning parameters that include the entire cerebellum (both in terms of field of 
view during acquisition and bounding box during analysis) we found that across three studies and a total of 
79 participants, the cerebellum was consistently recruited by the contrast between goal-directed hand actions 
and meaningless movements of the hand close to an object. Single subject analyses confirmed that the 
cerebellum was recruited in all but 4 participants. More specifically, we find that activity is reliably induced 
in the lateral hemispheres of lobule VI, and in a cluster including Lobules VIIb and VIIIa. All these activations 
are bilateral. Without using smoothing, it is apparent that the dorsal cluster in Lobule VI is distinct from 
activity in the ventral visual pathway, and is thus not the result of bleeding of activity from visual neocortical 
regions. Each of these clusters were found to be activated in the majority of individual participants. Together 
these results provide strong evidence that the cerebellum is consistently recruited by hand action observation.  

This raises the question of why former studies failed to consistently report cerebellar activations. Our 
comparison of pipelines identifies two potential reasons: (i) up to SPM8, the default bounding box for analyses 
prevented the identification of some of the cerebellar clusters, and (ii) most studies focusing on the cerebrum 
have to choose between a larger field of view (i.e. more spatial coverage) vs. a shorter acquisition time (i.e. 
increased task sensitivity), which often ends in favouring a smaller field of view therefore cutting out the 
cerebellum in at least some participants. At the second level of analysis, if part of the cerebellum is missing 
in the field of view for some of the participants, this region is entirely removed from the search volume on 
which statistical analyses are computed across all subjects. This may have further reduced the consistency 
with which cerebellar activity is reported. Finally, a comparison between the number of participants activating 
our cerebellar ROIs compared to classic cerebral ROIs such as BA44 or PF, showed that the cerebellar ROIs 
indeed are slightly less reliably recruited, providing an additional factor. Overall, our three studies provide 
clear evidence that with proper measurement procedures and analyses pipelines, cerebellar recruitment during 
hand action observation can be demonstrated. The finding that these same regions are also activated when 
using a different, weight judgement task (Exp. #4) in our sample shows that this consistency does not depend 
on a specific task. 

It is interesting that the specific locations of consistent activations in our study are overlapping with or adjacent 
to regions that have been associated with the sensorimotor control of hand actions in the cerebellum (Schlerf 
et al., 2015). One of our foci was localized in the anterior part of lobule VI, which is associated with the 
primary sensorimotor map of finger motions in the cerebellum (Grodd et al., 2001; Schlerf et al., 2015). Our 
second focus was localized in the posterior inferior lobule VIIb expanding into lobule VIIIa. Its location is 
spatially adjacent to the secondary sensorimotor finger map (Grodd et al., 2001; Schlerf et al., 2015). This is 
in line with the notion that cerebro-cerebellar loops involved in fine kinematic control of hand actions may 
also serve as a valuable system to process fine kinematics of observed actions (Miall, 2003; Wolpert, Doya 
and Kawato, 2003; Fuentes and Bastian, 2007; Gazzola and Keysers, 2009; Rizzolatti and Sinigaglia, 2010; 
Sokolov, Miall and Ivry, 2017).  

To explore whether the cerebellum is necessary for extracting information from the kinematics of the hand 
actions of others, we tested whether patients with SCA6 are impaired in a weight-lifting task that has been 
shown to depend on precise processing of hand movement kinematics(de C. Hamilton et al., 2007). Our results 
indicate that SCA6 patients are indeed impaired in their kinematic processing as borne out by a group 
difference in the Sleeve condition that impoverishes muscle shape information. This impairment was more 
pronounced in patients with more severe SCA6 symptoms. Interestingly, when we analysed the data of the 
paradigms without the sleeves, we found that muscle shape processing appears to be preserved, as Bayesian 
statistics confirmed that the patients benefited from the additional muscle shape as much as the controls did. 
These results complement the results of the only other study that has, to our knowledge, examined the impact 
of cerebellar damage in action observation (Cattaneo et al., 2012) in that the two studies probed different 
aspects of hand action observation. In the task of Cattaneo, participant viewed four still frames of an action, 
and had to decide which was not part of that action. Solving that task does not require fine kinematic analyses, 
but an understanding of whether a particular hand-object interaction would be appropriate to achieve a 
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particular goal. In our task, all movies show a hand successfully lifting an object, and performance thus 
depends on analysis of kinematics. That SCA6 patients were impaired in the Sleeve condition, in which 
kinematics was the primary cue, but could benefit from additional muscle shape, highlights that cerebellar 
degeneration particularly impairs kinematic processing. Moreover, these findings dovetail with our fMRI 
results, which show consistent cerebellar activity for the kinematic stimuli but not for the additional shape 
information provided in the NoSleeve condition.  

As the cerebellum is involved in eye movement control, we were concerned that patients may be compromised 
in their ability to follow the movements of the arm with their gaze. However, our control data obtained from 
a small number of SCA6 patients does not suggest severe impairments in how our patients deploy their gaze. 
Future studies could include fMRI of SCA6 patients to explore where in the cerebellum degeneration alters 
task-related activity, and whether this includes regions associated with gaze-control. A previous VBM study 
points to a loss of gray matter in the hemispheres of lobule VI as the primary cause of upper limb ataxia 
triggered by SCA6 (Rentiya et al., 2017), which is in close vicinity to and partly overlaps with regions in 
which we find cerebellar activations to action observation, but is lateral relative to the sections of lobule VI 
mostly associated with eye movements (Supplementary Fig. 3).  

Because interfering with one node of the action observation network is known to disrupt the activity in the 
other connected nodes (Valchev et al., 2016), this should not be taken as evidence that the cerebellar activity, 
per se, is necessary for the processing of observed actions. It could be that SCA6 disrupted activity in other 
connected brain regions that in turn are necessary for the conscious report of weight. Instead, our findings 
should be interpreted at the network level, to suggest that the cerebellum is a necessary node in a network that 
contributes to optimal perception and interpretation of observed hand actions. 

In the light of our findings we believe that it is time to consider the cerebellum a reliable and necessary 
component of the network that allows us to process the kinematics of observed hand actions. Clinically, one 
of the core complaints of many stroke survivors and their spouses are impairments in social cognition (Hillis, 
2014). These social sequelae are often not on the radar of neurological staff. We hope that by showing that 
SCA6 patients have deficits in perceiving the kinematics of the actions performed by other individuals – 
deficits that gets worse with the severity of the disease - our results contribute to an increased awareness of 
the social consequences of neurological disorders affecting the cerebellum. Being impaired in perceiving what 
other individuals around us do is likely to impact the way we related to others and as thereby reduce our 
wellbeing.  
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Table legends 

Table 2. Cerebellar activations to ActionOBS-CtrlOBS for Exp. #1 to #3. Regions with ActionOBS-
CtrlOBS≥4.31 labelled using SPM Anatomy Toolbox. Results are shown at pFWE < 0.05 with cluster size >10 
voxels. From left to right: the cluster size in number of voxels, the number of voxels falling in a cyto-
architectonic area, the percentage of the cluster that falls in the cyto-architectonic area, the hemisphere (L=left; 
R=right), the name of the cyto-architectonic area when available or the anatomical description, the percentage 
of the area that is activated by the cluster, the t values of the peaks associated with the cluster followed by 
their MNI coordinates in mm. 

Table 3: Comparison between Exp #1, #2 and #3 in number of voxel and peak distance per cluster of 
activity. For each of the four cerebellar clusters, and for each experiment separately, the number of voxels 
surviving pFWE<0.05 for the contrast ActionOBS-CtrlOBS is reported. The fourth column reports the number 
of voxels counted within the conjunction of the three experiments. The last row indicates the number of 
cerebellar voxels not falling within the region of interest. Columns 5-7 indicate the minimum Euclidean 
distance between the activation-peaks identified belonging to the four clusters by the Anatomy toolbox for 
SPM. 

Table 4. Cerebellar activations to the weight discrimination task. Results are shown at pFWE< 0.05 with 
cluster size >10 voxels. Conventions as in Table 2. 
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