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T-cells are activated when their receptor molecules recognize
complexes of MHC proteins bound to peptides on the surface
of neighbouring cells. Each T-cell expresses one variant of many
possible receptor molecules, which are generated through a par-
tially random process that culminates in approximately 107 pos-
sible T-cell receptors. As the peptide sequence bound to an
MHC molecule is also highly variable, the optimal strategy of an
antigen-presenting cell for displaying peptide-MHC complexes
is not obvious. A natural compromise arises between aggressive
peptide filtering, displaying a few peptides with high stability
MHC binding in high abundance and regularity, and promiscu-
ous peptide binding, which can result in more diverse peptides
being presented, but in lower abundance. To study this com-
promise, we have combined a model of MHC class I peptide
filtering with a simple probabilistic description of the interac-
tions between antigen presenting cells (APCs) and cytotoxic T-
cells (CTLs). By asking how long it takes, on average, for an
APC to encounter a circulating CTL that recognises one of the
peptides being presented by its MHC molecules, we found that
there often exists an optimal degree of peptide filtering, which
minimises this expected time until first encounter. The optimal
degree of filtering is often in the range of values that the chaper-
one molecule tapasin confers on peptide selection, but varies be-
tween MHC class I molecules that have different peptide bind-
ing properties. Our model-based analysis therefore helps to
understand how variations in the antigen presentation profile
might be exploited for vaccine design or immunotherapies.
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Introduction
An adaptive immune system is somatically generated during
development based on the ability of circulating thymocytes to
recognise the protein contents of infected cells. All cells in
vertebrates express class I molecules of the Major histocom-
patibility complex (MHC), comprising the mostly sequence-
invariant beta-2-microglobulin (β2m) and a highly variable
heavy chain (HC). In the endoplasmic reticulum (ER), this
MHC class I complex binds to protein fragments arising from
proteasomal degradation, which are transported from the cy-
toplasm into the ER by Transporter associated with anti-
gen processing (TAP) molecules. While the specificity of
proteasomes and TAP transporters are moderately sequence-
dependent, the sheer diversity of the protein sequences of
self and viral proteins naturally translates into a large di-
versity of peptide sequences being transported into the ER.
As such, for MHC class I molecules to effectively communi-

cate their internal contents for immune system surveillance,
their peptide-binding specificity must be at least moderately
promiscuous. It has now recently been shown that the MHC
alleles vary in their promiscuity, and that this has a measur-
able impact on immune response (1).

Cytotoxic T lymphocytes (CTL) detect and destroy infections
by recognising antigenic peptides presented on MHC class I
molecules at the surface of antigen presenting cells (APC).
Each CTL is able to recognise pMHC complexes via their
T-cell receptor (TCR), though possess only one TCR type,
and so the specificity of the CTL is encoded by its TCR se-
quence. The TCR is generated in a process of random ar-
rangement of gene segments, known as V(D)J recombina-
tion, which creates an enormous diversity of TCRs across T-
cell populations. Ideally, there would be sufficiently many
T-cells to cover all non-self antigenic determinants, however
this would require 107 TCRs to cover 1013 antigenic deter-
minants, which naturally requires TCRs to be highly crossre-
active, recognising multiple peptides (2).

The formation of the immunological synapse enables TCR
to be engaged by peptide-MHC complexes, which can en-
able CTL to be activated if there are sufficient peptides that
the TCR recognise. APCs can present multiple copies of the
same peptide sequence, and we term the overall composi-
tion of peptides presented as the antigen presentation pro-
file (APP). Given the high degree of crossreactivity between
TCRs and peptide-MHC complexes, a compromise might
arise in terms of how an APC might optimally select peptides
for presentation. For instance, an APP with a small num-
ber of distinct peptide sequences in high abundance would
maximise the chance that corresponding TCRs will be acti-
vated during an interaction. However, an APP with many dis-
tinct peptide sequences in lower abundance would increase
the number of potential TCR matches, but at the cost of low-
ering the probability of any one of them leading to activation.
Highly relevant to this question is the chaperone molecule
tapasin, which skews the APP towards containing more high
affinity peptides overall (3–6). Loss of tapasin leads to poor
peptide selection, resulting in overall lower cell surface abun-
dance of pMHC. Consequently, tapasin-deficient organisms
have altered responses to viral clearance (7–9). It is therefore
not surprising that some viruses and tumours down-regulate
tapasin to evade immune detection (10). Also of relevance to
presentation strategy is the intrinsic binding properties of the
MHC haplotype, which have been shown to vary consider-
ably (1).
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Theoretical work has already been instrumental in under-
standing how T-cell responses depend on the biochemical
parameters of specific TCR-pMHC interactions. It is now
well established that an intermediate rate of TCR-pMHC un-
binding (koff) can provide a sufficient duration for down-
stream signalling without preventing additional receptor in-
teractions (11, 12). Computational models of broader scope
have helped to interpret how CTL killing depends on cell den-
sity within lymph nodes (13, 14). Stochastic models have
helped to formulate a probabilistic treatment of T-cell activa-
tion in terms of the APP: for instance, (15) modelled the idea
that infections are detected when the sum of the stimuli re-
ceived by a T-cell from the interactions between its TCR and
the pMHCs on the APC, exceeds a given threshold. The abil-
ity of T-cells of distinguishing between self and non-self is
a consequence of a higher copy number of foreign peptides
in comparison with self on the APC surface (probabilistic
recognition). In particular, increasing the copy number of
foreign peptides on the APC does not increase the average
number of stimuli per T-cell, but the variance, suggesting
that exceeding the activation threshold is possible only for
high value of foreign peptide copy number (16). However,
these theories have not yet been applied to specific MHC
haplotypes, and do not consider realistic APC surface pre-
sentations. Therefore, here we sought to apply probabilistic
models to the analysis of APPs that arise in different MHC
haplotypes, and determine how they affect the timing of the
CTL response. In order to make this relevant to known MHC
molecules, we have made use of the extensive literature on
peptide-MHC binding prediction, but also a kinetic model of
peptide-MHC loading and presentation (5) to generate plau-
sible antigen presentation profiles.

Results
Predicting the cell surface abundance of multiple pep-
tides. Measuring the APP is made challenging by the sheer
diversity of peptides, their low copy numbers, a lack of suffi-
ciently many peptide-specific probes, cell-cell variability, and
possibly many other factors. Therefore, we base our analy-
sis on the T-cell activation capability of different APPs on
computational models, but focus on well characterised MHC
class I molecules. As the rate of peptide-MHC dissociation
is the major determining factor of cell surface abundance, we
sought to create a model that simulates combinations of pep-
tides that differ only in their MHC dissociation rates. This as-
sumes that i) distinct peptide sequences are in equal intracel-
lular abundance, and ii) the association rate of peptide-MHC
is homogeneous. To assign dissociation rates to the peptides,
we made use of the extensive literature on peptide binding
predictors (see Methods).

MHC class I alleles differ in their binding repertoires. The BI-
MAS algorithm (17) was used to approximate the distribu-
tion of dissociation rates of five different HLA alleles (HLA-
A*02:01, HLA-B*08:01, HLA-B*27:05, HLA-B*44:03 and
HLA-B*58:01). For each allele, we applied the algorithm to
a large number of peptides of either 9 or 10 amino acids in

length (see Methods for further details). We found that the
HLA alleles differed considerably in their distributions (Fig-
ure 1). HLA-B*27:05 was found to be highly promiscuous,
binding over 4% of peptides with at least moderate stability
(Table 1). All other alleles had fewer than 1% of peptides in
this category, with HLA-B*08:01 predicted to bind as few as
0.04% with moderate stability.

log
10

(off-rate) (s-1)

10-6 10-3 100 103 106

P
ro

ba
bi

lit
y 

de
ns

ity

0

0.05

0.1

0.15

0.2

0.25
HLA-A*02:01

log
10

(off-rate) (s-1)

10-6 10-3 100 103 106

P
ro

ba
bi

lit
y 

de
ns

ity

0

0.1

0.2

0.3

0.4
HLA-B*08:01

log
10

(off-rate) (s-1)

10-6 10-3 100 103 106

P
ro

ba
bi

lit
y 

de
ns

ity

0

0.1

0.2

0.3

0.4
HLA-B*27:05

log
10

(off-rate) (s-1)

10-6 10-3 100 103 106

P
ro

ba
bi

lit
y 

de
ns

ity

0

0.1

0.2

0.3

0.4

0.5
HLA-B*44:03

log
10

(off-rate) (s-1)

10-6 10-3 100 103 106

P
ro

ba
bi

lit
y 

de
ns

ity

0

0.1

0.2

0.3

0.4
HLA-B*58:01

log
10

(off-rate) (s-1)

10-6 10-3 100 103 106

P
ro

ba
bi

lit
y 

de
ns

ity

0

0.1

0.2

0.3

0.4

0.5
Kernel density estimates

HLA-A*02:01

HLA-B*08:01

HLA-B*27:05

HLA-B*44:03

HLA-B*58:01

a b c

d e f

Fig. 1. Allelic variation in the distribution of peptide-off-rates from HLA
molecules. (a–e) The BIMAS algorithm was used to predict the rate of dissociation
for complexes of human protein-derived peptides and HLA molecules. Peptides of
length 9 and 10 were included in the analysis, and HLA alleles considered are as
indicated on each panel. (f) For each distribution, a kernel density estimate was
obtained using the kde function on MatlabCentral (18), to facilitate comparison of
each allele.

Table 1. Statistics of peptide off-rate distributions. Reported are the inferred
means and standard deviations of the base-10 logarithm of peptide off-rate distri-
butions for HLA molecules. The final column shows the percentage of off-rates that
were more stable than 10−4 s−1.

Allele log10(Mean) Std. < 10−4 s−1

HLA-A*02:01 0.73 2.00 0.86%
HLA-B*08:01 0.51 1.22 0.04%
HLA-B*27:05 −1.88 1.19 4.35%
HLA-B*44:03 −0.55 1.05 0.25%
HLA-B*58:01 −0.35 1.07 0.16%

Simulation of the cell surface peptide distribution. Having
established considerable variation in the distribution of pep-
tide dissociation rates from different HLA alleles, we sought
to characterise how this influences the shape of the distri-
bution of peptides presented at the cell surface, the APP. To
provide quantitative predictions of the cell surface abundance
of each peptide, the peptide filtering model (5) was simulated
for sets of peptides sampled from the distributions in Fig. 1.
This allowed us to take into consideration both the peptide
dissociation rate from a given MHC class I molecule and also
the competition from other peptides for MHC class I loading.
Furthermore, it was possible to simulate and therefore predict
the consequences of perturbing the MHC class I system, such
as in the case of tapasin-deficient cells.
Simulations were carried out for HLA-B*44:02 and HLA-
B*27:05 molecules, as these were previously characterised as
tapasin-dependent and tapasin-independent alleles in experi-
mental studies (3). In (5), tapasin-dependency was predicted
to be attributed to enhanced peptide-MHC association, and
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in (6) the hypothesis has been refined to rely on a transition
from a peptide-receptive to a peptide-nonreceptive conforma-
tion (i.e. closing). Since we had used the model in (5), simu-
lations of each allele used different rates of peptide-MHC as-
sociation (HLA-B*44:02 – 3.1773×10−11 molecule−1 s−1;
HLA-B*27:05 – 1.9446×10−9 molecule−1 s−1). In each
case, the off-rates of 10,000 peptides were sampled from log-
normal distributions as parameterised in Table 1 (Fig. 2a,d).
For HLA-B*44:02, we used off-rates for the closely related
HLA-B*44:03 haplotype. Simulations of tapasin-competent
and tapasin-deficient cells were carried out for both HLA
molecules.
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Fig. 2. Approximation of the MHC class I peptide filtering model with a power-
law function. The peptide filtering model (5) was simulated for 10,000 peptides
sampled from log-normal distributions corresponding to (a-c) HLA-B*44:02 and (d-f)
HLA-B*27:05. (a,d) Histogram shows the distribution of peptides sampled for each
MHC class I allele. (b,e) Simulations of tapasin-competent cells, for peptides as
shown in panels a and d respectively. (c,f) Simulations of tapasin-negative cells. In
panels b, c, e and f, the parameters of the power-law function βu−α

i
that best fit

the simulation of the peptide filtering model are shown.

The effect of peptide filtering is clearly visible in Figure 2, as
ER distributions of peptides with mode values between 10−2

and 100 s−1 get mapped to cell surface distributions which
are highly skewed towards peptides with low off-rates. The
simulations revealed strongly tapasin-dependent presentation
for HLA-B*44:02, with two peptides presented at approxi-
mately 104 copies each in tapasin-competent cells (Fig. 2b),
and ≈ 60 copies each in tapasin-deficient cells (Fig. 2c), a
fold change of ≈ 2,000. For HLA-B*27:05, a strongly dom-
inant peptide was presented at 3.7× 107 copies in tapasin-
competent cells (Fig. 2e) and at ≈ 6×104 copies in tapasin-
deficient cells (Fig. 2f), a fold change of ≈ 500, indicating
tapasin-dependency that is less than that of HLA-B*44:02.
It is important to note that the simulated numbers of peptide-
MHC complexes at the cell surface are considerably larger
than what has been observed experimentally. For instance,
it is reported in (19) that the cell surface abundances of spe-
cific peptides are in the range 0–100, whereas our simula-
tions indicate abundances as high as O(107) (Figure 2). This
discrepancy most likely arises because the original model
was not calibrated against absolute numbers of molecules,
but instead against fluorescence measurements that were as-
sumed proportional to cell surface abundance (5). Accord-
ingly, while the dynamics of the model reproduced exper-
imental observations well, the absolute scale of the model
remains uncertain, and simulations should be considered as

accurate only up to a multiplicative factor. While the out-
put of the model could be rescaled for its usage in this study,
this would not influence the qualitative nature of the results
presented. Therefore, for consistency, we leave the peptide
filtering model in its original scale.

Characterising the cell surface repertoire using a power-law
function. While the peptide filtering model (5) provides a
biochemically-based simulation of peptide selection, it does
not provide a succinct description of the APP as a function of
pMHC off-rate. However, we found that the equilibrium cell
surface abundance of pMHC could be well approximated by
the power-law function

[MPi]cs = βu−αi (1)

where ui is the dissociation rate of peptide i from the MHC
class I molecule (Fig. 2). The major advantage of using this
simplified model was that it enabled us to determine the effect
of the essential features of the APP on T-cell activation. The
parameter α quantifies the degree of peptide filtering, which
describes the extent to which peptides are selected according
to their rate of dissociation from MHC class I. A value of 0
would indicate no dependence on ui, with higher values in-
dicating stronger selection for more stable peptides. Previous
theoretical analysis (5) suggested that peptide filtering is at
best proportional to u−3

i in tapasin-competent cells (α = 3),
and proportional to u−2

i (α = 2) in tapasin-negative cells.
The parameter β is a scale factor, and corresponds to the av-
erage cell surface abundance of a peptide with off-rate 1 s−1.
It incorporates the supply of peptide into the ER but also in-
corporates the overall competition between peptides. In this
study, we ignore the effect of differential peptide supply as
mediated by protein abundance, proteasomal degradation and
TAP binding, and so a peptide non-specific value of β can be
applied to all peptides.
To quantify how the APP differs between alleles and be-
tween tapasin-competent vs. tapasin-deficient cells, we in-
ferred values of α and β in each of the four scenarios of
Figure 2 (see Methods for details). The degree of pep-
tide filtering was 2.01 for tapasin-competent cells express-
ing HLA-B*44:02, though only 1.79 for tapasin-competent
cells expressing HLA-B*27:05, emphasising the tapasin-
dependency of HLA-B*44:02. In tapasin-negative cells, the
degree of filtering was low for both alleles (HLA-B*44:02
– 1.05; HLA-B*27:05 – 1.00). In all cases, the power-law
function provided a good approximation of the peptide fil-
tering model for all peptides that had abundance ≥ 1. Cru-
cially, the change in the shape of the distributions was well
described by the different values of α. In tapasin-competent
cells, the large α was consistent with high presentation of the
most highly stable peptides, at the cost of filtering out lower
stability peptides (Fig. 2b,e). In tapasin-negative cells, low
α was consistent with overall lower presentation, but also a
greater number of peptides with moderate presentation.
Since the number of distinct peptide sequences that might be
present in the ER at any one time is very large, and beyond
what is feasible to simulate with this dynamical model, we
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performed a number of simulations in which the number of
distinct peptides sampled from the off-rate distributions was
varied. In doing so, we found that if more than approximately
10,000 peptides were used, the expected deviation from the
mean, representative of a larger sample, was below 1% for
both α and β, and for both tapasin-competent and tapasin-
negative cells (Fig. S1).

Probabilistic model of APC-CTL interactions. To inter-
pret how the distribution of peptides presented by MHC
molecules on antigen presenting cells influences T-cell recog-
nition, we developed a probabilistic model. The model de-
scribes interactions between CTLs and a single APC to de-
termine how differences in the distribution of cell surface
peptide-MHC might affect the timing of T-cell activation.
For clarity, the parameters of the model are summarised in
Table 2, but we introduce many of these quantities as we de-
scribe the model. Dendritic cells are thought to interact with
as many as 5,000 T cells per hour in vivo, which is approx-
imately 1 per second (19). Therefore, the time unit of this
model can be conveniently thought of as 1 second. The same
study (19) measured the average contact duration to be 3.4
minutes, suggesting that on average there are approximately
200 T-cells in contact with an APC at any one time. We may
therefore formulate a simple model for the interactions be-
tween a single APC and multiple CTLs as

APC + CTLj
1/nT−−−−−⇀↽−−−−−

1−a(x)
APC–CTLj

a(x)−−−→ APC–CTL∗ (2)

where nT is the assumed number of CTLs and APC–CTL∗

represents an activated T-cell bound to the APC (Fig. 3). The
activation rate a(x) is a function that depends on the cur-
rent surface distribution of the APC. We use the variable x to
denote a random sample of the cell surface distribution, cor-
responding to the peptide-MHC molecules that are scanned
in an immunological synpase. The activated state is consid-
ered to be absorbing in this model, which means that it is the
final state considered. Moreover, the probability of T-cell ac-
tivation is always positive here, which assumes that there is
always a peptide on the surface for which at least one T-cell
can recognise. Related to this, we note that negative selec-
tion, the deletion of T-cells that react with self peptide, is not
explicitly considered here.

APC APC-CTLj APC-CTL∗j

1

nT

a(x)

1− a(x)

Fig. 3. Markov process model of APC-CTL interactions. The binding of an APC
to a CTL is considered to take place once per time unit. Therefore, we normalise
against the assumed number of CTL, nT . Upon formulation of the immunological
synpapse, the CTL is either activated with probability a(x), which is a function of
the APP x, or dissociates with probability 1−a(x). Multiple APC-CTL complexes
are shown to illustrate that there are multiple CTLs that might bind, each occurring
with frequency 1

nT
.

The model assumes that, on average, an APC encounters T-
cells at a frequency of 1 per time unit. As this is the only time-

Table 2. Definitions of modelling quantities used throughout.

Variable Description Value(s)

ui Dissociation rate of a peptide-MHC
complex

Variable
(> 10−6 s−1)

β Relative supply of each peptide Inferred
(HLA/Tpn-
dependent)

α Skewness of peptide selection Inferred
(HLA/Tpn-
dependent)

[MPi]cs Number of peptide-MHC complexes
with peptide i

Eq. 1

PT Number of peptide-MHC complexes on
the cell surface

∑
i
[MPi]cs

TT Number of TCRs on the surface of a
CTL

1000

KD Half saturation constant 10
NP Number of distinct peptide se-

quences that can be presented on
MHC molecules

ncog Number of distinct peptide sequences
that are cognate for a TCR

nscan Number of pMHC-TCR bonds Eq. 5
ndiff(x) Number of distinct peptide sequences in

a sample (x) of pMHC molecules pre-
sented on the APC surface

(≤ nscan)

dependent process, the model can be arbitrarily scaled, and as
such we leave the model in terms of this time unit. To further
simplify this description so as to enable useful calculations
to be carried out, we remove the probabilistic continuous-
time nature of T-cell encounters and consider the discrete-
time version of the model

Pk+1 =APk (3)

where the state space Pk records the number of copies of each
state at time t = k (k = 1,2, . . . ) and the transition matrix A
describes the transition propensities between each state. We
write these as

Pk =


APC

APC–CTL1
...

APC–CTLnT
APC–CTL∗

 , A =


0 1

nT
. . .

1
nT

0
1 − a 0 . . . 0 a

...
...

. . .
...

...
1 − a 0 . . . 0 a

0 0 . . . 0 1


(4)

Calculating the expected time until first detection. Using our
model of APC-CTL encounters, it is possible to derive the
expected number of T-cell encounters that are required until
a T-cell is activated, which can be used as a proxy for the
efficiency of an APC to stimulate a CTL response. We use the
fact that the expected number of steps required of a discrete-
time Markov chain to reach an absorbing state is given by the
sum of the first row of

∞∑
i=0

Qi = (I−Q)−1

where Q is the transient part of the transition matrix, which
in this case is given by the first Tn+1 rows of A. As such,

(I−Q)−1 = 1
a(x) (I+R)
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where

R=


0 1

nT
1
nT

· · · 1
nT

1 − a
(a−1)(nT−1)

nT
1−a
nT

· · · 1−a
nT

1 − a 1−a
nT

(a−1)(nT−1)
nT

· · · 1−a
nT

...
...

...
. . .

...
1 − a 1−a

nT
1−a
nT

· · · (a−1)(nT−1)
nT


The sum of the top row of (I −Q)−1 is therefore equal to
2/a(x), which is independent of nT , the number of CTLs.
Therefore, in this model, the probability of T-cell activation
is determined purely by the probability of activation a(x).

Calculating the probability of T-cell activation. In the model
presented here, every time there is a contact between an APC
and a CTL, the cell surface distribution is sampled so as to
mimic the formation of the immunological synapse and bind-
ing of TCRs to surface pMHC complexes. The quantity a(x)
is then used to describe the probability that the CTL is acti-
vated from a sample x of pMHC complexes at the cell sur-
face. The size of the sample is taken to be a function of the
total number of pMHC molecules available for TCR binding
(PT =

∑
i [MPi]cs) and an assumed number of TCRs (TT ),

as described in (12), as

nscan = 1
2

(
KD + PT + TT −

√
(PT + TT + KD)2 − 4PTTT

)
(5)

where KD is the bond dissociation constant, which is the
ratio of the off- and on- rates of pMHC-TCR binding. By
using this model, we can incorporate the effect of TCR sat-
uration, which will occur if there are very high cell surface
levels of peptide-MHC. This imposes a limit on the number
of peptide-MHC complexes that are scanned during an APC-
CTL contact. As such, simply presenting more peptide-MHC
complexes will not lead to more TCRs being engaged.
We use Eq. 5 to define the number of peptides that are sam-
pled by a T-cell that comes into contact with the APC. This
means that we have reinterpreted the KD parameter to be an
averaged dissociation constant over the different peptide se-
quences that are bound to the MHC molecule. As such, KD
is the value that equates

[TCR].
∑
i

[MPi]cs =KD.
∑
j

[TCR-MPi] (6)

While the value of KD is likely to be inaccurate for any spe-
cific pMHC-TCR interaction, the use of the equation repre-
sents the simplest way to describe the potential limitation of
TCRs in the immunological synapse, which will become im-
portant as total APC presentation of pMHC increases.
To calculate the activation probability from a sample of nscan
pMHC complexes, we make some important simplifying as-
sumptions. First, we assume that each T-cell may be acti-
vated by a fixed number of cognate peptides ncog. Second,
in a sample x of the APP, ndiff(x) different peptides are seen
by the T-cell. In this way, the activation probability a(x) fol-
lows a hypergeometric distribution overNP , the total number
of peptides that might be presented. Since encountering one

cognate peptide is thought to be sufficient to activate a T-cell
(20), albeit via multiple TCR engagements (21), we formu-
late an approximate activation probability on the event that at
least one cognate peptide is encountered. As such the proba-
bility of activation is 1− the probability of not encountering
a cognate peptide, i.e.

a(x) = 1−Pr(X = 0) (7)

where X is a hypergeometric distribution with parameters
(NP ,ncog,ndiff(x)).

Np:

A B C
Number of MHC-binding

peptide sequences

Number of distinct peptide

sequences recognized by TCR

ncog:

Total number of MHC-peptide

complexes

Number of distinct peptide

sequences seen by T-cell

nscan:

ndiff:

nscan = 9

ndiff = 1

Fig. 4. Quantifying pMHC-TCR interactions. Shown are a series of diagrams that
illustrate how model parameters are defined. An antigen-presenting cell is shown
in blue, and a T-cell in orange.

Based on this definition for a(x), it remains for us to deter-
mine ndiff, the number of different pMHC seen by the TCRs.
Since several copies of each peptide are present on the sur-
face of the APC, ndiff will be less than the total number of
peptides scanned by the T-cell (nscan). For example, peptides
with high affinity for one of the expressed MHC molecules
will likely have higher copy numbers than lower affinity lig-
ands. Moreover, the number of different peptides is huge
(NP > 1015) (22). Hence, an exhaustive search of all the pos-
sible outcomes ndiff given the number of scanned peptides by
the T-cell is computationally intractable and no analytic for-
mula has been derived to our knowledge. However, one can
compute its expected value as a function of the surface mul-
tiplicity of each peptide ni (defined by Eq. 1) and nscan. To
obtain a probabilistic expression for ndiff, we introduce the
index variable I defined as:

I(i) =
{

1 if peptide i is scanned by the T-cell
0 otherwise.

(8)

Using the index variable I , we can find an expression for the
expected number of ndiff as:

E[ndiff] = E[
NP∑
i=1

I(i)] =
NP∑
i=1

E[I(i)] (9)

The expected value of I(i) is by definition equal to 1− the
probability that peptide i was not scanned. This is equal to:

P (peptide i was not one of the nscan scanned) =
ni∏
j=1

(
PT − j−nscan

PT − j

)
=

ni∏
j=1

(
1− nscan

PT − j

)
(10)

Hence, combining Eq. 9 and Eq. 10, we obtain the expected
value of ndiff as:

E[ndiff] =
NP∑
i=1

1−
ni∏
j=1

(
1− nscan

PT − j

) (11)
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The probability of activation a(x) can also be obtained by
using E[ndiff] instead of ndiff in Eq. 7.
To make the calculation of the expected time until first de-
tection more computationally efficient, we grouped peptides
together according to their cell surface multiplicity. By defin-
ing ki to be the number of peptides with cell surface multi-
plicity i, and as such

∑
i i.ki = nscan, we can rewrite Eq. 11

as

E[ndiff] =
nmax∑
i=1

ki

1−
i∏

j=1

(
1− nscan

PT − j

) (12)

where nmax is the highest multiplicity observed. To sum-
marise the procedure for calculating the expected time until
first detection, we present the steps in Algorithm 1.

Algorithm 1 Calculating the expected time until first detec-
tion

1: Sample peptides with log10(ui) ∼ N (µ,σ2) for i =
1, . . . ,NP .

2: Quantify their cell surface abundance bound to MHC
class I, using the peptide filtering model (5), or the
power-law function (Eq. 1).

3: Round each abundance value to the nearest integer, pro-
ducing a set {Pi ∈ Z∗ : i= 1, . . . ,NP }.

4: Determine the number of pMHC-TCR contacts, nscan,
using Eq. 5.

5: Determine the expected number of different peptides pre-
sented using Eq. 11.

6: Evaluate the activation probability a(x) using Eq. 7 with
ndiff = E(ndiff).

7: Evaluate the expected time as 2
a(x) .

The distribution of peptides on an APC modulates the
expected time until first productive T-cell encounter..
To determine how the timing of T-cell activation depends
on the distribution of peptide off-rates for an MHC class I
molecule, we used the power-law description of cell surface
peptide-MHC abundance within the probabilistic model of T-
cell detection (Fig. 3). Samples of peptides were drawn from
log-normal distributions with varying mean (µ) and standard
deviation (σ) parameter values (Fig. 5a). For each pair of
values, the cell surface abundance was then calculated for a
varying degree of filtering (α) and peptide supply (β), and
then used to calculate the expected time until first detection
using the Algorithm 1.
We found that the time until first detection routinely showed
a compromise in the degree of filtering, with fastest detec-
tion reached with an intermediate value of α (Fig. 5b). Our
interpretation of these results is that higher filtering raises
overall cell surface abundance of high affinity peptides, but
at the cost of diversity, with medium and low affinity pep-
tides being filtered out. To understand this more clearly, we
consider the extremes. Perfect filtering (α→∞) would pro-
duce a very large abundance of only a single peptide, which

would lead to only one class of T-cells being activated (as-
suming there exists a circulating CTL that reacts with this
peptide). Whereas an absence of filtering (α= 0) would lead
to an equivalent number of each peptide being presented, but
each at very low abundance. As total abundance drops with
lower α, we find that only a small number of total peptides
are presented at all when α = 0, leading also to a low num-
ber of activatable T-cell classes. By increasing the filtering
to an intermediate level, total surface abundance increases,
but maintains some diversity, leading to a larger number of
activatable T-cell classes.
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Fig. 5. The distribution of peptides on an APC modulates the expected time
until first productive T-cell encounter. The expected time until first detection
was calculated for peptides sampled from a range of log-normal distributions. (a)
Shown is an example sample of 10,000 peptide off-rates drawn from a log-normal
distribution with mean µ= 1 and standard deviation σ = 1.5. Note the distribution
is truncated to peptides with their off-rates no larger than the mean, for efficiency of
the expected time calculation. (b) Expected time to first detection as a function of α
and β, specifically for the case in (a). (c) Shown is the value of α that minimises the
time until first detection, as a function of peptide supply (quantified as β×n, where
n is the number of peptides sampled), but also for varying µ (σ fixed at 1.25). (d)
As in (c), but this time varying σ (µ fixed at 1).

As the supply of peptide was decreased, the optimal degree of
filtering increased, but the expected time until first detection
lengthened (Fig. 5b). Our interpretation is that in low sup-
ply scenarios, additional filtering can compensate for a lower
total number of cell surface complexes, but will naturally re-
sult in fewer distinct peptides, and therefore fewer numbers
of activatable T-cell classes.
We found that the optimal degree of filtering also varied with
the underlying distribution of peptide off-rates. As the mean
of the off-rates became lower (peptides bind MHC more sta-
bly), the optimal α decreased (Fig. 5c). This is because lower
off-rates are presented in higher abundance, and so less filter-
ing is required to maintain a sufficiently high total abundance
to nearly saturate the TCRs. Similarly, increasing the stan-
dard deviation of the off-rates decreased the optimal α (Fig.
5d), as this increases the number of high stability peptides in
the sample.

Tapasin can accelerate or decelerate T-cell detection,
depending on HLA allele. To determine how enhanced
peptide filtering, conferred by the chaperone molecule
tapasin, might influence the timing of T-cell detection, we
applied our probabilistic model to two HLA alleles. Dif-
ferences in the tapasin-dependency of HLA-B*27:05 and
HLA-B*44:02 was previously modelled by changing the in-
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trinsic association rate of peptide-MHC binding (parameter
b in (5)). A low b (HLA-B*44:02) translates into strong
tapasin-dependency, with few peptide-MHC molecules being
detectable at the cell surface in tapasin-negative cells (3, 5).
A high b (HLA-B*27:05) permits sufficient peptide loading
in tapasin-negative cells for detectable cell surface presenta-
tion, but in tapasin-competent cells leads to some peptides be-
ing loaded on tapasin-unbound molecules, circumventing the
potential benefits of tapasin, and thereby reducing tapasin-
dependency overall (3, 5).
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Fig. 6. Tapasin can accelerate or decelerate T-cell detection, depending on
HLA allele. The rate of peptide-MHC association (b) was varied in simulations of
HLA-B*27 (top panel) and HLA-B*44 (bottom panel). Compared are simulations
of tapasin-competent (red) and tapasin-negative (blue) cells. The expected time
until first detection is quantified according to Algorithm 1. Simulated cell surface
abundance incorporated the allele-specific peptide-MHC on-rates established in (5),
with b= 1.9446×10−9 molecule−1 s−1 for HLA-B*27 and b= 3.1773×10−11

molecule−1 s−1 for HLA-B*44. These rates are indicated by the dashed lines.

We carried out simulations for HLA-B*27 and HLA-B*44,
using the off-rate distributions quantified in Table 1, vary-
ing the on-rate b over a large range, and comparing tapasin-
competent with tapasin-negative cells. In tapasin-negative
cells, increasing the on-rate b always sped up T-cell detection
(Figure 6). At the inferred value for b (from (5)), HLA-B*27
had a surface distribution which produced efficient T-cell de-
tection, such that increases in this rate provided no additional
benefit. In contrast, the inferred value of b for HLA-B*44
did not lead to any peptide-MHC complexes at the surface of
tapasin-negative cells. In tapasin-competent cells, we found
that the expected time to first detection strongly differed be-
tween the HLA alleles. We found that tapasin expression led
to less efficient T-cell detection for HLA-B*27, though more
efficient T-cell detection for HLA-B*44 (Figure 6). Since
tapasin expression increases peptide filtering (parameter α),
we can use the analysis of Figure 5b to explain how this
arises. HLA-B*27 presumably corresponds to the situation
exemplified by the red trace in Figure 5b, with an optimal
α near 1, and declining detection with increased α. On the
other hand, HLA-B*44 presumably corresponds more to the
situation exemplified by the blue trace, where the optimal α is
closer to 2, and less peptide filtering leads to very slow T-cell
detection. We suggest that the shift in the optimal degree of

filtering of these two HLA alleles results from a shift in the
means of the off-rate distributions. HLA-B*27 has a log10
mean of −1.88 and HLA-B*44 has a log10 mean of −0.55
(Table 1), which we would expect to increase the optimal de-
gree of filtering (Figure 5c).

Discussion
Due to the combinatorial nature of antigen presentation, it
has been difficult to assay for how T-cell activation depends
on the genetic variations in MHC class I. By combining cur-
rent quantitative understanding of intracellular peptide-MHC
binding and cell surface presentation with pMHC-TCR bind-
ing in the immunological synpase, the theory presented il-
lustrates how changes in the antigen presentation profile can
influence the timing of T-cell responses. Accordingly, the
theory provides a perspective on how changes in antigen pre-
sentation, as encountered during viral infection, might af-
fect an immune response. During viral infection, it is known
that interferon-γ (IFNγ) release stimulates enhanced expres-
sion in the MHC locus, leading to enhanced expression of
MHC class I/II and other components of the PLC such as
tapasin and TAP (23), which all increase overall antigen pre-
sentation (24). In contrast, many viruses interfere with the
antigen presentation pathway, reducing or at least altering
the composition of peptide-MHC molecules presented at the
cell surface (25). The HIV protein Nef is known to target
pMHC complexes in post-ER compartments (26), while hu-
man cytomegalovirus impairs formation of the PLC and re-
duces tapasin expression (10).
We found that changes in the antigen presentation pro-
file (APP) of antigen presenting cells can lead to a non-
intuitive impact on the expected time until first productive
T-cell encounter. Depending on the supply of peptide-MHC
molecules intracellularly (parameter β), efficient T-cell de-
tection could be achieved optimally by either aggressive or
weak peptide filtering, depending on the MHC alleles. When
peptide supply is low, more aggressive filtering is needed to
overcome low numbers of peptide-MHC molecules arriving
at the cell surface. Whereas, when peptide supply is higher,
the cell surface becomes saturated. In this case, weaker pep-
tide filtering results in greater diversity in the APP, and there-
fore leads to a greater number of T-cells having the potential
to be activated by the APC. This observation could help to
explain why MHC class I alleles have evolved with variable
dependency on the chaperone protein tapasin (3), which en-
hances peptide filtering (4–6).
A natural extension of our results could be obtained by in-
corporating some of the ideas developed in (16), which con-
siders the more general scenario of probabilistic recognition
of infections. Whereas our analysis computes the proba-
bility that a T-cell encounters at least one cognate peptide,
the framework introduced by (16) considers partial activation
by non-cognate peptides. Our model can be compared with
their results, for T-cell clonotype j, by assigning Wj = 1 and
Wi = 0 for i 6= j, and setting an activation threshold of 1.
Our analysis could be extended to account for higher acti-
vation thresholds, since Eq. 7 follows a hypergeometric dis-
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tribution, though this would not change our conclusions. In
fact, our analysis corresponds to the case where T-cell mis-
takes are negligible. And according to (16), this could al-
ways be made true for large populations of cognate peptides
on the APP (zf in their study) by adjusting the threshold of
activation accordingly.
Similarly to (16), we did not consider the mechanism of neg-
ative selection explicitly in our study. However, this effect
could be easily added to our framework by adjusting the tran-
sition matrix A in Eq. 4. Rows corresponding to T-cells that
cannot be activated by an APC only presenting self-peptides
are set to [100 · · · 0]. The expected time for detection then
becomes nT

nT−ninac

2
a(x) , where ninac is the number of T-

cells that do not respond to the APC, which amounts to a
simple scaling factor. Therefore, consistent with (15), T-cell
activation dynamics are not qualitatively affected by nega-
tive selection, although the activation threshold is reduced.
Furthermore, our analysis into the effect of tapasin remains
unaltered, since the quantity a(x) is independent of negative
selection.
By combining established theories of antigen presentation
and T-cell stimulation, we have produced predictions of im-
mune system functioning that we hope can be tested experi-
mentally. As we have simulated established HLA alleles di-
rectly, those same alleles could be incorporated into experi-
mental analyses. However, murine models offer more poten-
tial for obtaining quantitative estimates of APPs in infected
or uninfected organisms, and downstream T-cell responses.
New methods based on mass spectrometry are beginning to
enable high throughput quantitation of cell surface peptide-
MHC, sorted by peptide sequence (27), offering the means
to characterise the APP in detail, and over time. By measur-
ing the timing of T-cell responses in a corresponding range
of MHC backgrounds, it will soon be possible to establish
whether the composition of the APP, rather than simply the
presence of a handful of immunodominant epitopes, is a more
representative determinant of T-cell response times.

Materials and methods
Off-rate prediction using BIMAS. The dissociation rates
of five HLA class I alleles were characterised by applying
the BIMAS algorithm to a large set of peptides. The peptides
were generated from human protein sequences obtained from
UniProtKB (release 2010_08). All subsequences of length
9 and 10 were extracted from the sequences of the proteins
across the 24 chromosomes, generating a total of 22,160,455
peptide sequences. The dissociation rates were computed in
Matlab, following the methodology described in (17).

Inferring the power-law parameters from simulated cell
surface pMHC abundance. For a given distribution of pep-
tide off-rates according to log10(u) ∼ N (µ,σ2), the values
of α and β are inferred from simulations of the peptide fil-
tering model (5). The power-law function is fitted to equi-
librium simulated cell surface abundance of peptide-MHC
complexes by first log10-transforming the simulated values.
Given that log10(βu−α) = log10(β)− α log10(u), we can

then identify α and log10(β) using linear regression of the
log10 transformed equilibrium simulations against log10(u).
We used the polyfit function in Matlab, applied to peptides
with log10(u)< µ−σ to calibrate α and β in this way. This
sub-sample was used to ensure high accuracy approximation
of the high affinity peptides.
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Supplementary Note A: Supplementary Fig-
ures
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Fig. S1. Effect of sample size on relating the MHC class I peptide filtering
model to power-law cell surface distributions. The number of distinct peptide
sequences (n) was varied between 102 and 104, to determine the extent to which
under-sampling peptides affects the distribution of peptides presented at the cell
surface. This is quantified in terms of the best fit parameter values α and β of the
power-law approximation for cell surface presentation of peptide-MHC complexes.
The rightmost panels illustrates that variations in β can be compensated for by
scaling out the sample size n.
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