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Abstract 

Although metacommunity ecology has been a major field of research in the last decades, with both 32 

conceptual and empirical outputs, the analysis of the temporal dynamics of metacommunities has 

only emerged recently and consists mostly of repeated static analyses. Here, we propose a novel 34 

analytical framework to assess metacommunity processes using path analyses of spatial and 

temporal diversity turnovers. We detail the principles and practical aspects of this framework and 36 

apply it to simulated datasets to illustrate its ability to decipher the respective contributions of 

entangled drivers of metacommunity dynamics. We then apply it to four empirical datasets. 38 

Empirical results support the view that metacommunity dynamics may be generally shaped by 

multiple ecological processes acting in concert, with environmental filtering being variable across 40 

both space and time. These results reinforce our call to go beyond static analyses of 

metacommunities that are blind to the temporal part of environmental variability. 42 

Key words: beta-diversity; demographic stochasticity; dispersal limitation; environmental filtering; 

path analysis.  44 
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Introduction 

A main goal of community ecology is to understand the determinants of species diversity at different 46 

spatial scales. Metacommunity theory has emerged as a framework to investigate the spatial 

distribution of species and the dynamics of spatially structured ecosystems (Leibold et al. 2004, 48 

Massol et al. 2011, Guichard 2017). Metacommunity theory has been originally proposed to include 

four main (not mutually exclusive) paradigms explaining the coexistence of species (Leibold et al. 50 

2004, Shoemaker & Melbourne 2016, Fournier et al. 2017; but see also criticism of Brown et al. 

2017), and synthesizing how basic processes can drive metacommunity assembly. The patch-dynamic 52 

paradigm focuses on the processes of competition, colonization and extinction in networks of 

patches (Hastings 1980, Tilman 1994, Calcagno et al. 2006). The species-sorting paradigm focuses on 54 

the differential responses of species to environmental heterogeneity across the landscape to explain 

large-scale and local coexistence as the result of environmental filters and local adaptation (Chase & 56 

Leibold 2003). The mass-effect paradigm focuses on source-sink dynamics among communities, with 

species potentially co-occurring in patches where they are maladapted due to the influx of dispersing 58 

individuals (Amarasekare & Nisbet 2001, Mouquet & Loreau 2003). The neutral paradigm solely 

considers the effects of demographic stochasticity and dispersal limitation on community dynamics, 60 

thus explaining local species co-occurrence as a stochastic process driven by species frequencies at a 

larger scale and immigration (Hubbell 2001). These four simplistic views of metacommunities were 62 

defined to encompass the main models and assumptions on coexistence mechanisms, both in theory 

and in empirical studies (Cottenie 2005, Shoemaker & Melbourne 2016, Ulrich et al. 2017).  64 

Metacommunity paradigms and related models have mostly been used to analyse spatial patterns of 

metacommunity composition at a single date, assuming that metacommunities are then at a 66 

dynamical equilibrium (Logue et al. 2011, Heino et al. 2015), and often with statistical models not 

founded on dynamical models (but see Azaele et al. 2006). Specifically, when spatial environmental 68 

variation is hypothesized to play a role, the most common approach is to perform variance 

partitioning (Borcard et al. 1992, Cottenie 2005, but see e.g., Leibold and Mikkelson 2002, Ulrich et 70 

al. 2017). It consists in partitioning the observed spatial variation of community composition into 

spatial and environmental components (Borcard et al. 1992, Cottenie 2005, Peres-Neto et al. 2006). 72 

The effect of the spatial component is then expected to reflect a combined effect of dispersal and 

ecological drift, while the effect of the environmental component should summarize differential 74 

species responses to environmental variation. Such analyses of static spatial patterns of 

metacommunities provided insights on the processes structuring metacommunities across biomes, 76 

taxa and along environmental gradients (Cottenie 2005, Henriques-Silva et al. 2013, Heino et al. 

2015). However, results on simulated datasets suggest that partitioning alone does not allow 78 

unambiguous inference of metacommunity dynamics (Gilbert & Bennett 2010, Peres-Neto & 

Legendre 2010). 80 

Ecosystems and their constituent communities are highly dynamic in time (e.g., Brokaw 1985, 

Tscharntke et al. 2005, Malard et al. 2006, Bertrand et al. 2016), and temporal variation in 82 

community composition can impair the analysis of metacommunity diversity at a single date (Box 1). 

Temporal data should thus provide key information on community processes and assembly dynamics 84 

(Anderson and Cribble 1998, Magurran and Henderson 2010, Wolkowich et al. 2014, Buckley et al. 

2018). To date, few studies have examined the temporal dynamics of metacommunities (Datry et al. 86 

2016). They have mainly focused on describing spatiotemporal patterns (e.g. Soininen 2010, White et 
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al. 2010, Legendre & Gauthier 2014). We here argue that such limited emphasis reflects (i) a lack of a 88 

general quantitative framework to analyse temporal changes (but see e.g., Nuvoloni et al. 2016) and 

(ii) the scarcity of proper empirical datasets.   90 

Nuvoloni et al. (2016) proposed to analyse the temporal turnover of community composition and to 

relate local turnover to environmental variables (see also Legendre 2019). We here propose to 92 

generalize this approach to metacommunities, that is to jointly analyse spatial and temporal 

turnovers of community composition. Indeed, using temporal signatures in metacommunity analyses 94 

is likely to reveal previously undetected environmental effects (Box 1). We therefore propose to 

perform path analyses that incorporate the influence of environmental, dispersal and community 96 

context on spatio-temporal turnovers of community composition. This approach presents the 

advantage of being sufficiently simple to elucidate the complex direct and indirect relationships 98 

among the drivers. 

We propose a heuristic path model (Fig. 2). In this model, we predict that dispersal limitation and 100 

environmental filtering should entail positive correlations between community dissimilarity and, 

respectively, geographical distance and environmental distance (Borcard et al. 1992). Second, 102 

demographic stochasticity should entail negative correlations between mean community size and 

community dissimilarity across space and time, and positive correlation between temporal distance 104 

and community dissimilarity (Lande et al. 2003). Third, differences in community size should be 

positively linked to differences in species richness due to a general nestedness pattern of occurrence 106 

of abundant versus rare species (Srivastava & Lawton 1998), which in turn should entail greater 

community dissimilarity (through nestedness, see Baselga 2010). Finally, we consider that 108 

environmental distance can be correlated with temporal and geographical distances. Our heuristic 

understanding of spatio-temporal community dissimilarity patterns makes use of both direct and 110 

indirect relationships between explanatory variables that are themselves likely to be correlated to 

some extent. Path analyses therefore constitute a natural way to investigate such direct and indirect 112 

putative drivers of metacommunity dynamics (Kingsolver & Schemske 1991). Our heuristic path 

model is based on relationships between drivers and community composition that have been 114 

recurrently evidenced in the literature. Still, one may think of particular systems that may deviate 

from these general relationships and would require building of alternative heuristic path models. 116 

We use this novel framework of spatio-temporal metacommunity analysis to analyse simulated data. 

We demonstrate that it enables us to detect the signature of the simulated metacommunity 118 

processes on the community patterns of beta-diversity through space and time. We then apply this 

framework to four real case studies. We find that spatial and temporal distances both influence 120 

dissimilarities in community composition. This effect is either direct or indirect through the spatio-

temporal variations of the environmental drivers of community filtering.   122 

Materials and methods 

Assessing the path analysis framework with simulations 124 

We devised an individual-based simulation algorithm of metacommunity dynamics in discrete time 

where communities are distributed across a two-dimensional grid. Our modelling choices were 126 

guided by the objectives of incorporating demographic stochasticity (using stochastic birth-death 

processes, Hubbell 2001), dispersal, environmental filtering (using the match between species traits 128 
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and environmental values, Gravel et al. 2006), and environmental variability in space and time. This 

metacommunity model is particularly suited to represent sessile or territorial organisms, for which 130 

dispersal mostly occurs at the seed, larval or juvenile stages. 

Metacommunity simulator 132 

• Regional pool 

We considered a fixed regional species pool of S species (S=100), each species i having a fixed 134 

regional frequency χi and a fixed trait value τi, which corresponds to its environmental optimum. All 

species have the same regional frequency (χi =0.01) and trait values are regularly spaced between 0 136 

and 1 (τi =i/100), so as to be parsimonious.  

• Landscape 138 

We considered a gridded landscape of 400 cells (20 x 20) with fixed null boundary conditions. Abiotic 

environmental conditions within each cell at position (i,j) in the grid are assumed homogeneous and 140 

measured with the environmental variable Eij(t), which can vary in time (t). This variable influences 

processes of adult mortality and propagule establishment in each cell. There are Jij(t) individuals per 142 

cell, this number varying across space and time, depending on the balance between 

recruitment/immigration and mortality in each cell. 144 

• Environmental dynamics 

The environmental variable Eij(t) in cell (i,j) at time t is decomposed into three components: 146 

 Eij(t) = gij + a(t) + aij(t)         (Eq. 1) 

where gij represents an average environmental context in cell (i,j), at represents a temporal trend 148 

common to all cells, and aij(t) represents a cell-specific temporal anomaly.  

We consider a linear environmental gradient from the left to the right of the grid, so that gij regularly 150 

varies from 0.5 – e1/2 to 0.5 + e1/2 according to the column j of the cell (i,j), gij being constant on 

each column; a(t) is a triangle wave between - e2/2 and e2/2 with a period τ; aij(t) is uniformly drawn 152 

between - e3/2 and e3/2 at each time step t and for each cell (i,j).  

Environmental dynamics are parameterized with three parameters e1, e2 and e3 to control the 154 

magnitude of the spatial environmental gradient (e1), the temporal gradient (e2), and the residual 

environmental variability (e3). The triangle wave function is used so as to reach a dynamical 156 

equilibrium during the burn-in period, but a large wave period is used, so that a monotonic temporal 

gradient is actually simulated during the recorded dynamics. 158 

• Community dynamics 

In each cell and during each time step, community dynamics is governed by four processes taking 160 

place sequentially: 1) reproduction, 2) propagule dispersal, 3) adult mortality and 4) propagule 

establishment. All cells are simultaneously updated. 162 

1) Reproduction 
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Each individual of the community produces propagules at a constant rate r so that the number of 164 

propagules produced by each individual during one time step is a Poisson draw with parameter r 

(with r ≤1). 166 

2) Dispersal 

Two local dispersal models are alternatively used. In these two models, a proportion (1-m) of the 168 

propagules stays in their home cell, while a proportion m disperses outside the cell. In the global 

dispersal model, propagules homogeneously disperse among the 400 cells of the landscape, while in 170 

the neighbour dispersal model, they only disperse to the eight neighbouring cells (uniform random 

draws). This neighbour dispersal process enables us to model the dispersal influence on the spatial 172 

auto-correlation of species abundances. On top of this local dispersal, additional propagules arrive 

from the regional pool at a constant rate I in each cell, so that the number of long-distance dispersal 174 

propagules is computed as a Poisson draw with parameter I. This spatially-implicit long-distance 

dispersal process enables us to maintain species diversity at the grid scale (Hubbell 2001). This 176 

simulation setting leads to realistic uneven species-abundance distributions at the grid scale, despite 

the even species abundance distribution in the regional pool. 178 

3) Mortality 

Each individual of species s has a local fitness fs(i,j,t) in cell (i,j) at time t, depending on the match 180 

between its trait value τs and the environmental variable Eij(t) in cell (i,j) at time t: 

 fs(i,j,t) = 1 + A × exp [ - (τs - Eij(t))²/(2σ²)]      (Eq. 2) 182 

where parameter A controls the strength of environmental filtering (complete maladaptation leads 

to a local fitness of 1 while perfect adaptation to a local fitness of 1 + A) and parameter σ controls its 184 

specificity (a relatively good local adaptation is obtained when |τs - Eij(t)| is less than σ). This 

Gaussian-based equation is a rather standard way of modelling environmental filtering in community 186 

ecology (Gravel et al. 2006, Gilbert & Bennett 2010, Jabot 2010, Münkemüller & Gallien 2015, Sokol 

et al. 2017, Munoz et al. 2018) 188 

The survival of adult individuals of species s is modelled at each time step t in cell (i,j) as a Bernoulli 

draw with probability (1-r) × fs(i,j,t) / (1+A). It implies that the individual death probability is at least 190 

equal to r and increases as individual fitness decreases. 

4) Establishment 192 

Each cell has a carrying capacity of J individuals. The number of recruited individuals Nr(i,j,t) in a cell 

(i,j) at time t follows a Poisson distribution with mean equal to J-Nij(t), where Nij(t) is the number of 194 

surviving adults in the cell after the mortality step. If Nij(t) is larger than J, then no individual is 

recruited. This modelling choice enables the number of individuals per cell to vary. The number of 196 

Nr(i,j,t) recruited individuals follows a multinomial draw with probabilities proportional to species 

numbers of propagules reaching the focal cell times their local fitness fs(i,j,t). 198 

 

The metacommunity is initialized with a multinomial draw of J=100 individuals from the regional pool 200 

in each cell. A burn-in period of 1,000 steps is used. Metacommunity dynamics then run for 20 time 
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steps. 50 cells are randomly selected at the beginning of the simulation and their composition is 202 

recorded at each time step for subsequent analyses. The code of this simulator is provided 

(Supplementary material S1). 204 

Simulated scenarios 

We devised 6 scenarios representing various combinations of ecological processes (Table 1). The first 206 

two scenarios implemented neutral dynamics, with either a homogeneous dispersal in the landscape 

or a dispersal to neighbouring cells to cause dispersal limitation. The third and fourth scenarios 208 

implemented environmental filtering along either a spatial or a temporal environmental gradient 

with homogeneous dispersal. The fifth and sixth scenarios implemented environmental filtering 210 

along simultaneous spatial and temporal gradients with either homogeneous dispersal or dispersal to 

neighbouring cells. Detailed parameter settings of the different scenarios are given in Table S2.  212 

Path analyses 

We computed Sorensen dissimilarity indices for all pairs of sampled communities. Dissimilarity of 214 

communities at a given date represents spatial dissimilarity, dissimilarity of communities at the same 

site but at different dates represents temporal dissimilarity, and dissimilarity of the remaining pairs 216 

represents spatio-temporal dissimilarity. We computed spatial distances (Δx), temporal distances 

(Δt) and environmental distances (ΔE) for each pair of communities, as well as their mean 218 

community size (<J>), their absolute difference in community size (ΔJ) and in species richness (ΔS). 

We ran a path analysis based on the heuristic causal model (Fig. 2) with the function “sem” of the R 220 

package “lavaan” (Rosseel 2012). Since path analyses were based on distance matrices, we used the 

permutation-based approach developed by Fourtune et al. (2018) taking into account non-222 

independence and allowing to test for the significance of each path. We followed a Benjamini-

Hochberg procedure to adjust the significance criterion (of 1%) for multiple testing. We assessed 224 

model fit with the Standardized Root Mean Square Residual (SRMR).  

Empirical datasets 226 

We applied our conceptual framework to four empirical case studies. 

• Freshwater fishes 228 

We analysed yearly samples of freshwater fish communities from the French Office for Biodiversity 

database including more than 1500 sites in France (Poulet et al. 2011). We analysed the dynamics of 230 

a subset metacommunity in the Garonne-Dordogne river drainage (Fourtune et al. 2016), including 

32 sites monitored each year between 1995 and 2011, and for which precise environmental variables 232 

were available. This dataset included 51 fish species, for a total of 257,393 sampled individuals. Six 

environmental variables were recorded for each site: elevation, slope, average temperature in 234 

January 2011, average temperature in July 2011, width of the minor riverbed, and width of the water 

slide. The first five variables were temporally constant, while the last variable varied from year to 236 

year. Geographical distance between sites was computed along the river using the Carthage dataset 

of the French National Geographical Institute. We used log-transformed distances in analyses below, 238 

but results proved qualitatively similar when using raw distances. 

• Aquatic invertebrates 240 
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We compiled aquatic invertebrate communities across the Rhône river drainage in France. Benthic 

invertebrates were sampled on 6 sites of 11 different watersheds for a total of 66 sites. They were 242 

sampled for six months consecutively from the end of autumn to the beginning of summer for two 

years, 2014 and 2015, for a total of 12 sampling dates. The rivers considered are intermittent; when 244 

some sites were dry, they were not sampled at this date. Invertebrates were identified to the genus 

level but information was kept at the family level when no taxa were identified at the genus level for 246 

this family, resulting in a total of 231 taxa. Five environmental variables were measured at each site 

and sampling date: temperature, pH, conductivity, concentration in dioxygen and number of days 248 

since the last rewetting event of the watershed. We also computed log-transformed Euclidean 

geographic distances between sites. 250 

• Freshwater snails 

The third dataset concerns the malacological fauna – 27 species - of a freshwater ponds network in 252 

the Guadeloupe Island. 250 sites have been yearly sampled since 2001 (17 years), with species 

density information. Species densities were multiplied by pond area to obtain estimated species 254 

abundances in each pond, and were then log-transformed. Each site is characterized by six 

temporally constant environmental variables (size, depth, vegetation cover, water quality, litter and 256 

a synthetic index of hydrological and vegetation stability, see Lamy et al. 2013 for additional details), 

and one temporally varying but spatially constant variable (annual rainfall). We calculated log-258 

transformed, Euclidean geographical distances among sites. Missing data and empty sites were 

removed prior to analyses leading to a total of ca. 2800 samples. 260 

• Aquatic plants 

We compiled aquatic plant communities in shallow lakes used for fish farming. These lakes are 262 

generally dried out during one year every three years. Twenty-four lakes were sampled from 2 to 7 

years between 2008 and 2015, for a total of 81 sampling events and 84 sampled species (Arthaud et 264 

al. 2013). Average species cover was multiplied by lake areas to obtain estimated species 

abundances. Two environmental variables were used:  chlorophyll a concentration reflecting water 266 

turbidity and light transmission, and the number of years since the last drying event.  

Results 268 

Analysis of simulated data 

Our application of a causal modelling framework to simulated data validated our heuristic 270 

predictions and showed that the modelling framework allows reliable inferences of the ecological 

processes driving spatiotemporal variation in community composition for contrasted simulation 272 

scenarios. The effect of demographic stochasticity was detected in the four first scenarios with the 

moderate negative correlation between average community size and community dissimilarity (Fig. 274 

3a-d). It was not detected in the last two scenarios, highlighting its minor importance compared to 

filtering processes in these scenarios. Demographic stochasticity was also detected with the 276 

moderate positive correlation between temporal distance and community dissimilarity in the two 

neutral scenarios (Fig. 3a-b). The effect of environmental filtering was detected in the four last 278 

scenarios with the positive correlation between environmental distance and community dissimilarity 

(Fig. 3c-f). The path analysis also correctly detected the positive correlation between spatial or 280 
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temporal distances and environmental distance in the scenarios with a spatial or temporal 

environmental gradient respectively (Fig. 3c-f). In the scenarios with a temporal environmental 282 

gradient, a positive correlation between temporal distance and community dissimilarity was also 

identified (Fig. 3d-f). In these cases, we interpret this path as a signature of the inertia of these 284 

communities to the directional temporal environmental change simulated, rather than to a signature 

of demographic stochasticity. Indeed, the correlations were stronger than in the neutral scenarios in 286 

these cases. This result points that the interpretation of this specific path between temporal distance 

and community dissimilarity should be interpreted with caution, either as a signature of 288 

demographic stochasticity if temporal distance does not impact environmental distance, or as a 

signature of community inertia if temporal distance does impact environmental distance. In the two 290 

scenarios with dispersal limitation, a positive correlation between geographical distance and 

community dissimilarity was identified (Fig. 3b,f). A sampling effect was also detected in some 292 

scenarios with the positive correlations between differences in community size and differences in 

community richness and in turn between differences in community richness and community 294 

dissimilarity. These sampling effects were moderate when present and did not blur the other 

ecologically more informative paths. Finally, one can note the weak negative correlation between 296 

geographical distance and community dissimilarity in the third scenario with a spatial environmental 

gradient (Fig. 3c). We consider this correlation as an artefact due to the linear modelling framework 298 

used. It is outweighed by the strong positive indirect effect of geographical distance on community 

dissimilarity through environmental distance (Fig. 3c). 300 

 

 302 

Analysis of empirical datasets 

Our statistical framework revealed very consistent patterns across case studies (Fig. 4). The influence 304 

of demographic stochasticity was evidenced in all cases (see the dashed lines from <J> to βsor). 

Geographic distances Δx affected community dissimilarity (βsor) in all case studies, both directly 306 

(putatively through dispersal limitation) and indirectly through environmental distances ΔE. 

Environmental distances ΔE influenced community dissimilarity (βsor) in all case studies. Temporal 308 

distances Δt cascaded onto environmental distances in three of the four case studies. It also directly 

affected community dissimilarity in half of the case studies. Finally, differences in local species 310 

richness ΔS affected community dissimilarity in all case studies, and differences in local community 

sizes ΔJ influenced ΔS in three of the four case studies. The later result underlined that ΔS should be 312 

taken into account when assessing the drivers of community dissimilarity. 

Although we found support for the three main types of ecological drivers (demographic stochasticity, 314 

environmental variation and dispersal limitation), environmental variation was generally the 

strongest driver of community dissimilarity. This environmental variation was both spatially and 316 

temporally structured in three out of the four case studies (see the arrows from Δx and Δt towards 

ΔE). This result supports our call for an integrated spatiotemporal appraisal of metacommunity 318 

patterns. 

 320 
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Discussion  

An operational approach to analyse spatiotemporal community turnover 322 

We here proposed a simple approach to analyse spatiotemporal community turnover (Fig. 2). We 

found that approach allows detecting how dispersal, demographic stochasticity and environmental 324 

filtering influence metacommunity dynamics (Fig. 3). The proposed framework is robust and general 

since we examined strongly contrasted scenarios that all lead to path analysis results that were 326 

consistent with simulation choices. Applied to four real ecological case studies, we evidenced that 

the environmental drivers of community composition are always spatially auto-correlated and are 328 

temporally auto-correlated in three out of the four case studies. This further supports our call for a 

joint analysis of community turnover in both space and time.   330 

Detecting the contributions of entangled ecological processes 

Applied to the fish data, this spatiotemporal framework revealed that the turnover in fish community 332 

composition at yearly and regional scales is mainly driven by environmental filtering (Fig. 4a) and that 

the environmental drivers are spatially auto-correlated (Δx ->ΔE). We also evidenced the influence of 334 

demographic stochasticity (ecological drift) and dispersal limitation on the spatiotemporal turnover 

component (Fig. 4a). Another main driver of community turnover is the heterogeneity in richness 336 

among local communities (ΔS), which we interpret as a nuisance variable here, since we do not have 

specific hypotheses on what may drive this heterogeneity beyond differences in community size (ΔJ). 338 

Alternative – yet non-exclusive – explanations for the observed variability in local species richness 

include the presence of a natural upstream-downstream gradient in species richness with more 340 

species near the outlet of the river networks (Muneepeerakul et al. 2008, Blanchet et al. 2014) and 

the introduction of non-native species that may not be homogeneous across the river network. Our 342 

analysis reveals that such potential drivers may have a dominant effect on the overall fish 

metacommunity structure at the regional scale. 344 

Applied to the invertebrate data, the main driver of community turnover was also the heterogeneity 

in richness among local communities (Fig. 4b). This may result from the fact that this dataset 346 

comprises perennial and intermittent sites, and the latter ones generally harbour species-poor, 

original communities with taxa especially adapted to recover from disturbances (Datry et al. 2014). 348 

The other main drivers were demographic stochasticity and dispersal limitation, which may be 

explained by the intensity of local disturbances and regional fragmentation induced by drying events. 350 

Temporal and spatial distances also have a strong effect on environmental distances, as expected for 

intermittent rivers, as the stochasticity of drying events leads to a high spatiotemporal variability of 352 

the environment in a spatially and temporally auto-correlated way. 

For the snail dataset, environmental variation was the main driver of community dissimilarity. 354 

Structuring environmental variables were vegetation and depth, reflecting a gradient from large, 

deep sites, with aquatic vegetation only near the shore, to small, shallow sites often entirely covered 356 

with vegetation. Shallow sites favour some pulmonate species that live near the surface, while most 

operculate snails are bottom-dwellers less dependent on macrophytes. Most environmental 358 

variables were spatially structured. Besides, communities were temporally structured. This may 

reflect a mix of long-term changes (invasion of new species and decline of some resident species 360 

during the study period) and short-term stochastic extinction-colonisation dynamics that make snail 
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communities drift away from their initial states over time, within each site. For this last process, the 362 

strong negative impact of community size on species turnover indicates that small communities 

undergo faster temporal changes. These results point both to a strong impact of environmental 364 

filtering and fast temporal turnover, especially in small communities, which is in line with our 

experience with the ecology of freshwater snails. 366 

For the aquatic plants dataset, our results point that environmental variation is a major driver of 

community dissimilarity, in accordance with the literature (Arthaud et al. 2013).  Community size is 368 

also a significant driver of community composition. Indeed, in shallow lakes, communities are mostly 

made of plant species that are generally abundant (competitive or ruderal species, Arthaud et al. 370 

2012), while a few species are characterized by lower population sizes (stress tolerant species). Our 

method evidenced that environmental filtering is both varying across space and time (Table S13). The 372 

light stress due to phytoplankton (chlorophyll a concentration) is temporally structured, because 

primary production varies strongly according to temperature and sunshine of the year. In contrast, 374 

the number of years since the last drying event is spatially structured, because of the specificities of 

the management performed at the catchment scale.  376 

More generally, we found very consistent results across the four case studies despite the diversity of 

taxonomic groups (plants, aquatic invertebrates, molluscs and fishes) and habitats (lakes, ponds, 378 

perennial streams and intermittent rivers). It suggests the generality of the significance of 

spatiotemporal variation of environmental conditions for metacommunity dynamics. Ecologists 380 

should embrace a more dynamical view of metacommunity assembly and look beyond the 

predominant perspective, which considers communities as assembled through temporally fixed 382 

environmental filters. This present contribution offers a pragmatic way forward in this direction. 

Applying the proposed framework to metacommunity data 384 

The proposed framework requires temporal data of metacommunity composition and temporal 

environmental variables that are thought to be influential for the system studied. If these 386 

environmental data are only available at the metacommunity scale, a different path model may still 

be used without the arrow between Δx and ΔE. Since the approach is exploratory, it does not require 388 

a minimal amount of sampled dates nor of sampled locations (beyond 2) to be operational. In the 

studied datasets, the number of sampled dates varied from 2 to 17, while the number of sampled 390 

locations varied from 24 to 250. Our approach relies on the analysis of community dissimilarity 

indices, so that it can be applied to species-rich communities that contain a substantial amount of 392 

rare species with low occurrence frequencies. The proposed approach is easy to conduct, since it 

does not require any advanced statistical training. It allows performing a first exploratory analysis of 394 

empirical data to assess the respective influences of complementary drivers of metacommunity 

dynamics (Kingsolver & Schemske 1991, Shipley 2000).  396 

Some ecological systems may deviate from our general predictions for a variety of reasons. Users 

should then build alternative, biologically more relevant heuristic path models. Alternative path 398 

models can include different set of paths between the variables of Fig. 2, they can incorporate 

different signs for the predicted relationships, or they can incorporate other variables. For instance, 400 

environmental variables may display cyclic temporal dynamics. In such cases, it may be more 

pertinent to consider phase difference rather than absolute time difference (Δt). Similarly, the 402 

implicit assumption of spatial isotropy in the path model that makes use of geographical distances Δx 
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may not be adapted to ecological systems in which the connectivity between sites is not solely driven 404 

by geographical distances (e.g., McRae et al. 2008). Another example is the one of disease or 

population outbreaks that travel through space and sometimes constitute a genuine environmental 406 

perturbation for entire communities (e.g., Tenow et al. 2013). In this case too, absolute time may not 

be a pertinent variable and may be fruitfully replaced by the state of outbreak (x-vt) where v is the 408 

speed of the travelling wave and x is the position of the site considered. More generally, when 

analysing transient systems, one should pay particular attention to the definition of paths involving 410 

time and to their interpretation. Our proposition is a simple and versatile approach to analyse 

standardized path coefficients, although this may not always be the choice to be favoured (Grace & 412 

Bollen 2005), so that researchers should evaluate the pros and cons of this choice for their particular 

case study.  414 

Although the proposed framework appears powerful and robust, it is important to keep in mind that 

only simple linear relationships are modelled in the path analysis. Our analysis of simulated datasets 416 

supports this simple assumption (Fig. S4-90) and variable transformation procedures can be used to 

correct obvious non-linear relationships, as done here for some empirical case studies using log-418 

transformation of geographical distances. Still, results should be solely interpreted as rough 

estimates of the respective influences of dispersal, demographic stochasticity and environmental 420 

filtering on community dynamics. Explored path models are not meant to be predictive. For such an 

endeavour, process-based dynamical models of metacommunity dynamics may be a much more 422 

suitable way forward (Evans et al. 2013, Mouquet et al. 2015). Such process-based dynamical 

models, however, require much more data on the system studied to be relevant. By identifying 424 

important drivers of metacommunity dynamics, the proposed framework can help design relevant 

process-based models that focus on the most influential processes.  426 

The causal inference framework that we propose is a flexible way to make sense of temporal 

metacommunity data. We demonstrated its ability to detect influential ecological processes on 428 

simulated data. We illustrated its use on four real ecological datasets and explained how results can 

be interpreted. We finally explained how to deal with peculiarities of specific ecological systems 430 

within this framework, by modifying the path model. Beyond this methodological advance, our 

analyses of four sharply distinct ecological communities confirmed that environmental filtering is 432 

omnipresent and revealed that the environmental drivers of community composition do vary in both 

space and time, so that static metacommunity analyses should be abandoned in favour of a joint 434 

analysis of community turnover in both space and time. 
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Tab. 1. Ecological processes and environmental spatiotemporal variations included in the six 608 

simulated scenarios. 

 Ecological processes Environmental variables 

Scenario Global 

dispersal 

Neighbour 

dispersal 

Environmental 

filtering 

Spatial (e1) Temporal 

(e2) 

1 + - - - - 

2 - + - - - 

3 + - + + - 

4 + - + - + 

5 + - + + + 

6 - + + + + 

 610 
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Box 1  612 

Fig. 1. Thought experiment demonstrating the benefits of a spatiotemporal analysis of community 

composition. 614 

Imagine two communities with limited dispersal between each other and strongly structured by a 

one-dimensional environmental filter that selects species according to their (uni-dimensional) trait 616 

(Figure 1). At the first time step, community 1 experiences a low environmental value E1(t1) and is 

mainly composed of species with low trait values (Fig. 1a), while community 2 experiences a large 618 

environmental value E2(t1) and is mainly composed of species with large trait values (Fig. 1b). During 

the next time step, community 1 and 2 experiences large and low environmental values respectively, 620 

that enable some dispersers from the other community to settle in (Fig. 1c,d). This leads to a similar 

species composition of the two communities, despite the fact that current environmental conditions 622 

differ between the two communities. If one solely performs a spatial analysis of this metacommunity 

at time step 2, one would conclude that the environmental variable does not influence communities 624 

and thus that metacommunity dynamics is neutral with little dispersal limitation. If one instead looks 

at the temporal trajectories of the two communities (i.e. performs a spatiotemporal analysis), one 626 

would detect that community 1 and  2 moves to larger and lower trait values respectively, between 

t1 and t2, in a positively correlated manner with temporal environmental variations. One would also 628 

evidence that this tracking of environmental variation by community composition is only partial since 

abundant species do not have optimal trait values. This would provide evidence of some level of 630 

dispersal limitation between the two communities. 

  632 
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Fig. 1. Thought experiment demonstrating the benefits of a spatiotemporal analysis of community 

composition. Blue curves represent the trait distribution of the community.  634 
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Fig. 2 Heuristic path model to test the signature of ecological processes on spatiotemporal diversity 638 

patterns.   

A dashed or plain arrow represents a negative or positive correlation, respectively. <J> stands for the 640 

average community size in the metacommunity, t for time, x for space, E for the local environment 

and S for species richness. Δ values represent difference of statistics in space and time. For instance, 642 

because it controls the intensity of ecological drift, the average community size is expected to 

negatively affect spatial and temporal diversity turnovers (negative arrow between <J> and β 644 

diversity). 
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Fig. 3. Path analyses on the six simulated scenarios.  648 

Arrows depict significant effects. Arrow width represents the strength of the standardized estimates. 

Numerical values are reported in Table S3.  650 
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Fig. 4. Path analyses for the four empirical datasets.  

a: freshwater fishes. b: aquatic invertebrates. c: molluscs. d: aquatic plants. Arrow width represents 656 

the strength of the standardized estimates. Dashed lines represent negative relationships. Paths from 

and towards ΔE were pooled in single arrows by summing the absolute values of the significant paths 658 

associated to each environmental variable. Only significant paths are shown. Numerical values of the 

standardized coefficients and of the associated p-values are reported in Tables S10-13. Values of the 660 

Standardized Root Mean Square Residual (SRMR) are mentioned for each dataset. Fish by Vladimir 

Belochkin, shrimp by Ana María Lora Macias, snail by Vega Asensio and cattail by Alex Muravev from 662 

the Noun Project. 
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