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Abstract 1

In synergy studies, one focuses on compound combinations that promise 2

a synergistic or antagonistic effect. With the help of high-throughput tech- 3

niques, a huge amount of compound combinations can be screened and fil- 4

tered for suitable candidates for a more detailed analysis. Those promising 5

candidates are chosen based on the deviance between a measured response 6

and an expected non-interactive response. A non-interactive response is 7

based on a principle of no interaction, such as Loewe Additivity [Loewe, 8

1928] or Bliss Independence [Bliss, 1939]. In Lederer et al. [2018a], an 9

explicit formulation of the hitherto implicitly defined Loewe Additivity has 10

been introduced, the so-called Explicit Mean Equation. In the current study 11

we show that this Explicit Mean Equation outperforms the original implicit 12

formulation of Loewe Additivity and Bliss Independence when measuring 13

synergy in terms of the deviance between measured and expected response. 14

Further, we show that a deviance based computation of synergy outper- 15

forms a parametric approach. We show this on two datasets of compound 16

combinations that are categorized into synergistic, non-interactive and an- 17

tagonistic [Yadav et al., 2015, Cokol et al., 2011]. 18

Keywords: synergy, Loewe Additivity, Bliss Independence, dose equiv- 19

alence, Combination Index, General Isobole Equation, Explicit Mean Equa- 20

tion, Hill curve, null reference model, response surface, lack-of-fit 21

1 Introduction 22

When combining a substance with other substances, one is generally interested 23

in interaction effects. Those interaction effects are usually described as synergis- 24

tic or antagonistic, dependent on whether the interaction is positive, resulting 25
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in greater effects than expected, or negative, resulting in smaller effects than26

expected. From data generated with high-throughput techniques, one is con-27

fronted with massive compound interaction screens. From those screens, one28

needs to filter for interesting candidates that exhibit an interaction effect. To29

quickly scan all interactions, a simple measure is needed. Based on that pre-30

processing scan, those filtered combination candidates can then be examined in31

greater detail.32

To determine whether a combination of substances exhibits an interaction33

effect, it is crucial to determine a non-interactive effect. Only when deviance34

from that so-called null reference is observed, can one speak of an interactive35

effect [Lederer et al., 2018a]. Over the last century, many principles of non-36

interaction have been introduced. For an extensive overview, refer to [Greco37

et al., 1995, Geary, 2012]. Two main principles for non-interactivity have sur-38

vived the critics: Loewe Additivity [Loewe, 1928] and Bliss Independence [Bliss,39

1939]. The popularity of Loewe Additivity is based on its principle of sham com-40

bination which assumes no interaction when a compound is combined with itself.41

Other null reference models do not hold that assumption. An alternative is Bliss42

Independence, which assumes (statistical) independence between the combined43

compounds.44

Independent of the indecisive opinions about the null reference, there are45

multiple proposals how synergy can be measured given a null reference model.46

Some suggest to measure synergy as the difference between an observed isobole47

and a reference isobole calculated from a null-reference model. An isobole is48

the set of all dose combinations of the compounds that reach the same fixed49

effect, such as 50% of the maximal effect [Minto et al., 2000, Chou and Talalay,50

1984]. Another way to quantify synergy on the basis of the isobole is to look at51

the curvature and arc-length of the longest isobole spanned over the measured52

response [Cokol et al., 2011]. As the deviation from an isobole is measured for a53

fixed effect or dose ratio, synergy is only measured locally along that fixed effect54

or dose ratio. In order to not miss any effects, this method has to be applied55

for as many dose ratios possible.56

In this paper we measure synergy as the deviation over the entire response57

surface. One way to do so is the Combenefit method by measuring synergy58

in terms of volume between the expected and measured effect [Di Veroli et al.,59

2016]. We will refer to it as a lack-of-fit method as it quantifies the lack of fit from60

the measured data to the null reference model. Another way of capturing the61

global variation is by introducing a synergy parameter α into the mathematical62

formulation of the response surface. This parameter α is fitted by minimizing63

the error between the measured effect and the α-dependent response surface.64

Such statistical definition of synergy allows for statistical testing of significance65

of the synergy parameter. Fitting a synergy parameter to the data as in the66

parametric approaches tends to be computationally more complex than comput-67

ing the difference between the raw data and the null model as in the lack-of-fit68

approaches.69

There is an increase in theoretical approaches to synergy, such as the re-70

cently re-discovered Hand model [Hand, 2000, Sinzger et al., 2019], which is71

a formulation of Loewe Additivity in form of a differential expression, or new72

ways of defining and measuring synergy, such as the ZIP model [Yadav et al.,73

2015], SynergyFinder [He and Tang, 2016], MuSyC [Meyer et al., 2019] and the74

copula model [Lambert and Dawson, 2019]. It would be a large effort to com-75
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pare these recent approaches with ours. An extensive comparison of the models 76

has recently been made in Meyer et al. [2019]. Hence we focus on the two main 77

principles, Loewe Additivity and Bliss Independence. 78

As the research area of synergy evolved from different disciplines, different 79

terminologies are in common use. Whilst in pharmacology, one refers to the 80

Loewe model, in toxicology, the same principle is called concentration addition. 81

The response can be measured among others in growth rate, survival, or death. 82

It is usually referred to as the measured or phenotype effect or as cell survival. 83

In this study we interchange the terms response and effect. 84

When measuring a compound combination, one also measures each agent 85

individually. The dose or concentration is typically some biological compound 86

per unit of weight when using animal or plant models or per unit of volume 87

when using a cell-based assay. However, it can also be an agent of a different 88

type for example a dose of radiation as used in modern combination therapies for 89

cancer [Nat, 2018]. This individual response is called mono-therapeutic response 90

[Di Veroli et al., 2016] or single compound effect. We prefer a more statistical 91

terminology and refer to it as conditional response or conditional effect. With 92

record we refer to all measurements taken of one cell line or organism which 93

is exposed to all combinations of two compounds. In other literature, this is 94

referred to as response matrix [Lehar et al., 2007, Yadav et al., 2015]. 95

In Section 2.1, we give a short introduction to the two null response prin- 96

ciples, Loewe Additivity and Bliss Independence. We explain in detail several 97

null reference models that build on those principles. We introduce synergy 98

as any effect different from an interaction free model in Section 2.2. There, 99

we also introduce the parametrized and deviance based synergy approaches. In 100

Section 2.3, we introduce two datasets that come with a categorization into syn- 101

ergistic, non-interactive and antagonistic. We evaluate the models and methods 102

in Section 3 together with a detailed comparison of the synergy scores. 103

2 Materials and Methods 104

2.1 Theory 105

Before one can decide whether a compound combination exhibits a synergistic ef- 106

fect, one needs to decide on the expected effect assuming no interaction between 107

the compounds. Such so-called null reference models are constructed from the 108

conditional (mono-therapeutic) dose-response curves of each of the compounds, 109

which we denote by fj (xj) for j ∈ {1, 2}. Null reference models extend the 110

conditional dose-response curves to a (null-reference) surface spanned between 111

the two conditional responses. We denote the surface as f (x1, x2) such that 112

f (x1, 0) = f1 (x1) (1) 113

and 114

f (0, x2) = f2 (x2) . (2) 115

Thus, the conditional response curves are the boundary conditions of the null 116

reference surface. For this study, we focus on Hill curves to model the conditional 117

dose-responses. More detailed information can be found in Appendix A. 118
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2.1.1 Loewe Additivity119

Loewe Additivity builds on the concepts of sham combination and dose equiv-120

alence. The first concept is the idea that a compound does not interact with121

itself. The latter concept assumes that both compounds that reach the same122

effect can be interchanged. Therefore, any linear combination of fractions of123

those doses which reach the effect individually and, summed up, are equal to124

one, yields that exact same effect. Mathematically speaking, if dose x∗1 from the125

first compound reaches the same effect as dose x∗2 from the second compound,126

then any dose combination (x1, x2), for which127

x1
x∗1

+
x2
x∗2

= 1 (3)128

holds, should yield the same effect as x∗1 and x∗2. As this idea can be generalized129

to any effect y, one gets130

x1

f−11 (y)
+

x2

f−12 (y)
= 1, (4)131

where x∗1 and x∗2 are replaced with f−11 (y) and f−12 (y), the inverse functions132

of Hill curves, respectively. For a fixed effect y, Eq. 4 defines an isobole, which133

is in mathematical terms a contour line. Hence the name of this model: the134

General Isobole Equation. It is an implicit formulation as the effect y of a dose135

combination (x1, x2) is implicitly given in Eq. 4. In the following we use the136

mathematical notation for the General Isobole Equation fGI (x1, x2) = y with137

y being the solution to Eq. 4.138

It was shown by Lederer et al. [2018a] that the principle of Loewe Additivity139

is based on a so-called Loewe Additivity Consistency Condition (LACC). This140

condition is that it should not matter whether equivalent doses of two com-141

pounds are expressed in terms of the first or the second. Under the assumption142

of the LACC being valid, Lederer et al. [2018a] have shown, that a null reference143

model can be formulated explicitly, by expressing the doses of one compound in144

terms of the other compound:145

f2→1 (x1, x2) = f1
(
x1 + f−11 (f2 (x2))

)
(5)146

f1→2 (x1, x2) = f2
(
f−12 (f1 (x1)) + x2

)
, (6)147

148

where f−11 (f2 (x2)) is the dose x1 of compound one to reach the same effect of149

compound two with dose x2 (see Fig. 7 in Appendix A). For a detailed expla-150

nation, refer to Lederer et al. [2018a]. Summing up this dose equivalent of the151

first compound with the dose of the first compound allows for the computation152

of the expected effect of the compound combination. With the two formulations153

above, the effect y of the dose combination (x1, x2) is expressed as the effect154

of either one compound to reach that same effect. Under the LACC, all three155

models, Eq. 4, Eq. 5 and Eq. 6 are equivalent. It was further shown, that, in156

order for the LACC to hold, conditional dose-response curves must be propor-157

tional to each other, i.e. being parallel shifted on the x-axis in log-space. It158

has been commented by Geary [2012] and shown in [Lederer et al., 2018a], that159

this consistency condition is often violated. In an effort to take advantage of160

the explicit formulation and to counteract the different behavior of Eq. 5 and161

Eq. 6 in case of a violated LACC, Lederer et al. [2018a] introduced the so-called162
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Explicit Mean Equation as mean of the two explicit formulations of Eq. 5 and 163

Eq. 6: 164

fmean (x1, x2) = 1/2 (f2→1 (x1, x2) + f1→2 (x1, x2)) . (7) 165

A more extensive overview of Loewe Additivity and definition of null reference 166

models together with visualizations can be found in Lederer et al. [2018a]. 167

2.1.2 Bliss Independence 168

Bliss Independence assumes independent sites of action of the two compounds 169

and was introduced a decade later than Loewe Additivity in [Bliss, 1939]. Note 170

that the formulation of Bliss Independence depends on the measurement of the 171

effect. The best known formulation of Bliss Independence is based on monoton- 172

ically increasing responses for increasing doses: 173

gbliss (x1, x2) = g1 (x1) + g2 (x2)− g1 (x1) g2 (x2) , (8) 174

where gi (xi) = 1− fi (xi) is a conditional response curve with increasing effect 175

for increasing doses. In case the effect is measured in percent, i.e. y ∈ [0, 100], 176

the interaction term needs to be divided by 100 to ensure the right dimension- 177

ality of the term. 178

Here, we measure the effect in terms of cell survival or growth inhibition. 179

Therefore the conditional response curves are monotonically decreasing for in- 180

creasing concentrations or doses. 181

fbliss (x1, x2) = f1 (x1) f2 (x2) . (9) 182

The records are normalized to the response at x1 = 0, x2 = 0, thus f1 (0) = 183

f2 (0) = 1. To arrive from Eq. 8 to Eq. 9, one replaces any g by 1−f . Chou and 184

Talalay [1984] derive the Bliss Independence from a first order Michaelis-Menten 185

kinetic system with mutually non-exclusive inhibitors. 186

2.2 Methods 187

The models introduced in the previous section are null reference models in that 188

they predict a response surface in the absence of compound interaction. We 189

capture synergy in a single parameter to facilitate the screening process. This is 190

different from other approaches, such as Chou and Talalay [1977], who measure 191

synergy as deviation from a null-reference isobole without summarizing the de- 192

viation in a single parameter. The single parameter value is typically referred 193

to as synergy- or α-score [Berenbaum, 1977]. As we investigate two methods to 194

quantify synergy, we introduce two synergy parameters α and γ, which measure 195

the extent of synergy. Both synergy scores α and γ are parametrized such that 196

α = 0 or γ = 0 denote absence of an interaction effect. In case α or γ take a 197

value different from zero, we speak of a non-additive, or interactive effect. A 198

compound combination is, dependent on the sign of synergy parameter, one of 199

the three following: 200

α, γ

 > 0 synergistic
= 0 additive or non-interactive
< 0 antagonistic

(10) 201
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Here, we measure synergy in two different ways, namely in fitting parametrized202

models or computing the lack-of-fit. The first method fits null reference models203

that are extended with a synergy parameter α. For these parametrized models α204

is computed by minimizing the square deviation between the measured response205

and the response spanned by the α-dependent model. For the second method206

the difference between a null reference model and the data is computed. For this207

method, the synergy score γ is defined as the volume that is spanned between208

the null reference model and the measured response.209

Just as the conditional responses form the boundary condition for the null-210

reference surface (Eq. 1, Eq. 2), we want the conditional responses to be the211

boundary condition for all values of α. Explicitly, assuming a synergy model212

dependent on α is denoted by f (x1, x2|α), then213

f (x1, 0|α) = f1 (x1)
f (0, x2|α) = f2 (x2)

}
∀α, (11)214

215

with fi denoting the conditional response of compound i. We refer to Eq. 11 as216

the Synergy Desideratum. As we will see below, not all synergy models fulfill217

this property.218

2.2.1 Parametrized Synergy219

We extend the null reference models introduced in Section 2.1 in Eq. 4 - Eq. 9 to220

parametrized synergy models. The extension of the General Isobole Equation221

is the popular Combination Index introduced by Berenbaum [1977] and Chou222

and Talalay [1984]:223

x1

f−11 (y)
+

x2

f−12 (y)
= 1− α. (12)224

Berenbaum originally equated the left-hand side of Eq. 4 to the so-called Com-225

bination Index I. Depending on I smaller, larger, or equal to 1, synergy, antag-226

onism or non-interaction is indicated. For consistency with the other synergy227

models, we set I = 1−α such that α matches the outcomes as listed in Eq. 10.228

In Section 3 we will refer to this implicit model as fCI (x1, x2|α), where α is the229

parameter that minimizes the squared error between measured data and Eq. 12.230

Note that this model violates the Synergy Desideratum in Eq. 11 as α not231

zero leads to deviations from the conditional responses. Explicitly, fCI (x1, 0|α) =232

f1 ((1− α)x1) 6= f1 (x1). Although the Combination Index model violates the233

Synergy Desideratum, in practice it performs quite well and is in widespread234

use.235

The explicit formulations in Eq. 5 and Eq. 6 are equivalent to the General236

Isobole Equation, fGI (x1, x2), given in Eq. 4, under the LACC [Lederer et al.,237

2018a], but different if the conditional responses are not proportional. The two238

explicit equations are in fact an extension of the ‘cooperative effect synergy’239

proposed by Geary [2012] for compounds with qualitatively similar effects. For240

these explicit formulations in Eq. 5 and Eq. 6 we propose a model that captures241

the interaction based on the explicit formulations:242

f2→1 (x1, x2|α) = f1
(
x1 + (1 + α) f−11 (f2 (x2))

)
(13)243

f1→2 (x1, x2|α) = f2
(
(1 + α) f−12 (f1 (x1)) + x2

)
. (14)244

245
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With this, we can extend the Explicit Mean Equation model fmean (x1, x2) in 246

Eq. 7 to a parametrized synergy model: 247

fmean (x1, x2|α) = 1/2 (f2→1 (x1, x2|α) + f1→2 (x1, x2|α)) , (15) 248

which we refer to as fmean (x1, x2|α). As f2→1 (x1, x2|α) and f1→2 (x1, x2|α) do 249

not fulfill the Synergy Desideratum, fmean (x1, x2|α) also does not fulfill it. 250

To investigate the difference between the two models f2→1 (x1, x2) (Eq. 5) 251

and f1→2 (x1, x2) (Eq. 6) we treat compound one and two based on the difference 252

in slopes in the conditional responses (for more detailed information on the 253

different parameters in Hill curves, refer to Appendix A). Instead of speaking 254

of the first and second compound, we speak of the smaller and larger one, 255

referring to the order of steepness. Therefore, we use models Eq. 13 and Eq. 14, 256

but categorize the compounds based on the slope parameter of their conditional 257

response curves. This results in flarge→small (x1, x2|α) and fsmall→large (x1, x2|α). 258

Another synergy model we introduce here and refer to as fgeary (x1, x2|α) 259

is based on a comment of Geary [2012], hence the naming. The two explicit 260

models f2→1 (x1, x2) and f1→2 (x1, x2) yield the same surface under the LACC 261

but do rarely in practice. Therefore, it cannot be determined whether a re- 262

sponse that lies between the two surfaces is synergistic or antagonistic and hence 263

should be treated as non-interactive. Thus, if α from f1→2 (x1, x2|α) and α from 264

f2→1 (x1, x2|α) are of equal sign, the synergy score of that model is computed 265

as the mean of those two parameters. In case the two synergy parameters are 266

of opposite sign, the synergy score is set to 0: 267

αgeary =

{
1
2 (α1→2 + α2→1) if sign (α1→2) = sign (α2→1)
0 else

. (16) 268

Next, to extend the null reference model following the principle of Bliss 269

Independence, we extend Eq. 8 to 270

gbliss (x1, x2|α) = g1 (x1) + g2 (x2)− (1 + α) g1 (x1) g2 (x2) . (17) 271

The motivation for this model is that any interaction between the two com- 272

pounds is caught in the interaction term of the two conditional responses. In 273

case of no interaction, the synergy parameter α = 0, which leads to (1 + α) = 1, 274

and results in no deviance from the null reference model. As we use the formu- 275

lation of Eq. 9 due to measuring the effect as survival, we reformulate Eq. 17 276

analogously as we did to get from Eq. 8 to Eq. 9: by replacing gi (xi) with 277

1− fi (xi). Hence, Eq. 17 takes the form: 278

fbliss (x1, x2|α) = f1 (x1) f2 (x2) + α (1− f1 (x1)) (1− f2 (x2)) (18) 279

This model does satisfy the requirement of no influence of the synergy param- 280

eter on conditional doses: fbliss (x1, 0|α) = f1 (x1) and fbliss (0, x2|α) = f2 (x2) 281

as fi (0) = 1. In case of synergy, the interactive effect is expected to be larger, 282

therefore, α being positive. If the compound combination has an antagonis- 283

tic effect, the interaction term is expected to be negative. For extreme α, the 284

parametric approach leads to responses outside of the range 0 ≤ y ≤ 1, e.g. 285

fbliss (x1, x2)→ −∞ if α→ −∞. The same holds for the formulations of Loewe 286

Additivity. The implicit formulation becomes impossible to match and for the 287
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explicit formulations, the dose expression within brackets of f2→1 (x1, x2|α) be-288

comes negative. Additionally, α > 1 is not possible for fCI (x1, x2|α), as the left-289

hand side of Eq. 12 can not be negative. Such behavior is also known from other290

models, e.g. for the Greco flagship model for negative synergy scores [Greco291

et al., 1995, p. 365-366, and Fig. 26]. Hence, we will limit α to the range of −1292

to 1.293

Despite of the Synergy Desideratum being violated for the models that build294

up on the Loewe Additivity principle, there is no further effect on the model295

comparison presented in Section 3 as conditional doses are excluded when com-296

puting the synergy score (see Section 2.2.2 and Section 2.2.3).297

2.2.2 Lack-of-Fit Synergy298

The second method to measure synergy investigated here is to compute the lack-299

of-fit of the measured response of a combination of compounds to the response300

of a null reference model derived from the conditional responses. We refer to301

this synergy value as γ:302

γ =

max(x2)∫
min(x2>0)

max(x1)∫
min(x1>0)

(ŷ (x1, x2|Θ)− y (x1, x2)) d log(x1)d log(x2), (19)303

with ŷ (x1, x2 |Θ) the estimated effect with parameters Θ of the fitted conditional304

responses following any non-interactive model and y the measured effect. Note305

that ŷ (Θ) and y are dependent on the concentration combination (x1, x2). This306

method was used in the AstraZeneca DREAM challenge [Menden et al., 2018]307

with the General Isobole Equation as null reference model and can be found308

in [Di Veroli et al., 2016]. Computing the volume has the advantage of taking309

the experimental design into account in contrast to simply taking the mean310

deviance over all measurement points, which is independent of the relative po-311

sitions of the measurements. We also used a synergy value calculated from the312

mean deviance and it clearly performed worse (data not shown). The synergy313

value varies for different dose transformations. For example, the computed null-314

reference surface (and hence the synergy value) will be different for the same315

experiment if a log-transformation is applied to the doses or not.316

In all, we have introduced six null reference models, five of them building317

up on the concept of Loewe Additivity and one on Bliss Independence. We318

further have introduced two methods to compute synergy, the parametric one319

and the lack-of-fit method, where both synergy parameters α and γ are positive320

if the record is synergistic, negative, if antagonistic. This results in twelve syn-321

ergy model-method combinations: the parametric ones, fCI (x1, x2|α) (Eq. 12),322

flarge→small (x1, x2|α) and fsmall→large (x1, x2|α) (Eq. 13, Eq. 14, dependent on323

the slope parameters) together with their mean, fmean (x1, x2|α) (Eq. 15), the324

method of Geary and fbliss (x1, x2|α) (Eq. 17). For the lack-of-fit method,325

we take as the null reference: fGI (x1, x2) (Eq. 4), flarge→small (x1, x2) and326

fsmall→large (x1, x2) (Eq. 5, Eq. 6), with the Explicit Mean Equation, fmean (x1, x2)327

(Eq. 7), the method of Geary (analogously to Eq. 16) and fbliss (x1, x2) (Eq. 9).328
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2.2.3 Fitting the Synergy Parameter 329

Before applying the two methods presented in Section 2.2.1 and Section 2.2.2, 330

we normalize and clean the data from outliers. In a first step we normalize all 331

records to the same value, y0, the measured response at zero dose concentration 332

from both compounds. Second, we discard outliers using the deviation from a 333

spline approximation. Third, we fit both conditional responses of each record, 334

namely the responses of each compound individually, to a pair of Hill curves 335

(Eq. 21, Appendix A). We fit the response at zero dose concentration for both 336

Hill curves. This gives the parameter set Θ = {y0, y∞,1, y∞,2, e1, e2, s1, s2} for 337

each record. More details are given in Appendix B. 338

We apply the two different methods to calculate the synergy parameters α 339

and γ to each record. First, for the parametrized synergy models, we apply a 340

grid search for α, for α ∈ [−1, 1] with a step size of 0.01, minimizing the sum of 341

squared errors. This gives the value of α for which the squared error between 342

the ith measured effect y(i) and ith expected effect ŷ
(
x
(i)
1 , x

(i)
2 |α,Θ

)
is minimal: 343

344

min
α

N∑
i=1, with x

(i)
1 6=0 and x

(i)
2 6=0

(
ŷ
(
x
(i)
1 , x

(i)
2 |α,Θ

)
− y(i)

)2
. (20) 345

Note that we exclude the conditional responses that we used to fit Θ from the 346

minimization. Second, we apply the lack-of-fit method from Di Veroli et al. 347

[2016], where synergy is measured in terms of the integral difference in log 348

space of measured response and surface spanned by the non-interactive mod- 349

els in Section 2.1, as given in Eq. 19. For the calculation of the integrals, we 350

apply the trapezoidal rule [Press et al., 2007, Chapter 4]. In Fig. 1 we sum- 351

marize the most important steps of the analysis for a synergistic example. In 352

Appendix E, Fig. 11, the same is shown for an antagonistic record. 353

2.3 Material 354

To evaluate the two methods introduced in Section 2.2.1 and Section 2.2.2, we 355

apply them to two datasets of compound combination screening for which a 356

categorization into the three synergy cases is provided. 357

The Mathews Griner dataset is a cancer compound synergy study by Math- 358

ews Griner et al. [2014]. In a one-to-all experimental design, the compound ibru- 359

tinib was combined with 463 other compounds and administered to the cancer 360

cell line TMD8 of which cell viability was measured. The dataset is published 361

at https://tripod.nih.gov/matrix-client/. Each compound combination 362

was measured for 5 different doses, decreasing from 125µM to 2.5µM in a four- 363

fold dilution for each compound alongside their conditional effects, resulting in 364

36 different dose combinations. The categorization of this dataset comes from 365

a study by Yadav et al. [2015], in which every record was categorized based on 366

a visual inspection. 367

The Cokol dataset comes from a study about fungal cell growth of the yeast 368

S. cerevisiae (strain By4741), where Cokol et al. [2011] categorized the dataset. 369

In this study the influence on cell growth was measured when exposed to 33 370

different compounds that were combined with one another based on promising 371

combinations chosen by the authors, resulting in 200 different drug-drug-cell 372

combinations. With an individually measured maximal effect dose for every 373
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compound, the doses administered decrease linearly in seven steps with the374

eight dose set to zero, resulting in an 8× 8 factorial design.375

Based on the longest arc length of an isobole that is compared to the ex-376

pected longest linear isobole in a non-interactive scenario, where Loewe Additiv-377

ity serves as null reference model, each record was given a score. In more detail,378

from the estimated surface of a record assuming no interaction, the longest con-379

tour line is measured in terms of its length and direction (convex or concave).380

A convex contour line leads to the categorization of a record as synergistic and381

the arc length of the longest contour line determines the strength of synergy. A382

concave contour line results in an antagonistic categorization with its extent be-383

ing measured again as the length of the longest isobole. Thus the Cokol dataset384

not only comes with a classification but also with a synergy score similar to α385

or γ.386

To our knowledge, these two datasets are the only high-throughput ones387

with a classification into the three synergy classes: antagonistic, non-interactive388

and synergistic. Both datasets are somewhat imbalanced because interactions389

are rare [Borisy et al., 2003, Zhang et al., 2007, Farha and Brown, 2010]. The390

distribution of the classification is listed in Table 1. We obtained both cate-391

gorizations after personal communication with the authors Yadav et al. [2015]392

and Cokol et al. [2011]. For the purpose of comparing the synergy models, we393

consider these two classifications as ground truth.394

3 Results395

Using the two methods of computing the synergy score, the parametric one396

(Section 2.2.1) and the lack-of-fit one (Section 2.2.2), we compute synergy scores397

for all records of the two datasets introduced in Section 2.3.398

3.1 Kendall rank correlation coefficient399

Having computed the synergy scores α and γ from the two different methods as400

described in Section 2.2.3, we compute the Kendall rank correlation coefficient,401

which is also known as Kendall’s tau coefficient and was originally proposed402

by Kendall [1938]. This coefficient computes the rank correlation between the403

data as originally categorized by Yadav et al. [2015] and Cokol et al. [2011]404

and the computed synergy scores resulting from the two methods introduced in405

Section 2.2.1 and Section 2.2.2. For the analysis, we rank synergistic records406

highest at rank 3, followed by non-interactive at rank 2 and antagonistic lowest407

at rank 1. Due to the many ties in rank, the Kendall rank correlation coefficient408

cannot take a value higher than 0.75 for Mathews Griner and 0.8 for Cokol,409

even if a perfect ranking was given. An overview of the Kendall rank correlation410

coefficients is given in Table 3 and Table 4 in Appendix D.411

To compare the parametric and lack-of-fit methods, we plot the correlation412

values as a scatter plot per method (see Fig. 2) with the values from the para-413

metric method plotted on the x-axis and those from the lack-of-fit method on414

the y-axis. Most of the points scatter in the upper left triangle, above the415

diagonal line. This shows that the lack-of-fit method outperforms the paramet-416

ric method. This holds for all models applied to the Mathews Griner dataset417

and also for all models but fgeary (x1, x2|α) and fsmall→large (x1, x2|α) applied418
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to the Cokol dataset. For both datasets, the highest correlation scores result 419

from those null reference models that are based on the Loewe Additivity prin- 420

ciple. The Bliss null reference model performs worst for the Mathews Griner 421

set for both methods. For the Cokol data it is the second worst model. To 422

a certain extent this can be explained due to the classification of the Cokol 423

dataset being based on the isobole length relative to non-interactive isoboles, 424

which is a Loewe Additivity type analysis. As the categorization of the Math- 425

ews Griner dataset is based on visual inspection, we cannot explain the bad 426

performance of fbliss (x1, x2) for that dataset. On both datasets, fGI (x1, x2), 427

flarge→small (x1, x2) and fmean (x1, x2) perform best for the lack-of-fit method. 428

For the Mathews Griner dataset, flarge→small (x1, x2) dominates marginally over 429

the General Isobole Equation and Explicit Mean Equation model. For the Cokol 430

dataset, the Explicit Mean Equation dominates for both methods. 431

3.2 Scattering of Synergy Scores 432

To further investigate the performance of the methods and null reference models, 433

we plot the synergy scores of the best performing models based on the Kendall 434

rank correlation coefficient analysis (Section 3.1, and an ROC analysis, which we 435

describe in detail in Appendix C) for both datasets in Fig. 3, Fig. 4 and Fig. 5. 436

In all figures, the overall correlation of the compared data is depicted together 437

with the correlation per categorization. The coloring of the scores is based 438

on the original categorization as antagonistic, non-interactive or synergistic as 439

provided by Yadav et al. [2015] and Cokol et al. [2011]. 440

In Fig. 3 the synergy scores computed with the lack-of-fit method are plotted 441

against the original synergy scores from Cokol et al. [2011]. Applying the lack- 442

of-fit method to the Bliss Independence model (Eq. 9) results in scores which 443

are mainly above zero (Fig. 3, upper left). Further, it can be seen in the density 444

plots along the y-axis in Fig. 3, upper left panel, and on the x-axis of Fig. 4, both 445

panels in the first row and left panel in the middle row, that the synergy scores 446

that are computed based on the principle of Bliss Independence cannot be easily 447

separated by categorization, making it difficult to come up with a threshold to 448

categorize a record into one of the three synergy categories (synergy, antagonism, 449

non-interaction) given a synergy score. 450

For the other three models depicted in Fig. 3, that are based on the principle 451

of Loewe Additivity, the synergy scores are more clearly separated. The com- 452

puted scores of the synergistic records distribute nicely above zero in the upper 453

right corner (categorized as synergistic and computed synergy scores above zero) 454

as well as they scatter in the lower left corner for antagonistic cases. In all those 455

three panels in Fig. 3 we see for the non-interactive records that the computed 456

scores of those three models are both positive and negative ranging roughly be- 457

tween −0.1 and 0.1 symmetrically. Barely any of the computed synergy scores 458

for antagonistic cases are positive. Therefore, the chances of a record being 459

antagonistic if the synergy score is above zero are quite low as well as the risk 460

of categorizing a record as antagonistic if it is synergistic. 461

We further looked in detail into dose combinations for which both the fGI (x1, x2)462
and fmean (x1, x2) yield positive synergy values for antagonistic cases and into 463

dose combinations for which the fmean (x1, x2) model results in negative synergy 464

values for records which are labeled as synergistic. In total we found four dose 465

combinations. A visualization of the observed and expected responses based on 466
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the Explicit Mean Equation model is shown in Appendix E, Fig. 12. One of467

them is a compound combined with itself. Hence, per definition of the Loewe468

Additivity, no interaction is expected. From Fig. 12, one can see why this record469

was mis-categorized: for high dose combinations, a greater effect is found, which470

is not found for the conditional runs. Probably, the dose ranges are too small to471

show such effects. We looked at the conditional responses of the other three dose472

combinations and observed that for the originally antagonistic records (three out473

of four) one of the conditional responses exhibits small effects with the maximal474

response y∞ being above 0.65 (comp. right panel of Fig. 6). That leads to the475

computed null-reference surface to be quite high and hence causes synergistic476

scores if any effects are measured that are smaller than max (y
(1)
∞ , y

(2)
∞ ). We477

suspect that the dose concentrations are not well-sampled and larger maximal478

doses should have been administered.479

We further looked up the three dose combinations (excluding the one where480

the compound is combined with itself) in the Connectivity Map [Subramanian481

et al., 2017, Lamb et al., 2006], which is one of the largest repositories of drug482

response studies. Of those, we could find three in the Connectivity Map. All483

of these dose combinations showed non-interactive effects on all cell lines they484

were tested on. The assays found in the Connectivity Map are run on cancer485

cell lines. The dose combinations investigated here are run on yeast. Hence, a486

full comparison cannot be made, but results are certainly suggestive that the487

compound combinations are non-interactive.488

In Fig. 4 and Fig. 5, the computed scores from different null reference mod-489

els are plotted against each other. We compare the implicit formulation (Gen-490

eral Isobole Equation) to the Bliss Independence model and the two best per-491

forming models that are based on the explicit formulation of Loewe Additivity,492

fmean (x1, x2) and flarge→small (x1, x2). The coloring of the scores is based on the493

original categorization as antagonistic, non-interactive or synergistic as provided494

by Yadav et al. [2015] and Cokol et al. [2011].495

In Fig. 4 the scores from the Mathews Griner dataset are plotted. In the two496

panels in the upper row and the left panel in the middle row Bliss Independence497

is compared to the other three null models that build up on the principles of498

Loewe Additivity. It is obvious, that the scores based on Bliss Independence499

are larger than those of Loewe Additivity and mainly above zero. This is due to500

the more conservative null reference surface as derived from Bliss Independence501

(see [Sinzger et al., 2019, Fig. 6]). The scores from models that are based502

on Loewe Additivity are very similar to each other, as they scatter along the503

diagonal (panels in middle right and lower row). It is difficult, though, to tell504

apart whether a record is synergistic or antagonistic, as non-interactive records505

scatter largely between −0.5 and 0.5. Only records with a computed score506

outside that range can be categorized as interactive. For the Cokol dataset,507

which serves as basis for Fig. 5, the scores can be better separated. Despite the508

scores being generally smaller than those from the Mathews Griner data, the509

records can be easier separated, when using a Loewe Additivity based model.510

Additionally, we see here the similarity between these additive models given their511

strong correlation (right panels in middle row and both panels in lower row).512

Further, the scores based on flarge→small (x1, x2) achieve higher values than those513

from the other two Loewe Additivity based models. This becomes obvious514

when comparing the null-reference surfaces of those three models, as depicted515
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in [Lederer et al., 2018a, Fig. 4]. The surface spanned by flarge→small (x1, x2) 516

spans a surface above those surfaces spanned by Explicit Mean Equation or 517

General Isobole Equation. Therefore, in synergistic cases where the measured 518

effect is greater, and hence the response in cell survival smaller, the difference 519

from the null-reference surface to flarge→small (x1, x2) is greater than to the other 520

two models. We suspect the synergy models from the Cokol dataset to be better 521

separable due to the experimental design of the dataset. All compounds were 522

applied up to their known maximal effect dose. This was not the case for the 523

Mathews Griner dataset, where all compounds were applied at the same fixed 524

dose range. 525

All in all, the lack-of-fit method performs better for any model when applied 526

to the Mathews Griner dataset and mostly better for the Cokol dataset, with 527

the exception of the fsmall→large (x1, x2) and Geary model. We suggest, that the 528

lack-of-fit should be preferred over the parametric method, due to the overall 529

performance on both datasets. When using the lack-of-fit method, the Explicit 530

Mean Equation model performs either second best (Mathews Griner dataset), 531

or best (Cokol dataset). The other two well performing models, the explicit 532

flarge→small (x1, x2) or the original implicit formulation of Loewe Additivity, the 533

General Isobole Equation, do not perform equally well on both datasets. To 534

exclude any bias from these models for different datasets, the Explicit Mean 535

Equation should be preferred. 536

4 Discussion 537

The rise of high-throughput methods in recent years allows for massive screen- 538

ing of compound combinations. With the increase of data, there is an urge 539

to develop methods that allow for reliable filtering of promising combinations. 540

Additionally, the recent success of a synergy study of in vivo mice by Grüner 541

et al. [2016] underlines the fast development of possibilities to generate biolog- 542

ical data. Therefore, it is all the more important to develop methods that are 543

sound and easily applicable to high-throughput data. 544

In this study we use two datasets of compound combinations that come with 545

a categorization into synergistic, non-interactive or antagonistic for each record. 546

Based on the fitted conditional responses, we compute the synergy scores 547

of all records. We compare six models that build on the principles of Loewe 548

Additivity and Bliss Independence. Those six models are used with two differ- 549

ent methods to compute a synergy score for each record. The first method is a 550

parametric approach and is motivated by the Combination Index introduced by 551

Berenbaum [1977]. The second method quantifies the difference in volume be- 552

tween the expected response assuming no interaction and the measured response 553

and is motivated by Di Veroli et al. [2016]. 554

We compare the computed synergy scores from both methods, each applied 555

with the six reference models, based on Kendall rank correlation coefficients. 556

Based on these correlation coefficients we investigate the reconstruction of rank- 557

ing of the records (see Section 3.1). We further conduct an ROC analysis (results 558

shown in Appendix C). With this, we quantify the methods’ and models’ capac- 559

ity to distinguish records from different categories, given a computed synergy 560

score. Both, the Kendall rank correlation coefficient and the ROC analysis, 561

show a superiority of those models that are based on Loewe Additivity relative 562
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to those based on Bliss Independence. From those additive models the Explicit563

Mean Equation is the overall best performing model for both datasets.564

For the above comparison of the six null reference models and the two meth-565

ods, we rely on the underlying categorization of both datasets. All performance566

metrics are based on how well the predicted synergy scores agree with the un-567

derlying categorization. The categorizations of both datasets were created very568

differently from one another. On one hand, the Mathews Griner dataset was569

categorized on a visual inspection, on account of which we cannot be certain570

about the assumptions made that guided the decision making process. On the571

other hand, the categorization of the Cokol dataset is based on the principle572

of Loewe Additivity. This leads to the natural preference of null models that573

are based on Loewe Additivity over those based on Bliss Independence, which574

we find back in our analysis. Irrespective of the origin of the classification, we575

stress that the labels were provided to us by independent researchers and hence576

were not biased in any way to favor the Explicit Mean Equation model.577

Note that we conduct the research only on combinations of two compounds.578

Meanwhile, it is shown in Russ and Kishony [2018] that Bliss Independence579

maintains accuracy when increasing the number of compounds that are com-580

bined with each other. Loewe Additivity, however, loses its predictive power for581

an increasing number of compounds.582

The comparison of the parametric method with the lack-of-fit method shows583

a superiority of the lack-of-fit method. To recall, the motivation behind the584

parametric approach was the statistical advantages of such an approach. It585

allows to define an interval around α = 0 in which a compound combination can586

be considered additive. For the lack-of-fit method, such statistical evaluation587

can not be done directly, but could be performed on the basis of bootstrapping.588

Chou and Talalay [1977] measure the interaction effect locally for a fixed589

ratio of doses of both compounds that are supposed to reach the same effect,590

say one unit of the first compound causes the same effect as two units of the591

second compound, which results in the dose combination of 1:2. Along this fixed592

ratio of doses, they compute the left-hand side of Eq. 3 given the two doses x1593

and x2 that are assumed to reach a fixed effect y∗ together with x∗i being the594

dose of compound i that reaches the fixed effect alone. For the fixed dose ra-595

tio, they run over all expected effects, usually from zero to one. A geometric596

interpretation of that method is depicted in [Greco et al., 1995, Fig. 7, p. 341].597

The resulting values of the left-hand side of Eq. 3 are analyzed graphically: all598

computed values are plotted versus the expected fixed effect y∗ = [0, 1]. Val-599

ues higher than one exhibit synergistic behavior, values below one antagonism.600

This method allows for results that show antagonistic behavior for, say, smaller601

effects, as well as synergistic behavior for higher effects, or vice versa. That such602

a behavior of switching from antagonistic behavior in one region to synergistic603

behavior in another can occur was also shown in Norberg and Wahlström [1988].604

With one synergy score, as used throughout this paper, we do not provide such605

a measure for local antagonism and synergism. Our main motivation in this606

study is to provide a single synergy score that allows for fast filtering of inter-607

esting candidates for more in-depth research. To extend that idea, the standard608

deviation could be taken into account, as in a t-value or Z-score. Additionally,609

the superior lack-of-fit method is much faster and simpler to implement than610

the parametric one.611

Finally, to asses how distinguishable the synergy scores γ are, we visualize612
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the synergy scores based on the underlying category (Section 3.2). The synergy 613

scores from the lack-of-fit method can, based on their sign, reliably be catego- 614

rized as synergistic or antagonistic. For records categorized as non-interactive, 615

the computed synergy scores are positive as well as negative. For the two 616

datasets, we saw different extents of separation between those γ-scores, which 617

makes it difficult to generalize the results. All in all, the differentiation from no 618

interaction poses a more difficult task as choosing the threshold is arbitrary. 619

During the analysis, we observed higher synergy scores when applying the 620

Bliss Independence principle as null reference model. This is due to the more 621

conservative null reference surface as derived from Bliss Independence (see exem- 622

plary comparison of isoboles from most of the models discussed here in [Sinzger 623

et al., 2019, Fig. 6]). Due to the synergy scores being relatively high, a differen- 624

tiation between categories based on the synergy score poses a bigger challenge. 625

There is a strong overlap of synergy scores from all three categories. Addi- 626

tionally, most of the synergy scores γ, that are computed with the lack-of-fit 627

method, are above zero. Different ranges of synergy scores for both datasets 628

make it additionally difficult to assess synergy or antagonism for a record based 629

on the unique information of the synergy score. 630

We want to emphasize the performance benefit of the recently introduced 631

Explicit Mean Equation [Lederer et al., 2018a] over the implicit formulation 632

in form of the General Isobole Equation. On both datasets, it is the overall 633

best performing model when compared to the provided categorizations. The 634

explicit formulation of this additive model was shown to speed up computation 635

by a factor of 250 (see [Lederer et al., 2018a, Fig. S1]). Together with the 636

implementation of the lack-of-fit method, which is easier to implement and a 637

lot faster than the parametric method, this combination of model improvement 638

and method can be of great benefit for the research community. 639

Although the performance of models and methods are consistent across the 640

two (quite different) datasets considered in this study, reliable comparison of dif- 641

ferent models and methods would benefit from the availability of drug screening 642

datasets that are available with ground truth labeling. 643
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Tables839

synergistic antagonistic non-interactive

Mathews Griner 121 90 252
Cokol 50 68 82

Table 1: Number of cases categorized as synergistic, antagonistic or
non-interactive in the two datasets Mathews Griner and Cokol.
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Figure 1: Description of the analysis steps of the lack-of-fit method for the
compound pair TER and STA from the Cokol dataset. This compound pair is
categorized as synergistic according to [Cokol et al., 2011]. The raw response
data of the record is depicted in (B). The response data normalized by the read
at zero dose concentration (lower left). In (B) the degree of relative cell growth
is colored from high to low values in red to blue.
Step 1: compute Hill curves for conditional responses: Based on the raw reads
of the single dose responses (lower and left outer edges) fit a Hill curve to the
conditional responses. The fitted Hill curves shown in (A) and (D) with original
raw data shown as points.
Step 2: compute expected non-interactive response for all six models: not shown.
Step 3: compute difference between measured data (C) and expected data from
all six null reference models: shown in (C). The direction of difference is shown
by color (red for negative and blue for positive, green for zero). The larger the
degree of difference, the larger the bullet, and vice versa.
Step 4: compute integral γ over the differences: Over all those bullets, we then
compute the integral, which gives the synergy score γ. For every model, the
synergy score γ is depicted in the title of each matrix in (C).
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Figure 2: Scatter plot of Kendall rank correlation coefficient for both datasets,
Mathews Griner (left) and Cokol (right). The Kendall correlation measures
the rank correlation of the original categorization and the computed synergy
scores. The higher the correlation, the more similar the score ranking. The
correlation values from the synergy scores α, computed with the parametric
approach, are plotted on the x-axis and those from the lack-of-fit approach
are plotted on the y-axis. Each model is depicted in a different color. To
guide the eye, the diagonal is plotted. If a data point is above the diagonal,
the Kendall rank correlation coefficient from the lack-of-fit method is higher
than that from the parametric method, and vice versa. Without exception,
the Kendall rank correlation coefficients are all higher for the synergy scores γ,
which are computed with the lack-of-fit method, than those based on the α scores
computed with the parametric method.
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Figure 3: Computed synergy scores γ of Cokol data of the best models accord-
ing to the Kendall rank correlation coefficient and ROC analysis in Section 3.1
and Appendix C in comparison to the original scores from Cokol et al. [2011].
The data points are colored based on the original categorization. For all three
categories, synergistic, non-interactive and antagonistic, the Pearson correla-
tion is depicted between the original scores in that category and the computed
synergy scores in the respective color. Additionally, we depict the local poly-
nomial regression fitting of all scores (in gray). The histograms of the scores
are plotted on the axis, separated by color based on the original categorization.
Synergy scores γ based on the Explicit Mean Equation model show the highest
correlation with the original scores.
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Figure 4: Scatter plot of synergy scores γ of the Mathews Griner dataset. The
scores are computed with the lack-of-fit method. Displayed are the four best
models according to the Kendall rank correlation coefficient and ROC analysis
in Section 3.1 and Appendix C. The scores of one model are depicted on the
x-axis and the other on the y-axis. The original categorization is given based on
colour. The Pearson correlation score between the synergy scores are depicted
by color for every categorization and the overall Pearson correlation is depicted
in black. To guide the eye, the axis at 0, the diagonal and local polynomial
regression fitting are depicted in grey. The histograms of the scores are plotted
on the axis, separated by color based on the original categorization. The three
models based on the Loewe Additivity principle show highest correlation (center
right and lower row). All comparison with fbliss (x1, x2) show lowest correlation
(first three cases). There is a large difference between the correlation between
the additive models and the comparison of Bliss Independence by roughly 0.3.
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Figure 5: Scatter plot of synergy scores γ of the Cokol dataset. The scores
are computed with the lack-of-fit method. Displayed are the four best models
according to the Kendall rank correlation coefficient and ROC analysis in Sec-
tion 3.1 and Appendix C. The scores of one model are depicted on the x-axis
and the other on the y-axis. The original categorization is given based on colour.
The Pearson correlation score between the synergy scores are depicted by color
for every categorization and the overall Pearson correlation is depicted in black.
To guide the eye, the axis at 0, the diagonal and the local polynomial regression
fitting are depicted in grey. The histograms of the scores are plotted on the
axis, separated by color based on the original categorization. fmean (x1, x2) and
fGI (x1, x2) show highest correlation (center right), fbliss (x1, x2) shows lowest
(first three comparison cases).
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Figure 6: Maximal response y∞ (left) and slope parameters s (right) of Hill
curves. Parameters are shown for the conditional responses of the four cases
for which the lack-of-fit method resulted for fmean (x1, x2) and fGI (x1, x2) in
a synergy score of opposite sign to its categorization from the Cokol dataset.
Different records are depicted in different colours. The original categorization
of each record is depicted per shape. The conditional responses of one record,
and hence their Hill curve parameters, are grouped depending on size of the Hill
curve parameter s (larger or smaller).
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A Conditional Dose Response Curves841

A common approach for modeling monotonic dose-response curves fj with j ∈842

{1, 2} is the Hill curve [Hill, 1910], also referred to as the sigmoid function. The843

Hill model is, due to its good fit to many sources of data, the most widely applied844

model for fitting compound responses [Goutelle et al., 2008]. It has a sigmoidal845

shape with little change for small doses but with a rapid decline in response846

once a certain threshold is met. For even larger doses the effect asymptotes to847

a constant maximal effect. Two exemplary Hill curves are depicted in Fig. 7.848

There are several parameterizations of the Hill curve. We use the following

log(x)

re
sp

on
se

f1
f2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−1.5 0.0 1.5− ∞ x1
y=0.9 x2

y=0.9 x1
y=0.3 x2

y=0.3

y=0.3

y=0.9

Figure 7: Dose-response curves (red and blue) as Hill curves (Eq. 21). For the
exemplary responses of 0.3 and 0.9 the different doses x1 and x2 reaching that
effect are shown (dashed lines). The dose-response curves differ only in EC50

with e1 = 2 and e2 = 1. Values of the other parameters are y0 = 1, y∞ = 0
and s = 2. To highlight the sigmoidal shape of a Hill curve in log-space, the
logarithmic concentration space is depicted.

849

throughout this study to fit conditional responses:850

f(x) = y∞ +
y0 − y∞
1 + (xe )s

, (21)851

where y0 is the response at zero dose and y∞ the maximal response of the cells to852

the compound, e the dose concentration reaching half of the maximal response853

and s the steepness of the curve. Eq. 21 is equivalent to the parametrization854

used in the drc package [Ritz and Strebig, 2016], the so-called four parameter855

log-logistic model. By our definition of the Hill curve, a positive s leads to a856

descending Hill curve. 857
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B Data Cleaning, Fitting of Hill Curve and Pa- 858

rameter Estimation for Implicit Models 859

First, we normalize all records by the measured response at zero dose concen- 860

tration from both compounds, y0. Second, we conduct an outlier analysis of the 861

normalized responses by fitting a spline surface and deleting outliers to discard 862

them. Third, we then fit the conditional responses of the cleaned data to Hill 863

curves. 864

We fit a general additive model (GAM) to the normalized raw data using 865

thin plate splines [Wood, 2017], not transforming the doses in any way. The 866

surfaces of those fitted thin plate splines span the checkerboards of every record 867

and data points with too large absolute residual values are rejected. For fitting 868

the splines we use method gam() of the mgcv-package [Wood, 2011], defining 869

the smooth terms within the gam formulae with the method s(). We set the 870

dimension of the basis, that is used to represent the smooth term to k = 30 871

fixed knots. 872

The threshold to reject data points is at five times the inter-quantile range 873

of all residuals of a given record. Every data point with an absolute residual 874

above that threshold is discarded. For the Mathews Griner data, this leads to 875

18 records out of the 466 (less than 4%) where a mean of 1.28 outliers were 876

excluded per record with an overall of 23 data points excluded, which is less 877

than one percent of the overall data. A maximum of 6 outliers was detected 878

once. Similarly, we excluded on average 2.48 data points for the Cokol data on 879

52 of the total 200 (≤ 25%) records with a maximum of 13 data points and an 880

overall of 129 data points excluded, which is about 1% of all data points. 881

To fit the two conditional responses of a record to two Hill functions of the 882

form of Eq. 21 we use the drc package [Ritz et al., 2015]. Unlike other synergy 883

analyses such as [Yadav et al., 2015], the response at zero concentration y0 is not 884

fixed to 1 but merely constrained to be the same for both response curves. The 885

other Hill parameters, y∞, s and e are fitted for both compounds individually. 886

In case the asymptote parameter y∞ is below zero for any of the two Hill curves, 887

the conditional response of that compound is refitted to a two-parameter model 888

with y∞ set to zero and y0 kept from the fitting of both compounds together. 889

This is the case for 43 records of the Mathews Griner dataset and 125 records of 890

the Cokol dataset. We exclude records for which any of the Hill curve parameters 891

slope or EC50 are negative (s < 0, e < 0). This is the case for 187 records for 892

the Mathews Griner dataset (133 records with negative slope s, 88 records with 893

negative EC50 value e, out of which there are 34 records with negative slope 894

and negative EC50 value), which is roughly 40% of all records. More details 895

follow below. 896

The fGI (x1, x2) model is an implicit model for the response y. Therefore, 897

a root finder is used to find a response ŷ(i) given concentrations
(
x
(i)
1 , x

(i)
2

)
898

and parameters describing the Hill curves of the conditional responses, Θ = 899

{y0, y∞,j , ej , sj}, We used the standard implementation of a root finder in the 900

R stats package, uniroot() [R Core Team, 2016], which is based on the Brent- 901

Dekker-van Wijngaarden algorithm [Press et al., 2007, Chapter 9]. As conver- 902

gence criterion we used 1.22× 10−4 within a maximum of 1000 iterations.903
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B.1 Sensitivity of model performance to inter-quantile range904

In a previous version of this article, we cleaned the data to three times the905

inter-quantile range instead of five. With this smaller inter-quantile range we906

removed in the Mathews Griner dataset in total 199 data points instead of 23,907

and in the Cokol dataset 623 instead of 129. The performance of the Mathews908

Griner dataset for the lack-of-fit method slightly decreased, whereas the overall909

performance for the Cokol dataset increased (see Appendix E, Fig. 8 and Fig. 9).910

As a note, approximately the same number of records were excluded for the911

analysis due to two issues: i) negative slopes of at least one of the conditional912

dose response curves, or ii) the root-finder for the fCI (x1, x2|α) model not con-913

verging (no convergence after 1000 iterations). These issues are independent914

from data cleaning with three or five times the inter-quantile range (see Ap-915

pendix D, Table 13 - Table 16).916

B.2 Handling records with negative slope or EC50 values917

Roughly 40% (187) of the records of the Mathews Griner dataset were excluded918

in the study because of a negative slope or EC50 parameter. This is due to a919

suboptimal choice of doses. We observed two types of sub-optimality: first, the920

maximal dose can be too small to induce a significant change in response. Due921

to the noise in measurements, negative slope and EC50 parameters are fitted.922

This is the case for 34 records. A second type of sub-optimality is observed923

when the maximal effect is already reached for the second dose (the first dose924

is always zero). This is the case for the remaining 153 records.925

Although we could not fit two reasonable Hill curves to these records, we can926

still use both methods, lack-of-fit and parametric, to quantify synergy. They927

both only require two mathematically well-defined conditional response curves.928

Here, we define a conditional response for cases with negative slope or negative929

EC50 parameter according to Table 2.930

s e y(x)
< 0 < 0 y0 ∀ x
< 0 > 0 y∞ for x 6= 0
> 0 < 0 y∞ for x 6= 0

Table 2: Response curves for cases where the Hill model fit leads to negative
slope or negative EC50 values.

With the above definition for conditional response curves, we investigated the931

187 previously excluded records in detail. We computed the lack-of-fit synergy932

values γ for those 187 records and for the entire dataset of 466 records. For933

two of these records, the fGI (x1, x2) model did not converge. The Kendall rank934

correlation coefficient values are given in Appendix D, Table 17. The inclusion935

of those datasets results in lower Kendall rank correlation coefficients relative to936

the original analysis. The coefficients decrease by roughly 0.05 when averaged937

over all models. 938
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C ROC-analysis 939

In high-throughput synergy studies, one generally screens for promising candi- 940

dates that exhibit a synergistic or antagonistic effect. Those promising candi- 941

dates are then investigated in more detail with genetic assays and other tech- 942

niques. To determine how well the underlying null reference models result in 943

distinguishable synergy scores, we conduct an ROC analysis (receiver operating 944

characteristic), comparing the estimated synergy scores with the class catego- 945

rization that is given for both datasets. A standard ROC analysis applies to 946

binary classification, where cases are compared to controls. In this study, we 947

have three classes: synergistic, antagonistic and non-interactive. We therefore 948

compare each class to the combination of the other two, e.g. synergistic as cases 949

versus the antagonistic and non-interactive combined as control. Typically, in 950

ROC analyses, the cases rank higher than the controls. When treating the class 951

antagonistic as case compared to the control synergistic and non-interactive we 952

change all signs of the synergy scores. Therefore, the ranking of synergy scores 953

is reversed and antagonistic synergy scores rank higher. Problems arise when 954

comparing non-interactive cases to the control synergistic and antagonistic as 955

their values should lie between the two control classes. Therefore, the absolute 956

value of the estimated synergy scores is taken, which allows a ranking where 957

the synergy scores of the non-interactive records should rank lower than the 958

other synergy scores. Additionally, we can again multiply all synergy scores 959

with minus one to revert the order of scores such that the cases rank higher. 960

The AUC values (area under the curve) are reported in Table 5 - Table 8 961

in Appendix D. For completeness, and based on the critique of Saito and 962

Rehmsmeier [2015] to use PRC-AUC (precision/recall area under the curve) 963

values for imbalanced datasets, the PRC-AUC values are also computed and 964

can be found in Table 9 - Table 12 in Appendix D. 965

Analogously to the previous section, we depict the AUC values for both 966

datasets in scatter plots (Fig. 10) with AUC values based on the parametric 967

approach depicted on the x-axis and those based on the lack-of-fit approach on 968

the y-axis. The underlying null reference models are shown by color. The dif- 969

ferent comparisons, such as synergistic versus non-interactive and antagonistic, 970

are depicted by shape of the plot symbol. 971

From Fig. 10, the dominance of the lack-of-fit approach over the paramet- 972

ric one is as apparent for the Mathews Griner dataset as from Fig. 2. With 973

regard to the comparison of the different cases, visualized in shape, the AUC 974

values from the comparison of the synergistic cases to the non-interactive and 975

antagonistic controls, score the highest values around 0.9. The comparison of 976

the non-interactive cases to the interactive ones score the lowest. 977

As the overall highest AUC scores result from the lack-of-fit method, we 978

have a closer look at those for both datasets (Table 6 and Table 8 in Ap- 979

pendix D). For the antagonistic case, the values range around 0.80 for the 980

Mathews Griner dataset and around 0.85 for the Cokol dataset. AUC values of 981

the non-interactive case range around 0.75 for both datasets. The AUC values 982

for the synergistic case for both datasets range around a value of 0.90 with one 983

outlier of 0.75 for the Bliss Independence model on the Mathews Griner dataset. 984

Overall, the lack-of-fit outperforms the parametric method on the Mathews 985

Griner dataset. For the lack-of-fit method, both the flarge→small (x1, x2) and 986

Explicit Mean Equation perform best on the Mathews Griner dataset for syner-987
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gistic cases, and a clear dominance of flarge→small (x1, x2) over the Explicit Mean988

Equation for antagonistic and non-interactive cases. On the second dataset, the989

Cokol dataset, Explicit Mean Equation performs overall best for both methods.990

We attribute the differences in performances of methods and models on the991

two datasets to the differences in the experimental design for these datasets. For992

the Cokol dataset, all compounds were applied up to their maximal effect dose.993

In the Mathews Griner dataset, all compounds were applied with the same fixed994

dose range. 995
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D Supplementary Tables 996

model lack-of-fit parametric
fGI (x1, x2) 0.52 0.23
flarge→small (x1, x2) 0.54 0.32
fsmall→large (x1, x2) 0.48 0.19
fmean (x1, x2) 0.53 0.10
fgeary (x1, x2) 0.47 0.30
fbliss (x1, x2) 0.36 0.22

Table 3: Kendall rank correlation coefficient of Mathews Griner data set.

model lack-of-fit parametric
fGI (x1, x2) 0.62 0.12
flarge→small (x1, x2) 0.61 0.50
fsmall→large (x1, x2) 0.50 0.57
fmean (x1, x2) 0.67 0.64
fgeary (x1, x2) 0.56 0.58
fbliss (x1, x2) 0.56 0.16

Table 4: Kendall rank correlation coefficient of Cokol data set.

synergistic non-interactive antagonistic
fGI (x1, x2) 0.67 0.63 0.62

flarge→small (x1, x2) 0.73 0.68 0.72
fsmall→large (x1, x2) 0.68 0.53 0.53

fmean (x1, x2) 0.62 0.68 0.46
fgeary (x1, x2) 0.70 0.57 0.60
fbliss (x1, x2) 0.66 0.45 0.62

Table 5: AUC analysis of parametric method applied to Mathews Griner
dataset.
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synergistic non-interactive antagonistic
fGI (x1, x2) 0.88 0.77 0.81

flarge→small (x1, x2) 0.89 0.78 0.84
fsmall→large (x1, x2) 0.86 0.68 0.78

fmean (x1, x2) 0.89 0.75 0.82
fgeary (x1, x2) 0.85 0.69 0.78
fbliss (x1, x2) 0.75 0.60 0.76

Table 6: AUC analysis on lack-of-fit method applied to Mathews Griner dataset.

synergistic non-interactive antagonistic
fGI (x1, x2) 0.62 0.62 0.55

flarge→small (x1, x2) 0.80 0.64 0.84
fsmall→large (x1, x2) 0.86 0.64 0.89

fmean (x1, x2) 0.89 0.74 0.93
fgeary (x1, x2) 0.80 0.74 0.89
fbliss (x1, x2) 0.62 0.55 0.59

Table 7: AUC analysis on parametric method applied to Cokol dataset.

synergistic non-interactive antagonistic
fGI (x1, x2) 0.93 0.78 0.88

flarge→small (x1, x2) 0.94 0.63 0.86
fsmall→large (x1, x2) 0.83 0.66 0.83

fmean (x1, x2) 0.95 0.80 0.91
fgeary (x1, x2) 0.88 0.71 0.86
fbliss (x1, x2) 0.86 0.43 0.87

Table 8: AUC analysis on lack-of-fit method applied to Cokol dataset.

synergistic non-interactive antagonistic
fGI (x1, x2) 0.39 0.69 0.35

flarge→small (x1, x2) 0.62 0.73 0.32
fsmall→large (x1, x2) 0.52 0.58 0.13

fmean (x1, x2) 0.56 0.74 0.18
fgeary (x1, x2) 0.61 0.61 0.15
fbliss (x1, x2) 0.39 0.55 0.17

Table 9: PRC-AUC analysis on parametric method applied to Mathews Griner
dataset.
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synergistic non-interactive antagonistic
fGI (x1, x2) 0.78 0.75 0.48

flarge→small (x1, x2) 0.80 0.74 0.55
fsmall→large (x1, x2) 0.72 0.69 0.33

fmean (x1, x2) 0.78 0.76 0.42
fgeary (x1, x2) 0.71 0.70 0.35
fbliss (x1, x2) 0.52 0.64 0.39

Table 10: PRC-AUC analysis on lack-of-fit method applied to Mathews Griner
dataset.

synergistic non-interactive antagonistic
fGI (x1, x2) 0.30 0.57 0.51

flarge→small (x1, x2) 0.56 0.56 0.65
fsmall→large (x1, x2) 0.62 0.52 0.83

fmean (x1, x2) 0.71 0.55 0.89
fgeary (x1, x2) 0.60 0.58 0.82
fbliss (x1, x2) 0.30 0.45 0.50

Table 11: PRC-AUC analysis on parametric method applied to Cokol dataset.

synergistic non-interactive antagonistic
fGI (x1, x2) 0.84 0.65 0.83

flarge→small (x1, x2) 0.87 0.46 0.72
fsmall→large (x1, x2) 0.63 0.56 0.72

fmean (x1, x2) 0.87 0.66 0.86
fgeary (x1, x2) 0.75 0.60 0.77
fbliss (x1, x2) 0.76 0.35 0.70

Table 12: PRC-AUC analysis on lack-of-fit method applied to Cokol dataset.

synergistic antagonistic non-interactive total
parametric 19 15 48 82

lack-of-fit 34 59 93 186
both 19 16 49 84

Table 13: # of excluded records from parametric and lack-of-fit method applied
to the Mathews Griner dataset with a threshold of three times the inter-quantile
range.

synergistic antagonistic non-interactive total
parametric 21 16 49 86

lack-of-fit 36 58 91 185
both 21 16 49 86

Table 14: # of excluded records from the parametric and lack-of-fit method
applied to the Mathews Griner dataset with cleaned data of a threshold of five
times the inter-quantile range.
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synergistic antagonistic non-interactive total
parametric 6 4 6 16

lack-of-fit 7 5 7 19
both 6 4 6 16

Table 15: # of excluded records from parametric and lack-of-fit method applied
to the Cokol dataset with cleaned data of a threshold of three times the inter-
quantile range.

synergistic antagonistic non-interactive total
parametric 3 2 4 9

lack-of-fit 3 3 4 10
both 3 2 4 9

Table 16: # of excluded records from parametric and lack-of-fit method applied
to Cokol dataset with cleaned data of a threshold of five times the inter-quantile
range.

subset of entire set of original analysis on
model 185 records 464 records 279 records
fGI (x1, x2) 0.37 0.47 0.52
flarge→small (x1, x2) 0.34 0.43 0.54
fsmall→large (x1, x2) 0.42 0.46 0.48
fmean (x1, x2) 0.37 0.43 0.53
fgeary (x1, x2) 0.35 0.39 0.47
fbliss (x1, x2) 0.27 0.34 0.36

Table 17: Kendall rank correlation coefficients with recomputed conditional
response curves according to Table 2 on 185 records with negative slope or
EC50 value (left) and on entire dataset with 464 records (right).
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E Supplementary Figures 997
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Figure 8: Scatter plot of Kendall rank correlation coefficient for both datasets,
Mathews Griner (left) and Cokol (right), comparing the performance of the
lack-of-fit method for different data-cleaning thresholds. The Kendall rank cor-
relation coefficient values resulting from the cleaned data with three times the
inter-quantile range are plotted on the x-axis and those from the data cleaned
with a threshold of five times inter-quantile range are plotted on the y-axis.
Each model is depicted in a different colour. To guide the eye, the diagonal is
plotted.
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Figure 9: Scatter plot of ROC analysis for both datasets, Mathews Griner
(left) and Cokol (right), comparing the performance of the lack-of-fit method for
different data-cleaning thresholds. The AUC values resulting from the cleaned
data with three times the inter-quantile range are plotted on the x-axis and
those from the data cleaned with a five times inter-quantile range are plotted
on the y-axis. AUC values from different models are shown in different colors.
AUC values comparing the different categories are depicted in different shapes,
where the naming of the shape represents the category that is compared to the
remaining two. To guide the eye, the diagonal is plotted. The more a datapoint
is above the diagonal, the better the performance of the data cleaned with a
threshold of five times the inter-quantile range, and vice versa.
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Figure 10: Scatter plot of ROC values for both datasets, Mathews Griner (left)
and Cokol (right). The ROC values resulting from the parametric approach
are plotted on the x-axis and those from the lack-of-fit approache are plotted
on the y-axis. Each model is depicted in a different color. The three different
comparisons, of one case versus the remaining two, are depicted in different
shapes. To guide the eye, the diagonal is plotted. If a data point is above
the diagonal, the ROC value from the lack-of-fit method is higher than that
from the parametric method, and vice versa. Except for the non-interactive
comparison of the Bliss Independence model, the synergy scores γ from the
lack-of-fit method always result in higher ROC values than those computed
based on the synergy scores α from the parametric method.
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Figure 11: Description of the analysis steps of the lack-of-fit method for the
compound pair FEN and DYC from the Cokol dataset. This compound pair is
categorized as antagonistic according to [Cokol et al., 2011]. The raw response
data of the record is depicted in (B). The response data normalized by the read
at zero dose concentration (lower left). In (B) the degree of relative cell growth
is colored from high to low values in red to blue.
Step 1: compute Hill curves for conditional responses: Based on the raw reads
of the single dose responses (lower and left outer edges) fit a Hill curve to the
conditional responses. The fitted Hill curves shown in (A) and (D) with original
raw data shown as points.
Step 2: compute expected non-interactive response for all six models: not shown.
Step 3: compute difference between measured data (C) and expected data from
all six null reference models: shown in (C). The direction of difference is shown
by color (red for negative and blue for positive, green for zero). The larger the
degree of difference, the larger the bullet, and vice versa.
Step 4: compute integral γ over the differences: Over all those bullets, we then
compute the integral, which gives the synergy score γ. For every model, the
synergy score γ is depicted in the title of each matrix in (C).
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Figure 12: Raw responses (left) and expected responses from the Explicit Mean
Equation model (right) of the four records from the Cokol dataset, for which
the General Isobole Equation and Explicit Mean Equation gave synergy scores
of opposite sign to the orignal categorization. More details on some parameters
of the Hill curves can be found in Fig. 6.
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