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 38 
 39 
 40 
 41 
Abstract 42 
 43 
Neural systems are inherently noisy, and this noise can affect our perception from moment 44 
to moment. This is particularly apparent in binocular rivalry, where our perception of 45 
competing stimuli shown to the left and right eyes alternates over time in a seemingly random 46 
fashion. We investigated internal noise using binocular rivalry by modulating rivalling stimuli 47 
using dynamic sequences of external noise of various rates and amplitudes. As well as 48 
measuring the effect on dominance durations, we repeated each external noise sequence 49 
twice, and assessed the consistency of percepts across repetitions. External noise 50 
modulations with standard deviations above 4% contrast increased consistency scores above 51 
baseline, and were most effective at 1/8Hz. A computational model of rivalry in which internal 52 
noise has a 1/f (pink) temporal amplitude spectrum, and a standard deviation of 16%, 53 
provided the best account of our data, and was able to correctly predict perception in 54 
additional conditions. Our novel technique provides detailed estimates of the dynamic 55 
properties of internal noise during binocular rivalry, and by extension the stochastic processes 56 
that drive our perception and other types of spontaneous brain activity. 57 
 58 
 59 
 60 
 61 
 62 
Significance statement 63 
 64 
Although our perception of the world appears constant, sensory representations are variable 65 
because of the ‘noisy’ nature of biological neurons. Here we used a binocular rivalry 66 
paradigm, in which conflicting images are shown to the two eyes, to probe the properties of 67 
this internal variability. Using a novel paradigm in which the contrasts of rivalling stimuli are 68 
modulated by two independent external noise streams, we infer the amplitude and character 69 
of this internal noise. The temporal amplitude spectrum of the noise has a 1/f spectrum, 70 
similar to that of natural visual input, and consistent with the idea that the visual system 71 
evolved to match its environment. 72 
 73 
  74 
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 3 

Introduction 75 
 76 
Despite appearing constant, our sensory perception fluctuates from moment to moment 77 
because of the non-deterministic nature of biological neurons. This ‘internal noise’ operates 78 
at multiple timescales, and affects our decisions about sensory information. Internal noise is 79 
particularly apparent in bistable phenomena such as binocular rivalry, in which our perception 80 
of conflicting images shown to the two eyes fluctuates over time in a stochastic fashion. 81 
Because phenomena like rivalry make otherwise invisible processes available to conscious 82 
perception, they provide a useful tool for probing the properties of internal noise. 83 
 84 
In a typical rivalry experiment, participants view sine wave grating patterns with orthogonal 85 
orientations in the left and right eyes (see Figure 1a). They are asked to report which stimulus 86 
they perceive at each moment in time by continuously pressing a response button that 87 
corresponds to the perceived orientation. Histograms of the durations for which each image 88 
remains dominant typically have positive skew, approximating a gamma distribution (or a 89 
normal distribution on logarithmic axes). Computational models of rivalry (e.g. Kim et al., 90 
2006; Lehky, 1988; Wilson, 2007, 2003) have successfully explained the statistical pattern of 91 
percepts reported by assuming the presence of three key processes: inhibition between 92 
neurons representing the two stimuli, adaptation to the dominant stimulus, and noise. 93 
Inhibitory properties have been investigated using dichoptic masking paradigms (Baker and 94 
Meese, 2007; Legge, 1979; Meese and Baker, 2009) and by varying the properties of rivalling 95 
stimuli (Baker and Graf, 2009a, 2009b; Stuit et al., 2011, 2009), and there is direct evidence 96 
of adaptation during a period of dominance (Alais et al., 2010). However, comparatively little 97 
is known about the precise properties of the noise, as there have been few attempts to 98 
investigate it directly, despite recognition of its importance (Brascamp et al., 2006; Lehky, 99 
1995; Moreno-Bote et al., 2007; Shpiro et al., 2009). 100 
 101 
One exception is a study that randomly manipulated the coherence of rivalling dot motion 102 
stimuli throughout a trial in order to influence alternations (Lankheet, 2006). By reverse-103 
correlating coherence with the observers’ percepts, a biphasic profile was apparent, in which 104 
coherence was stronger in the suppressed eye and weaker in the dominant eye during the 105 
~1s preceding a flip.  This pattern was reversed at longer pre-flip durations, and overall the 106 
results were predicted by a simple rivalry model featuring adaptation and mutual inhibition. 107 
Although the results demonstrate that external noise can influence rivalry alternations, the 108 
parameters of the external noise were not manipulated, and so the results can reveal little 109 
about the characteristics of internal noise. 110 
 111 
Other work has aimed to influence rivalry alternations by periodically changing the contrast 112 
of the rivalling stimuli. In a study by O’Shea and Crassini (1984), the contrasts of rivalling 113 
gratings were periodically reduced to 0, either in phase or in antiphase across the eyes. At 114 
modulation frequencies above 20Hz (and sometimes as low as 3Hz), rivalry alternations still 115 
occurred as normal regardless of phase, suggesting a persistance in the underlying 116 
mechanism (see also Buckthought et al., 2008; Leopold et al., 2002). In a related study, Kim, 117 
Grabowecky and Suzuki (2006) used a square wave temporal modulation to alter the contrast 118 
of rivalling stimuli in antiphase (i.e. one stimulus increased in contrast and the other 119 
decreased at the same time) at a range of temporal frequencies from 0.28Hz to 2.48Hz. This  120 
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 121 
Figure 1: Methodological details. Panel (a) shows example stimuli with conflicting orientations, surrounded by a 122 
Voronoi texture to aid binocular fusion. Panel (b) shows example waveforms used to modulate stimulus 123 
contrasts at the five temporal frequencies used in the experiment. Panel (c) shows example trial timecourses for 124 
two repetitions of an unmodulated condition (left) and a modulated condition (right). Red (green) regions in the 125 
lower two plots indicate periods of time when the left (right) eye’s stimulus was perceived. Note that in the 126 
example on the right, percepts closely followed the physical contrast with a slight lag. 127 
 128 
manipulation caused a peak in the histogram of dominance durations at the half period of the 129 
modulation frequency. The increase was greatest when the half period was 600ms, a duration 130 
corresponding to the peak of the histogram for unmodulated rivalry using the same stimuli. 131 
Furthermore, there were additional peaks at odd integer harmonics of the modulation 132 
frequency. The authors consider this to be evidence of a stochastic resonance effect, and 133 
support this with a computational model of rivalry alternations. 134 
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Here we extend these approaches by modulating the contrast of rivalling stimuli using two 135 
independent dynamic noise sequences instead of square wave modulations (see Figure 1b,c). 136 
As well as measuring the effect on dominance durations, this design allows us to reverse 137 
correlate the participant’s reported percept with the timecourse of the external noise. In 138 
addition, we can use the same noise sequences multiple times, and measure the consistency 139 
of the participants’ percepts in a dynamic version of the ‘double pass’ paradigm (Burgess and 140 
Colborne, 1988; Green, 1964). If the external noise sequences were entirely determining 141 
perception, responses should be identical across the two repetitions. On the other hand, if 142 
the external noise sequences have no influence on perception then the similarity of responses 143 
will be determined by internal noise, and response consistency will be that expected by 144 
chance. The empirically measured consistency scores will therefore give an index of the 145 
relative influences of internal and external noise on perception. By manipulating the variance 146 
and temporal frequency content of the noise sequences, we can investigate properties of the 147 
internal noise that influences rivalry alternations. We interpret the results with reference to 148 
an established computational model of rivalry proposed by Wilson (2007, 2003) (see Figure 149 
2), to which we add different types of internal noise. 150 
 151 

 152 
Figure 2. Model details. (a) Model diagram of the two competing units. Each receives as input an independent 153 
white noise stream, bandpass filtered at one of five different temporal frequencies (see Methods). The minimum 154 
rivalry model (Wilson, 2007) defines the oscillatory behaviour of rivalry between two units with self-adaptation 155 
and mutual inhibition. We include additive internal independent monocular noise in our model, marked by the 156 
(+) symbol. (b) Examples of the five different internal noise spectral slopes (ɑ = 0 – 2.0) of the model for the left 157 
(green) and right (red) responding units. Noise streams with steeper slopes have an increased relative amplitude 158 
of low temporal frequencies relative to high, which leads to slower changes in the noise amplitude. (c) Example 159 
oscillatory behaviour of the model for a given trial (60s). The colours represent the responses of the left (green) 160 
and right (red) responding units. 161 
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Results 162 
 163 
External noise strongly modulates binocular rivalry alternations 164 
 165 
In the absence of any noise modulations, binocular rivalry produced a typical histogram of 166 
dominance durations with a positive skew (see grey curve in Figure 3ai), and a mean of 2.7 167 
seconds. A 5x5 repeated measures ANOVA indicated that the mean dominance duration 168 
depended on both temporal frequency (F(4,16)=34.43, p<0.001, hp

2=0.90) and modulation 169 
contrast (F(4,16)=8.15, p<0.01, hp

2=0.67), and also showed that the two variables interacted 170 
(F(16,64)=18.01, p<0.001, hp

2=0.82). The histograms in Figure 3a show that at lower temporal 171 
frequencies, strong contrast modulation resulted in slightly more long-duration percepts (an 172 
increase in positive skew), whereas at higher temporal frequencies the peak of the histogram 173 
shifted leftwards. These patterns were reflected in both the change in means (Figure 3b) and 174 
also the shift in the autocorrelation functions (Figure 3c), such that high temporal frequencies 175 
(e.g. the purple curve) had a shorter lag than long ones (e.g. the red curve). The functions in 176 
Figure 3b begin to diverge at a contrast of around 4%, and data from individual participants 177 
showed a similar pattern (see Supplementary Figure S1). 178 
 179 

 180 
Figure 3: Traditional rivalry measures for all conditions, averaged (or pooled) across all participants (N=5). Panel 181 
(a) shows histograms of pooled dominance durations at five temporal frequencies (i-v) and a range of contrast 182 
levels (standard deviations of 0 – 16%, increasing down each plot). The grey histogram, duplicated in each plot, 183 
shows the baseline condition with no contrast modulation. For low temporal frequency, high contrast 184 
modulations, there were more very long dominance periods (the positive skew of the red histogram increases). 185 
For high temporal frequency, high contrast modulations there were more short dominance periods, and the 186 
histograms shifted left. Panel (b) shows mean dominance durations for all conditions, plotted as a function of 187 
modulation contrast. The grey horizontal line shows the baseline (no modulation) condition. Error bars (and 188 
dotted lines) show ±1SE across participants. Panel (c) shows autocorrelation functions averaged across 189 
participants for the baseline condition (grey curve) and the highest contrast modulation at each temporal 190 
frequency (curves, see panels a,b for colour legends). Panel (d) shows the cross correlation between the 191 
difference in noise modulations at the highest modulation contrast, averaged across all modulation frequencies. 192 
The thin grey lines denote individual participants and the thick black line is the average. 193 
 194 
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 7 

We also cross-correlated the noise time course (difference between left and right eye 195 
contrasts for the 16% contrast modulation conditions pooled across all temporal frequencies) 196 
with the participants’ responses (Figure 3d). This revealed a mean response lag of 583ms, 197 
somewhat faster than estimates from previous studies (Baker and Graf, 2009a). The mean 198 
cross-correlation coefficient at this time point was 0.35, indicating that a substantial 199 
proportion of the variance in participant percepts was predictable from the changes in 200 
stimulus contrast. Functions for individual participants are shown by the thin traces in Figure 201 
3d, and are similar to the mean. Note that the auto- and cross-correlation functions shown 202 
here differ from the switch-triggered-average reverse correlation measure reported by 203 
Lankheet (2006), and the serial correlation measures used by Lehky (1995), van Ee (2009) and 204 
others (where ‘lag’ on the x-axis refers to dominance epoch rather than time). These 205 
measures assess different aspects of rivalry data that are not the focus of the current work. 206 
 207 
Next, we calculated the consistency of responses across pairs of presentations of identical 208 
noise streams. In the absence of any noise modulation, the mean consistency was slightly 209 
above the expected baseline of 0.5, having a value of 0.53 (horizontal grey lines in Figure 4). 210 
The most likely explanation for this is that slight eye dominances or biases towards one or 211 
other stimulus will increase the consistency across repetitions, however the effect is very 212 
small. For conditions where the stimulus contrast was modulated, a 5x5 repeated measures 213 
ANOVA indicated that the response consistency depended on both temporal frequency 214 
(F(4,16)=9.90, p<0.001, hp

2=0.71) and modulation contrast (F(4,16)=28.81, p<0.001, 215 
hp

2=0.88), as well as the interaction between the two variables (F(16,64)=3.55, p<0.001, 216 
hp

2=0.47). These effects are shown in Figure 4, which plots the same data twice as a function 217 
of either modulation contrast (Fig 4a) or temporal frequency (Fig 4b). The general trends are 218 
that consistency increases with contrast, and at each contrast is strongest for the 1/8Hz 219 
temporal frequency (shown in green). The maximum consistency was 0.72, for the 1/8Hz, 16% 220 
contrast condition, which is particularly noteworthy given that this temporal frequency had 221 
the weakest influence on dominance durations (see green points in Figure 3b). Consistency 222 
exceeded baseline for the 1/8Hz condition at around 4% modulation contrast (green 223 
diamonds in Figure 4). These main findings were also clear in the data of individual 224 
participants, shown in Supplementary Figure S1.  225 
 226 

 227 
Figure 4: Response consistency across two passes through the experiment. The same data are plotted in both 228 
panels, as a function of modulation contrast (a) or temporal frequency (b). In each panel, the thick grey line 229 
represents the baseline (no modulation) condition, colours represent different temporal frequencies, and 230 
symbol types represent different contrasts. All data points are averaged across participants, with error bars 231 
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indicating ±1SE of the mean. The dashed horizontal line at y=0.5 indicates a theoretical baseline in the absence 232 
of any response bias or eye dominance effects.  233 
 234 
A computational model with pink internal noise describes the human results 235 
 236 
We first investigated how the amplitude of internal noise, and its spectral slope (ɑ), affected 237 
model behaviour. We selected a single stimulus condition (stimulus noise frequency of 1/8Hz 238 
and amplitude of 16%) and ran the model with a range of internal noise contrast levels (SD = 239 
1 – 64%) at five different spectral slopes (ɑ = 0 – 2). The results of our simulations on 240 
dominance duration and response consistency are shown in Figure 5a(i-v), with the 241 
equivalent human data plotted in green for comparison. For all spectral slopes, as internal 242 
noise contrast increased it more strongly affected rivalry alternations. This is shown by the 243 
change in dominance duration (Figure 5b; increases for steep slopes and decreases for 244 
shallow slopes), and response consistency (Figure 5c), which decreased as responses became 245 
increasingly dominated by internal noise. 246 

 247 
Figure 5: Summary of model behaviour for internal noise amplitude and spectral slope estimation. (a) The 248 
histograms of dominance durations for each spectral slope (ɑ = 0.0 – 2.0) and contrast (SD = 1% – 64%) values. 249 
Within each subplot, the uppermost (green shaded) histogram shows the equivalent human data for a stimulus 250 
temporal frequency of 1/8Hz and a contrast modulation of SD = 16%. The solid vertical green line marks the 251 
average dominance duration for human observers. Histograms below show model dominance duration 252 
distributions for each internal noise contrast value. (b) Average dominance durations of the model for each 253 
spectral slope (coloured lines). The green line and shaded area mark human average dominance duration and 254 
±1SE of the mean, respectively. Average dominance duration was affected by internal noise once its contrast 255 
reached 4%. Noise with steeper slopes (ɑ = 1.5-2.0) increased mean dominance duration as a function of noise 256 
contrast, while noise with shallower slopes decreased mean dominance duration. (c) Response consistency 257 
decreased as a function of internal noise contrast for all spectral slopes. The green line and shaded area mark 258 
human observer average consistency and ±1SE of the mean, respectively. For all ɑ>0, response consistency 259 
reached human levels at an internal noise contrast of 16%.  260 
  261 
We can use the joint dominance durations and consistency scores to rule out several types of 262 
internal noise. White internal noise (ɑ = 0) is not viable because there is no internal noise level 263 
for which both durations and consistency are close to human levels. Internal noise with steep 264 
amplitude slopes (ɑ > 1) produces sensible consistency scores, but dominance durations 265 
become too long. This leaves slopes of ɑ = 0.5 and ɑ = 1, for which an internal noise contrast 266 
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 9 

of around 16% gives a good approximation to the human data. We performed full simulations 267 
for all noise spectral slopes with this contrast. A slope of ɑ = 1 was the best predictor of the 268 
human data, so these simulations are discussed in the main text, with simulations of other 269 
spectral slopes presented in Supplementary Figures S2 and S3.  270 
 271 
The histograms of dominance durations, mean dominance duration and response consistency 272 
of the model simulations for all 26 stimulus conditions are shown in Figure 6. The model 273 
replicated the pattern of human data shown in Figures 3 & 4 remarkably well. The histograms 274 
of dominance durations of the model (Figure 6a i-v) show similar trends to those of human 275 
observers (Figure 3a). Slow modulation frequencies (1/16Hz and 1/8Hz) increased positive 276 
skew at high modulation contrasts (Figure 6a i-ii), while higher modulation frequencies shifted 277 
the peak of the dominance duration histograms leftwards as modulation contrast increased.  278 
The shifts in the histograms are reflected in the mean dominance durations of the model 279 
(Figure 6b), just as with human observers. Similarly, response consistency (Figure 6c, d) 280 
increased when stimulus noise contrast reached 4% and was highest for each contrast at a 281 
temporal frequency of 1/8Hz. Whereas human response consistency was quite bandpass 282 
(peaking at 1/8Hz and dropping quickly for faster frequencies), the model exhibited slightly 283 
broader tuning at high stimulus noise contrast. This may be due to the other parameters of 284 
the model that were fixed prior to our simulations, or it could imply additional physiological 285 
constraints such as bandpass temporal filters on the input, or variable response lag. 286 
 287 

 288 
Figure 6: Summary of modelling results. (a) Histograms of dominance durations of the model with pink (ɑ = 1) 289 
internal noise of 16% contrast for each stimulus temporal frequency (i-v) and contrast SD. The solid line colour 290 
serves as a legend for the stimulus noise temporal frequency (red = 1/16Hz, green = 1/8Hz, blue = 1/4Hz, yellow 291 
= 1/2Hz, purple = 1Hz). The histogram marked in grey represents baseline dominance durations with no contrast 292 
modulation. (b) The mean dominance durations of the histograms in (a). Marker colour represents the 293 
modulation temporal frequency, while the x-axis gives the modulation contrast. The grey line marks the baseline 294 
dominance duration of the model (3.18s), slightly slower than that of the human data. (c-d) Model response 295 
consistency plotted in the same manner as Figure 4. In (c), marker colour indicates the modulation temporal 296 
frequency while the x-axis indicates the modulation contrast. For all stimulus frequencies, response consistency 297 
increased according to modulation contrast, and was greatest when the stimulus temporal frequency was 1/8Hz. 298 
(d) Identical data but plotted with modulation temporal frequency on the x-axis. The grey line (c,d) marks 299 
response consistency at baseline with no external noise fed to the model (0.49).  300 
 301 
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The model predicts consistency with antiphase noise sequences 302 
 303 
We next explored whether the model could predict performance in novel conditions. Inspired 304 
by Kim et al. (2006), we designed a further condition in which the noise modulations were in 305 
antiphase across the eyes (i.e. a contrast increase in one eye matched with an equal contrast 306 
decrease in the other). We chose a temporal frequency of 1/8Hz, and tested four of our 307 
original participants. With no free parameters, the model described above made a clear 308 
quantitative prediction about performance in this condition (see Figure 7a), namely that 309 
response consistency should be reliably increased for the antiphase noise (brown squares in 310 
Figure 7a), compared to the equivalent condition from the main experiment with two 311 
independent streams of external noise (green circles in Figure 7a). This prediction was borne 312 
out empirically, as shown in Figure 7b. We note that dominance duration histograms from 313 
our human participants (and therefore mean dominance durations) remained relatively 314 
unaffected by this manipulation (see Figure 7c), consistent with performance with 315 
independent noise streams (Figure 3aii). 316 
 317 

 318 
Figure 7: Summary of further conditions testing antiphase modulation and monocular rivalry. Panel (a) shows 319 
response consistency predictions of the model for independent (green circles) and antiphase (brown squares) 320 
external noise (modulation temporal frequency = 1/8hz). Panel (b) shows the human response consistency for 321 
the same conditions as (a). Panel (c) shows histograms of human dominance durations in the same format as 322 
Figure 3a, with the unmodulated rivalry condition shown at the top in grey. Panel (d) shows the response 323 
consistency of the model when the oscillatory mechanism is removed and modulations are driven by internal 324 
and external noise only (cyan diamonds) versus the response consistency for the main model (green cirxles). 325 
Panel (e) shows human response consistency to the ‘monocular rivalry’ condition (cyan diamonds) compared 326 
with that of the main experiment (green circles). Panel (f) shows human dominance duration histograms for the 327 
‘monocular rivalry’ condition. Error bars and dotted lines show ±1SE across participants (N=4; for the conditions 328 
from the main experiment, we omitted results from the participant who did not complete the additional 329 
conditions when constructing this figure).  330 
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 331 
We also tested a condition in which we presented both stimuli to both eyes as a plaid, and 332 
modulated the contrast of the components. Just as in the main experiment, we asked 333 
participants to report which component appeared higher in contrast at each moment in time, 334 
though there was no binocular rivalry. This ‘monocular rivalry’ condition also produced 335 
greater consistency scores than the equivalent condition from the main experiment (see 336 
Figure 7e), and demonstrates that the technique can be used to dynamically monitor 337 
perception even in the absence of interocular competition. The distributions of dominance 338 
durations were rather broader for low contrast modulations, but narrowed at higher 339 
contrasts (see Figure 7f). 340 
 341 
We reasoned that one way to model this condition might be to remove the rivalry mechanism 342 
from the model, leaving only the combination of internal and external noise to determine 343 
dominance at each moment. The predictions for this arrangement are shown by the cyan 344 
symbols in Figure 7d, and involve markedly lower consistency scores than both the model and 345 
empirical binocular rivalry conditions (green circles in Figures 7d,e), and also the monocular 346 
rivalry data itself (cyan diamonds in Figure 7e). Clearly then, monocular rivalry still involves 347 
some sort of alternation process (e.g. O’Shea et al. (2017), but see Georgeson (1984) for 348 
evidence to the contrary), but the increased empirical consistency scores in this condition 349 
suggest that the alternating mechanism is more strongly driven by the external noise 350 
modulations than during binocular rivalry. 351 
 352 
Discussion 353 
 354 
Using a combination of psychophysical experiments and computational modelling, we infer 355 
that the source of internal noise relevant to perceptual alternations during binocular rivalry 356 
has an amplitude spectrum of 1/f, and a standard deviation of around 16%. Our method 357 
facilitates these inferences because it uses a double pass design, in which an external noise 358 
sequence is repeated twice, under the assumption that internal noise will be different on each 359 
pass. Although the double pass method has been used previously for briefly presented stimuli 360 
(Baker and Meese, 2012; Burgess and Colborne, 1988), this is the first time (to our knowledge) 361 
it has been used in a dynamic paradigm. We now discuss details of the rivalry model, 362 
relevance to other work on noise in binocular vision, and broader implications for our 363 
understanding of internal noise in the brain. 364 
 365 
Model variants and alternative models of rivalry 366 
 367 
In the course of developing the model, we also considered several variants using same 368 
architecture that were either less successful or less plausible. One variant was a model in 369 
which a single source of internal noise was added to both channels. In this arrangement, the 370 
internal noise was less effective, because it increased or decreased the response in both 371 
channels by the same amount, and so did not materially influence the competition between 372 
channels. Another variant placed the internal noise sources outside of the gain control 373 
equation (i.e. added after eqn 1 rather than appearing on the numerator and denominator). 374 
Although moving internal noise later is consistent with the assumptions of a family of popular 375 
computational models of early binocular vision (Legge, 1984; Meese et al., 2006 see next 376 
section), this was less successful than our main model because internal noise levels sufficient 377 
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to influence consistency had too large an effect on dominance durations. This rendered the 378 
dynamic properties of the model moot, with rivalry percepts being largely determined by the 379 
internal noise streams. 380 
 381 
We also tested alternative values of the main parameters in the rivalry model. These altered 382 
model behaviour in the unmodulated baseline condition much as described in previous work 383 
(Wilson, 2007), but had relatively minimal effects on dominance durations and consistency 384 
scores with strongly noise-modulated stimuli, where rivalry alternations depend more on the 385 
interplay of internal and external noise than on adaptation and inhibition. We anticipate that 386 
other rivalry models with architectures related to that of Wilson (2007, 2003) could be 387 
modified in a similar way as described here to achieve comparable effects, but have not tested 388 
this assumption. 389 
 390 
Related work on rivalry 391 
 392 
As mentioned above, Kim et al. (2006) modulated the contrast of rivalling stimuli periodically 393 
in antiphase at a range of temporal frequencies (building on earlier work by O’Shea and 394 
Crassini (1984) in which rivalling stimuli were entirely removed at different frequencies and 395 
phases). They implement three computational models to account for their results, each of 396 
which has random walk (i.e. brown) noise with a spectral slope of 1/f2, but report obtaining 397 
similar results with white noise for their experimental conditions. Furthermore, one of the 398 
models they implement is a version of the Wilson (2003) model considered here, but they 399 
report the best performance when the internal noise is added to the adaptation differential 400 
equation (see Methods), rather than the rivalling units (see also van Ee, 2009). In our 401 
simulations, we found similar effects on the dominance duration distributions for internal 402 
noise placed either in the main equation or adaptation equation (not shown here). However, 403 
placing internal noise in the adaptation differential equation resulted in response consistency 404 
that was not tuned to modulation frequency (i.e., flat). We suspect that Kim et al.’s paradigm 405 
did not afford sufficient constraints to distinguish between the two very different internal 406 
noise types or the locus of internal noise. 407 
 408 
Other models that have incorporated a stochastic component include the model of Lehky 409 
(1988) which also used random walk (brown) noise, Kalarickal and Marshall (2000) who used 410 
additive uniformly distributed (effectively white) noise, and Stollenwerk and Bode (2003) who 411 
used temporally white noise that was correlated across space. A further model developed by 412 
Rubin and colleagues (Moreno-Bote et al., 2007; Shpiro et al., 2009) uses exponentially 413 
filtered white noise which progressively attenuates higher frequencies. However none of 414 
these studies report testing other types of internal noise, nor were their experimental 415 
conditions sufficient to offer meaningful constraints on the internal noise properties. As far 416 
as we are aware, this is the first study that has modelled internal noise of different amplitudes 417 
and spectral properties and compared the predictions to empirical results. 418 
 419 
Baker & Graf (2009a) explored binocular rivalry using broadband pink noise stimuli that also 420 
varied dynamically in time. By testing factorial combinations of temporal amplitude spectra 421 
across the two eyes, they showed that stimuli with 1/f temporal amplitude spectra tended to 422 
dominate over stimuli with different spectral slopes (the same was also true of static stimuli 423 
with a 1/f spatial amplitude spectrum). Whilst these results do not directly imply anything 424 
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about the properties of internal noise, they are consistent with the idea that the visual system 425 
is optimised for stimuli encountered in the natural world, which are typically 1/f in both space 426 
and time (e.g. Dong and Atick, 1995; Field, 1987; Geisler, 2008; Hansen and Essock, 2005; 427 
Simoncelli and Olshausen, 2001). Our findings here imply that as well as having a preference 428 
for external stimuli with naturalistic properties, the internal structure of the visual system 429 
might itself have evolved to emulate these temporal constraints (Field, 1987; Haun and Peli, 430 
2013; Schwartz and Simoncelli, 2001; Schweinhart et al., 2017).    431 
 432 
Internal noise in binocular vision and throughout the brain 433 
 434 
Early models of binocular signal combination attributed the Ö2 improvement in contrast 435 
sensitivity for fusible stimuli viewed binocularly vs monocularly to the pooling of independent 436 
monocular noise sources (Campbell and Green, 1965). However this model assumes that 437 
during monocular presentation, the noise in the unstimulated eye can be ignored, which is 438 
unlikely in the absence of experimental confounds (Legge, 1984). Contemporary binocular 439 
models of contrast detection and discrimination assume noise that is late and additive, 440 
occurring at a point beyond binocular signal combination (Meese et al., 2006). It is generally 441 
assumed that this late source of noise is the combination of multiple noise generators at 442 
successive stages of processing, though relatively little is known about their precise 443 
characteristics. However a small number of studies have investigated this issue, as we now 444 
summarise. 445 
 446 
Pardhan & Rose (1999) added binocular external noise during a monocular or binocular 447 
detection task and found that binocular summation decreased at high levels of external noise, 448 
and that equivalent input noise (the minimum external noise level required to influence 449 
thresholds) was higher for monocular than binocular targets. One interpretation of these 450 
results is that the effective internal noise is greater for monocularly presented stimuli (see 451 
also Anderson and Movshon, 1989). However, the type of external noise that they used was 452 
broadband white pixel noise, which can also cause substantial gain control suppression (see 453 
Baker and Meese, 2012), potentially confounding the effects of increased variance. These 454 
results are therefore relatively inconclusive regarding sources of internal noise in binocular 455 
vision. 456 
 457 
Recently, Ding & Levi (2016) have demonstrated that the inclusion of early (monocular) 458 
multiplicative noise in gain control models can account for some subtle features of binocular 459 
contrast discrimination performance. It has also been suggested that monocular noise might 460 
be increased in the affected eye of individuals with amblyopia (Baker et al., 2008). Finally, we 461 
have recently shown (Vilidaite et al., 2018) using a contrast discrimination paradigm that EEG 462 
and MEG data are consistent with both an early (~100ms post stimulus onset) noise source in 463 
low level visual areas, and a later noise source in more frontal and parietal brain areas, both 464 
of which affect perceptual decisions. All of these results are therefore consistent with an early 465 
monocular source of internal noise, as included in our model, but do not preclude the addition 466 
of later sources of noise which we do not consider here. 467 
 468 
Regarding noise more generally, surprisingly few studies have addressed the spectral and 469 
distribution properties of internal noise using psychophysical methods. The default 470 
assumption is typically that internal noise is Gaussian (owing to Central Limit Theorem) and 471 
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white. However, Neri (2013) concluded that internal noise had a Laplacian distribution, and 472 
other psychophysical work has assumed Poisson processes for internal noise (May and 473 
Solomon, 2015), based on single cell recordings (Goris et al., 2014). Noise with a pink 474 
amplitude spectrum typically retains a Gaussian distribution, though in principle non-475 
Gaussian distributions (such as Laplacian or Poisson distributions) could also be altered to 476 
have a pink spectrum. Although we are unaware of any other psychophysical studies 477 
attempting to estimate the spectral characteristics of internal noise, we note that 478 
measurements of spontaneous neural activity using ECoG and fMRI also have fractal 479 
properties, and a slope of approximately 1/f in visual areas (He et al., 2010). 480 
 481 
Conclusions 482 
 483 
Using a novel dynamic double pass paradigm with binocular rivalry, we measured how 484 
alternation rates and response consistency were affected by different types and amounts of 485 
external noise. The results were consistent with a computational model of rivalry in which 486 
internal noise was independent in each monocular channel. We conclude that internal noise 487 
relevant to rivalry has an amplitude spectrum of 1/f, and a standard deviation of around 16%. 488 
We anticipate that future studies might use temporally sensitive neuroimaging techniques 489 
such as EEG and MEG to further investigate these sources of internal noise. 490 
 491 
Methods 492 
 493 
Participants 494 
 495 
The main experiment was completed by five psychophysically experienced observers (2 496 
male), who provided written informed consent. Two were the authors, the remainder were 497 
unaware of the aims or design of the study. A control experiment was completed by four of 498 
the same observers. All observers had no known abnormalities of binocular vision, and wore 499 
their standard optical correction if required. Procedures were approved by the Ethics 500 
Committee of the Department of Psychology at the University of York. 501 
 502 
Apparatus and stimuli 503 
 504 
Stimuli were sinusoidal grating patches with a spatial frequency of 1c/deg, subtending two 505 
degrees of visual angle, and ramped in contrast by a cosine function over a further ¼ degree. 506 
The gratings shown to the left and right eyes had orthogonal orientations (±45 degrees) which 507 
were assigned randomly on each trial (see Figure 1a for examples). The mean Michelson 508 
contrast of the gratings was 50%, but this was modulated by dynamic noise streams of various 509 
centre frequencies (1/16 Hz to 1Hz) and standard deviations (1% to 16% Michelson contrast). 510 
The noise streams were constructed by bandpass filtering white noise at the required 511 
frequency using a one octave bandpass filter (see Figure 1b). In the main experiment, the 512 
noise streams used to modulate the contrast of each eye were independent. 513 
 514 
Stimuli were displayed on a ViewPixx 3D display (VPixx Ltd., Canada), driven by an Apple 515 
Macintosh computer. The monitor operated with 16 bits of greyscale luminance resolution 516 
(M16 mode) and was gamma corrected using a Minolta LS110 photometer. Independent 517 
stimulation of the left and right eyes was achieved using stereo shutter glasses (NVidia 3D 518 
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Vision), synchronised with the monitor refresh rate of 120Hz via an infra-red signal. To 519 
promote good vergence and binocular alignment, each stimulus was surrounded by a static 520 
high contrast greyscale Voronoi texture (squares of 14 x 14 degrees, with a 7 degree diameter 521 
disc in the centre set to mean luminance) that was identical in both eyes (see Figure 1a). A 522 
different texture was presented on each trial, selected at random from a set of 99 pre-523 
generated textures. 524 
 525 
Procedure 526 
 527 
Participants sat in a darkened room and viewed the display from a distance of 57cm. Stimuli 528 
were presented for 60 seconds per trial, with condition order determined at random. 529 
Participants were instructed to indicate using a two-button mouse which of the two grating 530 
stimuli they perceived at each moment in time by holding down one or other button. If both 531 
stimuli were perceived, they were instructed to choose the stimulus that was most visible (i.e. 532 
that took up the largest part of the image), or to hold down both buttons if they were equally 533 
salient. At the end of each trial, there was a minimum blank interval of three seconds, with 534 
the following trial initiated by the participant.  535 
 536 
Each of the 26 conditions (5 contrasts * 5 temporal frequencies + 1 baseline) was repeated 5 537 
times by each observer using unique noise sequences in each repetition, and then a further 5 538 
times using the same noise sequences as in the first pass. This resulted in 260 trials (4.3 hours 539 
of rivalry data) per participant, which were completed across multiple sessions (each typically 540 
lasting 20-30 minutes) over several days. Raw data are available online at: http://dx.doi.org/ 541 
10.6084/m9.figshare.7262201 542 
 543 
Modelling 544 
 545 
There are multiple models that have been successful at capturing the oscillatory behaviour of 546 
dominant percepts in binocular rivalry (Kim et al., 2006; Laing and Chow, 2002; Lehky, 1988; 547 
Wilson, 2007, 2003). While they vary in complexity, all include two key characteristics: 548 
inhibition between units responding to the left and right monocular stimuli, and self-549 
adaptation. These guarantee that only one unit will be active at a given moment, and that 550 
over time, the active unit will decrease its firing rate sufficiently to allow the suppressed unit 551 
to be released from inhibition. Apart from a few exceptions (Brascamp et al., 2006; Kalarickal 552 
and Marshall, 2000; Kim et al., 2006; Lehky, 1988; Moreno-Bote et al., 2007; Shpiro et al., 553 
2009; Stollenwerk and Bode, 2003), most computational investigations of binocular rivalry 554 
have focused on deterministic implementations of their models to investigate how 555 
suppression and self-adaptation contribute to oscillations in perceptual dominance. It is, 556 
however, fairly straightforward to adapt these models of rivalry to include an additive noise 557 
term and directly probe the properties (i.e., amplitude and spectral qualities) of internal 558 
noise. Here, we probe the properties of internal noise with the minimum rivalry model of 559 
Wilson (2007, 2003).  560 
 561 
The minimum rivalry model defines the response of a single unit by two differential equations 562 
(equation 1 and equation 2), which incorporate stimulus excitation (L/R), self-excitation (e = 563 
0.2), competitive inhibition (w = 3.5), self-adaptation (H), and here, an additive internal noise 564 
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term (N). For the unit responding to stimuli presented to the left eye (EL), the response term 565 
is 566 
 567 
 

  

(1) 

 568 
and self-adaptation is 569 
 570 
 

 
(2) 

 571 
which is identical for activity in the right eye (ER), but with the subscripts switched. The 572 
constants M and g serve to scale the response gain and adaptation strength and were set to 573 
values of 1.0 and 3.0, respectively. The excitatory (𝜏) and hyperpolarizing (𝜏") time constants 574 
of equation 1 and equation 2 were set to 15ms and 4000ms respectively. All model 575 
parameters were fixed in our simulations. Internal noise was additive and independently 576 
generated for each eye. As previous studies have already investigated the locus of internal 577 
noise with this particular model (Kim et al., 2006), we chose here to only conduct model 578 
simulations with noise added to the unit response equation (equation 1). Note that as the 579 
stimulus input to the model is identical to that of the psychophysical experiment (see Figure 580 
2a), we use a contrast gain control variant of the Minimum rivalry model (Wilson, 2007) to 581 
account for any differences in contrast between eyes. This also means that the noise term is 582 
added to both the numerator and denominator of equation 1.  583 
 584 
We probed the spectral characteristics of internal noise by injecting the model with 585 
broadband noise patterns (1/fɑ) generated at one of five different spectral slopes*, where ɑ = 586 
[0, 0.5, 1.0, 1.5, 2.0] (see Figure 2b). Noise patterns were generated in the Fourier domain by 587 
first creating a flat (ɑ = 0) amplitude spectrum and then multiplying the amplitude coefficient 588 
at each frequency by f-ɑ. The phase of each frequency component was assigned a random 589 
value between -p and p. Two different phase spectra were generated in order to create two 590 
independent noise streams (NL and NR) with the same amplitude spectrum. These were 591 
rendered in the temporal domain by taking the inverse Fourier transform and adding them to 592 
the left and right units separately.  593 
 594 
Perceptual switches were implemented as a winner-take-all rule: the dominance of a percept 595 
was defined by the magnitude of EL/R  at any given moment in time (if EL > ER, EL is dominant; 596 
see Figure 2c) Finally, all model simulations were conducted in MATLAB (version R2017a) 597 
using ODE45 to solve the 4 differential equations that define the response of each unit and 598 
their self-adaptation over 60 seconds (i.e. the duration of a trial in the psychophysical 599 
experiment). We simulated binocular rivalry twice – with different internal noise samples but 600 

                                                        
* We also conducted simulations with bandpass filtered internal noise streams with the same frequencies 
as that of the stimulus sequences, in addition to the broadband internal noise simulations. Response 
consistency was high for all stimulus conditions, which suggests that this type of internal noise is incapable 
of modulating model responses beyond that of the external noise sequences. As these results do not offer 
any additional insight to the characteristics of internal noise, we do not show them here. 
 

τ
dEL

dt
= − EL +

M[L − ωER + ϵEL + gHL + NL]+

1 + [L − ωER + ϵEL + gHL + NL]0.8
+

τh
dHL

dt
= − HL + EL
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the same external noise sequences – for each stimulus noise condition in order to calculate 601 
the response consistency of the model. This was repeated 1000 times, and the model outputs 602 
(dominance duration and response consistency) were averaged across repetitions.  603 
 604 
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Supplementary information 723 
 724 
 725 
 726 
 727 
 728 
 729 

 730 
 731 
Figure S1: Data for individual participants (P1-5). See the captions to Figures 3 and 4 for formatting details 732 
 733 
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 734 
Figure S2. (a) Model dominance duration histograms for each of the five noise ɑs and stimulus condition as in 735 
Figure 6a. The solid line colour indicates the stimulus temporal frequency while the fill colour marks the noise 736 
ɑ. The grey vertical line marks the mean dominance duration of the 0% modulation contrast condition. For very 737 
steep slopes (ɑ = 2) the mean exceeds the x axis limit (~10s).  (b) The average dominance duration for each 738 
model noise ɑ as in Figure 6b. Note the different scale for the y axis with internal noise ɑs of 1.5 and 2.0.  739 
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 740 
Figure S3. Response consistency for all five internal noise ɑ values investigated here. The left column charts 741 
response consistency for each modulation contrast while the right column shows the same data replotted 742 
according to modulation frequency as in Figure 6c and 6d.   743 
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