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Abstract 
 
Non-homologous end-joining (NHEJ) plays an important role in double-strand break (DSB) repair of             
DNA. Recent studies have shown that the error patterns of NHEJ are strongly biased by sequence context,                 
but these studies were based on relatively few templates. To investigate this more thoroughly, we               
systematically profiled ~1.16 million independent mutational events resulting from         
CRISPR/Cas9-mediated cleavage and NHEJ-mediated DSB repair of 6,872 synthetic target sequences,           
introduced into a human cell line via lentiviral infection. We find that: 1) insertions are dominated by 1 bp                   
events templated by sequence immediately upstream of the cleavage site, 2) deletions are predominantly              
associated with microhomology, and 3) targets exhibit variable but reproducible diversity with respect to              
the number and relative frequency of the mutational outcomes to which they give rise. From these data,                 
we trained a model that uses local sequence context to predict the distribution of mutational outcomes.                
Exploiting the bias of NHEJ outcomes towards microhomology mediated events, we demonstrate the             
programming of deletion patterns by introducing microhomology to specific locations in the vicinity of              
the DSB site. We anticipate that our results will inform investigations of DSB repair mechanisms as well                 
as the design of CRISPR/Cas9 experiments for diverse applications including genome-wide screens, gene             
therapy, lineage tracing and molecular recording.  
 
Introduction 
 
Genome engineering tools (zinc finger nucleases, TALENs and CRISPR/Cas9) are typically used by             
directing endonuclease activity to a specific location in a genome, thereby introducing a double-strand              
break (DSB) in a directed fashion. In mammalian cells, such DSBs are primarily repaired by one of two                  
pathways -- homology directed repair (HDR) and classical non-homologous end joining (c-NHEJ) ​(Hsu et              

1 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/481069doi: bioRxiv preprint 

mailto:shendure@uw.edu
https://paperpile.com/c/tXhg2u/tblwG+POKwh
https://doi.org/10.1101/481069
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

al. 2014; Lieber 2010)​. HDR uses homologous template sequences to repair the DSB, potentially              
introducing programmed edits via the repair template. In contrast, c-NHEJ directly rejoins the broken              
ends, often perfectly but occasionally introducing errors, typically in the form of short insertions or               
deletions (indels) ​(Bétermier et al. 2014)​. In addition to HDR and cNHEJ, there is evidence for an                 
alternative NHEJ pathway (alt-NHEJ), also termed microhomology mediated end joining (MMEJ),           
wherein short, homologous sequences in the vicinity of the DSB are used to align the broken ends prior to                   
joining, resulting in deletions or potentially more complex events ​(Sfeir & Symington 2015)​. Below, we               
use ‘NHEJ’ to refer to both c-NHEJ and MMEJ/alt-NHEJ, ​i.e. ​template-free editing.  
 
In recent years, CRISPR/Cas9 has emerged as a particularly versatile tool for genome editing. For many if                 
not most applications of CRISPR/Cas9-mediated genome engineering, it is used in conjunction with the              
cell’s endogenous NHEJ machinery to introduce short indels in a targeted fashion ​(Mali et al. 2013; Cong                 
et al. 2013; Jinek et al. 2013)​, ​e.g. ​to disrupt the function of genes or regulatory elements ​(Wang et al.                    
2015; Gasperini et al. 2017; Klein et al. 2018) or to introduce irreversible changes that record cell lineage                  
or molecular events ​(McKenna et al. 2016; Frieda et al. 2017; Kalhor et al. 2018)​. However, despite                 
NHEJ’s central importance to this transformative tool, our understanding of the processes that determine              
the rate and patterns of NHEJ-mediated errors remains incomplete.  
 
Recent studies have demonstrated that the error outcomes of NHEJ are strongly dependent on sequence               
context ​(van Overbeek et al. 2016; Aubrey et al. 2015)​. Other studies show that the characteristics of the                  
broken ends (blunt or staggered end; length of any overhang) also affect end-joining patterns both ​in vitro                 
(Chang et al. 2016) and ​in vivo ​(Chang et al. 2016; Bothmer et al. 2017)​. However, a systematic profiling                   
of the sequence determinants of NHEJ repair patterns has yet to be undertaken. 
  
Here we profiled ~1.16 million mutational events resulting from CRISPR/Cas9-mediated cleavage and            
NHEJ-mediated DSB repair of 6,872 synthetic target sequences. From the resulting data, we identify the               
primary features of sequences adjacent to the sites of DSBs that shape the distribution and relative                
frequency of NHEJ-mediated mutational outcomes, ​e.g. ​nucleotide content and microhomology. We           
furthermore exploit microhomology to demonstrate the “programming” of deletion patterns. Finally, we            
develop a statistical model to accurately predict the error patterns that result from CRISPR/Cas9-mediated              
cleavage of an arbitrary sequence. 
 
Results 
 
Development of a massively parallel strategy to profile NHEJ-mediated genome edits 
Toward a comprehensive understanding of the sequence determinants of NHEJ-mediated error patterns,            
we developed a strategy that would allow us to efficiently profile a large number of repair events from                  
each of a large number of sequence contexts (​Figure 1 ​​). In brief, we designed 70,000 essentially random                 
targets for CRISPR/Cas9 single guide RNAs (sgRNAs) and used array-based oligonucleotide synthesis to             
encode these targets in cis ​with their corresponding sgRNAs, separated by only 20 bp. We then amplified                 
and cloned these molecules to a lentiviral vector. In our initial experiments, the complexity of the                
resulting library of synthetic targets and their cognate sgRNAs was such that we obtained relatively few                
edited templates per target. Therefore, we re-cloned the library under bottlenecking conditions, reducing             
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its complexity to ​12,917 targets. We then proceeded with viral packaging and transduction, in triplicate, of                
a monoclonal HEK293T cell line that stably expresses Cas9 (multiplicity of infection of ~4-8). As such,                
within any given cell, only one or a few sgRNAs are expressed, and each one directs Cas9-mediated                 
DSBs to a target located immediately adjacent to it. After five days to allow for the introduction of                  
NHEJ-mediated errors at these targets, cells were harvested and genomic DNA isolated. We then PCR               
amplified the region comprising the targets and corresponding sgRNAs, using unique molecular            
identifiers (UMIs) appended during the first extension cycle to distinguish whether identical edits were              
derived from the same cell or different cells. 
 
Summing across the three replicates, we sequenced PCR amplicons to a depth of ~148 million reads,                
which were reduced to ~1.19 million reads after collapsing on the basis of identical sequences and UMIs,                 
and filtering of reads with evidence of lentivirus-mediated template switching ​(Sack et al. 2016; Hill et al.                 
2018) or other unexpected sequences (​e.g. ​synthesis or PCR errors). After further filtering of poorly               
represented targets (those represented by fewer than 10 UMIs), our dataset consisted of ~1.16 million               
UMIs corresponding to 6,872 unique targets. On average, each target was represented by 168 UMIs and                
24 alleles (where ‘allele’ refers to a unique post-editing sequence of a given target). Each allele was                 
aligned to its original sequence, known because the corresponding spacer sequence is part of the same                
amplicon, using the Needleman-Wunsch algorithm ​(Needleman & Wunsch 1970)​. Alleles were           
categorized as wild-type (​i.e. ​unedited), a deletion, or an insertion.  
 
Overall, targets were highly edited, with only 9.8% of UMIs corresponding to the wild-type allele. Of                
UMIs containing detectable mutations, 63.6% were deletions and 31.5% were insertions (​Figure 2A ​​). The              
remainder (4.9%) contained some combination of substitutions, insertions and deletions, and are excluded             
from all of our subsequent analyses. Deletions were dominated by small events; only 1.5% were >25 bp,                 
although we note that deletions >150 bp are not captured by our assay ​(Gasperini et al. 2017; Kosicki et                   
al. 2018)​. The vast majority of insertion events were of a single base pair.  
 
Repair patterns are reproducible but exhibit highly variable ‘entropy’ between targets 
We sought to examine whether repair patterns for any given target were reproducible, as previously               
shown for a more limited set of templates ​(van Overbeek et al. 2016)​. For each target, we calculated the                   
frequency of each non-wild-type allele. For any given target, the distribution of frequencies for its alleles                
were highly reproducible in pairwise comparisons of the three replicates (median Pearson’s r = 0.91, 0.93,                
0.93, ​Figure 2B ​​, left). Meanwhile, if we permute the alleles in one replicate on a target-by-target basis                 
and repeat the pairwise comparison, these correlations are greatly reduced (median Pearson’s r = 0.20,               
Figure 2B ​​, right).  
 
Confirming the observations of ​(van Overbeek et al. 2016)​, the diversity of mutations strongly varied               
from target to target. We calculated the Shannon entropy of mutational outcomes for any given target as                 
-∑ p​i​*log⁡(p​i​), where p​i is the frequency of i​th indel of that target (​Figure 2C ​​). Entropy values for any                   
given target were highly reproducible between replicates (​Figure 2D ​​) and only modestly correlated with              
sampling depth (​Figure S1 ​​). Of note, some targets consistently exhibited particularly diverse mutational             
outcomes consequent to NHEJ -- that is, high entropy (​e.g. ​Figure 2E ​​, where the most frequently                
observed mutation occurs in only 10.1% of mutated templates). Other targets were strongly biased              
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towards a more limited set of mutational outcomes -- that is, low entropy (​e.g. ​Figure 2F ​​, where the most                   
frequently observed mutation occurs in 80.4% of mutated templates). 
 
Sequence context at the DSB site predicts the frequency of insertions  
We next sought to investigate the determinants of insertions at the DSB, which are dominated by 1 bp                  
events (​Figure 3A ​​). 84% of 1 bp insertions were predicted (and presumably templated) by the nucleotide                
immediately upstream of the cleavage site (​i.e. ​the 17th nucleotide in target sequence; ​Figure 3B ​​; Figure                
S2​​) Although it might have been expected that NHEJ-mediated repair would be symmetric with respect to                
the site of a DSB, we do not observe templating from the immediately downstream (18th) nucleotide                
(​Figure 3B ​​). Similarly, of 2 bp insertions, a substantially greater than expected proportion (41%) were               
templated by the sequence immediately upstream of the DSB (​i.e. ​inserted sequence identical to the 16th                
and 17th nucleotides of the target sequence; ​Figure 3C ​​). The asymmetric templating of NHEJ-mediated              
insertions was also described in two other recent studies based on data from yeast and mice ​(Lemos et al.                   
2018; Kalhor et al. 2018)​.  
 
Because the ratio of insertions to deletions varied from target to target, we used kpLogo ​(Wu & Bartel                  
2017) to examine what local sequence features might shape this. We find that the presence of a T or A at                     
the 17th bp of the target was associated with insertion events, while a G or C at this position was                    
associated with deletion events (​Figure 3D ​​, left). Additional analyses showed a ‘TG’ dinucleotide             
flanking the cleavage site to be the most highly biased toward insertion (57% of events with that context                  
are insertions), while a ‘GA’ dinucleotide flanking the cleavage site was the most highly biased towards                
deletion (17% of events with that context are insertions) (​Figure 3D ​​, right).  
 
We split 2,680 targets associated with both insertion and deletion outcomes into training (n = 2,000) and                 
test (n = 680) sets, and trained a linear regression model to predict the proportion of insertion events                  
based on position-specific content of the hexamer centered on the DSB (single and dinucleotide k-mers;               
104 binary features; ​Figure 3E ​​). The model performs reasonably well (Pearson’s r = ​0.70)​.  
 
Overall, these analyses confirm that local sequence around the DSB site plays an important role in                
shaping the outcome(s) of NHEJ-mediated errors. In particular, the asymmetry implied by the high rate of                
identity between 1-2 bp insertions and the nucleotides immediately upstream to the DSB, but not the                
nucleotides immediately downstream to the DSB (​Figure 3B-C ​​), suggests that not all            
CRIS ​PR/Cas9-mediated cleavages are blunt-ended. Indeed, ​in vitro ​studies have shown that the            
non-complementary strand of the target can sometimes be cleaved by Cas9 at multiple sites upstream of                
the -3 bp position relative to the protospacer adjacent motif (PAM), while the complementary strand is cut                 
only at that site, instances which would result in a 5’ overhang ​(Jinek et al. 2012; Stephenson et al. 2018)​.                    
The preponderance of 1 bp insertions templated by the 17th rather than 18th base could be explained by                  
fill-in of this overhang followed by blunt-ended ligation (and similarly for the preponderance of 2 bp                
insertions that are templated by the 16th and 17th bases, rather than the 18th and 19th bases).  
 
To summarize, we propose a model (​Figure 3F ​​) where 1) some proportion of cleavages of the                
non-complementary strand by Cas9 occur upstream of the -3 bp PAM cleavage site, while cleavage of the                 
complementary strand always occurs between the 17th and 18th positions, resulting in a 5’ overhang; 2)                
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5’ overhangs are preferably repaired by gap-filling and ligation, resulting in the observed bias towards               
templating by the bases immediately upstream rather than downstream of the DSB; 3) local sequence               
context biases the pattern of cleavage on the non-complementary strand, resulting in different frequencies              
of blunt vs. 5’ overhangs for different targets, which in turn biases the ratio of insertions vs. deletions. A                   
similar model was recently proposed by (Lemos et al. 2018) based on asymmetric templating of               
NHEJ-mediated insertions observed in yeast.  
 
Extensive use of microhomology in NHEJ-mediated deletions 
We next examined patterns of deletion. Microhomology (MH) refers to the use of short regions of                
identical sequence (1 to 16 bp) that can mediate the alignment of broken ends (​Figure 4A ​​) and is relevant                   
to both c-NHEJ and alt-NHEJ/MMEJ ​(Deriano & Roth 2013; Pannunzio et al. 2014; Sfeir & Symington                
2015; Conlin et al. 2017)​. Here, a deletion event is considered to be MH-mediated if the sequence at the                   
3’ of a rejoined end is identical to the 3’ end of the deleted sequence, and the size of the MH tract refers to                        
the length of that identical sequence. By that definition, we found that over 75% of deletion events in our                   
dataset are MH-mediated. The length of MH tracts ranged from 1-10 bp. Nearly all (94.6%)               
MH-mediated events involved relatively short tracts of microhomology, ​i.e. ​1-4 bp. Longer MH tracts              
were observed more rarely (​Figure S3A ​​), probably simply due to the relative paucity of opportunities in                
our set of random target sequences.  
 
The frequencies of tracts of various lengths consistent with MH usage were substantially higher than               
background expectation for all lengths except 1 bp, with that enrichment increasing as a function of tract                 
length (​Figure 4B ​​). We further investigated the relevance of 1 bp MH by comparing the proportion of 1                  
bp deletion events in targets with identical vs. non-identical nucleotides immediately spanning the             
cleavage site. We observe a 3-fold greater proportion of 1 bp deletion events when those nucleotides are                 
identical than when they are not (​Figure S3B ​​), suggesting that 1 bp MH may play a role in aligning,                   
stabilizing and rejoining the broken ends. 
 
The lengths of MH vs. non-MH mediated deletions exhibited distinct distributions (​Figure 4C-D ​​). In              
particular, the distribution of deletion sizes for MH-mediated events peaks at both 1 bp and 5-6 bp, while                  
an equivalent distribution for non-MH-mediated deletions peaks at both 1-2 bp and 8 bp. The frequency                
of longer deletions exhibits an exponential decay for both MH and non-MH mediated events. To               
investigate this further, we jointly analyzed the frequency of start and end points for deletion events,                
relative to the position of the canonical cleavage site (​Figure 4E-F ​​). Both MH and non-MH mediated                
deletions exhibited a preference for “unidirectional” events, ​i.e. ​either the start or end point is               
immediately adjacent to the cleavage site, rather than the deletion spanning the cleavage site. 
 
What explains the excess of deletion events of specific lengths? For MH-mediated events, the excess of 1                 
bp deletions may simply be attributable to the aforedescribed instances of identical nucleotides spanning              
the cleavage site (​Figure S3B ​​). However, the excess of 5-6 bp MH-mediated events is clearly driven by                 
events in the downstream direction (​Figure 4E ​​), ​i.e. ​deletions between the DSB and the PAM. A potential                 
explanation is that the predilection of PAM-like sequences near the DSB for deletion events (​i.e. ​a G                 
nucleotide at the 17th position or a CG dinucleotide at the 16th/17th position; ​Figure 3D ​​), coupled with                 
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the consistent presence of the CGG PAM sequence at the 21st-23rd position, results in an excess of                 
deletions mediated by CG (5 bp deletion) or G (5-6 bp deletion) microhomology (​Figure 4G ​​).  
 
For non-MH-mediated events, the excess of 8 bp events might be explained by the observation that in the                  
dsDNA-sgRNA-Cas9 complex, the region 1-8 bp downstream of the cleavage site is occupied by Cas9,               
even after cleavage ​(Jiang et al. 2016; Stephenson et al. 2018)​. Thus, the enrichment of non-MH deletions                 
8 bp from the cleavage site could simply correspond to the nearest position lacking Cas9 protection from                 
endonucleases during repair (​Figure 4H ​​). 
 
Generating predictable mutations by programming microhomology tracts 
Since MH is widely used in deletion events, we reasoned that we could program a library of targets to                   
generate predictable mutations by introducing MH proximal to the cleavage site. With the same basic               
experimental scheme (​Figure 1 ​​), we tested a library of 1,000 targets and corresponding guides containing               
MH tracts of three different lengths (2, 4 or 6 bp) matching the sequence immediately upstream of the                  
expected DSB site, and positioned 6 bp downstream of the cleavage site (​Figure 5A-B ​​). The resulting                
data were processed and analyzed similarly to the previous experiment.  
 
Intentionally programming MH tracts resulted in a high proportion of events corresponding to the              
expected deletions (8, 10 and 12 bp deletions for 2, 4 and 6 bp MH tracts, respectively; ​Figure 5B-C,                   
Figure S4 ​​). We also observe that the ratio of the programmed deletion increases as a function of length of                   
the MH tract (​Figure 5C ​​). However, despite the greater predictability of which MH-mediated outcome              
would occur, the relative proportion of MH-mediated deletions increased only slightly from 76% to 82%               
(​Figure 5D ​​). Furthermore, we did not observe an excess of ‘imperfect’ MH-mediated events, ​e.g. ​an               
excess of 11 bp or 13 bp deletions in targets for which a 12 bp deletion was expected (​Figure S4 ​​).                    
Nonetheless, the results show how targets that would result in diverse editing outcomes can be strongly                
biased towards a specific outcome by the presence of MH tracts (​Figure 5E-F ​​).  
 
A machine learning model to predict editing patterns 
The above results above suggest that the NHEJ-mediated repair outcomes for any given target sequence               
are both reproducible and dependent on sequence context. Accordingly, we next sought to train a machine                
learning model to predict these outcomes and their relative frequencies. We began by filtering out target                
sequences that were either poorly reproducible (low correlation between replicates, mainly due to low              
UMI counts; ​Figure S5A ​​) or poorly edited, resulting in a dataset of ~1 million UMIs representing 4,611                 
target sequences. On average, each target in this subset of the data used for modeling was represented by                  
215 UMIs and 24 alleles.  
 
Because larger events are rare in our data, we focused on predicting deletion events ≤ 30 bp in length, as                    
well as all possible 1-2 bp insertion events at the DSB. Across all targets, we identified 584 “event                  
classes”. The vast majority of CRISPR/NHEJ-mediated indels arising from any given target sequence             
should fall into one of these 584 event classes. We therefore framed our machine learning task as one of                   
predicting, for an arbitrary target sequence, the relative frequency of CRISPR/NHEJ-mediated indels            
falling into each of these 584 event classes. These included 563 deletions (defined solely by their start/end                 
points), all 4 possible single nucleotide insertions, all 16 possible dinucleotide insertions, and finally, a               
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single event class for insertions greater than 2 bp in length. Of note, the 563 deletion event classes                  
comprise almost all of the 585 possible combinations of start/end positions, with the constraints that               
deletions must be less than 30 bp and overlap with the -3/+2 window around the cleavage site. The 22                   
potential deletions that satisfy these constraints but were not observed in the modeling dataset were               
mainly large deletions. 
 
We also defined 2,962 binary features to characterize the target sequence for which repair outcomes are                
being predicted. These are 1) 384 binary features corresponding to one-hot encoded sequence, including              
80 for single nucleotide content (4 nucleotides * 20 positions) and 304 for dinucleotide content (16                
dinucleotides * 19 positions); 2) 2,578 binary features corresponding to MH tracts; specifically, for each               
of the possible deletion event class, we defined 5 binary features corresponding to the length of the MH                  
tract, if any (0-4 bp * 563 deletion event classes = total 2,815 binary features, or 2,578 after excluding                   
237 binary features corresponding to characteristics never observed in the training data) (​Figure 6A ​​). 
 
We split the 4,611 target sequences in our modeling dataset into subsets of 3,750 (for training), 450 (for                  
validation) and 411 (for testing). We first evaluated different machine learning approaches, including             
logistic regression as well as neural networks with varying complexity (see Methods), as well as both                
approaches with regularization using L1 and L2 penalties. We trained each model on the training set using                 
cross-entropy loss and evaluated performance on the validation set using the mean squared error (MSE).               
We found that the best performing model was a L1-regularized logistic regression (​Figure 6B, Figure               
S5B​​), and chose to move forward with that.  
 
Applying this model to the test set of 411 target sequences, which had been entirely held out from the                   
training and validation steps, we compared the observed versus predicted frequencies of indels falling into               
various “event classes”. Observations and predictions were well matched for most targets, with a MSE of                
0.00015 (​Figure 6C-D ​​). As a baseline, we also generated a set of predictions based simply on the                 
aggregate frequencies of event classes in the training and validation datasets; as expected, these              
predictions performed more poorly (MSE of ​0.00028​; ​Figure 6C ​​), confirming the improvement conferred             
by the model. Poorly predicted targets tended to be those with relatively shallower sampling of editing                
events, ​i.e. ​where our observed frequencies are noisier (​Figure S5C ​​).  
 
Overall, the above results show that our model can accurately predict the relative frequencies of repair                
outcomes. As a common use of CRISPR/Cas9 in conjunction with NHEJ is to introduce frameshifting               
mutations, we also assessed the observed versus predicted ratios of frameshifting indels for each of the                
411 targets, including observations and predictions in all event classes, and found them to be well                
correlated (Pearson’s r = 0.67; ​Figure 6E ​​). This result compares favorably with the predictions of another                
tool that we tested on this same task for the 411 targets (​(Bae et al. 2014)​; Pearson’s r = 0.31, ​Figure 6F ​​).  
 
Discussion 
 
In summary, we developed an assay to systematically profile the diversity and relative frequencies of               
mutational events resulting from CRISPR/Cas9-mediated cleavage and NHEJ-mediated DSB repair of           
thousands of synthetic sequences. In applying this assay and analyzing the editing outcomes associated              
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with 6,872 random target sequences, we confirm that CRISPR/NHEJ-mediated repair outcomes for any             
given target sequence are reproducible, predictable, and largely shaped by the sequence context around              
the cleavage site ​(van Overbeek et al. 2016; Aubrey et al. 2015)​. 
 
Our results also provide further insights into NHEJ-mediated repair of CRISPR/Cas9-mediated DSBs in             
human cell lines. ​First​, we observe that insertion events are dominated by 1-2 bp insertions templated by                 
the sequence immediately upstream of the cleavage site. Together with ​in vitro ​data from the literature                
(Stephenson et al. 2018; Jinek et al. 2012)​, the data supports a model in which the sequence context                  
around the DSB biases the extent to which cleavages are blunt-ended vs. include a 1-2 bp 5’ overhang.                  
Such 5’ overhangs are repaired by gap-filling and ligation, resulting in asymmetrically templated 1-2 bp               
insertions. ​Second​, we observe extensive usage of 1-4 bp microhomology in mediating deletion events,              
and furthermore show that repair outcomes can be strongly biased towards predictable outcomes by              
intentionally introducing MH tracts at specific distances from the DSB. Notably, however, the             
introduction of MH tracts did not substantially increase the proportion of MH-mediated events. ​Third​,              
both MH and non-MH-mediated deletions were overwhelmingly unidirectional (​i.e. ​extending either           
upstream or downstream from the DSB, rather than spanning it). 
 
From these data, we trained an L1 regularized logistic regression model that accurately predicts the               
relative frequency of repair outcomes for any given target sequence. While this manuscript was in               
preparation, several similar studies appeared as publications ​(Shen et al. 2018) or preprints ​(Allen et al.                
2018; Chakrabarti et al. 2018)​. Chakrabarti et al. profiled the mutational outcomes associated with 1,492               
target sequences from the human genome, while Allen et al. and Shen et al. designed and profiled 6,568                  
and 1,872 synthetic target sequences, respectively ​(Allen et al. 2018; Chakrabarti et al. 2018; Shen et al.                 
2018)​. These studies similarly identified sequence context surrounding the DSB, including MH, as a              
major determinant of repair outcomes, and also trained models to predict the frequency of the most                
common allele (Chakrabarti et al.) or the relative frequencies of all repair outcomes (Allen et al., Shen et                  
al.) with comparable performance to that of our model.  
 
In addition to insights into into NHEJ-mediated repair of CRISPR/Cas9-mediated DSBs, our study also              
provides a new tool for sgRNA design for diverse goals. First, for applications relying on gene knockout,                 
e.g. ​CRISPR screens, the model’s accuracy in predicting which sgRNAs/targets are likely to result in a                
high proportion of frameshifting indels will be useful. Second, for applications focused on mutation              
correction (​e.g. ​using CRISPR/NHEJ to correct pathogenic mutations), the model may be useful for              
identifying sgRNAs/targets for which the desired outcome is predicted to occur at a high or sufficient                
frequency. Third, we and others have recently repurposed CRISPR/Cas9 as a tool for lineage tracing               
and/or molecular recording ​(McKenna et al. 2016; Frieda et al. 2017; Kalhor et al. 2018)​. For some goals                  
(​e.g. ​lineage tracing), the identification of “high entropy” targets may critically enable the diversity              
necessary to uniquely label millions or billions of cells. For other goals (​e.g. ​molecular recording), the                
design of “low entropy” targets may facilitate predictable sequential editing. More generally, a deeper              
understanding of CRISPR/NHEJ-mediated mutations will strengthen our ability to precisely orchestrate           
not only the locations but also the outcomes of genome editing.  

8 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/481069doi: bioRxiv preprint 

https://paperpile.com/c/tXhg2u/pvvWx+kF2rm
https://paperpile.com/c/tXhg2u/teEnY+T3cyH
https://paperpile.com/c/tXhg2u/cpPV
https://paperpile.com/c/tXhg2u/t5QU+ZpSn
https://paperpile.com/c/tXhg2u/t5QU+ZpSn
https://paperpile.com/c/tXhg2u/t5QU+ZpSn+cpPV
https://paperpile.com/c/tXhg2u/t5QU+ZpSn+cpPV
https://paperpile.com/c/tXhg2u/yLxIc+oXelz+AOMH
https://doi.org/10.1101/481069
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

FIGURES 

 

Figure 1. An assay for massively parallel profiling of the outcomes of CRISPR/Cas9-mediated             
double-stranded DNA break repair. (A) Schematic of library of 200 bp oligonucleotides encoding             
sgRNAs targeting a large number of designed 20 bp spacers, with their matched target sequence encoded                
in cis ​. In our primary experiment, 70,000 targets of random sequence were designed and cloned. ​(B) After                 
array-based synthesis and PCR amplification of the library, BsmBI restriction sites at either end were               
used for cloning into a modified lentiviral construct. The library was bottlenecked to 12,286 targets to                
facilitate greater coverage of independent NHEJ-mediated events corresponding to each target.           
Monoclonal HEK293T cells expressing Cas9 were transduced with packaged lentivirus. Cells were            
harvested at 5 days after transduction, and a region including both the spacer and the target was PCR                  
amplified from genomic DNA for high-throughput sequencing. The sequences of mutated targets were             
aligned to their corresponding unmutated reference (assigned based on the spacer sequence). 
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Figure 2. Mutation patterns resulting from DSB repair vary greatly between targets, but are highly               
reproducible for individual targets. (A) Overview of indel profiles. Of all detectably mutated targets,              
63.6% were small deletions (red) and 31.5% were insertions (blue). The remainder (4.9%) contained              
some combination of substitutions, insertions and deletions, and are excluded from all subsequent             
analyses. ​(B) End-joining patterns were highly reproducible for the same target between replicates. Left:              
violin plot of distribution of correlation coefficients for pairwise comparison of individual targets between              
replicates. Right: Permuting the allele counts for each target in one replicate and repeating the pairwise                
comparison greatly reduces the observed correlations. ​(C) ​​Entropy quantifies the diversity of NHEJ             
outcomes from individual targets. Targets were separated into low, medium and high entropy classes. ​(D)               
Estimated entropy for individual targets was highly reproducible between replicates (rep1 vs. rep2             
shown). ​(E, F) Example of targets with high and low entropy. High entropy targets had diverse outcomes                 
at appreciable frequencies (E) while low entropy targets were dominated by a single outcome (F). 
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Figure 3. A model for asymmetric templating of NHEJ-mediated insertion events at sites of              
CRISPR/Cas9-mediated DSBs. ​(A) 75.3% of the insertions were 1 bp. Of 1 bp insertions, 85% appear to                 
be templated. ​(B, C) ​​Histogram of the number of 1 bp (B) or 2 bp insertion events where the inserted base                     
or dinucleotide is identical to the base at a specific position in the target. The canonical DSB site is                   
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between 17​th and 18​th of the target sequence (red line). The result suggests many 1 bp insertions are                  
templated by the nucleotide at the 17​th position but not the 18​th position (B) and many 2 bp insertions are                    
templated by dinucleotide at the 16​th and 17​th positions (C). ​(D) ​​The immediate sequence context               
surrounding the DSB strongly biases the proportion of NHEJ-mediated outcomes that result in insertions              
vs. deletions. The 1-mer sequence logo (left) shows that the presence of a ‘T’ and ‘A’ at the 17​th ​position                    
increased the ratio of insertions. The 2-mer sequence logo (right) shows that the presence of a ‘TG’                 
dinucleotide at the 17​th​/18th position increased the ratio of insertions, while a ‘CG’ dinucleotide at the                
16​th​/17th position, or a ‘GA’ dinucleotide at the 17​th​/18th position, decreased the ratio of insertions.               
Significant positions are colored in red. ​(E) A regression model using the nucleotide content of a 6 bp                  
window centered on the DSB site predicted the ratio of insertion-to-deletion events. ​(F) ​​A model for how                 
insertions at CRISPR/Cas9-mediated DSBs are asymmetrically biased by local sequence context. Local            
sequence context biases the pattern of cleavage of the non-complementary strand to the sgRNA, resulting               
in different frequencies of blunt vs. 5’ overhangs for different targets. This in turn biases the ratio of                  
insertions vs. deletions, as 5’ overhangs are preferably repaired by gap-filling (red) and ligation, resulting               
in the observed preponderance of 1 bp or 2 bp templated insertions (green/blue). 

12 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/481069doi: bioRxiv preprint 

https://doi.org/10.1101/481069
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 4. Extensive use of microhomology in NHEJ-mediated deletion events. (A) Schematic of             
microhomology (MH) usage in end-joining repair. Tracts of MH (red) in the vicinity of the DSB are used                  
to align the broken ends. The unannealed overhang is cleaved by endonuclease and the gap filled by                 
polymerase. Here, a deletion event is defined as MH-mediated deletion if the sequence at the 3’ of a                  
rejoined end (red, left) is identical to the 3’ end of the deleted sequence (red, right). The size of the MH                     
tract refers to the length of that identical sequence. ​(B) Length distribution of MH tracts in observed                 
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MH-mediated events. With the exception of 1 bp deletions, all MH tract lengths occured at substantially                
greater than expected frequencies. ​(C, D) Distribution of deletion sizes of MH-mediated (C) and non-MH               
(D) events. ​(E, F) Heatmap of showing frequency of start/stop sites of MH-mediated (E) and non-MH (F)                 
deletion events. The Y and X axes correspond to the start and stop sites of deletion events, respectively,                  
with positions shown relative to the canonical DSB site (blue dot). Both MH-mediated and non-MH               
deletions were primarily “unidirectional” relative to the DSB site, rather than spanning it. ​(G) ​​Schematic               
of potential explanation for the observed excess of 5-6 bp MH-mediated deletions. PAM-like sequences              
near the DSB are biased towards deletion events. G: Microhomology between a G at the 17th position or a                   
CG at the 16th/17th position with corresponding sequences in the PAM result in an excess of 5-6 bp                  
deletions. ​(H) ​​Schematic of potential explanation for the observed excess of 8 bp non-MH deletions. In                
the dsDNA-sgRNA-Cas9 complex, the region 1-8 bp downstream of the cleavage site is occupied by               
Cas9. The enrichment of non-MH deletions 8 bp from the cleavage site could simply correspond to the                 
nearest position lacking Cas9 protection from endonucleases during repair.  
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Figure 5. Programming microhomology tracts into targets increases predictability of repair           
outcomes. (A,B) ​​Schematic of programmed MH tract designs and expected deletion sizes. The distance              
between the regions of MH (red) was consistently 6 bp, while the MH tracts were 2 bp, 4 bp or 6 bp, such                       
that the expected deletion sizes were 8 bp, 10 bp and 12 bp, respectively. ​(C) Distribution of observed                  
deletion sizes for targets with programmed MH tracts of various lengths. We observe a strong bias                
towards deletions of the expected lengths, with the proportion increasing for longer MH tracts. ​(D) ​​MH                
usage in sequences with (left) or without (right) programmed MH. Despite the strong bias of towards                
intended deletions when MH occurred, the proportion of MH events only slightly increased from 76% to                
82%. ​(E,F) Example of a sequence that shows diverse editing outcomes (E). However, when a 6 bp MH                  
tract is introduced onto this sequence backbone, the programmed 12 bp deletion comprises nearly 75% of                
the editing outcomes (F). 
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Figure 6. End joining patterns can be accurately predicted. (A) ​​Schematic of machine learning              
training. A 60 bp sequence (± 30 bp around the cleavage site) is used as the input to the model. A total of                       
2,815 binary features -- 2,578 corresponding to MH potential and 384 to one-hot encoded mono- and                
di-nucleotide content of the 20 bp target -- are extracted. (B) ​​Model selection. We evaluated both logistic                  
regression and neural network models with or without regularization. A logistic regression model with L1               
regularization outperformed alternative models on predicting the relative frequencies of various event            
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classes on the validation dataset. ​(C) ​​Performance of L1 logistic regression on the test dataset. The                
distribution of MSE values for the 411 test targets is shown (blue). Poorly predicted targets largely                
correspond to those that were poorly sampled (see Figure S5C). As a baseline to illustrate the                
improvement conferred by the L1 logistic regression model, we show a similar distribution for the               
aggregate model, in which the predicted frequencies of 584 indel classes are simply taken from the                
aggregate frequency at which each is observed in the training and validation datasets (red). ​(D) ​​Example                
of predicted vs. observed frequencies for a specific target. The cleavage site is shown as a vertical red                  
line. Insertions are shown in blue. The single event class corresponding to insertions >2 bp is represented                 
as blue X. ​(E-F) ​​The logistic regression model (E) compared favorably to Microhomology Predictor ​(Bae               
et al. 2014)​ (F) in predicting the ratio of frameshifting mutations for each of the 411 targets.   
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SUPPLEMENTARY FIGURES 

 

Figure S1. Evaluation of the correlation between entropy and UMI counts. ​​Estimates of             
target-specific entropy (x-axis) are only modestly correlated with UMI counts (y-axis). Pearson r = 0.32. 
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Figure S2. 1-2 bp insertion events are templated by the nucleotides upstream of the cleavage site.                
(A) ​​Most 1 bp insertions were predicted, and presumably templated, by the identity of the 17th nucleotide                 
of the target sequence. ​(B) ​​Example of insertions templated by the 17th (top) or 16th and 17th (bottom)                  
position. Template nucleotides are shown in green and inserted nucleotides are shown in blue.  
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Figure S3. Examples of microhomology usage. (A) ​​An observed example of a long MH tract mediating                
a deletion event. PAM and microhomology are shown in purple and red, respectively. This particular               
outcome, involving a 9 bp MH tract, represented 9% of indel events associated with this target. ​(B)                 
Targets with identical nucleotides (​i.e. ​‘homo-dinucleotide’) spanning the cleavage site exhibit a much             
higher proportion of 1 bp deletions than targets with non-identical nucleotides (​i.e. ​‘hetero-dinucleotide’)             
spanning the cleavage site, suggesting that 1 bp microhomology may help mediate 1 bp deletion events.  
 
 

20 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 28, 2018. ; https://doi.org/10.1101/481069doi: bioRxiv preprint 

https://doi.org/10.1101/481069
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 
Figure S4. Heatmap of deletions with microhomology design ​​. ​(A,C,E) ​​Heatmap of showing frequency             
of start/stop sites of MH-mediated deletions with 2 bp, 4 bp, 6 bp programmed microhomology,               
respectively. ​(B,D,F) ​​Heatmap of showing frequency of start/stop sites of non-MH deletions with 2 bp, 4                
bp, 6 bp programmed microhomology, respectively. 
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Figure S5. Machine learning model selection and performance. (A) Read counts for targets exhibiting              
high (r > 0.75) vs. low (r < 0.75) correlation between replicate experiments. The median read count for                  
the two groups are 117 and 23, respectively. Targets with low correlation between replicates (r < 0.75)                 
were excluded from model training/validation/testing. (B) ​​Performance of neural network as a function of              
the number of parameters and layers. We used the coefficient of determination as a metric of prediction                 
performance. ​(C) Poorly predicted targets (high MSE) largely corresponded to those that were poorly              
sampled.  
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Figure S6. Sequence content of synthetic sgRNA-target library ​​. ​(A, B). Heatmaps of mononucleotide             
(A) and dinucleotide (B) balance within the final subsampled library of 6,872 well-represented             
CRISPR/Cas9 targets on which most analyses were performed. Each column sums to 1. Although initially               
designed sequences were effectively random and balanced in mono/dinucleotide content, the           
overrepresentation of CG dinucleotides was likely introduced by how we screened these initial designs to               
remove on-target or off-target matches against the human genome (​i.e. ​thereby subtly selecting in favor of                
designs containing CG dinucleotides, which are underrepresented in the human genome). 
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Table S1. Primers. Heatmap of deletions with microhomology design 
 

Name Sequence Usage 

P1 5' AAGCTTGGCGTAACTAGATCTTGAGACAAA 3' Backbone cloning  

P2 5' ATTTACAACCGTCTCCGGTGTTTCG 3' Backbone cloning  

P3 5' TTGAGACATTGGTGGACGCGTCGTCTCAAAGCTTGGCGTAACTAGATC 3' Backbone cloning  

P4 5' ACGCGTCCACCAATGTCTCAAATTTACAACCGTCTCCGGTGTTTCG 3' Backbone cloning  

P5 5' GAGCAGCTCGTCTCTCACC 3 Oligo amp 

P6 5' GCAAGCTTTGAGACGCATTG 3' Oligo amp 

P7 5' 
GCGTCAGATGTGTATAAGAGACAGNNNNNNNNNNNNNNNGGCTTTATAT
ATCTTGTGGAAAGGACGAAACACCG 3' 

UMI annealing 

P8 5' GCGTCAGATGTGTATAAGAGACAG 3' Genomic DNA 
amp up 

P9 5' 
TTCAGACGTGTGCTCTTCCGATCTGTCTCAAGATCTAGTTACGCCAAGCTT
TGAGACGC 3' 

Genomic DNA 
amp up 

P10 5' TTCAGACGTGTGCTCTTCCGATCTGTGGATGAATACTGCCATTTGTCTC 3' Genomic DNA 
amp up 

P11 5' 
AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNTCGTCGGCAG
CGTCAGATGTGTATAAGAGACAG 3' 

Sequencing adaptor 
Nextseq I5 

P12 5' 
CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNGTGACTGGAGTTCAG
ACGTGTGCTCTTCCGATCT 3' 

Sequencing adaptor 
Trueseq I7 
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Table S2. Statistics of sequencing runs 

 

Sequence 
library 

Reads UMIs UMI pass 
filter 

Reads pass 
filter 

UMI with 
designed 
sequence 

Template 
switch 

Other 
mutations 

Final UMI 
count 

Replicate 1 42,796,114 8,393,602 1,327,837 27,896,784 
(65%) 

1,005,606 27.15% 37.28% 357,671 
(35.57%) 

Replicate 2 60,898,224 12,094,298 1,783,500 39,107,335 
(64%) 

1,354,159 26.98% 37.27% 484,056 
(35.75%) 

Replicate 3 44,075,664 9,794,807 1,294,042 24,321,581 
(55%) 

982,804 27.92% 36.56% 349,066 
(35.52%) 

 Total of 
Replicates 1-3 

147,770,002             1,190,615 

MH design  31,239,645 6,266,832 659,220 20,810,016 
(67%) 

445,440 8.05% 36.04% 249,039 
(55.91%) 
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Materials and Methods 
sgRNA and target pair library design: 

To generate a library of CRISPR/Cas9 targets that could safely be characterized within human cells, we                
evaluated ~1 million random 20mer crRNA sequences, scoring them against the human genome (version              
hg19) for off-target effects using FlashFry ​(McKenna & Shendure 2018)​. We excluded guides with less               
than 2 bp mismatch (including an exact match) to any target within the human genome or those with a                   
off-target score less than 90 ​(Hsu et al. 2013)​, resulting in a modest bias towards targets containing CpG                  
dinucleotides (​Figure S6 ​​), and then selected a final library of 70,000 top scoring guides for synthesis. The                 
resulting sgRNA sequence and their corresponding targets were separated by a common 20 bp spacer               
sequence and ordered as an Agilent SureGuide Unamplified Custom CRISPR Library array (​Figure 1A ​​). 
 
To analyze the potential impact of programmed microhomology, we selected a subset of 1,000              
sgRNA-target pairs from the library above and introduced microhomology with different lengths (2 bp, 4               
bp, and 6 bp) matching the last 2, 4, and 6 nucleotides upstream of the cleavage site. Each design was                    
assigned a 4 bp barcode, indicating its programmed microhomology pattern (​Figure 5A-B ​​). This library              
of microhomology sequences was ordered as an oligo pool from Twist Biosciences. 
 
Library Cloning  

The lentiGuide-Puro (Addgene #52963) vector was modified with two rounds of PCR to remove the               
existing tracrRNA and filler sequence (primer P1, P2), and to incorporate two BsmBI restriction site for                
integration of sgRNA-target pairs (primer P3, P4). The modified vector was digested with BsmBI (NEB,               
Buffer 3.1) at 55℃ for 3h and gel purified with Monarch DNA Gel Extraction Kit (NEB). This digested                  
and purified vector was used for all downstream cloning.  
 
Oligos with sgRNA-target pairs from Agilent or Twist Bioscience were both resuspended to 10ng/μl. The               
oligo pool was PCR amplified using KAPA Biosystems HiFi HotStart ReadyMix 2x using primers P5 and                
P6 and cleaned with the DNA Clean&Concentrator kit (Zymo Research). The purified PCR product ​was               

then digested with BsmBI (NEB, buffer 3.1) at 55℃ for 1h to generate compatible sticky ends                
matching the modified lentiGuide-Puro above, and subsequently cleaned with DNA Clean&Concentrator           
(Zymo Research). Digested vector and insert were ligated with T4 ligase (NEB) with a molar ratio of 1:3.                  
Ligation products were transformed in to Stable Competent ​E.coli (NEB C3040H). Transformed cells             
were cultured at 30℃ overnight and plasmid DNA was prepared using a ZymoPURE II Plasmid Kit.  
 

Cell Culture and lentivirus transduction 

We generated a mono-clonal 293T cell line expressing Cas9 by transduction of Cas9-blast lentivirus              
particles (Addgene plasmid #52962). Cells were cultured in DMEM High glucose (GIBCO)            
supplemented with 10% Fetal Bovine Serum (Rocky Mountain Biologicals) and 1%           
penicillin​-streptomycin (GIBCO) and grown with 5% CO​2 ​at 37℃. 
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All lentivirus libraries were produced by the Fred Hutchinson Co​operative Center for Excellence in              
Hematology Vector Production core facility. HEK293T cells were transduced and media was changed to              
virus free media at 24 hours post​-transduction. Cells were passed every 48h with a split ratio of 1:6. Cells                   
were harvested at day 5 after transduction. 
 
Sequencing Library Generation 
Genomic DNA was extracted with DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer's              
protocol. 15 bp unique molecular identifiers (UMIs) were added by one initial round of linear PCR using                 
a primer containing a 5′ sequencing adaptor (P7). For each reaction we used 250ng of genomic DNA,                 
0.2μl 100mM primer and 25 μl HiFi HotStart ReadyMix 2x (KAPA Biosystems). PCR reaction were               
performed as follows: 95°C 3 mins, 98°C 20 s, 5 cycles of 65°C 1 min and 72°C 2 min, 98°C 20 s, 5                       
cycles of 65°C 1 min and 72°C 2 min. The subsequent PCR product was cleaned with 1.8x AMPure XP                   
beads (Beckman Coulter) and resuspended in 25μl of elution buffer. A second round of amplification               
was performed using primers targeting the 5′ sequencing adaptor (P8) and 50 bp downstream of the                
cleavage site (P9) for 20 cycles. The resulting PCR product was then size selected using a dual                 
size-selection cleanup of 0.4x and 0.8x AMPure XP beads (Beckman Coulter) to remove genomic DNA               
and small fragments (<200 bp) respectively. This size-selected product was subsequently re-amplified to             
add the 3′ sequencing adaptor with primer P8 and P10 for an additional five cycles. The final PCR                  
product was cleaned with 0.75x AMPure XP beads (Beckman Coulter) and was re-amplified to add               
flow-cell adaptor and sample index for 5 cycles. All PCR reactions used HiFi HotStart ReadyMix 2x                
(KAPA Biosystems) with the manufacturer's recommended conditions. The library was sequenced on an             
Illumina NextSeq 500 sequencer using paired-end 150 cycle reads. All primers used are listed in ​Table                
S1​​. Sequence data and associated data files are deposited in Figshare with a doi link:               
https://doi.org/10.6084/m9.figshare.7374155​,  
 

Sequence processing pipeline 

Across three replicates, we sequenced a total of 148 million paired-end reads on an Illumina NextSeq 500.                 
We first clustered these paired-end reads by their 15 bp UMI sequence and then filtered out reads with                  
less than 90% identity within their representative UMI clusters. Sequence identity was identified using              
edlib ​(Šošić & Šikić 2017)​. UMIs with fewer than 10 reads were excluded from downstream analysis.                
This yielded 4,405,379 UMIs (91,325,700 reads), representing ~61.8% of our sequencing data (​Table             
S2​​). We then selected the most common forward and reverse read sequence for each UMI for further                 
processing. These forward and reverse reads were merged into a single read using PEAR ​(Zhang et al.                 
2014) and aligned in a two step process as follows. First, we sought to identify the ‘reference’ sequences                  
for each programmed array sequence. We aligned the merged reads to a backbone sequence where the                
guides and targets were represented by Ns using EMBO’s needleall software ​(Needleman & Wunsch              
1970) with the following scoring matrix: match=5, mismatch=-4, gap-open=-20, gap-extension=-0.5. The           
mismatch penalty for Ns was set to 0. The sequence over the guide region was then extracted and matched                   
against the list of programmed array sequences. Guide sequences with more than 2 mismatches to the                
designed guides were excluded, with edit distances assessed with UMI-tools ​(Smith et al. 2017)​. Second,               
merged reads were aligned to their discovered reference, in which Ns were replaced by the guide/target                
sequence identified from the first step, using Biopython.pairwise2 ​(Cock et al. 2009) with the following               
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scoring matrix: match=5, mismatch=-4, gap-open=-13, gap-extension=-0.5. All indels were then right           
aligned (e.g. ​Figure S3A ​​). Aligned reads with indels within -3/+2 bp of the cleavage site were assigned to                  
their indel class. Aligned reads were excluded for downstream analysis if the sgRNA and target sequence                
didn’t match, the result from template switch during lentivirus transduction ​(Hill et al. 2018; Sack et al.                 
2016)​, or unexpected mutations introduced during synthesis, cloning, and PCR. A final library of 1.19               
million unique reads (UMIs) were identified. Our library of 1,000 microhomology sequences were             
processed by this same pipeline, yielding a final library of 249,039 UMIs from 31,239,645 paired-end               
sequencing reads. Scripts and other software are available from our GitHub repository:            
https://github.com/shendurelab/CRISPR_NHEJ_prediction​. 

 

Data processing and analysis 

kpLogo Analysis ​: Sequence motif analysis was conducted with kpLogo ​(Wu & Bartel 2017) using default               
settings with a specified k-mer length of 1 or 2. Input sequences were weighted by the frequency of                  
insertion.  
Microhomology identification ​: For ​n from 1 to 10 nucleotides, the last ​n nucleotides upstream of each                
deletion were compared to the last ​n nucleotides of the deleted sequence (as the deletion is right aligned.                  
Figure S3A ​​). The length of microhomology was identified as the largest ​n ​ nucleotides match in sequence.  
 
Machine learning modeling 
We phrased our problem of predicting repair outcomes and their frequencies as that of a classification                
task with 584 classes. Because large mutation events are rare, we limited our classification effort to                
deletion events ≤ 30 bp, and we grouped insertions ≥ 3 bp into one class. In total, we defined 584 classes                     
of indels. These classes include 563 deletion alleles, 4 possible single nucleotide insertion, and 16               
possible dinucleotide insertion and insertions ≥ 3 bp. There are a total of 585 potential deletion events that                  
are both ≤ 30 bp in length and overlap with the -3/+2 window around the cleavage site. We captured 563                    
deletion alleles in our data; the missing 22 classes are mainly large deletions. As input to our model, we                   
defined 2,962 binary features. These are 1) 384 binary features corresponding to the one-hot encoded               
target sequence (excluding the PAM region), including 80 for single nucleotide content (4 nucleotides *               
20 positions) and 304 for dinucleotide content (16 dinucleotides * 19 positions); 2) 2,578 binary features                
corresponding to MH tracts; specifically, for each of the possible deletion event class, we defined 5 binary                 
features corresponding to the length of the MH tract, if any (0-4 bp * 563 deletion event classes, total                   
2,815 binary features). After excluding 237 binary features corresponding to characteristics never            
observed in the training data, we were left with 2,578 binary features. Our 4,611 programmed sequences                
were randomly partitioned into a training set of 3,750 sequences, a validation set of 450 sequences, and a                  
test set of 411 sequences. 
 
We trained both the logistic regression and the neural network models in a standard manner for machine                 
learning models. However, because each target sequence can generate many possible repair outcomes, we              
trained our models using soft labels that correspond to the probability that each class is observed, rather                 
than hard labels that force each input to correspond exclusively to one class. Each model was trained                 
using the Adam optimizer ​(Kingma & Ba 2014) with a learning rate of 0.001 and a categorical                 
cross-entropy loss. Training proceeded for a maximum of 100 epochs with a “patience” of 1, meaning that                 
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training was stopped after two epochs with no improvement in validation set performance. All              
initializations and the hyperparameters for the Adam optimizer were set to the defaults in Keras v2.0.8                
(Chollet & Others 2015)​ with a backend of Theano v1.0.1 ​(The Theano Development Team et al. 2016)​. 
 
We selected the best model based on performance on the validation set according to the coefficient of                 
determination using grid search over several hyperparameters. For the logistic regression models, this             
search involved separate scans over regularization strengths for L1-regularization and L2-regularization           
individually with a range of 10​-6 to 10​-1​(​Figure 6B ​​). For the neural network models, this search first                 
involved a search over a grid of structures with between 1 and 3 layers and between 1 and 4096 nodes per                     
layer, excluding the model with 3 layers and 4096 nodes due to memory constraints. Once the number of                  
nodes per layer was selected, all layers in the model had that number of nodes. Each neural network                  
model used the ReLU activation function (f(x) = max(0, x)) at the hidden layers. After the best structure                  
was selected, a scan was performed over regularization strengths as with the logistic regression models.  
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