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Abstract 29 

Musical beat perception is widely regarded as a high-level ability involving widespread 30 

coordination across brain areas, but how low-level auditory processing must necessarily shape 31 

these dynamics, and therefore perception, remains unexplored. Previous cross-species work 32 

suggested that beat perception in simple rhythmic noise bursts is shaped by neural transients in 33 

the ascending sensory pathway. Here, we found that low-level processes even substantially 34 

explain the emergence of beat in real music. Firing rates in the rat auditory cortex in response to 35 

twenty musical excerpts were on average higher on the beat than off the beat tapped by human 36 

listeners. This “neural emphasis” distinguished the perceived beat from alternative 37 

interpretations, was predictive of the degree of consensus across listeners, and was accounted for 38 

by a spectrotemporal receptive field model. These findings indicate that low-level auditory 39 

processing may have a stronger influence on the location and clarity of the beat in music than 40 

previously thought. 41 

 42 
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Introduction 46 

The perception of a steady pulse or beat in music is a curious phenomenon that arises from the 47 

interaction between rhythmic sounds and the way our brain processes them. There are two things 48 

that make musical beat perception particularly intriguing. Firstly, no mammalian species apart 49 

from humans consistently show spontaneous motor entrainment to the beat in music (e.g. tapping 50 

a foot, nodding the head, moving the body)1-4. Secondly, despite beat being a subjective percept 51 

rather than an acoustic feature of music, individual listeners tend to overwhelmingly agree on 52 

where the beat is. Some of this consistency might be due to certain “top-down” constraints such 53 

as cultural and cognitive priors5-7. However, apart from theory8,9, relatively little is known about 54 

the neurophysiological dynamics that cause the feeling of musical beat to emerge in the first 55 

place.  56 

 57 

A key piece of information currently lacking is which aspects of the neural representation of 58 

music might be important for the induction of beat. Previous cross-species work revealed that 59 

firing rates as early as the auditory midbrain are significantly higher on the beat than off the beat 60 

in simple rhythms constructed from identical broadband noise bursts10. If large firing rate 61 

transients resulting from low-level auditory processing are indeed necessary for the induction of 62 

beat, then this insight could shed light on the dynamics of the entrainment of cortical oscillations 63 

to beat11-16, the role played by the motor system8,17-26, and why different species differ so much in 64 

their beat perception and synchronization capacity27. 65 

 66 

Importantly, if a consequence of auditory processing is to create points of neural emphasis that 67 

predispose beats being felt there, then we should observe this not just for simple rhythmic 68 

“laboratory sounds,” but also for real music. Twenty musical excerpts28, which were diverse in 69 

tempo and musical genre, were played to three anesthetized rats while recording extracellularly 70 

from auditory cortex. In line with previous findings, population firing rates were higher on the 71 

beat than off the beat, and large on-beat to off-beat firing rate ratios were a distinguishing feature 72 

of the consensus beat interpretation across human listeners. Comparison with the output of an 73 

auditory nerve model revealed that small effects may already be present at the auditory periphery 74 

but are amplified substantially in cortical responses. Musical excerpts that evoked a larger 75 
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cortical on-beat emphasis also showed a stronger consensus in tapping behavior across listeners. 76 

Finally, these results could be accounted for by the spectrotemporal receptive field properties of 77 

recorded units. These findings add to growing evidence that beat perception is not entirely 78 

culturally determined, but is also heavily constrained by low-level auditory processing common 79 

to mammals. 80 

 81 

Results 82 

Neural activity from a total of 98 single and multi-units were analyzed in response to 12 repeats 83 

of the first 10 seconds of 20 musical excerpts taken from the MIREX 2006 dataset online, which 84 

included beat annotations made by 40 human listeners28. In all songs, listeners reported a steady 85 

beat well within the first 10 s. The most common tapping pattern for each excerpt was taken to 86 

be that excerpt’s “consensus” beat interpretation (see Methods), and consensus tapping rates 87 

ranged from 0.7 Hz to 3.7 Hz (42 to 222 beats per minute, corresponding to beat periods of 1.42 88 

down to 0.27 s). The analyses that follow investigate correspondences between firing rates in the 89 

rat auditory cortex around the consensus beat as reported by human listeners. 90 

 91 

Auditory cortical firing rates are higher on the beat than off the beat 92 

For each song, the 100 ms time window following each consensus tap was defined as on-beat, 93 

and all time excluding these on-beat windows was defined as off-beat (the results are not 94 

sensitively dependent on this precise definition, see Methods). Fig 1A shows the average on-beat 95 

population firing rate plotted against the off-beat population firing rate for each of the 20 tested 96 

musical excerpts. On-beat firing rates were significantly larger than off-beat firing rates (p<10-4, 97 

Wilcoxon paired signed-rank test, N=20 songs), an observation that is consistent with previous 98 

work examining gerbil midbrain responses to simple rhythmic patterns10. The beat-triggered 99 

average population firing rate in the 200 ms window around consensus beats (averaged across all 100 

beats in all excerpts) provides a more detailed picture of population neural activity around the 101 

beat (Fig 1B). The distribution of on:off-beat ratios (OORs; average on-beat firing rate divided 102 

by average off-beat firing rate) for each recorded unit (N=98) is shown in Fig 1C. An OOR > 1 103 

indicates that firing rates were higher on the beat than off the beat. Most units show an OOR > 1, 104 
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and the bimodal distribution suggests that there may exist distinct sub-populations in the 105 

recorded data, one with OORs centered around 1 and the other with OORs around 1.5. 106 

 107 

For comparison, an auditory nerve model29 was used to predict firing rates at the auditory nerve 108 

for 50 logarithmically spaced frequency channels between 150 Hz and 24 kHz. Fig 1D shows 109 

predictions of on-beat versus off-beat population activity at the auditory nerve. Notably, the 110 

auditory nerve model would also predict higher average population firing rates on the beat than 111 

off the beat (p<0.005, Wilcoxon paired signed-rank test, N=20 songs). Fig 1E-1F show beat-112 

triggered averages and OORs for auditory nerve model fibers. OORs based on the auditory nerve 113 

model, though significantly larger than one, are much smaller than cortical OORs (p<10-4, 114 

Wilcoxon paired signed-rank test, N = 20 songs). 115 

 116 

Fig 1. Consensus beat-triggered neural activity and on:off-beat ratios (OORs) in the auditory cortex and 117 
auditory nerve. (A) Mean on-beat versus off-beat population firing rate in auditory cortical neurons. Each dot is 118 
one musical excerpt. On-beat firing rates are significantly higher than off-beat firing rates (p<10-4, Wilcoxon paired 119 
signed-rank test, N=20 songs) (B) Population “beat-triggered” average firing rate in the auditory cortex in a 200 ms 120 
window around the consensus beat times ± standard deviation across the 20 musical excerpts. (C) Histogram of 121 
on:off-beat firing rate ratios (OORs) for each recorded unit (N = 98), where “on-beat” is the average firing rate 122 
during the 100 ms post-tap window, and “off-beat” is the average firing rate over the entire song excluding on-beat 123 
windows. (D) Same as A, but for population activity based on an auditory nerve model with 50 log-spaced 124 
frequency channels between 150 Hz and 24 kHz. Predicted firing rates at the auditory nerve were significantly 125 
higher on the beat than off the beat (p<0.005, Wilcoxon paired signed-rank test, N=20 songs) (E) Same as B, but for 126 
population activity based on the auditory nerve model. (F) Same as C, but for auditory nerve model fibers (N=50). 127 
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A large neural emphasis is a distinguishing feature of the consensus beat 128 

While we have shown that firing rates are higher on the beat than off the beat, this on its own 129 

does not imply that large OORs are necessarily relevant to beat perception. From a purely signal 130 

processing perspective, a musical excerpt could theoretically be perceived as having any 131 

combination of tempo and time signature, and if most of these possible alternative beat 132 

interpretations were associated with more or less equally large OORs, then large OORs would be 133 

of little value as physiological markers of musical beat. Therefore, if a large OOR is relevant for 134 

the induction of beat, we hypothesized that it should be large for the consensus beat relative to 135 

plausible alternatives. 136 

 137 

To test this, we computed hypothetical OORs for the full range of plausible beat period and 138 

phase combinations. For each song, possible beat periods (representing the different rates at 139 

which a listener might tap) were allowed to range from 0.2 s to 2 s (5 Hz down to 0.5 Hz) 140 

sampled in 20 ms steps. Likewise, for each beat period, the phase offset was allowed to range 141 

from 0 up to the full beat period sampled in 20 ms steps to capture the fact that two listeners 142 

tapping at the same rate may nonetheless exhibit different interpretations of the beat if their taps, 143 

rather than being synchronous, have a constant offset between them. The OOR was then 144 

computed for each of these beat interval and beat offset combinations, resulting in 4,995 possible 145 

OOR values for each musical excerpt. The heatmaps in Fig 2A and 2B show the computed set of 146 

plausible OOR values calculated from cortical and auditory nerve model firing rates, 147 

respectively, for an example musical excerpt, with possible beat periods on the y-axis and 148 

possible starting phase offsets on the x-axis (see Supplementary Figs S1-S2 for heatmaps of all 149 

musical excerpts). The histograms in Fig 2C and 2D pool together hypothetical (in gray) and 150 

consensus (in red) OOR values from all musical excerpts (histograms for individual excerpts in 151 

Supplementary Fig S3-S4). 152 

 153 

If the OOR is a distinguishing feature of the perceived beat, we would expect it to rank above the 154 

50th percentile of the underlying distribution of hypothetically plausible OORs for a given 155 

musical excerpt. As hypothesized, the consensus OORs rank significantly larger than the 50th 156 

percentile, both in the auditory cortex (p<10-4, Wilcoxon signed-rank test, N = 20 songs), and in 157 

the auditory nerve model (p<0.005). However, the percentiles were significantly larger in the 158 
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auditory cortex than in the auditory nerve model (p<0.005, Wilcoxon paired signed-rank test, N 159 

= 20 songs). Notably, 14 out of the 20 musical excerpts tested had consensus OORs above the 160 

95th percentile in the auditory cortex, in contrast to only 7 out of 20 based on the auditory nerve 161 

model. Additionally, fewer hypothetical beat interpretations resulted in large OORs in the 162 

auditory cortex, as evidenced by the higher skewness, or longer right tails, of the OOR 163 

distributions in the auditory cortex compared to those based on the auditory nerve model (p<10-4, 164 

Wilcoxon paired signed-rank test, N = 20 songs). Together, these results suggest that a large 165 

OOR is a feature that distinguishes the consensus beat from most other possible beat structures, 166 

and that two important consequences of auditory processing might be an amplification of small 167 

differences in OOR already present at the auditory periphery, and a further restriction of the 168 

candidate beat interpretations that would result in large OORs. 169 

 170 
Fig 2. How does the consensus beat compare with other possible beat structures? (A) Heatmap depicting 171 
cortical on:off-beat ratios for plausible beat period (y-axis) and beat phase offset (x-axis) combinations between 200 172 
ms and 2 s (or tap rates of 5 Hz down to 0.5 Hz) for one example musical excerpt. Color indicates the OOR value. 173 
(B) Same as A, but for population activity based on the auditory nerve model. (C) Histogram pooled across musical 174 
excerpts of all OOR values (gray), and consensus OOR values (red) in the auditory cortex. (D) Same as C, but based 175 
on OOR values from the auditory nerve model. 176 
 177 
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The stronger the on-beat neural emphasis, the stronger the tapping consensus 178 

It is clear from Fig 2C (and Supplementary Fig S3) that consensus OORs are consistently among 179 

the largest possible OORs across our set of musical excerpts, but they are not always the largest. 180 

However, it is not uncommon for the beat in a given piece of music to be perceived in different 181 

ways. More often than not, listeners will exhibit a variety of tapping patterns, for example with 182 

some tapping twice as fast or half as fast as others, or 180 degrees out of phase with others. 183 

Additionally, if the beat is not very salient, there will be uncertainty about when exactly a beat 184 

occurs and therefore an increased variance in observed inter-tap-intervals. In such cases, and 185 

indeed in the dataset we use, listeners display a range of perceived beat interpretations, and what 186 

we have termed the consensus beat is merely the beat interpretation that happens to be favored 187 

by a (sometimes narrow) majority of listeners. This variability is illustrated in Fig 3, where for 188 

some excerpts tapping behavior was consistent across a large majority of listeners (e.g. Fig 3A), 189 

and for others tapping behavior was more variable, indicating a less salient or more ambiguous 190 

beat percept (e.g. Fig 3B-3C; see Supplementary Fig S5 and S6 for tapping behavior for all 191 

excerpts). 192 

 193 

 194 
Fig 3. A glimpse into the variability across human listeners tapping to the beat in music. (A) Top: Raster plot 195 
of tap times for the 40 human annotators across the 10 s excerpt of an example song. Each row is one subject, and 196 
location along the x-axis represents when the subject tapped during the 10 s musical excerpt. Consensus beat times 197 
are marked by gray vertical lines (see Methods). Note that most subjects’ taps line up in time with each other and 198 
with consensus beat for this example excerpt. Bottom: Tap density estimates based on tap times pooled across 199 
subjects, binned with 2 ms bins, and smoothed with a Gaussian kernel with a standard deviation of 5% of the 200 
consensus beat period (blue). Shown in red is a smoothed tap density estimate of the “ideal” tap histogram (with 201 
realistic motor error) that would have been obtained if all subjects had tapped on every consensus beat (see 202 
Methods). The correlation between real and idealized density is high for this excerpt (r=0.88), indicating a strong 203 
tapping consensus. (B) Same as A, but for a musical excerpt with multiple minority beat interpretations and 204 
therefore a lower correlation coefficient (r=0.78). (C) Same as B, but where the tapping consensus is even weaker 205 
(r=0.59). See Supplementary Figs S5 and S6 for all musical excerpts. 206 
 207 
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However, if we hypothesize that a large OOR predisposes a listener to hear a particular beat 208 

interpretation, then we would predict that the excerpts that evoke the largest OORs in cortical 209 

responses should also be the ones that evoke the clearest, most unambiguous beat percept across 210 

listeners. Can the variability in tapping behavior be explained by the size of OORs in the 211 

auditory cortex? 212 

  213 

To answer this question, we quantified the strength of the tapping consensus for each song by 214 

calculating the correlation coefficient between the smoothed histogram of observed tap times and 215 

the smoothed histogram of the “ideal” case in which all 40 listeners would have tapped on each 216 

consensus beat within a realistic degree of sensory or motor error (see Methods). Examples of 217 

observed (blue) and idealized (red) tap density estimates are shown the lower panels of Fig 3. 218 

 219 

Consistent with our hypothesis, the size of the consensus OOR evoked in the auditory cortex by 220 

a musical excerpt correlated significantly with the strength of the tapping consensus across 221 

listeners (Fig 4A; p<0.001, Pearson correlation, N = 20 songs). Neither OOR (p=0.48) nor 222 

consensus strength (p=0.44) varied with the consensus tempo of musical excerpts (Pearson 223 

correlation, N = 20 songs). Fig 4B and 4C show how OOR and consensus strength, respectively, 224 

develop over the course of the 10 s duration of the musical excerpts. Data were split into five 2-s 225 

chunks, and OORs and correlation coefficients were calculated based on the data in each chunk. 226 

Tapping consensus strength, which is low initially, is nearly at ceiling from about 4 s into the 227 

excerpts, indicating that listeners only needed a few seconds to find the beat. OORs, on the other 228 

hand, did not change systematically over time, suggesting that the correspondences observed in 229 

this study between neural activity and behavior are unlikely to be due to cortical entrainment or 230 

buildup in neural responses. 231 
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 232 
Fig 4. The stronger the on-beat neural emphasis, the stronger the tapping consensus. (A) Each dot is one 233 
musical excerpt. There is a strong correlation between auditory cortical OOR (x-axis) and the tapping consensus 234 
across listeners, quantified as described in Fig 3 (y-axis; p<0.001, Pearson correlation, N = 20 songs). (B) Tapping 235 
consensus, calculated for each sequential 2 s segment of musical excerpts. Colored lines are individual songs. In 236 
black is the mean across songs for each time chunk ± standard deviation. (C) Same as panel B but for OOR values. 237 
 238 

Spectrotemporal receptive field based models explain nearly 90% of the variance in OOR 239 

The beat-related processing observed in the rat auditory cortex may be due to beat-specific 240 

processes, or, as we hypothesized might be more likely, due to the spectrotemporal tuning 241 

properties of recorded units. If this were the case, neural responses predicted using a standard 242 

linear-nonlinear (LN) model fitted to each unit should largely reproduce observed OORs. To test 243 

this, we first estimated each unit’s spectrotemporal receptive field (STRF), or the linear model 244 

that describes the frequency and timing properties of incoming sounds that would either excite or 245 

inhibit a neuron. Next, we estimated the unit’s static sigmoid output nonlinearity to arrive at a 246 

fitted LN model for each unit (see Methods). The LN model was fitted 20 times for each unit, 247 

each time using that unit’s responses to 19 of the musical excerpts while setting aside one 248 

excerpt as a test song. This ensured that predicted neural responses for a test song were true 249 

predictions since the model was not trained on the test excerpt. In this manner, firing rate 250 

predictions were generated for each unit and each musical excerpt, and these were then analyzed 251 

to arrive at predicted OOR values. 252 

 253 

An STRF from an example unit is shown in Fig 5A, with frequency on the y-axis and stimulus 254 

history on the x-axis. This unit shows a preference for frequencies at and above 16 kHz, and is 255 
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excited if sounds in that frequency range were heard 25 ms ago but inhibited if they occurred 40 256 

ms ago. A short excerpt from a test song is shown in Fig 5B, where it can be seen that LN model 257 

predictions are in good agreement with observed firing rates. Fig 5C shows consensus OOR 258 

values for each musical excerpt based either on observed (x-axis) or predicted (y-axis) firing 259 

rates. The LN model slightly underestimates OORs (p<0.001, Wilcoxon paired signed-rank test, 260 

N = 20 songs), suggesting that there is some nonlinear process that slightly increases OOR 261 

beyond processes captured by a standard LN model. However, despite this minor difference, the 262 

LN model successfully accounts for 89% of the variance in OOR values for the tested musical 263 

excerpts (p<10-6, Pearson correlation, N = 20 songs). Predictions made using the linear STRF 264 

alone (without the static nonlinearity) accounted for 61% of the variance in OOR (p<0.01, 265 

Pearson correlation, N = 20 songs). 266 

 267 

 268 
 269 
Fig 5. Cortical firing rate predictions based on fitted linear-nonlinear (LN) models incorporating 270 
spectrotemporal receptive fields (STRFs). (A) STRF from an example unit, with frequency on the y-axis and time 271 
on the x-axis and color representing the coefficients. This unit shows a classic pattern of excitation and inhibition in 272 
a relatively narrow frequency range. Convolving this filter with the spectrogram of a sound stimulus, and then 273 
applying a static nonlinearity, would result in the LN model’s prediction of this unit’s firing rate over time. (B) 274 
Measured (blue) and LN model predictions (red) of the population firing rate for a 1 s segment of an example 275 
musical excerpt. Gray vertical lines mark consensus tap times in this segment. (C) Observed (x-axis) versus 276 
predicted (y-axis) consensus on:off-beat ratios for each song. LN models account for 89% of the variance in OOR. 277 
 278 

  279 
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Discussion 280 

The aim of this study was to explore how firing rate transients in the auditory cortical 281 

representation of music might set the stage for the perception of musical beat. Our results, based 282 

on the twenty musical excerpts that were diverse in tempo and genre, revealed that population 283 

firing rates were on average higher on the beat than off the beat, and that large on:off-beat ratios 284 

(OORs) were a distinguishing feature of the beat interpretations most commonly tapped by 285 

human listeners. While small differences between on-beat and off-beat responses were already 286 

present in auditory nerve model responses, these differences were substantially amplified in 287 

auditory cortical responses. Furthermore, musical excerpts that evoked larger OORs in the 288 

auditory cortex also showed stronger tapping consensus among listeners. Finally, the 289 

spectrotemporal receptive field (STRF) properties of cortical units were able to account for the 290 

magnitude of the OOR each musical excerpt would induce. Together, these findings suggest that 291 

large OORs in the auditory cortex, which arise due to the spectrotemporal tuning properties of 292 

neurons, may be key to establishing the location and clarity of the perceived beat. 293 

 294 

It is worth noting is the extent to which the physiology corresponded to tapping behavior and the 295 

extent to which standard LN STRF models could capture the physiology for real musical 296 

excerpts. These observations strongly suggest that the related low-level mechanisms of neuronal 297 

adaptation10, amplitude modulation tuning30, and STRFs play a formative role musical in beat 298 

perception. This is not inconsistent with the theory that the induction of the beat percept is the 299 

result of an interaction between “bottom-up” sensory processes and “top-down” cognitive ones31. 300 

Our data suggest that beat perception may really begin weakly at the ear, with neural activity 301 

showing stronger correspondences to behavior as information ascends through the brainstem and 302 

primary cortical structures of the ascending auditory pathway32,33. Since these parts of the 303 

ascending auditory system are often highly conserved across mammalian species34-37, cross-304 

species investigations may be a promising way to understand the neural signals and dynamics 305 

that underlie beat induction, which to date remain mysterious. 306 

 307 

Though our results indicate that beat perception is strongly influenced by basic physiological 308 

mechanisms and therefore only partly culturally determined, they do not imply that “bottom-up” 309 
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processes could possibly explain everything. For example, some well-studied constraints on-beat 310 

perception include the tendency to perceive a beat within a frequency range of roughly 0.5–4 311 

Hz38 with a special preference for 2 Hz39, and an overall preference for binary (e.g. 2, 4) meters 312 

over ternary (e.g. 3, 6) or other complex meters38,40. These constraints are likely driven by top-313 

down influences or may result from auditory-motor interactions8,17-25 and are unlikely to be 314 

explained by bottom-up sensory processing alone. Furthermore, the perceived beat and its neural 315 

signatures can be modulated at will by top-down attention or mental imagery of beat 316 

structure12,41-43. Bringing these ideas together, we propose that the perception of beat relies on the 317 

application of learned and implicit rhythmic priors6,7 onto an ascending sensory 318 

representation10,30 with a bias towards configurations that maximize the difference between 319 

neural activity on and off the beat. 320 

 321 

That we see as much correspondence as we do between the representation in auditory cortex and 322 

beat perception could be an indication that neural activity in the auditory cortex is a key interface 323 

between the sensory and motor and/or cognitive processes involved in beat perception. Probing 324 

the cortico-basal ganglia-thalamo-cortical loop44 may be a promising avenue for future 325 

investigations. Projections from auditory cortical fields to the basal ganglia have been well-326 

characterized45, and the basal ganglia in humans have been repeatedly implicated in beat 327 

perception22,43,46,47 as well as other auditory cognitive abilities48. We speculate that large firing 328 

rate transients in the auditory cortex, observed in this study to co-occur with the perceived beat, 329 

could set into motion the dynamics of this loop and thereby enable the possible entrainment of 330 

cortical oscillations to the beat21,42,49-51. We suggest caution, however, as there is currently some 331 

debate around what constitutes neural entrainment to auditory rhythms52-54, and whether 332 

frequency-domain representations of rhythms and brain signals necessarily reflect beat 333 

perception55. 334 

 335 

The extent of the correspondence observed in this study between auditory cortical activity in rats 336 

and human beat perception also invites the intriguing question of whether rodents too can 337 

perceive musical beat. Preliminary evidence suggests that rats can be trained to discriminate 338 

isochronous rhythms from non-isochronous ones56. Mice too appear capable of performing a 339 

synchronization-continuation task, and in that study, primary auditory cortex was implicated as 340 
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being necessary for the generation of anticipatory motor actions57. These studies at minimum 341 

suggest that rodents have the capacity to perceive temporal structure and execute motor actions 342 

timed to an external isochronous rhythm. Future behavioral studies are needed to explore the 343 

limits of sensorimotor synchronization in rodents. 344 

 345 

At the other end of the spectrum are humans, whose ability to synchronize with an external 346 

rhythm, whether it is to a metronome or to the beat in music, is spontaneous1, highly 347 

anticipatory58, innate59, and often involuntary2,60,61. The gradual audiomotor evolution hypothesis 348 

posits that the ability to entrain movements to musical beat relies on strong coupling between the 349 

auditory and motor systems, and that the neurophysiology and behavioral capacity to do so 350 

evolved gradually20. This hypothesis is supported by evidence that nonhuman primates, like 351 

humans, are capable of producing tempo-flexible anticipatory movements in time with a 352 

metronome62,63 and can detect rhythmic groupings, but cannot detect or synchronize to a musical 353 

beat4. The dissociation between perceiving auditory rhythms and perceiving musical beat may 354 

relate to findings that distinct networks underpin “duration-based” and “beat-based” temporal 355 

predictions64-66. It is important for future studies in the area of beat perception to be clear about 356 

precisely what is being perceived, since there is demonstrable nonequivalence between the 357 

detection of a pulse in isochronous rhythms, a pulse in real music, and beat in the context of the 358 

different levels of nested hierarchical structure present in music, the latter of which has arguably 359 

not yet been demonstrated in any nonhuman species67. 360 

 361 

This leads to the question of why beat perception exists in the first place. Some clues might be 362 

found in parallels that beat perception has with other abilities, particularly with the human 363 

capacity for language68-70. Another possibility is that beat may provide a way to quickly assess 364 

locomotion speed from the sound of a complex gait. Though this speculation has not yet been 365 

tested directly, gait studies have shown that humans are able to assess a number of attributes of a 366 

walker based only on their walking sounds, including gender, posture, and emotional state71,72. 367 

 368 

However, at the heart of these complex abilities are neural circuits that are very old and also 369 

underlie more general auditory cognitive abilities73 such as perception of time74 and prediction of 370 

future sensory inputs75. Therefore, a unified perspective that would bring all of this together is 371 
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that the information processing performed by the auditory system up to primary auditory cortex 372 

is largely consistent across most mammals, but the complexity of the operations the organism 373 

ecologically needs to perform with this information may be the determinant for what is “top-374 

down.” Our data suggest that strong firing rate transients in the neural representation of real 375 

music may shape where the beat is felt, and while an on-beat neural emphasis is certainly not the 376 

whole story, it is a lead worth exploring further. Ultimately, this work underscores the 377 

importance of low-level auditory processing in creating a representation of sound where certain 378 

features are emphasized based on temporal context, a representation on which other high-level 379 

processes rely to give rise to complex perception. 380 

 381 
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Methods 382 

 383 

Stimuli 384 

 385 

The 20 songs tested were the training dataset for the MIREX 2006 beat tracking algorithm 386 

competition76. Each song had beat annotations collected from 40 human listeners28. Only the first 387 

10 s of songs and beat annotations were used in this study. 388 

 389 

Surgical Protocol 390 

 391 

All procedures were approved and licensed by the UK home office in accordance with governing 392 

legislation (ASPA 1986). Three female Lister Hooded rats weighing approximately 250 grams 393 

were anesthetized with an intraperitoneal injection of 0.05 ml domitor and 0.1 ml ketamine. To 394 

maintain anesthesia, a saline solution containing 16 ug/kg/h domitor, 4 mg/kg/h ketamine, and 395 

0.5 mg/kg/h torbugesic were infused continuously during recording at a rate of 1 ml/h. A 396 

craniotomy was performed 4.7 mm caudal to bregma and extending 3.5 mm lateral from the 397 

midline on the right hand side. 398 

 399 

Recordings were made using a 64 channel silicon probe (Neuronexus Technologies, Ann Arbor, 400 

MI, USA) with 175 um2 recording sites arranged in a square grid pattern at 0.2 mm intervals 401 

along eight shanks with eight channels per shank. The probe was inserted into the auditory cortex 402 

in a medio-lateral orientation wherever possible.  403 

 404 

The 20 songs were played in randomized order for a total of 12 repeats, with 3 seconds of silence 405 

separating each song from the next. Stimuli were presented binaurally through headphones at 80 406 

dB SPL. Sounds were presented with a sampling rate of 48828.125 Hz, and data were acquired at 407 

a sampling rate of 24414.0625 Hz using a TDT system 3 recording setup (Tucker Davis 408 

Technologies). 409 

 410 

 411 
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Data Analysis 412 

 413 

Tapping Analysis 414 

To calculate consensus tap times, the histogram of tap times, pooled across the 40 subjects and 415 

then binned using 2 ms bins, was smoothed using a Gaussian kernel with a width (standard 416 

deviation) of 40 ms. This width was chosen because visual inspection of tap histograms showed 417 

the standard deviation around taps to be approximately 40 ms, so a Gaussian kernel with that 418 

width would approximate a “matched filter.” The precise width of the smoothing kernel was not 419 

critical to our results as long as it roughly matched the spread in the data. A peak-finder 420 

(findpeaks.m, built-in Matlab function) was then used to identify peaks that were larger than 40% 421 

of the maximum value in the smoothed histogram. The consensus inter-tap-interval (ITI) for a 422 

song was taken to be the mean interval between successive peaks, after the exclusion of intervals 423 

larger than 1.5 times the median inter-peak-interval (which would happen if the peak-finder 424 

missed a peak). The consensus phase was determined by finding the offset that optimally aligned 425 

a temporal grid with consensus ITI spacing with the peaks found by the peak-finder. Consensus 426 

tap times can be described by a consensus ITI (beat period) and consensus offset (beat phase) 427 

combination for each song. 428 

 429 

On-beat neural activity was defined as the average population firing rate in the 100 ms following 430 

consensus tap times, and off-beat neural activity was the average population firing rate during all 431 

time excluding these on-beat windows. The justification for this definition is that (i) the true 432 

perceived beat location is almost certainly just after a listener taps, given the well documented 433 

tendency of listeners to anticipate the beat with their movements by several tens of milliseconds 434 

(negative beat asynchrony)61, (ii) defining off-beat activity as all neural activity that is not on the 435 

beat is consistent with previous work10, and (iii) an interval of 100 ms is less than one half a beat 436 

cycle for the fastest beat period observed in these data of 273 ms. The precise choice of time 437 

window is not critical, and this was confirmed by running all analyses using on-beat windows 438 

that ranged between 40 ms and 120 ms in 10 ms increments. The results were entirely consistent 439 

with those presented here for a time window of 100 ms, and if anything, slightly stronger when 440 

shorter time windows were used. 441 

 442 
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To compute the strength of the consensus, an “ideal tap histogram” was constructed by assuming 443 

all 40 listeners tapped precisely at each consensus beat time as determined by the excerpt’s 444 

consensus ITI and phase. A realistic degree of motor error was added by convolving this with a 445 

Gaussian kernel whose width was 5% of the beat period. The same 5% Gaussian kernel was then 446 

used for kernel density estimation on the two signals: the raw pooled histogram of (measured) 447 

tap times that already contained motor error, and the idealized tap histogram with motor error 448 

added. The choice of temporal filter value was guided by the magnitude of errors reported in 449 

studies of human sensorimotor synchronization77-79, but other kernel widths close to 5% also 450 

produce consistent results. The correlation coefficient between real and idealized tap density 451 

estimates for a given musical excerpt was taken as a measure of the strength of the tapping 452 

consensus, where a large value would indicate a high degree of similarity between real and 453 

“ideal” tapping behavior. Estimation of the real and idealized tap densities is also possible using 454 

a constant width (e.g. 40 ms) Gaussian kernel rather than a proportional one. However, while 455 

doing so would lead to the to the same main result shown in Fig 4, this measure of tapping 456 

consensus strength would have the undesirably effect of also correlating with song tempo since, 457 

as mentioned above, it is well-established that the magnitude of sensorimotor synchronization 458 

errors scale with interval duration. 459 

 460 

Electrophysiology Data Preprocessing 461 

Offline spike sorting and clustering was done on the raw data using an automated expectation-462 

maximization algorithm (Spikedetekt/Klustakwik)80, and clusters were manually sorted using 463 

Klustaviewa (Cortical Processing Lab, University College London). Firing rates over time for 464 

multi-units were calculated by binning spike times into 5 ms bins, which resulted in peri-465 

stimulus time histograms (PSTHs) at an effective sampling rate of 200 Hz.  466 

 467 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/481473doi: bioRxiv preprint 

https://doi.org/10.1101/481473


19  

To determine whether spikes were reliably stimulus-driven, a noise power to signal power cutoff 468 

of 40 was chosen81. Song 1 was arbitrarily chosen to the be the stimulus for which the 469 

repeatability of responses was measured. Units that failed to show a noise power to signal power 470 

ratio less than 40 based on the 12 repeats were excluded from further analysis, leaving a total of 471 

98 multi-units. All subsequent analyses were performed using custom-written Matlab code. 472 

 473 

Fitting the LN Model 474 

The relevant scripts used at all stages of this process are available on Github82. First, music 475 

stimuli were transformed into a simple approximation of the activity pattern received by the 476 

auditory pathway by calculating the log-scaled spectrogram ('cochleagram')82-84. For each sound, 477 

the power spectrogram was taken using 10 ms Hanning windows, overlapping by 5 ms. The 478 

power across neighboring Fourier frequency components was then aggregated using overlapping 479 

triangular windows comprising 27 frequency channels with center frequencies ranging from 50 480 

Hz to 20,319 Hz (1/3 octave spacing). Next, the log was taken of the power in each time-481 

frequency bin, and finally any values below a low threshold were set to that threshold. These 482 

calculations were performed using code adapted from melbank.m 483 

(http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html). The STRF model was trained to 484 

predict the firing rate at time t from a snippet of the cochleagram extending 100 ms (20 time 485 

bins) back in time from time t. The linear weights describing the firing rate of each neuron were 486 

estimated by regressing, with elastic net regularization, each neuron's firing rate at each time 487 

point against the 100 ms cochleagram snippet directly preceding it. Regularization strength was 488 

set by using a randomly chosen 10% of time bins from the cross-validation set as a validation set, 489 

and then by choosing the regularization parameters that led to the fit on the validation set with 490 

the lowest mean squared error. A sigmoidal nonlinearity85 was then fitted to map from the linear 491 

activation to the predicted PSTH such that it minimized the error between the predicted PSTH 492 

and the observed PSTH. LN model predictions of a unit’s PSTH to a test song were made by first 493 

convolving the cochleagram of the test song with the linear STRF and then applying the 494 

nonlinearity. Each unit’s LN model was calculated 20 times, each time setting a different song 495 

aside as the test set. This was done so that PSTH predictions for any musical excerpt were true 496 

predictions since that excerpt was not included in the training set for the model. 497 

  498 
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