1	Protective low avidity anti-tumour CD8+ T cells are selectively
2	attenuated by regulatory T cells
3	
4	Running Title: Tumour protective low avidity CD8+ T cells
5	
6	Sugiyarto G.*, Prossor D.*, Dadas O.*, Elliott T.*, [†] , James E.*, [†]
7	
8	*Centre for Cancer Immunology, University of Southampton Faculty of Medicine,
9	University Hospital Southampton, Southampton, SO16 6YD, UK and † Institute for
10	Life sciences, University of Southampton, Southampton, SO17 1BJ, UK.
11	
12	
13	
14	Correspondence:
15 16	Edd James Centre for Cancer Immunology,
10 17	University Hospital Southampton,
18	Tremona Road,
19	Southampton SO16 6YD
20	Tel No. +44 2381205884
21	Fax No. +44 2381205152
22	Email: eddjames@soton.ac.uk
23	
24	
25	
26	
27	This work was supported by the Cancer Research UK Programme Grant A16997
28	awarded to E.J. and T.E.

29 Abstract

30 Regulatory T cells (Treg) play a major role in the suppression of protective anti-31 tumour T cell responses. In the CT26 BALB/c murine model of colorectal carcinoma, 32 Tregs differentially suppress responses to two characterised CD8+ T epitopes, AH1 33 and GSW11, which results in an absence of detectable IFN-y producing GSW11-34 specific T cells in the spleen and lymph nodes of tumour challenged mice. Activation 35 of GSW11-specific T cells correlates with protection against tumour growth. Here we 36 show that GSW11-specific T cells are in fact induced in Treg-replete, CT26-bearing 37 mice, where they make up the majority of tumour infiltrating CD8+ lymphocytes, but 38 exhibit a dysfunctional 'exhausted' phenotype. This dysfunctional phenotype is 39 induced early in the anti-tumour response in draining lymph nodes, spleens and 40 tumours and is significantly more pronounced in GSW11-specific T cells compared to 41 other tumour-specific T cell responses. Depletion of Tregs prior to tumour challenge 42 significantly reduces the induction of exhaustion in GSW11-specific T cells and 43 correlates with altered T cell receptor (TcR) usage. Moreover, the avidity of GSW11-44 specific TcRs that expanded in the absence of Tregs was significantly lower compared 45 to TcRs of cytotoxic T lymphocyte (CTL) populations that were diminished in 46 protective anti-tumour responses. This indicates that Tregs suppress the induction of 47 protective anti-tumour T cell responses and may signify that the induction of low 48 avidity T cells, while being more susceptible to exhaustion are the most efficacious in 49 tumour rejection.

50 Introduction

51 CD8+ T cell responses directed to tumours have been shown to occur in many human 52 cancers, where they are a positive prognostic indicator (1-5). Backed by studies in 53 preclinical mouse models, which clearly show that CD8+ T cells are important in the 54 clearance of tumours and may confer lifelong protection against malignancy (6, 7), 55 immunotherapies aimed at boosting anti-tumour cytotoxic T lymphocytes (CTL) are 56 showing promise in the clinic. Naturally occurring responses can be initiated during 57 tumour growth to establish immunosurveillance in which a dynamic process of 58 immunoediting can ensue; immunological pressure from anti-tumour CTL balances 59 tumour elimination against the emergence of tumour escape variants with no 60 accompanying net outgrowth of tumour (8). This process is responsible for shaping 61 the immunogenicity of the tumour (9). Breakdown of this equilibrium leading to 62 tumour outgrowth involves multiple factors, including the balance between T cell 63 activatory (TcR engagement and co-stimulation) and inhibitory signals (exhaustion 64 markers and immunosuppressive cytokines), and evasion of the T cell response 65 through downregulation of antigen processing machinery or antigen loss. Therapeutic 66 approaches designed to tip the balance back in favour of tumour elimination by 67 providing activation agonists or blockade of inhibition is an attractive strategy that is 68 currently investigated (reviewed in (10)). FoxP3+ CD4+ regulatory T cells (Treg) are 69 important in establishing an immunosuppressive tumour microenvironment, and their 70 infiltration into tumours is a negative prognostic biomarker (11) and a significant 71 obstacle to successful immunotherapy, correlating with a poorer outcome in clinical 72 trials (reviewed in (12)). Therefore, Treg depletion as a therapeutic option is being 73 pursued in the clinic, based on studies in mice that showed rejection of transplanted 74 tumours following ablation of Treg with anti-CD25 antibodies (13, 14).

75	One of the most widely used mouse models for preclinical testing of new
76	immunotherapeutic drugs is the transplantable BALB/c derived colorectal tumour
77	CT26 (15, 16). In this model, we have shown that depletion of Tregs induces robust
78	protective anti-tumour immunity that effects tumour rejection in ~90% of mice,
79	similar to responses observed in other mouse tumour models (13, 17). The CT26-
80	immune mice developed memory CTL responses and were able to reject a second
81	challenge with CT26 as well as tumour lines of different histological origin following
82	recovery of Tregs to normal levels. Anti-tumour responses in these mice are focussed
83	on two epitopes derived from gp90; AH1 (SPSYVYHQF, (18)) and GSW11
84	(GGPESFYCASW, (17)). The anti-GSW11 response is more sensitive to Treg
85	suppression in vivo, illustrated by the fact that functional (IFN-y-producing) anti-
86	GSW11 CTL can only be detected in tumour draining lymph nodes (tdLN) in the
87	absence of Treg whereas anti-AH1 CTL are detected whether or not Treg are present
88	(17). Anti-GSW11 CD8+ T cells deliver the most potent anti-tumour response
89	characterised by their ability to reject tumours expressing very low levels of antigen
90	(13, 17).
91	To investigate the basis of differential suppression of the GSW11-specific T cell
92	response further, we utilised peptide-specific tetramers, to detect both functional
93	(IFN- γ^+) and inactivated (IFN- γ^-) antigen-specific T cells. We show that in Treg
94	replete tumour-bearing mice GSW11-specific T cells made up the majority of CD8+
95	tumour infiltrating lymphocytes (TIL), but exhibit an exhausted phenotype
96	characterised by PD-1 expression and absence of IFN- γ production upon stimulation.
97	We also found that Treg depletion permitted the proliferation of GSW11-specific T
98	cells with lower TcR/MHC avidity suggesting that this population may be more

- 99 efficacious at rejecting tumour than their higher avidity counterparts with the same
- 100 epitope specificity.

101 Materials and Methods

102 Mice, Antibodies and In vivo depletion

- 103 BALB/c mice were bred under specific pathogen-free conditions in Southampton.
- 104 Female or male mice (6-8 weeks old) were used in all experiments and during
- 105 experimental procedures mice were housed in conventional facilities. Hybridomas
- secreting CD25 (PC61, rat IgG1) specific mAb have been described previously (13).
- 107 For depletion, mice received intraperitoneal (i.p.) injection of 1 mg of mAb PC61 in
- 108 100 µl on days -3 and -1 prior to tumour challenge.
- 109

110 Tumour cells and *In vivo* challenge

- 111 CT26 tumour cells (American Type Culture Collection; ATCC) were maintained in
- 112 RPMI (Sigma) supplemented with 10% FCS (Globepharm), 2 mM L-glutamine,
- 113 penicillin/streptomycin (Sigma), 50 µM 2-mercaptoethanol, 1 mM sodium pyruvate
- 114 (Gibco-BRL) and 1mM HEPES (PAA) and confirmed to be mycoplasma free. In all
- 115 experiments, mice were injected subcutaneously (s.c.) with 10^5 tumour cells in
- 116 endotoxin-low PBS. For analysis of PD-L1 expression, tumour cells were stained with
- 117 α -PD-L1 (10F.9G2; Biolegend) prior to s.c. injection and after 14-25 days of tumour
- 118 growth. All flow cytometry data acquisition was carried out on a FACS Canto II (BD
- 119 Biosciences) and all data analysed with FlowJo Software (Treestar). Tumour cells
- 120 were gated on live, single cells and the proportion of PD-L1⁺ cells assessed.
- 121

122 DNA construct

- 123 The H2-D^d single chain trimer (SCT) construct incorporating a *gp120* HIV peptide (a
- 124 kind gift from Dr. Keith Gould) was mutated into the GSW11 peptide via site directed
- 125 mutagenesis (SDM) PCR using KOD HotStart polymerase (Merck Biosciences)

126	according to	manufacturer	's instruction	s. The transmer	mbrane domai	n of H2-D ^d was
-----	--------------	--------------	----------------	-----------------	--------------	----------------------------

substituted for a biotinylation site using overlapping extension PCR. In addition, a

128 disulphide trap was incorporated into the construct (19) to tether the GSW11 peptide

- 129 onto the MHC I binding grove.
- 130

131 **Tetramer generation**

132 Tetramers were produced with the help and advice of the Cancer Research

133 UK/Experimental Cancer Medicine Centre Protein Core Facility (Cancer Sciences

134 Unit, University of Southampton, Southampton, U.K.) with few modifications. The

- 135 GSW11-SCT construct containing H2-D^d, β2m and GSW11 peptide was cloned into
- the pET-3a expression vector (Novagen) and expressed in BL-21 CodonPlus RIPL

137 cells (Stratagene). Concentrated refolded complexes were purified on a HiLoad 26/60

138 Superdex 200 column (GE Healthcare). Biotinylation was achieved with 50µM d-

139 biotin and 1μ g/ml biotin protein ligase (Avidity) at 16°C overnight and then passed

140 through the column a second time. Biotinylated monomers were dialysed and

subsequently stored in 16% glycerol in PBS or tetramerised by incubation with 1:4

142 molar ratio of PE-labelled streptavidin (Thermofisher) at 4°C. Each batch of tetramers

143 were tested for binding against the GSW11-specific T cell hybridoma, CCD2Z. For

144 the analysis of AH1-specific T cells, AH1-specific dextramers were used

- 145 (Immunodex).
- 146

147 Isolation and analysis of antigen-specific T cells and Tregs

148 Spleens, tumour draining lymph nodes and tumours from CT26 challenged mice

149 (Treg depleted or replete) were harvested between days 3-25 and disaggregated.

150 CD8+ T cell responses to CT26 antigens GSW11 and AH1 were assessed using

151	antigen-specific tetramers and the production of IFN- γ following peptide stimulation.
152	CD8+ T cells, APCs and peptides/tumours were cultured together for 4 hours in the
153	presence of brefeldin A (BD biosciences) before being stained for cell surface α -CD8
154	(63-6.7; BD biosciences), antigen-specific tetramer/dextramer, α -PD-1 (RMPI-30;
155	eBiosciences) and intracellular α -IFN- γ (XMG1.2; BD biosciences) using the
156	Cytofix/Cytoperm kit (BD biosciences) according to manufacturer's instructions.
157	Cells were enumerated by flow cytometry. Numbers reported are those above the
158	background response of T cells alone, with no peptide stimulation. Single cell CD8+
159	lymphocytes were gated and assessed for tetramer binding and expression of IFN- γ .
160	For analysis of PD-1, CD8+ and tetramer+ were gated and assessed for PD-1 and
161	IFN- γ expression. Within these gates the T cell receptor clonality of GSW11-specific
162	T cells was assessed using a panel of 15 V β -specific antibodies (BD biosciences).
163	First, total CD8+ T cells were purified using a CD8 magnetic isolation negative
164	selection kit (Miltenyi) according to manufacturer's instructions. Purified CD8s were
165	stained with GSW11-specific tetramer, α -V β kit, α -CD8 and analysed by flow
166	cytometry. For the analysis of Tregs, cells were stained for cell surface α -CD4 (RM-
167	4-5; BD biosciences), α -CD25 (7D4; BD biosciences), α -PD-1 and α -PD-L1
168	(10F.9G2; Biolegend) and intracellular staining with α -FoxP3 (FJK-16S;
169	eBiosciences).
170	

171 **Tetramer competition assay**

172 Spleens and tumour draining lymph nodes were pooled from Treg depleted or replete

173 mice. CD8+ T cells were purified from disaggregated tissues using magnetic isolation

174 by negative selection (Miltenyi). Purified CD8+ T cells were incubated with 50 nM of

175 dasatinib (New England Biolabs) to prevent TcR internalisation before staining with

176	α-CD8, α-TCR β -chair	(H57-597; Biolegend) an	nd 5 µg of PE-labelled GSW11-
-----	-----------------------------	-------------------------	-------------------------------

- 177 specific tetramers. After two washes, cells were incubated with bleached tetramer at
- varying ratios of the initial PE-labelled tetramers: 2.5µg, 5µg, 10µg or 20µg per test.
- 179 Bleached tetramers were tested for no/minimal PE-fluorescence before use. The β-
- 180 chain TCR staining was included to confirm the decreasing levels of PE-staining was
- 181 due to the fluorescently labelled tetramer being out-competed and not due to TcR
- 182 internalisation.
- 183

184	Statistical	analysis
-----	-------------	----------

- 185 Analyses were performed using Prism software (GraphPad, San Diego, CA). The *p*
- 186 values were calculated using either two way ANOVA with Dunnett's post-test or two-
- 187 tailed unpaired t test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001).
- 188
- 189

191 **Results**

192 Tumour infiltrating GSW11-specific CD8+ T cells are exhausted in CT26 tumour-

193 *bearing mice*

194	Recent studies using mouse models have shown that many tumour infiltrating anti-
195	tumour CD8+ T cells have an exhausted phenotype, characterised by PD-1 expression
196	and a failure to express cytokines IL-2, TNF- α and IFN- γ (20, 21). Little is known
197	about whether, or to what extent, development of this phenotype relates to T cell
198	specificity. Clearly, a relationship exists inasmuch as T cell activation via TcR is a
199	prerequisite for the induction of exhaustion (reviewed in (22)). Given our previous
200	observations of differential suppression of anti-CT26 responses with different
201	specificity (17), we sought to investigate the induction of exhaustion in both AH1 and
202	GSW11-specific CD8+ T cells in CT26 tumour bearing mice using antigen-specific
203	tetramers as specificity probes for T cell populations, independent of their functional
204	phenotype. Due to the poor binding affinity of GSW11 for H2-D ^{d} (17) we utilised
205	single chain trimer tetramers with GSW11 tethered to the binding groove using a
206	short linker polypeptide (19), allowing stable expression of GSW11-D ^d monomers. In
207	CT26 challenged Treg replete mice, GSW11-specific T cells were the most abundant
208	CD8+ T cell population in tumours, making up >50% of all CD8+ T cell infiltration
209	after 14 days of tumour challenge (Figure 1A, B, C). However, similar to the situation
210	seen in many human cancers, these infiltrating CD8+ T cells do not confer protection,
211	and tumours continue to grow in these animals. The population of GSW11-specific T
212	cells was significantly larger than AH1-specific T cells, which constituted a maximum
213	of 20% of infiltrating T cells at later stages of tumour challenge (d17 and d22; Figure
214	1B, C). Notably, while the two T cell populations (anti-GSW11 and -AH1 CD8+ T
215	cells) made up the majority of tumour infiltrating CD8+ T cells (>60%) at later time

216	points (d14-22), they were in the minority in early anti-tumour responses (d7-10,
217	Figure 1C). Thus, an initial broad-specificity polyclonal TIL response becomes
218	focussed on two gp90 derived epitopes during tumour growth (Figure 1C). We next
219	investigated the function, after ex vivo peptide stimulation, of GSW11- and -AH1
220	specific CD8+ T cells harvested from tumours during the course of the challenge. The
221	vast majority of GSW11-specific CD8+ T cells were unable to produce IFN- γ , with a
222	decrease in functional T cells as the tumour progressed (Figure 1D, E). Most of the
223	AH1-specific T cells were also non-functional, although, consistent with earlier
224	studies showing their presence in tdLN and spleen (17), there were significantly more
225	functional AH1-specific T cells at d22 compared to GSW11 (around 6% compared to
226	<1% functional; Figure 1D, E). This minor population of functional tumour-specific T
227	cells were, however, unable to control tumour growth.
228	To investigate whether the lack of effector function in anti-tumour T cells correlated
229	with the expression of checkpoint molecules commonly associated with T cell
230	dysfunction in tumours, we assessed the expression of PD-1 on GSW11- and AH1-
231	specific T cells following tumour challenge. The majority of non-functional (IFN- γ^{-})
232	tumour infiltrating T cells of both specificities expressed PD-1 indicating the
233	induction of an exhausted phenotype (50-80%; Figure 2A, B). Anti-GSW11 CD8+T
234	cells acquired the non-functional phenotype more rapidly and to a greater extent
235	compared to AH1-specific T cells. Thus, a greater proportion of GSW11-T cells were
236	PD-1 ⁺ IFN- γ ⁻ at the first time-point, d7 (<i>p</i> =<0.001), which was sustained throughout
237	tumour growth (Figure 2B). Interestingly, a proportion of the small number of
238	functional (IFN- γ^+) GSW11- and AH1-specific T cells also expressed PD-1, ranging
239	from ~10% for AH1-specific T cells at day 7 to ~80% of GSW11-specific T cells at
240	day 22 (Figure 2C), indicating that these T cells are both activated and functional.

- 241 These results indicate that tumour infiltrating GSW11-specific T cells are highly
- susceptible to the induction of an exhausted phenotype.
- 243

244 The presence of regulatory T cells correlates with PD-1 expression on tumour

245 *infiltrating lymphocytes.*

246 The tumour microenvironment has been shown to play a crucial role in modulating 247 anti-tumour T cell responses in vivo (23, 24) with the presence of tumour-infiltrating 248 Tregs impacting negatively on tumour rejection (11). We therefore investigated the 249 effect of Treg on the induction of exhaustion in infiltrating CD8+ T cells. In a 250 temporal analysis of TIL, Tregs comprised around 15% of total CD4+ T cells at the 251 earliest time point examined (d7). This rose to $\sim 25\%$ by d10 where it remained for the 252 duration of the tumour challenge (Figure 3A). Interestingly, the accumulation of 253 Tregs in the tumour followed similar kinetics to that observed for the loss of effector 254 function in GSW11-specific T cells (Figure 2B and 1D). Most Tregs expressed PD-L1 255 in both tumour and the tumour draining LN (tdLN) from the earliest time-point 256 onwards (Figure 3B), suggesting that Treg suppression of GSW11-specific T cells 257 may be mediated via PD-1/PD-L1 interaction. Since tumour-specific T cells also 258 engage with tumour cells for activation, we examined the expression of PD-L1 on 259 tumour cells over 25 days following inoculation. In vitro CT26 expressed low levels 260 of PD-L1, however this increased significantly both in terms of the proportion of 261 CT26 expressing, and the level of expression following their seeding and growth in 262 vivo (Figure 3C). These results suggest that during initial stages of growth, the tumour 263 provides a pro-inflammatory microenvironment, characterised by IFN-y producing T 264 cells (and perhaps iNKT/NK cells). This rapidly changes to an immunosuppressive 265 microenvironment in both the tumour and tdLN, characterised by upregulation of

inhibitory ligands by the tumour, infiltration of Treg, and upregulation of PD1 on

267 infiltrating tumour-specific CD8+ T cells accompanied by their loss of effector

- 268 function.
- 269

270 Dysfunction of anti-tumour T cells is induced in the periphery

271 We next investigated whether GSW11- and AH1-specific T cells are primed

272 effectively to induce T cell effectors. Examination of naïve T cell populations

273 (GSW11 and AH1) showed that both expressed low levels of PD-1 (consistent with

274 previous studies; (25)) with expression on GSW11-specific T cells being slightly

275 greater than AH1-specific T cells (Figure 4A). Following CT26 seeding in Treg

276 replete mice we observed functional (IFN-γ producing) AH1- and GSW11-specific T

cells in spleen and tdLN, appearing at d3 and detectable through to the humane end

point at d22, with AH1-specific T cells dominating over GSW11-specific T cells at

279 later time points (Figure 4B and C). AH1-specific responses were similar throughout

the experiment in lymphoid organs, with the greatest response in spleen (Figure 4C).

281 By contrast, GSW11-specific IFN-γ responses were greatest at early time points (d3-

282 10) and declined over time (Figure 4B). This confirmed that a co-dominant, functional

283 (IFN-γ) response to AH1 and GSW11 was established in tdLN and spleen

immediately following tumour seeding in Treg replete mice and that over time,

progressive loss of functional anti-GSW11, but not anti-AH1-specific T cells, was

seen. In Treg depleted mice, in which tumours are rejected, GSW11-specific T cells

were dominant at most time points, in particular at time points d3-17, in both spleen

- and tdLN with the greatest response observed in spleen (in line with our previous
- observations (17) and Figure 4B and C). In addition, the magnitude of anti-GSW11
- 290 responses were much greater in Treg depleted compared to Treg-replete mice. AH1-

291	specific responses became co-dominant after d17. Indeed, the magnitude of the anti-
292	AH1 response was not sensitive to the presence or absence of Treg (Figure 4C).
293	Analysis of PD-1 expression on non-functional (IFN- γ^{-}) T cells revealed that a
294	significant proportion (~20%) of GSW11-specific T cells in the spleen and tdLN
295	expressed PD-1 throughout the time-course, even at the earliest time-point of 3 days;
296	rising to ~40% at d22 in tdLN (Figure 4D). By contrast, only a very small proportion
297	of IFN- γ^{-} AH1-specific T cells expressed PD-1, with a maximum of ~10% of cells in
298	tdLN reached by d22 (Figure 4E). A similar pattern of dysfunctional GSW11- and
299	AH1-specific T cells was observed in the spleens of tumour challenged Treg depleted
300	mice, although, there was a much greater reduction in GSW11-specific T cells
301	compared to AH1, illustrating the differential suppression of anti-CT26 T cells by
302	Tregs ((17) and Figure 4D and E). Importantly, the proportion of dysfunctional
303	GSW11-specific T cells was significantly lower in tdLN of Treg depleted mice (d7
304	and d22; Figure 4D), suggesting that Treg can exert their effect on T cells in tdLN and
305	spleen and their removal reduces the induction of dysfunction in tumour-specific T
306	cells following priming.
307	It is likely that the precursors of IFN- γ^- , PD-1 ⁺ T cells are IFN- γ^+ , PD-1 ⁺ (22),
308	therefore, to gain a better understanding of the dynamics of transition from functional
309	to dysfunctional phenotypes we assessed PD-1 expression on functional (IFN- γ^+)
310	CD8+ T cells. In Treg replete mice, levels of PD-1 ⁺ IFN- γ^+ GSW11- and AH1-
311	specific T cells were similar, although more AH1-specific T cells were observed at
312	later time points in spleens (d14-22; Figure 4F and G). Similar levels of PD-1 ⁺ IFN- γ^+
313	GSW11- and AH1-specific T cells were observed in Treg depleted mice, however
314	more PD-1 ⁺ IFN- γ^+ GSW11-specific T cells were seen at d17 and d22 in spleens
215	(Figure 4F and G). These results indicate that although the level of primed functional

- 316 AH1- and GSW11-specific responses is similar, GSW11-specific T cells are more
- 317 susceptible to the induction of a dysfunctional phenotype.
- 318

319 Diversity of GSW11-specific T cell responses in Treg depleted mice

- 320 Previous studies have shown that the presence of Treg during priming to a
- 321 transplantation antigen inhibits the priming of T cells with low-avidity TcR (26). To
- 322 investigate this possibility in the context of Treg-dependent tumour rejection, we first
- 323 investigated the oligoclonality of the anti-GSW11 T cell response with a view to
- 324 identifying oligoclonal populations that are preferentially suppressed by Treg. To this
- 325 end, we determined TcR V β usage of GSW11-specific T cells from CT26 challenged
- 326 Treg replete mice using a panel of V-region specific antibodies. This revealed that the
- 327 anti-GSW11 response was very diverse with at least 15 different clonotypes observed
- 328 (Figure 5A and B). Despite the broad response only three V β represented >10% of
- 329 GSW11-specific T cells (Vβ8.1/8.2, Vβ8.3 and Vβ14; Figure 5A) indicating a
- 330 predominantly oligoclonal response despite the broad V β usage. In Treg depleted
- 331 mice the anti-GSW11 response was similarly broad, although some populations were
- 332 significantly increased, such as those expressing V β 3 and V β 13 and others
- 333 diminished, such as Vβ10b and Vβ14 compared to Treg replete responses (Figure 5A,
- B). Intriguingly, some responses such as V β 8.1/8.2 and V β 8.3 (which make up ~30%
- and ~12% of the response respectively) were largely unchanged following Treg
- depletion. These findings suggest that Tregs modulate the anti-tumour GSW11-
- 337 specific response by preferentially suppressing some T cell clones leading to the
- 338 expansion of others.
- 339
- 340 Tregs target lower avidity anti-GSW11 T cells

341 We next estimated the TcR avidity of anti-GSW11 T cell oligoclones that were 342 preferentially suppressed by Treg (V β 3 and V β 13) compared to oligoclones that were 343 largely unaffected by the presence of Treg (V β 8.1/8.2 and V β 8.3), using tetramer 344 competition assays as described previously (Figure 6A and (27)). The two dominant T 345 cell oligoclones that expanded following Treg depletion, V β 3 and V β 13, had a lower 346 avidity compared to V β 8.1/8.2 and V β 8.3 T cells, which had similar populations 347 whether Tregs were present or not (Figure 6B and C). In addition, two oligoclones, 348 V β 10b and V β 14, which were proportionally better represented in Treg replete mice, 349 displayed a high avidity similar to that observed for V β 8.1/8.2 and V β 8.3 T cells 350 (Figure 6B and C). Levels of cell surface TcR β chain were similar regardless of the 351 amount of competing tetramer added (Supplementary figure 1). This confirmed that 352 the reduction in tetramer staining was due to competition and not decreased TcR. In 353 pooled samples from groups of 3/4 mice, these low avidity T cells account for ~16% 354 of the total anti-GSW11 response in Treg depleted animals compared to ~2.5% in 355 Treg replete animals (red shades; Figure 5B). In addition, high avidity T cells make 356 up > 70% and $\sim 55\%$ of the total anti-GSW11 T cell response in Treg replete and 357 depleted mice respectively (blue shades; Figure 5B). This indicates that sensitivity of 358 a T cell to Treg suppression might be linked to TcR avidity, with lower avidity T cells 359 preferentially targeted. Therefore, in the CT26 model, Treg depletion results in the 360 elaboration of a tumoricidal GSW11-specific T cell response, which appears to 361 correlate with preferential expansion of some low avidity GSW11-specific sub-clones. 362 The response in Treg depleted mice represents a 6-fold increase in low avidity TcR, 363 which make up $\sim 1/6$ of the GSW11-specific response compared to only 1/40 in Treg 364 replete mice.

365

366 Discussion

367	Immune surveillance of cancers starts with the priming of T cells to tumour associated
368	antigens (TAA) and their infiltration into the diseased tissue. Here, their anti-tumour
369	function is modulated by the evolving microenvironment, often leading to tumour
370	escape via multiple mechanisms including the induction of T cell tolerance/anergy
371	(through lack of co-stimulation during priming) or exhaustion (through the
372	progressive loss of effector function following activation) (22, 28). Using antigen-
373	specific multimers, we show that, in a commercially important preclinical mouse
374	model, growing CT26 tumours are highly infiltrated with tumour-specific CTL
375	recognising one of two non-mutated epitopes (GSW11 and AH1) from a single highly
376	abundant TAA, gp90. Most TIL, however, exhibit an exhausted phenotype, which is
377	at least in part mediated by Tregs.
378	In human cancer, high levels of T cell infiltration generally correlate with good
379	prognosis. This infiltration is marked by a signature that includes increased
380	transcription of genes associated with antigen processing and presentation (MHC I
381	and MHC II), T cell markers (CD8, CD4, CD3) and genes associated with T cell
382	homing (CCL2, CCL3, CCL4, CXCL9, CXCL10 – the latter two being CD8+T-cell
383	specific), signalling (ICOS, IRF1) and CTL function (granzymes, IFN-γ) (29, 30).
384	These are all consistent with the tumour milieu supporting ongoing peptide:MHC I
385	(pMHC I)-driven T cell proliferation via TcR engagement. However, because of their
386	secretion of the inflammatory cytokine IFN-7, CD8+ TIL also drive evolution of the
387	immunosuppressive microenvironment including expression of PD-L1, IDO and the
388	infiltration of Tregs (31). In addition, T cells derived from highly infiltrated tumours
389	express the highest levels of inhibitory receptors (such as PD-1) (31). Immunotherapy
390	targets all three key stages of anti-tumour immunity: priming, infiltration and

391	regulation, and the gene signature for T cell inflamed (so-called 'hot') tumours
392	encompasses patterns of differentially expressed transcripts associated with positive
393	responses to checkpoint blockade immunotherapy (PD-1, PD-L1, CTLA4) (32).
394	The CT26 tumour microenvironment resembles cancers with a strong T cell
395	inflamed phenotype, and a signature that includes elevated transcripts for T cell
396	infiltration and activation, CD8, CD4, CD3, CD45, CD62L, CD80, CD86, CD40,
397	OX40L, CD25 and immunosuppression including FoxP3, CTLA-4 and IDO (32).
398	Indeed, we show here that although the tumour mass is infiltrated with tumour-
399	specific CD8+ T cells, they are functionally inert. Despite the obvious differences
400	between spontaneously arising cancer and a transplantable mouse model, studies that
401	have directly compared spontaneous and transplantable tumour models in mice have
402	found only small differences in the tumour-host interaction including immune gene
403	profiles (32, 33). Thus, our time-course of CT26 growth might reasonably
404	approximate to a model for the evolution of the tumour-immune interaction in
405	spontaneously arising cancers in terms of immune-editing and the development of
406	host immune modulation mechanisms within the microenvironment. This is
407	encouraging because transplantable models are more experimentally tractable and
408	permit a more rapid turnaround of preclinical immunotherapy studies.
409	With this in mind, we observed two key features of the CT26:BALB/c
410	interaction that are relevant to understanding human disease and its response to
411	immunotherapy. Firstly, Treg can differentially suppress different CTL clones
412	recognising TAA and this even applies to CTL recognising the same pMHC I
413	complex; and secondly that differential suppression of GSW11 and AH1-specific T
414	cells, characterised by upregulation of PD-1 expression and loss of effector function
415	(IFN- γ production) was observed very early after tumour challenge (d3) in tdLN. This

416 indicated that a large proportion of GSW11-specific CD8+ T cells were dysfunctional417 at the site of priming.

418 The early preferential suppression of anti-GSW11 T cells persists in peripheral 419 tissues where a disparity between dysfunctional GSW11- and AH1-specific T cells is 420 evident in tdLN and spleen. By contrast, in tumours, the difference between GSW11 421 and AH1 T cells diminishes after d10. This difference between tdLN and tumour 422 indicates that there may be separate mechanisms that operate to establish T cell 423 dysfunction at the early priming and late effector phase. The differential induction of 424 dysfunction in GSW11 at early time points in tdLN, which is significantly reduced in 425 the absence of Tregs, suggests that Tregs play a key role in this process. The rapid 426 expression of PD-L1 on Tregs and PD-1 expression on GSW11-specific T cells 427 indicates this may be an important interaction. Indeed, stimulation of PD-1 (rapidly 428 upregulated following activation) by PD-L1 expressed on antigen presentation cells 429 can cause T cell anergy, defined by reduced proliferative capacity, in a peptide 430 induced model (34). The difference observed in PD-1 expression between AH1- and 431 GSW11-T cells may therefore be a reflection of the relative susceptibility to Treg 432 suppression at the priming stage mediated by PD-1/PD-L1 interaction. Once at the 433 tumour, there is much less difference between AH1 and GSW11 with respect to a 434 dysfunctional 'exhausted' phenotype. This change may be due to the increased 435 expression of PD-1 on AH1-T cells, similar to that observed on GSW11-T cells at the 436 tumour, due to continued antigenic stimulation (22). In addition, the more suppressive 437 microenvironment at the tumour site with PD-L1 expression on tumour cells as well 438 as Tregs, which accumulate over time, and the presence of immunosuppressive 439 cytokines such as TGF- β , may overcome any ability of AH1-specific T cells (and to a lesser degree GSW11-T cells) to resist the induction of exhaustion. 440

441	The presence of Tregs in several cancer types is a negative prognostic
442	indicator. In addition, tumour-infiltrating Tregs have been shown to express gene
443	signatures, including markers of activation and function, which distinguish them from
444	not only blood Tregs, but also tissue resident Tregs from healthy tissue of the same
445	origin (35, 36). Clinical trials are underway to determine the outcome of agents
446	designed to reduce Treg numbers by targeting the IL-2 receptor or GITR. To date
447	these results have been varied, with daclizumab (anti-CD25) reducing Treg numbers
448	in patients while allowing the induction of T cell responses to targeted tumour
449	antigens (37, 38) and a phase 1 trial of an anti-GITR antibody (TRX518) decreasing
450	Treg numbers in the tumour and circulating blood (39). However, depletion of Tregs
451	in stage IV melanoma with an IL-2/diphtheria toxin conjugate (DAB/IL-2) showed
452	partial responses in only 16.7% of patients, although there was a greater one year
453	survival in partial responders compared to those with progressive disease (80% vs.
454	23.7%; (40)). This study provides a fuller mechanistic framework for the further
455	rational development of Treg-targeted immunotherapy. Treg suppression of GSW11-
456	specific T cells primarily affected those with lower avidity TcR. These clones
457	expanded in the absence of Tregs, and correlated with survival, suggesting they are
458	important in tumour rejection. It will be interesting to know whether these expanded
459	CTL have a similar profile to the recently described CD103+ CD8+T _{RM} that
460	characterise T cell infiltrates of NSCLC associated with prolonged survival (41). The
461	expansion of protective low Ka T cell clones in Treg depleted mice is consistent with
462	previous studies. For example, Pace et al showed that the presence of Treg during
463	priming to a transplantation antigen increased the affinity of the CD8+ T cell response
464	by inhibiting the priming of T cells bearing low affinity TcR via a mechanism

465 involving CCL3/4 dependent destabilisation of T cell interactions with dendritic cells466 (26).

467	The therapeutic efficacy of the low-avidity T cell clones was somewhat
468	unexpected since it is generally assumed that high avidity T cells have a competitive
469	advantage in an immune response due to stronger and prolonged activation signals
470	(42, 43). However, in a situation of persistent antigenic stimulation, as is encountered
471	in the tumour, it is likely that these T cells progress to exhaustion as observed in
472	chronic viral infection. Low avidity CTL may escape the same fate through lower
473	expression of PD-1 or by receiving a TcR signal below the threshold required for
474	exhaustion while maintaining some effector function (44, 45).
475	The identification of low Ka GSW11-specific TcR, which correlate with
476	protection, may have implications for epitope selection in immunotherapy. Current
477	strategies concentrate on the identification and use of tumour epitopes with a high
478	Ka/slow off-rate in an attempt to induce CD8+ T cell responses with a strong Ka TcR
479	(46-48). This approach has had some success with antigen-specific T cell responses
480	directed to TAA such as NY-ESO-1 and MART-1 and neoantigens. However, only a
481	small proportion of these patients show a partial or complete clinical response (49,
482	50). These studies show that, while the induction of high-avidity T cells to dominant
483	TAA occur, in a therapeutic setting, it may be more efficacious to induce a broad
484	repertoire of TcR affinities using peptide epitopes presented at sufficient levels
485	regardless of their affinity for MHC. With this in mind, it is notable that the dominant
486	target peptide recognised by TIL in CT26, GSW11, binds weakly to its presenting
487	MHC I, H2-D ^d with a half-life of ~20min at the cell surface, though it is presented in
488	high abundance (17). It will therefore be important to understand the relationship
489	between antigen processing/presentation and the induction of low avidity T cells. For

- 490 example, algorithms predicting the affinity of candidate peptides could be better
- 491 deployed for selecting candidate epitopes for targeted immunotherapy if used in
- 492 combination with computational models that take into account antigen abundance and
- 493 mechanistic details of the antigen processing pathway.

494 Acknowledgements

- 495 We thank Leon Douglas and Patrick Duriez from the Cancer Research UK ECMC
- 496 Protein Core Facility for help and advice with tetramer production and Nasia Kontouli
- 497 for the purification of the PC61 antibodies.

499 **References:**

500 1. Hiraoka, K., M. Miyamoto, Y. Cho, M. Suzuoki, T. Oshikiri, Y. Nakakubo, T. 501 Itoh, T. Ohbuchi, S. Kondo, and H. Katoh. 2006. Concurrent infiltration by 502 CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-503 cell lung carcinoma. Br J Cancer 94: 275-280. 504 2. Naito, Y., K. Saito, K. Shiiba, A. Ohuchi, K. Saigenji, H. Nagura, and H. 505 Ohtani. 1998. CD8+ T cells infiltrated within cancer cell nests as a prognostic 506 factor in human colorectal cancer. Cancer Res 58: 3491-3494. 507 3. Nakano, O., M. Sato, Y. Naito, K. Suzuki, S. Orikasa, M. Aizawa, Y. Suzuki, 508 I. Shintaku, H. Nagura, and H. Ohtani. 2001. Proliferative activity of 509 intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell 510 carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer 511 Res 61: 5132-5136. 512 Pages, F., A. Berger, M. Camus, F. Sanchez-Cabo, A. Costes, R. Molidor, B. 4. 513 Mlecnik, A. Kirilovsky, M. Nilsson, D. Damotte, T. Meatchi, P. Bruneval, P. 514 H. Cugnenc, Z. Trajanoski, W. H. Fridman, and J. Galon. 2005. Effector 515 memory T cells, early metastasis, and survival in colorectal cancer. N Engl J 516 Med 353: 2654-2666. 517 5. Sato, E., S. H. Olson, J. Ahn, B. Bundy, H. Nishikawa, F. Qian, A. A. 518 Jungbluth, D. Frosina, S. Gnjatic, C. Ambrosone, J. Kepner, T. Odunsi, G. 519 Ritter, S. Lele, Y. T. Chen, H. Ohtani, L. J. Old, and K. Odunsi. 2005. 520 Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high 521 CD8+/regulatory T cell ratio are associated with favorable prognosis in 522 ovarian cancer. Proc Natl Acad Sci U S A 102: 18538-18543. 523 6. Shankaran, V., H. Ikeda, A. T. Bruce, J. M. White, P. E. Swanson, L. J. Old, 524 and R. D. Schreiber. 2001. IFNgamma and lymphocytes prevent primary 525 tumour development and shape tumour immunogenicity. Nature 410: 1107-526 1111. 527 Smyth, M. J., K. Y. Thia, S. E. Street, D. MacGregor, D. I. Godfrey, and J. A. 7. 528 Trapani. 2000. Perforin-mediated cytotoxicity is critical for surveillance of 529 spontaneous lymphoma. J Exp Med 192: 755-760. 530 8. Dunn, G. P., A. T. Bruce, H. Ikeda, L. J. Old, and R. D. Schreiber. 2002. 531 Cancer immunoediting: from immunosurveillance to tumor escape. Nat 532 Immunol 3: 991-998. 533 Schreiber, R. D., L. J. Old, and M. J. Smyth. 2011. Cancer immunoediting: 9. 534 integrating immunity's roles in cancer suppression and promotion. Science 535 331: 1565-1570. 536 10. Dempke, W. C. M., K. Fenchel, P. Uciechowski, and S. P. Dale. 2017. 537 Second- and third-generation drugs for immuno-oncology treatment—The 538 more the better? European Journal of Cancer 74: 55-72. 539 11. Shang, B., Y. Liu, S. J. Jiang, and Y. Liu. 2015. Prognostic value of tumor-540 infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and 541 meta-analysis. Sci Rep 5: 15179. Olson, B. M., and D. G. McNeel. 2013. Monitoring regulatory immune 542 12. 543 responses in tumor immunotherapy clinical trials. Front Oncol 3: 109. 544 13. Golgher, D., E. Jones, F. Powrie, T. Elliott, and A. Gallimore. 2002. Depletion 545 of CD25+ regulatory cells uncovers immune responses to shared murine 546 tumor rejection antigens. Eur J Immunol 32: 3267-3275.

547 548 549 550	14.	Onizuka, S., I. Tawara, J. Shimizu, S. Sakaguchi, T. Fujita, and E. Nakayama. 1999. Tumor Rejection by in Vivo Administration of Anti-CD25 (Interleukin-2 Receptor α) Monoclonal Antibody. <i>Cancer Research</i> 59: 3128- 3133.
551 552 553	15.	Grosso, J. F., and M. N. Jure-Kunkel. 2013. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. <i>Cancer Immun</i> 13: 5.
554 555 556 557 558 559	16.	Stewart, R., M. Morrow, S. A. Hammond, K. Mulgrew, D. Marcus, E. Poon, A. Watkins, S. Mullins, M. Chodorge, J. Andrews, D. Bannister, E. Dick, N. Crawford, J. Parmentier, M. Alimzhanov, J. S. Babcook, I. N. Foltz, A. Buchanan, V. Bedian, R. W. Wilkinson, and M. McCourt. 2015. Identification and Characterization of MEDI4736, an Antagonistic Anti-PD-L1 Monoclonal Antibody. <i>Cancer Immunol Res</i> 3: 1052-1062.
560 561 562 563	17.	James, E., A. Yeh, C. King, F. Korangy, I. Bailey, D. S. Boulanger, B. J. Van den Eynde, N. Murray, and T. J. Elliott. 2010. Differential suppression of tumor-specific CD8+ T cells by regulatory T cells. <i>J Immunol</i> 185: 5048-5055.
564 565 566 567 568	18.	Huang, A. Y., P. H. Gulden, A. S. Woods, M. C. Thomas, C. D. Tong, W. Wang, V. H. Engelhard, G. Pasternack, R. Cotter, D. Hunt, D. M. Pardoll, and E. M. Jaffee. 1996. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. <i>Proc Natl Acad Sci U S A</i> 93: 9730-9735.
569 570 571 572	19.	Truscott, S. M., L. Lybarger, J. M. Martinko, V. E. Mitaksov, D. M. Kranz, J. M. Connolly, D. H. Fremont, and T. H. Hansen. 2007. Disulfide bond engineering to trap peptides in the MHC class I binding groove. <i>J Immunol</i> 178: 6280-6289.
573 574 575 576	20.	Duraiswamy, J., G. J. Freeman, and G. Coukos. 2013. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. <i>Cancer Res</i> 73: 6900-6912.
577 578 579	21.	Sakuishi, K., L. Apetoh, J. M. Sullivan, B. R. Blazar, V. K. Kuchroo, and A. C. Anderson. 2010. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. <i>J Exp Med</i> 207: 2187-2194.
580 581	22.	Wherry, E. J., and M. Kurachi. 2015. Molecular and cellular insights into T cell exhaustion. <i>Nat Rev Immunol</i> 15: 486-499.
582 583	23.	Gajewski, T. F., H. Schreiber, and Y. X. Fu. 2013. Innate and adaptive immune cells in the tumor microenvironment. <i>Nat Immunol</i> 14: 1014-1022.
584 585 586	24.	Marvel, D., and D. I. Gabrilovich. 2015. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. <i>J Clin Invest</i> 125: 3356-3364.
587 588 589	25.	Agata, Y., A. Kawasaki, H. Nishimura, Y. Ishida, T. Tsubata, H. Yagita, and T. Honjo. 1996. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. <i>Int Immunol</i> 8: 765-772.
590 591 592	26.	Pace, L., A. Tempez, C. Arnold-Schrauf, F. Lemaitre, P. Bousso, L. Fetler, T. Sparwasser, and S. Amigorena. 2012. Regulatory T cells increase the avidity of primary CD8+ T cell responses and promote memory. <i>Science</i> 338: 532-
593 594 595	27.	536. Holmberg, K., S. Mariathasan, T. Ohteki, P. S. Ohashi, and N. R. Gascoigne. 2003. TCR binding kinetics measured with MHC class I tetramers reveal a

596		positive selecting peptide with relatively high affinity for TCR. <i>J Immunol</i>
597		171: 2427-2434.
598	28.	Schietinger, A., and P. D. Greenberg. 2014. Tolerance and exhaustion:
599	• •	defining mechanisms of T cell dysfunction. <i>Trends Immunol</i> 35: 51-60.
600	29.	Gajewski, T. F., J. Louahed, and V. G. Brichard. 2010. Gene signature in
601		melanoma associated with clinical activity: a potential clue to unlock cancer
602		immunotherapy. Cancer J 16: 399-403.
603	30.	Spranger, S., J. J. Luke, R. Bao, Y. Zha, K. M. Hernandez, Y. Li, A. P.
604		Gajewski, J. Andrade, and T. F. Gajewski. 2016. Density of immunogenic
605		antigens does not explain the presence or absence of the T-cell-inflamed tumor
606		microenvironment in melanoma. Proc Natl Acad Sci USA 113: E7759-
607		E7768.
608	31.	Spranger, S., R. M. Spaapen, Y. Zha, J. Williams, Y. Meng, T. T. Ha, and T.
609		F. Gajewski. 2013. Up-regulation of PD-L1, IDO, and T(regs) in the
610		melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl
611		<i>Med</i> 5: 200ra116.
612	32.	Lechner, M. G., S. S. Karimi, K. Barry-Holson, T. E. Angell, K. A. Murphy,
613		C. H. Church, J. R. Ohlfest, P. Hu, and A. L. Epstein. 2013. Immunogenicity
614		of murine solid tumor models as a defining feature of in vivo behavior and
615		response to immunotherapy. J Immunother 36: 477-489.
616	33.	Murphy, K. A., M. G. Lechner, F. E. Popescu, J. Bedi, S. A. Decker, P. Hu, J.
617		R. Erickson, M. G. O'Sullivan, L. Swier, A. M. Salazar, M. R. Olin, A. L.
618		Epstein, and J. R. Ohlfest. 2012. An in vivo immunotherapy screen of
619		costimulatory molecules identifies Fc-OX40L as a potent reagent for the
620		treatment of established murine gliomas. Clin Cancer Res 18: 4657-4668.
621	34.	Chikuma, S., S. Terawaki, T. Hayashi, R. Nabeshima, T. Yoshida, S.
622		Shibayama, T. Okazaki, and T. Honjo. 2009. PD-1-mediated suppression of
623		IL-2 production induces CD8+ T cell anergy in vivo. J Immunol 182: 6682-
624		6689.
625	35.	De Simone, M., A. Arrigoni, G. Rossetti, P. Gruarin, V. Ranzani, C. Politano,
626		R. J. Bonnal, E. Provasi, M. L. Sarnicola, I. Panzeri, M. Moro, M. Crosti, S.
627		Mazzara, V. Vaira, S. Bosari, A. Palleschi, L. Santambrogio, G. Bovo, N.
628		Zucchini, M. Totis, L. Gianotti, G. Cesana, R. A. Perego, N. Maroni, A. Pisani
629		Ceretti, E. Opocher, R. De Francesco, J. Geginat, H. G. Stunnenberg, S.
630		Abrignani, and M. Pagani. 2016. Transcriptional Landscape of Human Tissue
631		Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells.
632		Immunity 45: 1135-1147.
633	36.	Plitas, G., C. Konopacki, K. Wu, P. D. Bos, M. Morrow, E. V. Putintseva, D.
634		M. Chudakov, and A. Y. Rudensky. 2016. Regulatory T Cells Exhibit Distinct
635		Features in Human Breast Cancer. Immunity 45: 1122-1134.
636	37.	Rech, A. J., and R. H. Vonderheide. 2009. Clinical use of anti-CD25 antibody
637		daclizumab to enhance immune responses to tumor antigen vaccination by
638		targeting regulatory T cells. Ann N Y Acad Sci 1174: 99-106.
639	38.	Jacobs, J. F., C. J. Punt, W. J. Lesterhuis, R. P. Sutmuller, H. M. Brouwer, N.
640		M. Scharenborg, I. S. Klasen, L. B. Hilbrands, C. G. Figdor, I. J. de Vries, and
641		G. J. Adema. 2010. Dendritic cell vaccination in combination with anti-CD25
642		monoclonal antibody treatment: a phase I/II study in metastatic melanoma
643		patients. Clin Cancer Res 16: 5067-5078.
644	39.	Zappasodi, R., Y. Li, M. Abu-Akeel, J. Qi, P. Wong, C. Sirard, M. Postow, D.
645		A. Schaer, W. Newman, H. Koon, V. Velcheti, M. K. Callahan, J. D.

646		Wolchok, and T. Merghoub. 2017. Intratumor and peripheral Treg modulation
647		as a pharmacodynamic biomarker of the GITR agonist antibody TRX-518 in
648		the first in-human trial [abstract]. In: Proceedings of the Annual Meeting of
649		the Amercian Association for Cacner Research; 2017 Apr 1-5; Washington,
650		DC: AACR; 2017: Abstract nr CT018.
651	40.	Telang, S., M. A. Rasku, A. L. Clem, K. Carter, A. C. Klarer, W. R. Badger,
652	- 0.	R. A. Milam, S. N. Rai, J. Pan, H. Gragg, B. F. Clem, K. M. McMasters, D.
653		M. Miller, and J. Chesney. 2011. Phase II trial of the regulatory T cell-
654		depleting agent, denileukin diftitox, in patients with unresectable stage IV
655 655		
	41	melanoma. BMC Cancer 11: 515.
656	41.	Ganesan, A. P., J. Clarke, O. Wood, E. M. Garrido-Martin, S. J. Chee, T. Mallanu, D. Samaniaga Castmita, D. Singh, C. Sauragia, A. Alastani, F.
657		Mellows, D. Samaniego-Castruita, D. Singh, G. Seumois, A. Alzetani, E.
658		Woo, P. S. Friedmann, E. V. King, G. J. Thomas, T. Sanchez-Elsner, P.
659		Vijayanand, and C. H. Ottensmeier. 2017. Tissue-resident memory features
660		are linked to the magnitude of cytotoxic T cell responses in human lung
661		cancer. Nat Immunol 18: 940-950.
662	42.	Busch, D. H., and E. G. Pamer. 1999. T cell affinity maturation by selective
663		expansion during infection. J Exp Med 189: 701-710.
664	43.	Zehn, D., S. Y. Lee, and M. J. Bevan. 2009. Complete but curtailed T-cell
665		response to very low-affinity antigen. Nature 458: 211-214.
666	44.	Conrad, J. A., R. K. Ramalingam, R. M. Smith, L. Barnett, S. L. Lorey, J.
667		Wei, B. C. Simons, S. Sadagopal, D. Meyer-Olson, and S. A. Kalams. 2011.
668		Dominant clonotypes within HIV-specific T cell responses are programmed
669		death-1high and CD127low and display reduced variant cross-reactivity. J
670		Immunol 186: 6871-6885.
671	45.	Harari, A., C. Cellerai, F. Bellutti Enders, J. Kostler, L. Codarri, G. Tapia, O.
672		Boyman, E. Castro, S. Gaudieri, I. James, M. John, R. Wagner, S. Mallal, and
673		G. Pantaleo. 2007. Skewed association of polyfunctional antigen-specific CD8
674		T cell populations with HLA-B genotype. Proc Natl Acad Sci USA 104:
675		16233-16238.
676	46.	Castle, J. C., S. Kreiter, J. Diekmann, M. Löwer, N. van de Roemer, J. de
677		Graaf, A. Selmi, M. Diken, S. Boegel, C. Paret, M. Koslowski, A. N. Kuhn, C.
678		M. Britten, C. Huber, Ö. Türeci, and U. Sahin. 2012. Exploiting the
679		Mutanome for Tumor Vaccination. Cancer Research 72: 1081-1091.
680	47.	Robbins, P. F., YC. Lu, M. El-Gamil, Y. F. Li, C. Gross, J. Gartner, J. C.
681		Lin, J. K. Teer, P. Cliften, E. Tycksen, Y. Samuels, and S. A. Rosenberg.
682		2013. Mining Exomic Sequencing Data to Identify Mutated Antigens
683		Recognized by Adoptively Transferred Tumor-reactive T cells. <i>Nature</i>
684		<i>medicine</i> 19: 747-752.
685	48.	Rooij, N. v., M. M. v. Buuren, D. Philips, A. Velds, M. Toebes, B.
686		Heemskerk, L. J. A. v. Dijk, S. Behjati, H. Hilkmann, D. e. Atmioui, M.
687		Nieuwland, M. R. Stratton, R. M. Kerkhoven, C. Keşmir, J. B. Haanen, P.
688		Kvistborg, and T. N. Schumacher. 2013. Tumor Exome Analysis Reveals
689		Neoantigen-Specific T-Cell Reactivity in an Ipilimumab-Responsive
690		Melanoma. <i>Journal of Clinical Oncology</i> 31: e439-e442.
691	49.	Carreno, B. M., V. Magrini, M. Becker-Hapak, S. Kaabinejadian, J. Hundal,
692	17.	A. A. Petti, A. Ly, W. R. Lie, W. H. Hildebrand, E. R. Mardis, and G. P.
693		Linette. 2015. Cancer immunotherapy. A dendritic cell vaccine increases the
694		breadth and diversity of melanoma neoantigen-specific T cells. <i>Science</i> 348:
695		803-808.
575		

696 50. Rosenberg, S. A., J. C. Yang, and N. P. Restifo. 2004. Cancer immunotherapy:

697 moving beyond current vaccines. *Nat Med* 10: 909-915.698

- - -

700 Figure Legends

701 Figure 1. The majority of tumour infiltrating GSW11-specific T cells are non-

- functional. Balb/c mice were challenged with CT26 tumour cells and the presence of
- tumour infiltrating AH1- and GSW11-specific T cells was assessed over the indicated
- time course. (A) Assessment of AH1- and GSW11-specific T cells using
- 705 tetramer/dextramer and IFN-γ production at d10 and d22. (B) Percentage of antigen-
- 706 specific T cells detected by tetramer/dextramer. (C) Diagram representing the tumour
- size (diameter) and relative proportions of antigen-specific tumour infiltrating T cells
- 708 over time. (D) Percentage of functional AH1- and GSW11-specific CD8+ T cells. (E)
- 709 Relative proportion of functional and non-functional antigen-specific tumour
- infiltrating T cells. (B, D; mean and s.e.m. of three mice at each time point; p < 0.05,

711 *** *p*<0.001).

712

713 Figure 2. GSW11-specific T cells are exhausted in tumour challenged mice. (A) A

representative histogram showing PD-1 expression of functional and non-functional

AH1- and GSW11-specific T cells. (B, C) Percentage of PD-1 expressing tumour

716 infiltrating non-functional (B) and functional (C) AH1- and GSW11-specific T cells

717 (B, C; mean and s.e.m. of at least three mice from two independent experiments; ***

718 *p*<0.001).

719

720 Figure 3. Expression of PD-1 and PD-L1 on tumour infiltrating and LN resident

721 regulatory T cells and tumour cells. (A) Percentage of tumour infiltrating Tregs

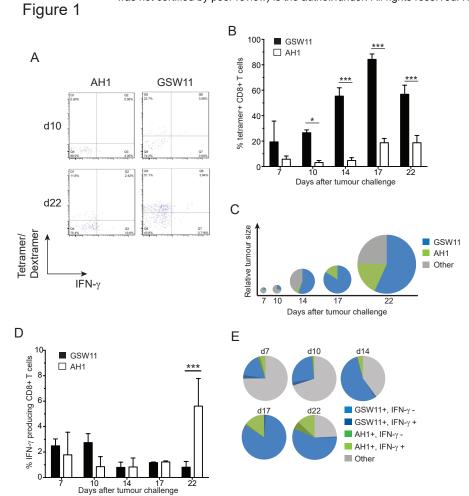
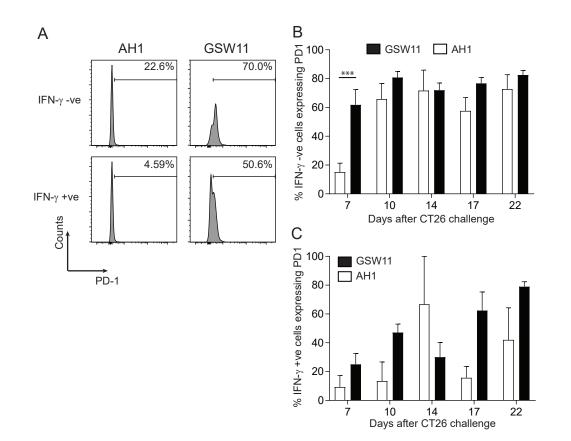
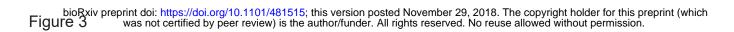
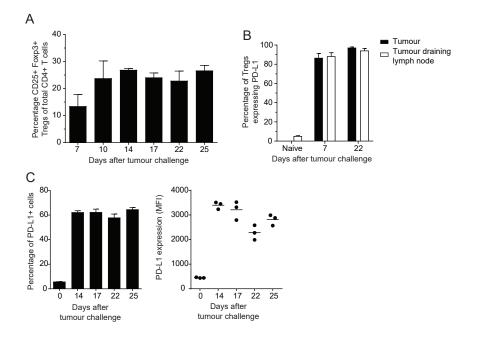
- 722 over time. (B, C) Expression of PD-L1 (B) and PD-1 (C) on Tregs in tumours and
- tumour draining LN. (D) Percentage and level of PD-L1 expression on CT26 tumour

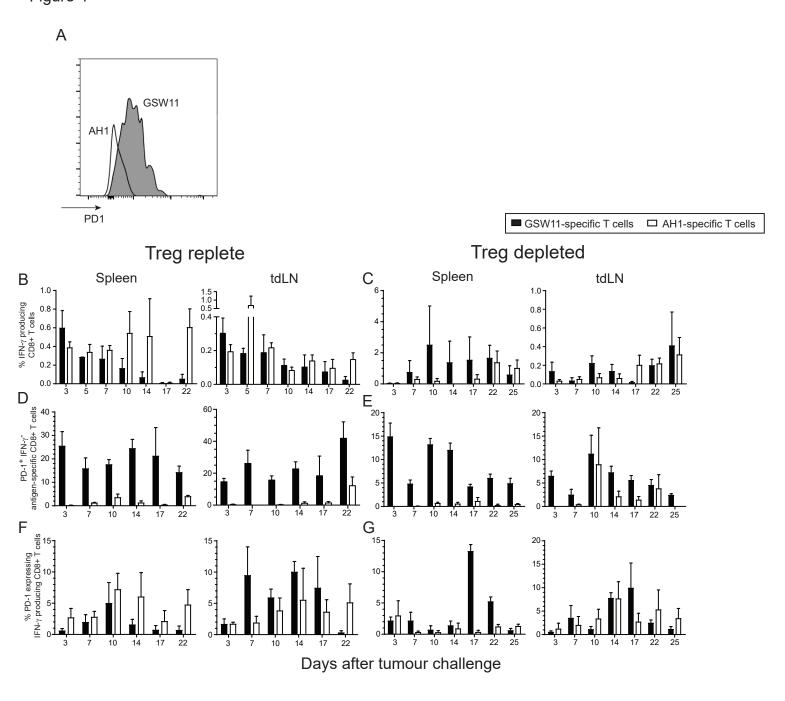
cells prior to and during tumour challenge. (A-C; mean and s.e.m. of three mice at theindicated time points).

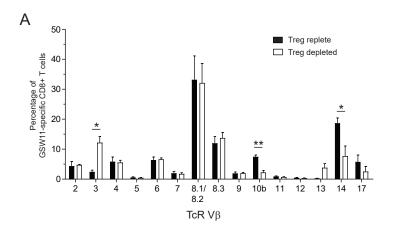
727	Figure 4. Exhaustion of anti-tumour T cells is induced in the periphery and
728	regulated by regulatory T cells. Treg replete or depleted Balb/c mice were
729	challenged with CT26 and anti-tumour T cell responses in spleens and tumour
730	draining LN assessed. (A) A representative histogram showing the relative level of
731	PD-1 expression on AH1- and GSW11-specific T cells as indicated. (B, C) Percentage
732	of functional GSW11- (B) or AH1- (C) specific T cells in spleen and tdLN in Treg
733	replete and depleted mice following tumour challenge over the indicated time course.
734	(D-G) Proportion of PD-1 expressing non-functional (D, E) and functional (F, G) anti-
735	GSW11 (D, F) or -AH1 (E, G) T cells in spleen and tumour draining LN in Treg
736	replete and depleted mice following tumour challenge. (B-G; mean and s.e.m. of three
737	mice at the indicated time points; d25 data only available for Treg depleted samples).
738	
739	Figure 5. GSW11-specific T cell clonalities are modulated by regulatory T cells.
740	Treg replete or depleted Balb/c mice were challenged with CT26 and the TcR
741	expression of GSW11-specific T cells assessed. (A) Percentage of GSW11-specific
742	CD8+ T cells expressing the indicating TcR V β in Treg replete or depleted CT26
743	challenged mice. (B) The relative proportion of TcR V β usage in GSW11-specific T
744	cells following tumour challenge (blue segments indicate TcR with high avidity and
745	red indicate those with low avidity). (A; mean and s.e.m. of ten mice in three pools,
746	B; mean of ten mice from three pools; * $p < 0.05$, ** $p < 0.01$).
747	

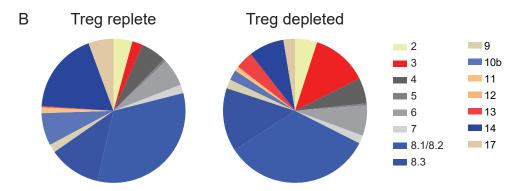
748 Figure 6. Tumour protective GSW11-specific CD8+ T cells have low TcR avidity.

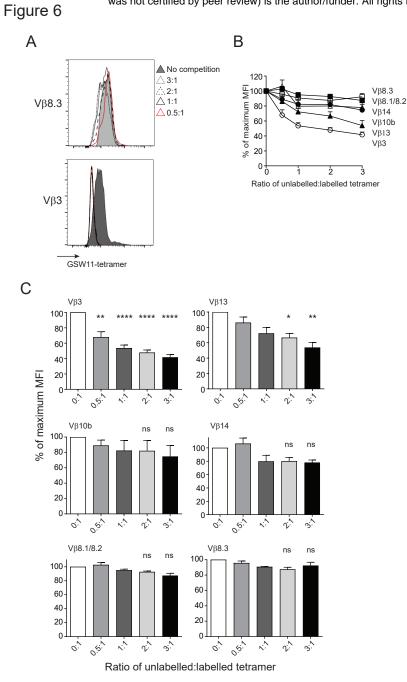
- 749 The TcR avidity of anti-GSW11 T cell oligoclones that showed either increased,
- 750 decreased, or similar levels in tumour challenged Treg depleted mice was assessed
- vising tetramer competition. (A, B) A representative histogram (A) and analysis of
- relative change in tetramer MFI (B) of the TcR tetramer competition assay in
- 753 indicated TcR clones. (C) Relative avidity of indicated GSW11-specific T cell
- oligoclones following tetramer competition (C; mean and s.e.m. of at least three
- 755 independent experiments; * *p*<0.05, ** *p*<0.01, **** *p*<0.0001).


Figure 2




bioRxiv preprint doi: https://doi.org/10.1101/481515; this version posted November 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.



bioRxiv preprint doi: https://doi.org/10.1101/481515; this version posted November 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 5

