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Abstract

Few methods exist to estimate vaccine efficacy and its decay fol-
lowing immunisation. Existing methods are largely based on survival
analyses such as Poisson or Cox-regression, applied to individual-level
data from randomised placebo-controlled trials (RCTs), however, such
are often not easily available for analysing pooling evidence across tri-
als. Hence, cumulative vaccine efficacy (VE), the commonly reported
endpoint, is implicitly assumed a reasonable proxy for the instanta-
neous vaccine efficacy (iVE). This assumption is violated if the relative
risk (RR) of vaccinated vs unvaccinated is not constant over time, i.e.
if vaccine efficacy changes after immunisation. We propose a method
to overcome this issue. We use estimates of VE stratified by time
since completed immunisation, and estimate time-dependent iVE. We
validate the method against simulated data for two forms of vaccine
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protection: all-or-nothing protection and leaky protection. We illus-
trate how VE estimates are biased by time-dependent effects in the
baseline force of infection and in iVE. Our proposed method improves
upon available iVE estimation techniques, particularly if the vaccine
induced leaky-like protection and the disease outcome is rare.

1 Introduction

Vaccine efficacy is commonly defined as the reduction in the attack rate
in vaccinated compared to unvaccinated clinical trial participants, and esti-
mated as 1 − RR, where RR is the risk or rate-ratio. If the RR is constant
over the period of follow-up for a per protocol analysis (i.e. the time since
administration of the final dose in the vaccination schedule), then 1 − RR
is a reliable indicator of vaccine efficacy, including the instantaneous vaccine
efficacy at the end of the follow-up period. However, temporal changes in RR
may occur, e.g. due to waning vaccine efficacy after immunisation. Under
these circumstances, common estimates of cumulative vaccine efficacy during
the time of follow-up (VE) result in biased estimates of instantaneous vac-
cine efficacy (iVE). Waning of vaccine derived immunity has been reported
for most vaccine antigens including mumps[1], pertussis[2], malaria[3], Strep-
tococcus pneumoniae[4], and varicella[5].

Several methods have been proposed to estimate iVE. E.g. follow-up time
can be stratified in periods, where efficacy is separately estimated within
each period, assuming that the time window for each period can be chosen
small enough so that iVE remains relatively constant within each[6]. Al-
ternatively, splines can be used to estimate time-dependent hazard rates for
survival data[7]. Moreover, Kanaan and Farrington proposed a framework to
estimate waning vaccine efficacy, but this requires fitting many parameters
and may lead to issues with parameter identifiability[6, 8]. However, many of
these methods are based on age- and/or time-dependent parametric survival
analysis methods such as Poisson or Cox-regression, which require access to
individual-level data. This imposes limitations for pooling vaccine efficacy
across studies, as individual-level data is rarely openly shared, in part be-
cause of patient identifiability concerns. As a result, trials commonly only
report VE alongside average participant follow-up time and imply this to be
a good approximation of iVE.

In this manuscript we describe a novel approach for inferring iVE from
multiple VE estimates. This is particularly useful in pooled analyses, where
1) pooling multiple survival datasets may be less straightforward, or 2) in
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meta-regressions, where only the published aggregate estimates are available.

2 Estimating vaccine efficacy

2.1 Measures of cumulative vaccine efficacy

When calculating VE in clinical trials, the numerator for the risks in inter-
vention and control arms are usually based on cases accrued over the study
period, whilst the denominator holds all individuals who were at risk of be-
coming a case at the start of the study period. This method provides an
estimate for the cumulative relative risk, in turn relating to the average vac-
cine efficacy in the period. However, this is only an accurate estimate of the
iVE during the period if such is constant and not e.g. subject to waning.

Similarly, to estimate relative rates, parametric survival analyses such as
Poisson or Cox regression often assume that the ratio of hazards in interven-
tion and control arms remain constant with time. Nonparametric methods,
such as Kaplan Meier survival estimates, can be used as an alternative[9,
10] to incorporate change in hazard ratios with time as a result of waning of
vaccine protection.

While the Kaplan Meier estimates provides an unbiased estimate of VE
where the ratio of hazards underlies temporal changes, it provides estimates
of VE rather than iVE which are a more intuitive measure of vaccine protec-
tion; in particular in the presence of waning vaccine protection VE(t) can be
substantially higher than the actual protection at time t (iVE(t)).

2.2 Approximating instantaneous vaccine efficacy from
cumulative vaccine efficacy

Analogue to the Kaplan Meier estimands the probability of not having en-
countered an infection or disease episode up to time t is:

S(t) =
t∏

x=0

1− λ(x)σ(x) , (1)

where λ(x) is the force of infection at time x and σ(x) is the vaccine effect
expressed as the instanteneous rate ratio at time x; ie iV E = 1−σ and σ ≡ 1
in the placebo arm of the study. Hence, cumulative vaccine efficacy can be
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estimated as via the respective relative risks, θ, as:

1− θ(t) = 1− − log
∏t

x=0 1− λ(x)σ(x)

− log
∏t

x=0 1− λ(x)
. (2)

This cannot easily be rewritten to estimate the iVE via σ(x). However, as
the daily force of infection is usually very small (λ(x)� 1) one can use the
Nelson-Aalen estimator and approximate VE(t):

1− θ(t) ≈ 1−
∫ t
x=0

λ(x)σ(x)dx∫ t
x=0

λ(x)dx
. (3)

For the special case of proportional hazards that is often assumed in survival
analyses, i.e. rate-ratios remain constant over time, equation 3 simplifies to:

1− θ(t) = 1−
∫ t
x=0

λ(x)σdx∫ t
x=0

λ(x)dx
= 1− σ , (4)

i.e., the cumulative rate-ratio and instantaneous rate-ratio are the same
θ(t) ≡ σ. This is irrespective of any change in the baseline-rate λ(x), as-
suming that this rate is the same in the vaccinated and unvaccinated groups.

Ideally, infections in the vaccinated and unvaccinated arms are always
observed and censored after becoming a case. However, individuals may
get asymptomatic infections that are not observed in the study, but boost
immunity, especially in the unimmunised individuals. This can alter the
baseline rate in the unvaccinated arm of the trial, such that rates in the
vaccinated and unvaccinated arm are no longer equivalent. Eventually, this
can lead to an overestimation of the relative rate when natural immunity in
the unvaccinated arm increases, as has been shown for rotavirus vaccines[11].

Similarly, in the case of waning vaccine-protection, the rate-ratio does not
remain constant with time. However, equation 3 can be rewritten as:

iVE(t) = 1− σ(t) = 1−
(
θ(t) +

∫ t

x=0

θ(t)− σ(x))
λ(x)

λ(t)
dx
)
. (5)

If discretised this provides a recursive equation to calculate iVE(t), start-
ing at σ(0) = θ(0).
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3 Validation through simulation of an iRCT

3.1 Generating simulated data

We simulated data with a deterministic compartmental model (Figure 1).
The following differential equations were used to describe the dynamics of
infection in an individual randomised controlled trial (iRCT) like setting
assuming vaccine protection to act in either an all-or-nothing or leaky fashion.
Note that, to simulate an iRCT the force of infection λ(t) assumes a force of
infection that depends on time but not on the number of infected in the trial
itself; ie assumes that the force of infection is generated by the surrounding
population.

Ṡu = −λSu
İu = λSu
˙Sv0 = −λSv0 + IAγSv1
˙Iv0 = λSv0
˙Sv1 = −λILσSv1 − IAγSv1
˙Iv1 = λILσSv1 ,

(6)

where Su are the trial participants in the control arm and Svx, x ∈ {0, 1}
vaccinees who are not immunised or are immunised, respectively (ie for who
the vaccine didn’t or did take). For ease of reading, time dependencies are
omitted in the equations. It is assumed that all participants were susceptible
at time of enrolment. Iu,v then denotes the cumulative number of infections
in the control and intervention arms. IA,L is the indicator function for all or
nothing or leaky immunity, respectively:

IA =

{
1 ,all-or-nothing

0 ,leaky
, (7)

IL = 1− IA. (8)
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The initial conditions of the model are:

Su(0) = (1− π)N

Iu(0) = 0

Sv0(0) = πIAθN

Iv0(0) = 0

Sv1(0) = π(1− IAθ)N
Iv1(0) = 0.

Half (π = 0.5) the total number of participants in the trail (N = 1000) is
randomized to be vaccinated. We further assume that iVE at the start of
the trial is 75% (θ = 1 − 0.75). We assume waning of vaccine protection to
follow a sigmoidal function:

σ(t) = 1− 1− θ
1− (ψt)υ

, (9)

with ψ ∈ [1e−5, 1e−2] simulating slow or fast waning of vaccine protec-
tion, and υ = 4. In order to assure that iVE is the same in the leaky and
all-or-nothing vaccine, we model the rate at which immunized persons lose
protection in the all-or-nothing vaccine scenario as:

γ(t) =
σ̇(t)

1− σ(t)
, (10)

for σ(t) ∈ [0, 1] (the case σ(t) = 1, implies θ = 1 and hence is not of interest).
We further assumed that the force of infection follows a sine-function:

λ(t) = β
(

1 + δ sin
t

ρ

)
, (11)

with the baseline force of infection β ∈ [2−6, 24] per 1 000 person days, δ ∈
[0.05, 0.4], and ρ ∈ [80, 500]. In simulations where the force of infection is
assumed non-seasonal, we set δ = 0. Table 1 provides an overview of all
parameters and their interpretation.

3.2 Interpreting simulated iVE

We ran the models for 2000 days. Models were set up in such a way that
the assumed iVE in each simulation can be calculated as 1 − σ(t) for both
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Param Values Interpretation

N 1000 Total number of participants in trial.
π 0.5 Proportion of participants that is vaccinated.
IA ∈ {0, 1} Variable indicating whether vaccine is all-or-

nothing.
IL ∈ {0, 1} Variable indicating whether vaccine is leaky.

λ(t) β
(

1 + δ sin t
ρ

)
Force-of-infection at time t.

β [1e−3 · 2−6, 1e−3 · 24] Baseline force-of-infection, without seasonal
effects.

δ ∈ [0, 0.4] Maximum amplitude of seasonal effect around
baseline force-of-infection.

ρ ∈ [80, 500] Duration of full seasonal wave is ρ · 2π days.
σ(t) 1− 1−θ

1−(ψt)υ
Instantaneous RR at time t. iVE can be esti-
mated as 1− σ(t).

γ(t) σ̇(t)
1−σ(t) Rate at which immunized vaccinated individ-

uals lose protection in the all-or-nothing vac-
cine. Ensures that iVE can be estimated as
1− σ(t).

θ 0.75 RR after vaccination. VE after vaccination
can be estimated as 1− θ.

ψ ∈ [1e−5, 1e−2] Waning rate. The half-life of protective an-
tibodies is 1/ψ days (days at which iV E =
1− 2−θ

2
).

υ 4 Controls the shape of the waning curve. σ(t)
will have a sigmoidal shape when υ > 1.
When υ →∞, σ(t) becomes a stepfunction.

Table 1: Parameters in compartmental model, values used in simulations,
and their interpretation
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all-or-nothing and leaky vaccines. Do note that iVE should be derived using
a measure of the instantaneous risk ratio for all-or-nothing vaccines, whilst
it should be derived using a measure of the instantaneous rate ratio for leaky
vaccines. An alternative, more intuitive way to calculate instantaneous rate
ratios is:

iRR(t) = 1
Sv0

Sv0 + Sv1
+ σ(t)

Sv1
Sv0 + Sv1

, (12)

which is a weighted average of the rate ratio in the vaccinated individuals
who are still susceptible. It reduces to iRR(t) = Sv0/(Sv0 + Sv1) for the
all-or-nothing vaccine and to iRR(t) = σ(t) for the leaky vaccine. Similarly,
we can calculate instantaneous risk-ratios as:

iRRb(t) = 1
Sv0 + Iv0
πN

+ σ(t)
Sv1 + Iv1
πN

, (13)

which is a weighted average of the risk ratio in all vaccinated individuals, not
censoring those who were infected. This reduces to iRRb(t) = Sv0+Iv0

πN
(the

proportion vaccinated that lost immunity) in the all-or-nothing vaccine, and
to iRRb(t) = σ(t) in the leaky vaccine. Note that iRR(t) = iRRb(t) for the
leaky vaccine.

Whilst these instantaneous measures will not be observed in iRCTs, cu-
mulative case-counts are. We used the cumulative case-counts of our sim-
ulated trials to estimate VE twice, once using risk ratios, using the con-
ventional formula (risk in vaccinated divided by risk in unvaccinated), and
once using a ratio of cumulative Kaplan-Meier hazard-estimates. We then
applied our method, given in equation 5, to convert the ratios of cumulative
Kaplan-Meier hazard-estimates to instantaneous rate ratios. This was done
twice, once controlling for the simulated seasonal effects (the λ(x)

λ(t)
component

in equation 5), and once assuming that there were no seasonal effects, as this
will often be a necessary constraint in practical applications.

Ultimately, we compared these estimated measures of iVE to the assumed
iVE (1 − σ(t)) in each simulation, to validate how our method performed
under different conditions. Incididence rates were varied across simulations.
The preventable outcome of interest is common in simulations where the
incidence rate is high, whereas it is rare when the incidence rate is low.
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4 Analysis of simulated data

4.1 Assumed instantaneous measures

Figure 2 shows a subset of our results, where the first two columns show the
assumed iVE calculated as 1 − iRRb and 1 − iRR. These measures of iVE
are usually not directly observed in a trial. Coincidentally, as shown before,
1 − iRRb in the first column equals to 1 − σ(t) for both all-or-nothing and
leaky vaccines.

In simulations where iVE does not wane, shown by the red and yellow
lines, iVE remains at 75% for both modes of vaccine action. However, when
using the instantaneous rate ratio to estimate iVE for an all-or-nothing vac-
cine, it will appear to wax over time. This is explained by equation 12,
which shows that this measure of iVE is a weighted average of the iVE in
those vaccinated individuals who are still susceptible. Assuming that time
approaches∞ and the force-of-infection remains the same, ultimately all vac-
cinated but unprotected individuals become infected. The weighted average
of iVE is then dominated by those who are immunized and fully protected,
and hence, iV E → 100%. Moreover, the pool of vaccinated but unprotected
susceptibles depletes faster when the incidence rate is high (illustrated by the
yellow line). Therefore, this measure of iVE approaches 100% much faster in
simulations with high incidence rates. In all simulations shown in figure 2,
β = 1e−3 · 2−4 and β = 1e−3 · 23.5 are used in simulations with low and high
incidence rates, respectively.

In simulations where iVE does wane (shown by the dark- and light-blue
lines), iVE starts at 75% and diminishes towards 0% as immunity is lost. In
all with-waning simulations shown in figure 2, ψ = 1e−2.75, so half of iVE
will have waned after about 560 days (iV E = 37.5%).

Again the iVEs as estimated by 1 − iRRb and 1 − iRR give the correct
measures of 1 − σ(t) for the all-or-nothing vaccine and the leaky vaccine,
respectively. Note that, for the all-or-nothing vaccine, iVE derived from
the relative risk is similar to that derived from the relative rate when the
incidence rate is low, especially when iVE wanes rapidly. This is due to
1) the well-known fact that risks and rates are numerically similar when an
outcome is rare; and 2) the fact that, in this scenario, the rate at which
those vaccinated and fully protected lose immunity is stronger than the rate
at which those vaccinated but unprotected become infected.

The opposite happens when the incidence rate is high, here shown by
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the light-blue lines. Although this measure of iVE provides an estimate of
the level of protection in those vaccinated and (still) susceptible, comparison
to the first column shows that this is not a good proxy for the iVE for all
vaccinated individuals when the incidence rate is high. Note that the light-
blue lines of the different simulations do not overlap, indicating that this
estimate of iVE is affected by seasonal effects.

4.2 Observable measures of VE

Whereas the iVE measures discussed in the previous section are not observed
in a trial, cumulative case-counts are. It are estimates of VE using these
cumulative counts that are usually reported in RCTs. In figure 2, VEs derived
from the observed risk ratio are shown in the third column, whereas VEs
derived from the observed cumulative hazard ratios are shown in the fourth
column.

First, for the all-or-nothing vaccine, in simulations without waning, the
measure of VE derived from the risk ratio is an appropriate measure of iVE.
However, measures of VE derived from cumulative hazard ratios will ap-
proach 100% for the same reason as happens for those of iVE derived from
1− iRRb.

Second, for the leaky vaccine, in the absence of waning, the measure
of VE derived from cumulative hazard ratios is an appropriate measure of
iVE. However, measures of VE derived from risk ratios will approach 0%,
which is especially obvious when the incidence rate is high. This occurs
because infected individuals are not censored when estimating a risk ratio.
As leaky vaccines do not provide 100% protection, assuming that the force of
infection remains constant and time approaches∞, all vaccinated individuals
will eventually become infected. Thereby, the risks in the vaccinated and
unvaccinated strata converge, and V E → 0%. A more detailed overview of
these effects is given by Smith et al[12].

When iVE does wane, both VE derived from a risk ratio for an all-or-
nothing vaccine and VE derived from a cumulative hazard ratio for a leaky
vaccine will overestimate the actual iVE. These measures are both influenced
by historic values of VE. Therefore, VE at time t provides an estimate of the
average iVE up until time t, rather than the iVE at time t. As a result of
this averaging behaviour, seasonal effects barely influence these estimates.
Again, for both all-or-nothing and leaky vaccines, VEs derived from risk and
rate ratios are similar when the incidence rate is low.
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4.3 Estimated iVE

We apply the method in equation 5 to estimate iVE by converting the ob-
served measures of the cumulative hazard ratios, shown in the fourth column
of figure 2. We do this once by assuming no seasonal effects, shown in the
fifth column, and once by adjusting for seasonal effects, shown in the sixth
column. Note that adjusting for seasonal effects requires knowledge about
the force of infection over the entire period. This will not be available in
most practical applications, but can be done here as data is simulated.

When adjusting for seasonal effects, the estimated iVEs retrieve the as-
sumed iVEs derived from 1−iRR perfectly, for both all-or-nothing and leaky
vaccines. As this is not the iVE one is usually interested in for all-or-nothing
vaccines, the appropriateness of this method for all-or-nothing vaccines will
depend on the similarity between the risk and rate ratio, which in turn is
influenced by the incidence rate of the outcome of interest.

When not adjusting for seasonal effects, as in the fifth column, the devi-
ation between the estimated and assumed iVE will depend on the extent at
which seasonality affects the incidence rate. The unadjusted iVE estimates
clearly show the sine-functions used in simulating seasonal effects, whereas
these effects were barely noticeable in measures of VE. Do note however,
that even these unadjusted measures provide better estimates of iVE when
compared to VE based on cumulative counts.

4.4 Comparing estimated iVE to assumed iVE

To more formally identify instances where this method fails or works, we
plotted the maximum percentage point (pp) deviation at any day of the
trial between the estimated iVE and the actual assumed iVE in figure 3.
Simulations use multiple assumptions about the incidence rate (y-axes), and
the rate at which immunity wanes (x-axes).

All estimated iVE values were generated assuming no seasonal effects.
However, results in the right column of figure 3 would look exactly the same to
those in left column if we would have adjusted for those effects. In simulations
with seasonality, seasonal effects are modelled using δ = 0.05 and ρ = 80.

Although deviations are large when applied to an all-or-nothing vaccine
and when the incidence rate is high, this deviation becomes much smaller
when the outcome becomes less common. Even with moderate values of the
incidence rate, the deviation is relatively small when immunity wanes rapidly.
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For leaky vaccines, iVE is barely effected by the incidence rate, which
is expected. When no seasonal effects are simulated, this method is always
able to retrieve the actual assumed iVE for leaky vaccines, as the deviation
is 0 pp. However, when we cannot adjust for seasonality, the estimated iVE
will somewhat deviate from the actual iVE. Although this deviation is not
related to the incidence rate, it becomes larger when immunity wanes more
rapidly.

Sensitivity analyses with different values of δ and ρ are provided in Ap-
pendix A. When seasonal effects are stronger, the deviation between the
estimated and assumed iVE may be significant when these effects are not
accounted for. Due to the interplay between waning and seasonal effects,
this deviation will be higher when immunity wanes more rapidly.

5 Limitations

There are several limitations to the method presented here. First, although
it can effectively retrieve estimates of iVE based on instantaneous rate ratios,
this is not the measure of iVE usually of interest for all-or-nothing vaccines.
Therefore, the appropriateness of this method for all-or-nothing vaccines will
depend on how common the preventable outcome of interest is.

Second, when strong seasonal effects occur, which is common for some
infectious agents, these changes in the force of infection will interact with
any waning of immunity. Ideally, these seasonal effects should be taken into
account when converting VE. Although one may fit a natural history model
to estimate such effects, they will often be unknown. Then, the estimated
iVE will only approximate the true iVE, whereby the acceptable magnitude
of the error is likely disease and outcome specific.

Third, this method requires an iterative approach to convert values of
VE to iVE. Therefore, detailed time-specific knowledge of VE is required.
Successive steps used in this iterative approach should be small enough in
order to accurately capture the extent of waning.

Fourth, this method assumes that the true VE is known, whereas there
will always be some level of uncertainty around estimates of VE. One may
use bootstrap sampling to reflect this uncertainty in converting VE to iVE.
The mean and/or median of the iVEs in all bootstrap samples may then be
used as the central estimate of iVE, whilst their quantiles can be used to
report the level of confidence required. We did not investigate the effects of
underreporting of the outcome variable on estimates of iVE, as this would
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inheritely bias estimates of VE as well.

Lastly, we applied this method to simulations for all-or-nothing and leaky
vaccines. We acknowledge that methods of vaccine action may take differ-
ent forms, such as combinations of these two extremes, or that individual
immunity may be much more heterogeneous in practice. However, many
other existing methods assume either all-or-nothing or leaky effects, and few
investigate heterogeneous vaccine responses.

6 Concluding remarks

Despite its limitations, we have shown that this method is effective in con-
verting cumulative VEs to iVEs for leaky vaccines, and may also be useful
for all-or-nothing vaccines, in instances where the outcome is rare.

There can be many challenges in studying VE, including the effect of
asymptomatic infections boosting immunity, heterogeneities in vaccine re-
sponses, and imperfect biological markers. This method may assist researchers
with a new way to investigate waning of iVE.

Ideally, approximated iVEs derived using this method should be com-
pared to true iVEs: immunological markers which provide a good correlate
or surrogate of protection. Furthermore, the effect of the relationship be-
tween seasonality and waning iVE deserves more attention in future studies.
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Compartmental model for a hypothetical randomized controlled
trial under different assumptions of the mode of vaccine action

Figure 1: Compartmental model for the all-or-nothing and leaky mode of
vaccine action. Individuals are randomized (R), after which a proportion
π is vaccinated. All individuals are susceptible at the start of a trial (S∗).
Unvaccinated individuals will become infected at rate λ(t), the force of in-
fection. IA is 1 for an all-or-nothing vaccine, and 0 otherwise. IL = 1 − IA.
The vaccine will take by a proportion 1 − IAθ of the vaccinated individuals
(Sv1). They will be protected by some degree 1− σ(t), where σ(t) = ILθ. In
contrast, the vaccine does not take for a proportion IAθ (Sv0). These indi-
viduals become infected at the same rate (λ(t) as the unvaccinated (Su). In
the presence of waning protection, individuals who are fully protected by an
all-or-nothing vaccine will lose protection at rate γ(t). Similarly, the degree
of protection that a leaky vaccine offers to vaccinated individuals will wane
over time, and σ(t) will approach 1.
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Maximum deviation in percentage point (pp) between the
assumed and estimated unadjusted iVE
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Figure 3: Maximum deviation in percentage point (pp) at any time between
the assumed and estimated unadjusted iVE. The top row shows results for
the all-or-nothing vaccine, whilst the bottom row shows results for the leaky
vaccine. The first column shows results for simulations with seasonal effects,
whilst seasonal effects were not used in the right column. The y-axes rep-
resent scenarios with different incidence rates, whilst the x-axes represent
scenarios with different degrees at which iVE wanes.
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