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Abstract 
 

Non-invasive methods, such as neurofeedback training (NFT), could support cognitive symptom 

management in Huntington’s disease (HD) by targeting brain regions whose function is impaired. 

The aim of our single-blind, sham-controlled study was to collect rigorous evidence regarding the 

feasibility of NFT in HD by examining two different methods, activity and connectivity real-time fMRI 

NFT. Thirty-two HD gene-carriers completed 16 runs of NFT training, using an optimized real-time 

fMRI protocol. Participants were randomized into four groups, two treatment groups, one receiving 

neurofeedback derived from the activity of the Supplementary Motor Area (SMA), and another 

receiving neurofeedback based on the correlation of SMA and left striatum activity (connectivity 

NFT), and two sham control groups, matched to each of the treatment groups. We examined 

differences between the groups during NFT training sessions and after training at follow-up sessions. 

Transfer of training was measured by measuring the participants’ ability to upregulate NFT target 

levels without feedback (near transfer), as well as by examining change in objective, a-priori defined, 

behavioural measures of cognitive and psychomotor function (far transfer) before and at 2 months 

after training. We found that the treatment group had significantly higher NFT target levels during 

the training sessions compared to the control group. However, we did not find robust evidence of 

better transfer in the treatment group compared to controls, or a difference between the two NFT 

methods. We also did not find evidence in support of a relationship between change in cognitive and 

psychomotor function and NFT learning success. We conclude that although there is evidence that 

NFT can be used to guide participants to regulate the activity and connectivity of specific regions in 

the brain, evidence regarding transfer of learning and clinical benefit was not robust. Although the 

intervention is non-invasive, given the costs and absence of reliable evidence of clinical benefit, we 

cannot recommend real-time fMRI NFT as a potential intervention in HD.    
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Introduction 

Neurofeedback training (NFT) is a non-invasive intervention used to train participants in a closed-

loop design to regulate their own brain activity(Sitaram et al., 2017). The underlying principle is that 

by regulating different aspects of their brain activity, e.g. regional activation or inter-regional 

connectivity, participants would implicitly regulate associated cognitive function. Huntington’s 

disease (HD) is a genetic neurodegenerative condition characterised by progressive motor, 

psychiatric and cognitive impairment, as well as early striatal atrophy, cortical and cortico-striatal 

connectivity loss(Tabrizi et al., 2011; Poudel et al., 2014; McColgan et al., 2015; Novak et al., 2015). 

There are currently no treatments for cognitive impairment in HD and the effect of disease-

modifying therapies, such as antisense-oligonucleotide approaches (ASO (Tabrizi et al., 2019b)), on 

cognitive function is, at present, unknown. Our motivation for testing NFT, is that it, if successful, it 

could be used as an adjunct treatment to invasive, disease-modifying therapies(Linden and Turner, 

2016, Tabrizi et al., 2019a). However, there are several challenges in designing effective NFT trials 

and testing their efficacy, including the choice of an appropriate NFT target for the specified clinical 

population. 

Because striatal atrophy and cortico-striatal connectivity loss appear early on in HD and correlate 

with cognitive and psychomotor impairment(Tabrizi et al., 2009, 2011; Poudel et al., 2014; McColgan 

et al., 2015; Novak et al., 2015), striatal activity and cortico-striatal connectivity would be the 

obvious targets for NFT. NFT could therefore be used to “boost” the activity or connectivity of the 

striatum in HD gene-carriers at pre-symptomatic or early stages of the disease, i.e. while levels of 

atrophy are still low. In a recent proof-of-concept study we used the supplementary motor area 

(SMA) as a target for real-time fMRI NFT in HD patients(Papoutsi et al., 2018). We selected BOLD 

fMRI signal from the SMA because it can be reliably measured in real-time(Subramanian et al., 2011, 

2016), and its function and connectivity to the striatum is disrupted by HD(Klöppel et al., 2009). 

Previous studies have also shown that NFT induced changes are not just localised to the target 

region, but extend to a wider network of regions(Horovitz et al., 2010; Ruiz et al., 2013; Emmert et 

al., 2016), suggesting that a proxy region would be appropriate. We found that HD patients can be 

trained to increase the level of SMA activity and that improvement in cognitive and psychomotor 

behaviour after training related to increases in activity of the left Putamen and SMA – left Putamen 

connectivity during training. This suggested that SMA-striatum connectivity could be a more 

appropriate NFT target than SMA activity in HD.  

The aim of the current study is to compare the two NFT approaches, SMA activity and SMA-striatum 

connectivity, and to collect rigorous evidence on the feasibility of the method in HD. We used BOLD 
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fMRI signal change from the SMA as the target for activity NFT and correlation between the signal 

from the SMA and left striatum during upregulation as the target for connectivity NFT(Megumi et al., 

2015; Yamashita et al., 2017). In addition, we used a single-blind, randomized, sham-controlled 

design and employed an optimized real-time fMRI processing pipeline using a prospective-motion 

correction system (PMCS; (Zaitsev et al., 2006; Todd et al., 2015) for real-time head motion 

correction and real-time physiological noise filtering(Misaki et al., 2015) to ensure that we obtain 

high quality evidence. Finally, to ensure participant blinding and control for experimental exposure 

and motivation, participants that were randomized to the control group were yoked to a participant 

in the treatment group, and received feedback based on the NFT target levels of their yoked 

participant from the treatment group, rather than their own(Thibault et al., 2016; Sorger et al., 

2019). This setup enables us to collect high quality evidence regarding the use of real-time fMRI NFT 

for the treatment of cognitive impairment in HD.  

 

Materials and Methods 

Participants 

Thirty-four adults with HTT gene CAG expansion greater than 40 were recruited to the study. One 

participant withdrew from the study and another participant was excluded, because a large number 

of trials were contaminated with motion-related artifacts. Details on the remaining thirty-two 

participants who were included in the analyses are shown in Table 1. There were no statistically 

significant differences between the treatment and control groups for the two types of NFT (using a 

non-parametric Mann-Whitney test all p > 0.2). All participants provided written informed consent 

according to the Declaration of Helsinki and the study was approved by the Queen Square Research 

Ethics Committee (05Q051274).  

Information regarding sample size calculations prior to the start of the study are provided in the 

supplementary materials. Briefly, the present study was powered in order to be able to detect, 

previously reported, very large differences (Cohen’s d effect size = 1.65 and 1.60; see supplementary 

materials) between treatment and sham NFT control groups in near transfer. As this was a feasibility 

study, we chose to power on near transfer and not far transfer effects. Although near transfer 

effects are not clinically relevant, they do allow us to test NFT learning transfer and as such can serve 

as a suitable endpoint for this feasibility study. If the findings from this study are promising, then the 

effect sizes estimated from this study could be used to power a future RCT focusing on efficacy.  
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Study Structure 

As part of the study, participants completed 1 screening, 1 baseline, 4 neurofeedback training and 3 

follow-up sessions. The first follow-up was within 2 weeks from the last training visit, the second 

between 4-6 weeks and the third between 8 and 10 weeks (also see Supplementary Table 2). A 

diagram of the study design is shown in Figure 1. A Prospective Motion Correction system (PMCS) 

was used to correct head motion during scan acquisition(Zaitsev et al., 2006; Todd et al., 2015). 

Details of the PMCS are provided in the supplementary materials. Participants who consented to the 

use of the PMCS had teeth impressions acquired during the screening visit by a qualified 

orthodontist (NH). During the screening session participants completed the Montreal Cognitive 

Assessment test (MoCA(Nasreddine et al., 2005) and a number of cognitive and psychomotor tasks. 

The purpose of the testing on the screening visit was to familiarize the participants with the tests 

and minimize practice effects during follow-up. The same measurements were repeated during the 

baseline and follow-up sessions.   

To assess change in cognitive and psychomotor function following NFT we calculated a composite 

score using the same procedure and measures as in our previous study(Papoutsi et al., 2018). In 

summary, these measures were selected a-priori based on previous work showing that they are 

sensitive to disease progression(ref), they were converted to z-scores and summed to create the 

composite score. The measurements included were: number correct for Stroop Word Reading, 

number correct for Symbol Digit Modalities Test (SDMT), annulus length for Indirect Circle Tracing 

(log transformed), number correct for negative Emotion Recognition, inter-tap interval and standard 

deviation of inter-onset interval (log transformed) during speeded tapping with the non-dominant 

index finger, and standard deviation of mid-tap interval deviation from target rhythm (log 

transformed) for paced tapping with the non-dominant index finger at 1.8Hz.  

The baseline and follow-up sessions included: 1) repetition of the cognitive and psychomotor testing 

(only on the first and third follow-up), 2) structural MRI measurements and 3) two fMRI runs 

assessing the participant’s ability to upregulate the target NFT measures without neurofeedback. 

The fMRI runs consisted of 5 upregulation blocks (30s each), 6 rest blocks (30s each) and 5 response 

blocks (18s each; see Supplementary Figure 2B). Similar to our previous study(Papoutsi et al., 2018) 

we used a simple attention task during the rest blocks, whereby participants monitored changes in 

the luminance of a white bar. After the baseline session participants were randomized to one of four 

groups: activity NFT treatment and control groups, and connectivity NFT treatment and control 

groups. Randomization was based on the Unified Huntington’s Disease Rating Scale(Huntington 
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Study Group, 1996) (UHDRS) Total Motor Score (TMS). More details regarding the randomization 

procedure are provided in the supplementary materials. 

NFT sessions started with a fist-clenching run used to select the target ROIs. Participants were 

instructed to clench their left fist during the active blocks (10 blocks, 20.4s duration) and rest during 

the rest blocks (11 blocks lasting 20.4s each; see Supplementary Figure 2A). Using Turbo-

BrainVoyager (TBV; Brain Innovation, The Netherlands) the fMRI run was analysed in real-time and 

the resulting statistical map was used to define the ROIs for the subsequent NFT runs. Participants 

completed 4 NFT sessions on different days and each session included 4 NFT runs (two participants 

completed 3 runs on one of the NFT sessions, because of fatigue). The activity NFT runs consisted of 

6 rest blocks (30s duration), 5 response blocks (18s) and 5 upregulation blocks (30s; see 

Supplementary Figure 2C). The rest and response blocks were identical to those of the transfer runs 

described previously. During the upregulation blocks feedback was presented continuously in the 

form of a red bar. In the treatment group the height of the red bar represented the percent signal 

change at a given point during the upregulation block vs the mean activation during the preceding 

rest block. Once the upregulation blocks started, there was an average delay of 2s until the red bar 

appeared and then it was updated every 1.2s. The connectivity NFT runs consisted of 5 rest blocks 

(45s), 5 upregulations blocks (30s) and 5 feedback blocks (3s; see Supplementary Figure 2D). 

Feedback was presented intermittently at the end of the upregulation blocks in the form of a red 

bar. In the treatment group the height of the red bar was calculated using the Pearson’s correlation 

coefficient between the SMA and left striatum ROI time-series during the upregulation blocks 

only(Megumi et al., 2015). In both cases (activity and connectivity NFT) the feedback provided to the 

sham control groups was calculated using data from a yoked participant in the corresponding 

treatment group. More details on the sham neurofeedback setup and the real-time fMRI setup are 

provided in the following paragraphs.  

Similar to our previous study, we used shaping in both cases in order to facilitate learning and 

motivation(Weiskopf et al., 2004; Linden et al., 2012; Papoutsi et al., 2018), whereby the difficulty in 

increasing the height of the feedback bar was adjusted according to the participants’ performance in 

the preceding block. 

 

Target ROI selection 

The NFT target ROIs were drawn at the start of each NFT session using TBV. For the activity NFT 

sessions, the SMA was selected as the target ROI. For the connectivity NFT sessions, the SMA and 
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the left striatum (including putamen, globus pallidus and caudate) were selected as the target ROIs. 

Similar to our previous study(Papoutsi et al., 2018) and comparable to other studies(Subramanian et 

al., 2011; Paret et al., 2014, 2016; Nicholson et al., 2017), the ROIs were re-drawn at each session 

ensuring that only voxels with high activation are selected. The ROIs from the first visit were used as 

a reference, when drawing the ROIs for the subsequent visits to ensure that the position was similar, 

although the exact voxels selected might be different. For the SMA the statistical map was 

thresholded at t-value = 3 and a rectangle was drawn around the SMA cluster for the active vs rest 

contrast. The location of the striatum was identified visually on the first EPI scan of the localiser run 

using landmarks and the EPI contrast. Due to high iron concentration, the putamen and globus 

pallidus appear darker on an EPI scan and are therefore easy to identify on EPI scans. A rectangle 

was drawn around the striatum including the putamen, globus pallidus, caudate and ventral 

striatum. Because of the rectangular shape, the striatal ROI, also included surrounding white matter. 

However, the ROI was centred around the striatum and most of the recorded signal originated from 

the gray matter of the striatum. A heat map showing the overlap of the ROIs across all participants is 

shown in Figure 2A and B. We chose to define our ROIs using a functional localiser and anatomical 

landmarks, rather than creating an anatomical mask, because it was not always possible to acquire a 

structural MRI volume during the baseline visit due to patient fatigue. 

 

Sham Neurofeedback 

We chose to use a sham neurofeedback for the control groups in order to control for potential 

placebo effects as a result of recruiting participants to an interventional study(Foroughi et al., 2016; 

Thibault et al., 2016; Sorger et al., 2019).  By choosing the “yoked” approach we ensured that the 

feedback control participants received was biologically plausible and matched to that of the 

treatment group. We chose not to use the approach of using a different ROI for the control group, 

because of potential problems with the spread of training effects across other brain regions. We do 

not yet understand the mechanism underlying NFT in HD and how widespread any effects could be, 

therefore we were not certain which other regions in the brain would be appropriate to use as 

control targets(Mehler et al., 2018). To confirm whether the feedback received by the participants 

was contingent to their own brain activity, we performed confirmatory analyses after the end of the 

study and found that the correlation between the control participants’ true BOLD signal and the 

BOLD signal of their yoked participant from the treatment group was very low (see supplementary 

methods).  
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Data Processing and Analyses 

MRI Acquisition Parameters 

All scanning was performed on a Siemens TIM Trio 3T scanner using a standard 32-channel head coil. 

For the fMRI tasks we used a whole-brain multi-shot 3D echo-planar imaging (EPI) sequence(Lutti et 

al., 2013) with TR = 1.2 s, TE = 30ms, excitation flip angle = 15°, bandwidth = 2604 Hz/Px. There were 

60 slices per slab, acquired with sagittal orientation and anterior to posterior phase encoding. Image 

in-plane resolution was 64x64 and voxel size = 3x3x3 mm3. To allow fast whole-brain coverage we 

used GRAPPA parallel imaging in phase encoding and partition encoding direction with 2x3 

acceleration. Quantitative Multi-Parameter Maps(Draganski et al., 2011; Weiskopf et al., 2013; 

Callaghan et al., 2014) and diffusion weighted imaging (DWI) scans were also acquired during the 

baseline and three follow-up sessions. The acquisition details are included in the supplementary 

methods. Because we did not find any significant differences in the fMRI data to suggest successful 

training and transfer, we did not proceed with the statistical analysis of the MPMs and DWI images.   

 

Real-time fMRI Setup 

For the NFT sessions the EPI volumes were exported using Ice and Gadgetron(Hansen and Sørensen, 

2013). In-house scripts created using Gadgetron and MATLAB (Mathworks) were used to reconstruct 

the 3D EPI data using SENSE(Pruessmann et al., 1999) such that they could be read in near real-time 

by TBV to produce the target ROI time-series. There was a small delay at the start of each run to 

enable MATLAB to start, but after about 15s both the MRI scanner and the Gadgetron pipeline were 

fully in-synch with approximately 1s latency. To enable both systems to synchronize we introduced a 

delay of 18 volumes at the start of each run. During that time participants viewed a white cross on a 

black background followed by a count-down (from 10 to 1) until the NFT paradigm started. In-house 

MATLAB scripts were used to process the ROI time-series and record participants’ responses, 

breathing and heart rate. For the NFT runs, the ROI signal was regressed against head motion traces 

and physiological noise from respiration(Birn et al., 2008) and cardiac rhythm using 

RETROICOR(Glover et al., 2000). The “cleaned” signal was then processed by in-house MATLAB 

scripts using Cogent toolbox (http://www.vislab.ucl.ac.uk/cogent_2000.php) to calculate and 

present the feedback to the participant. The computer setup in the scanner is shown in 

Supplementary Figure 1B.  

 

Data Processing 
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All statistical analyses were performed after extensive quality control and offline pre-processing of 

the fMRI data. Supplementary Figures 3 and 4 show the evoked response patterns and average 

correlation coefficients respectively from the real-time processing pipeline. No statistical analyses 

were performed on these data, but are presented here for completeness. Statistical Parametric 

Mapping SPM12 (Wellcome Trust Centre for Neuroimaging, London) was used for offline pre-

processing of the fMRI data. The first 3 volumes were removed from all fMRI time series apart from 

the NFT runs, where we removed the first 18 volumes. The images were then corrected for head-

motion with rigid-body realignment using a 2-step approach.  

For the ROI analyses the re-aligned images were smoothed in native space using an isotropic 8mm 

FWHM Gaussian smoothing kernel. First-level, within-subject models included the condition of 

interest and noise regressors. We used 2 regressors modelling the upregulation and response 

(feedback blocks in the case of connectivity NFT) blocks for the baseline, NFT and transfer runs, and 

1 regressor modelling the fist clenching blocks for the localiser runs. The baseline condition was 

modelled implicitly. In addition, first-level models included 6 head motion parameter regressors 

produced by SPM and extracted from the PMCS (where applicable) with their temporal derivatives, 

the quadratic expansions of the movement parameters and their derivatives(Friston et al., 1996; 

Ciric et al., 2017), spike regressors (see supplementary materials(Lemieux et al., 2007)), as well as 13 

physiological noise regressors modelling the heart rate using RETROICOR and respiration(Glover et 

al., 2000; Birn et al., 2008; Hutton et al., 2011; Misaki et al., 2015). Temporal autocorrelation was 

modelled using SPM’s first-level autoregressive process (AR(1)) and a high-pass filter with 128s 

cutoff.  

For the activity NFT group, contrast values for upregulation vs baseline were extracted for the target 

ROI for each session and the highest 10% of t-values(Todd et al., 2017) were used to calculate the 

average ROI value. For the connectivity NFT group, the time-series for the target ROIs (SMA and 

striatum) was extracted using a 6mm sphere centred on the peak for upregulation vs baseline across 

all runs. The Pearson’s correlation coefficient of the time-series between the two ROIs within the 

upregulation periods was then calculated and transformed into Fisher z-scores.  

 

Statistical Analyses 

Because the two NFT approaches use a different feedback measure, i.e. contrast estimates in the 

case of activity NFT and correlation coefficients in the case of connectivity NFT, we converted the 

activity and connectivity estimates to standardized scores in order to be able to compare them 
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directly. In more detail, the SMA activity estimates and Fisher transformed SMA-striatum correlation 

coefficients were converted into z-scores using the mean and standard deviation from the baseline 

fMRI runs in the activity and connectivity NFT groups respectively. The standardized activity and 

connectivity NFT target estimates were then used as outcomes in repeated-measures ANCOVAs with 

group (treatment vs control), NFT type (activity vs connectivity), session and their interactions as 

fixed effects. Baseline level of the NFT target and its interaction with NFT type were included as 

covariates in all analyses to increase model sensitivity(Dimitrov and Rumrill, 2003). Session was 

modelled as a repeated factor within subjects. The primary endpoints for this study were NFT 

learning and near transfer. For the analyses testing for learning, session was modelled as a numerical 

factor, increasing from 0 to 3, to test for a linear increase across the training sessions. For the 

analyses testing for transfer effects, session was modelled as a categorical factor. Intersession 

covariance was modelled using heterogeneous compound symmetry (CSH), as this gave a reasonable 

approximation of the observed within-subject covariance while using minimal degrees of freedom. 

Model residuals were visually inspected using Q-Q plots and histograms for outliers and to ensure 

residuals meet normality assumptions. We used SAS 9.4 mixed approach to estimate the ANCOVAs. 

Because we used standardized measures for all the analyses, the model estimates provided are in 

units of standard deviation.  

For the exploratory ROI analyses testing the relationship between learning and self-regulation ability 

in the NFT target levels with behavioural change we used between-group ANCOVAs. To extract the 

learning slope per participant we re-fitted the repeated-measure ANCOVA described above 

specifying random slope and intercept. As a measure of self-regulation ability we used the difference 

in NFT target level at the first and third follow-up sessions during upregulation without feedback 

compared to baseline. Other factors included in these models were group, NFT type and their 

interactions, as well as the baseline measure of cognitive and psychomotor function using the 

composite score. The dependent variable was the composite score at the first and third follow-up 

session. All tests were two-tailed and the alpha-level used to determine significance was p < 0.05.  

 

Data Availability 

All data are available from the authors. Raw data cannot become publicly available due to lack of 

consent from the study participants.  
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Results  

Learning Effects: Increase across training sessions 

To examine differences in NFT learning between the treatment and control groups and the two 

different types of NFT we used repeated-measures ANCOVA testing for between group differences 

across all NFT sessions, as well as a linear increase in the target NFT measure(Hellrung et al., 2018) 

across sessions. The dependent variable was the standardized NFT target estimates and the model 

included as factors session (modelled as a continuous variable), group (treatment vs control), NFT 

type (activity vs connectivity) and all their interactions. The model was also adjusted for baseline NFT 

target levels and its interaction with NFT type. The main effect of group tests for differences in the 

change from baseline between the treatment and control groups across all visits, whereas the group 

by session tests for differences in learning slope between groups. To test the main effect of group 

across all training sessions we used least square mean testing and compared the NFT target 

estimates across all NFT sessions between treatment and control groups.  

There was no evidence for a difference between the activity and connectivity treatment groups in 

learning slope (p > 0.6 for both group by NFT type and group by NFT by session interactions. Linear 

increase across sessions estimate 95% CI: activity treatment = 0.078 (-0.190, 0.345); connectivity 

treatment = -0.056 (-0.323, 0.211); activity control = -0.057 (-0.324, 0.210); connectivity control = -

0.519 (-0.319, 0.215); see Figure 2C). However, there was a significant main effect of group, where 

the treatment group had greater NFT target levels overall compared to the control group across all 

visits (t(29.1) = 2.79, p = 0.009. Estimate 95% CI of group difference across all sessions: 0.816 (0.22, 

1.41). Because NFT target levels were standardized the unit of the estimates is standard deviations; 

see Figure 2D). At baseline, there was no difference in NFT target levels between the groups (F(1, 28) 

= 0.20, p = 0.655; see supplementary materials), our findings therefore suggest that the effects of 

receiving neurofeedback occurred within the first training session and were stable across training 

sessions.  

 

Near Transfer: Upregulation without feedback 

After the four training sessions, participants returned for three follow-up sessions. During those 

sessions we examined the ability of the participants to self-regulate the NFT target levels without 

receiving any feedback (i.e. near transfer). Similar to our previous analyses examining learning 

effects, we used a repeated-measures ANCOVA with factors group, session (modelled as a 

categorical factor in this model), NFT type and their interactions, adjusting for the baseline NFT 
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target levels and its interaction with NFT type. The dependent variable was the standardized NFT 

target contrast estimates (upregulation without feedback compared to no upregulation). In this 

case, we did not hypothesize any difference between sessions and expected that transfer effects 

would remain stable for the three follow-up visits. Therefore, the effects of interest were the main 

effect of group (treatment vs control), which tested between-group differences in the increase of 

the NFT target levels across all follow-up visits from baseline, and the group by NFT type interaction 

(treatment vs control by activity vs connectivity NFT).  

Although the treatment group increased NFT target levels at the follow-up visits compared to 

baseline by 0.9 standard deviations (estimate 95% CI increase from the baseline session: treatment 

group = 0.929 (0.341, 1.518); control group = 0.186 (-0.407, 0.778)), this increase was not 

significantly different from the control group (F(1, 26.4) = 3.27, p = 0.082. Estimate 95% CI of the 

group difference across all sessions = 0.74 (-0.10, 1.59); see Figure 3A). The connectivity treatment 

group was the only group able to increase its NFT target levels at follow-up compared to baseline 

(estimate 95% CI increase from baseline across all follow-up sessions: connectivity treatment = 1.226 

(0.389, 2.063); activity treatment = 0.633 (-0.195, 1.460); activity control = 0.322 (-0.505, 1.149); 

connectivity control = 0.0492 (-0.799, 0.897); Figure 3A). However, the interaction between NFT type 

and group was not significant (F(1, 26.4) = 1.11, p = 0.30). There were no other significant effects or 

interactions (all p > 0.29). Our results suggest that although there is some evidence regarding a near 

transfer effect in the treatment group, particularly in the connectivity treatment group, it is weak 

and not significantly better than the control group.  

 

Far Transfer: Cognitive and psychomotor performance 

To assess the effect that NFT had on participants’ performance in tasks unrelated to the training (far 

transfer), we examined change from baseline after training in the composite score comprising of 

measures previously shown to be sensitive to HD progression(Tabrizi et al., 2011; Papoutsi et al., 

2018). We performed a similar mixed linear model analysis to the one described in the near transfer 

section above. The cognitive composite score was the dependent variable and the model was 

adjusted for the baseline level of the cognitive composite score. The effects of interest were the 

main effect of group and the group by NFT type interaction, which test for between group 

differences in change from baseline across all the two follow-up sessions.  

Although the difference between treatment and control groups is in favour of the treatment group 

(estimate 95% CI increase from baseline: treatment = 0.044 (-0.059, 0.146); control = -0.005 (-0.102, 
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0.091)), it is not significant (F(1, 27) = 0.63, p = 0.435) and the magnitude of the change is small 

(estimate 95% CI difference = 0.049 (-0.077, 0.175) standard deviations). There was also no evidence 

for a difference between the activity and connectivity treatment groups (group by NFT type 

interaction F(1, 27) = 0.76, p = 0.39. Estimate 95% CI increase from baseline: activity treatment 

group = 0.108 (-0.023, 0.240); connectivity treatment = -0.022 (-0.162, 0.119); activity control = 

0.006 (-0.120, 0.131); connectivity control = -0.016 (-0.161, 0.130); see Figure 3B). There were no 

other significant effects or interactions (all p > 0.18). Our results therefore do not provide any 

evidence for a significant far transfer effect of NFT.  

A detailed description of the average change in the individual scores that comprised the composite 

score is presented in the supplementary materials and can provide more insight on the magnitude of 

change in the individual tests (see supplementary Figure 5 and supplementary Table 3).  

  

Regression with Behavioural Change 

As an exploratory analysis we examined whether NFT-related measures, specifically learning slope 

and/or self-regulation ability (near transfer), predict improvement in the cognitive composite score. 

If successful upregulation has an effect on behaviour than we should see a relationship between 

increasing ones NFT target levels and improvement in behaviour after training. 

We first tested the relationship between training slope, i.e. change from the first to the last NFT 

training session, and behavioural performance at the first follow-up session, i.e. within two weeks 

from the end of training. The NFT learning slope for each participant was extracted from a random 

slope and random intercept mixed linear model testing for linear increase in NFT target levels across 

visits. To test the effect of NFT learning on behaviour, we used an ANCOVA with factors NFT target 

level slope (linear increase across NFT sessions), group (treatment vs control), NF type (activity vs 

connectivity) and their interactions. The model was also adjusted for the cognitive score at baseline 

and the dependent variable was the composite score at the first follow-up. The effects of interest 

were the main effect of learning slope and its interactions with group and NFT type. The main effect 

of learning slope tests whether there is a relationship between increase in NFT slope across training 

sessions and improvement in behaviour at follow-up across all groups. The interactions between 

learning slope and group (and NFT type), test whether there is a difference in the relationship 

between improvement in behaviour across the different groups.  

The relationship between NFT learning slope across all groups and change in the composite score 

was not significant (F(1, 23) = 2.67, p = 0.12) and negative (estimate 95% CI of change in the 
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composite score per unit increase in slope = -0.59 (-1.35, 0.16)). There was also no significant 

difference between treatment and control groups in the relationship between NFT slope and 

composite score change (F(1, 23) = 0.89, p = 0.36; estimate 95% CI of the between group difference 

= 0.71 (-0.74, 2.15)), or evidence of a positive relationship in the treatment group (estimate 95% CI 

of change in the composite score per unit increase in slope for the treatment group = -0.24 (-1.24, 

0.78); control group = -0.94 (-2.00, 0.12); see Figure 4A). All other effects and interactions were also 

non-significant (all p > 0.1).  

We then tested the relationship between volitional NFT-target upregulation ability and improvement 

in the composite score at follow-up (first and third follow-up separately). We used ANCOVA with 

factors NFT target level estimate (the difference between NFT target contrast estimates at each 

follow-up vs baseline), group (treatment vs control), NF type (activity vs connectivity), and their 

interactions. The model was adjusted for baseline performance in the composite score and the 

dependent variable was the composite score at the first and third follow-up. The effects of interest 

were the relationship between behavioural change at follow-up and self-regulation ability, as well as 

the interaction with group and NFT type.  

The relationship between NFT-target upregulation ability across all groups and change in the 

composite score was not significant for either of the follow-ups (first follow-up: F(1, 22) = 0.28, p = 

0.60; third follow-up: F(1, 22) = 0.02, p = 0.90) and almost zero in both cases (estimate 95% CI of 

change in the composite score per unit increase in slope for the first follow-up = -0.02 (-0.09, 0.05) 

and for the third follow-up = -0.01 (-0.08, 0.07)). There was also no significant difference between 

treatment and control groups in the relationship between NFT slope and composite score change 

(first follow-up: F(1, 22) = 0.56, p = 0.46; estimate 95% CI of the between group difference = 0.08 (-

0.09, 0.25); third follow-up: F(1, 22) = 0.48, p = 0.50; estimate 95% CI of the between group 

difference = 0.03 (-0.16, 0.22); see Figure 4B and 4C). All other effects and interactions were also 

non-significant (all p > 0.1).  

 

Discussion 

The present proof-of-principle study examined the use of NFT for the treatment of cognitive and 

psychomotor impairment in HD patients. For this purpose, we used two different NFT approaches 

(activity and connectivity) in a single-blind, RCT study, with yoked sham NFT control groups, an 

intensive training protocol consisting of 16 NFT trials over 4 sessions, optimized real-time fMRI 

acquisition protocol and using objective, a-priori defined, measures of cognitive and psychomotor 
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function. This enabled us to collect rigorous evidence regarding the usefulness of NFT in treating 

cognitive and psychomotor symptoms in HD. We found strong evidence of a difference between 

treatment and control groups during the NFT sessions, such that participants in the treatment group 

increased the levels of the NFT target more than participants in the control group, when receiving 

NFT. However, evidence regarding the ability of the participants to volitionally upregulate their NFT 

target levels after training was weak. It is therefore unclear whether participants learned to regulate 

their brain activity and were able to apply the learning in the absence of NFT. We also did not find 

any evidence of improvement in cognitive and psychomotor function after training in the treatment 

group, or of a relationship between NFT-learning and change in cognitive and psychomotor function.  

In more detail, we found a significant difference between treatment and control groups in terms of 

the increase of their NFT target levels from baseline. Participants in the treatment group increased 

their activity and connectivity levels from baseline by 0.74 standard deviations more than 

participants in the sham control group. This difference was present from the first training session 

until the last and we did not observe any further increase in the subsequent training sessions. This 

finding is in agreement with previous studies which have shown that participants can learn to 

regulate the target NFT levels within one visit(Hellrung et al., 2018; Kohl et al., 2019).  

It is important to note that our study was single-blind, it is therefore possible that the difference 

observed between treatment and control groups could have been because of unconscious 

researcher bias. We believe that this is unlikely, since the participants were in the MRI scanner 

during NFT and they had minimal contact with the researchers. In addition, if they were such effects, 

we would expect that they would have been more pronounced during cognitive and psychomotor 

testing, during which the researchers had longer contact with the participants. However, we did not 

find any evidence for a difference between the two groups, treatment and controls. Therefore, we 

believe that the measured difference between the two groups during NFT training reflects the effect 

of providing feedback to the participants on their NFT levels and them adjusting their behaviour 

accordingly.   

After NFT we tested participants’ ability to increase the levels of the NFT target without receiving 

neurofeedback. This way we can to test whether participants have truly learned to regulate the 

levels of the NFT target and are therefore able to upregulate without receiving NFT. Although the 

treatment group increased their NFT target levels from baseline at follow-up by 0.9 standard 

deviations, this increase was not significantly different from the control group. Our results therefore 

suggest that although there is some evidence regarding a near transfer effect in the treatment 

group, particularly in the connectivity treatment group, it is weak and at present ambiguous. 
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Furthermore, we did not find any evidence of improvement in cognitive and psychomotor function 

after NFT. To measure cognitive and psychomotor function we used a composite score comprised of 

a-priori identified, objective measures of cognitive and psychomotor function, sensitive to HD 

progression. Although the between-group difference in the change from baseline was in favour of 

the treatment group, the magnitude of the improvement was very small and clinically non-

significant representing a change of 0.05 standard deviations in the composite score. We also did not 

find any evidence that change in NFT-related measures, specifically NFT learning slope and ability to 

self-regulate, related to change in behaviour. It is therefore doubtful whether NFT, even if it was 

successful, could lead to improved cognitive and psychomotor function in HD.  

Taken together our findings are in agreement with recent studies showing a lack of clinical benefit of 

NFT using objective measures of brain activity and behaviour, despite evidence for differences 

between treatment and control groups during NFT(Schabus et al., 2017). Therefore, even if it is 

possible to train people to self-regulate using NFT, at present it is not clear whether this method, on 

its own, will lead to a clinical benefit.  

The failure to find reliable evidence of clinical benefit could be because we did not target the right 

regions or connections. In this study we used two different NFT targets, SMA activity and SMA-

striatum connectivity. The latter was selected based on our previous work which showed that 

improvement in cognitive and psychomotor function predicted increased SMA-striatum connectivity 

across NFT sessions(Papoutsi et al., 2018). In the present study, despite using the same cognitive and 

psychomotor measures as in our previous study and targeting the networks identified in our 

previous study, we did not find any evidence to suggest that SMA-striatum connectivity NFT relates 

to improvements in cognitive and psychomotor function. Therefore, we were not able to replicate 

this finding from our previous work. It is possible that other regions and connections, such as the left 

inferior parietal lobe, which have been implicated in neural compensation in HD(Klöppel et al., 

2015), could have been more appropriate. This remains to be tested.  

Finally, in our study we did not find strong evidence to suggest a difference between the two NFT 

methods, activity and connectivity. The connectivity treatment group was able to increase the NFT 

target levels at follow-up compared to baseline, however, there were no significant group 

differences. Although targeting SMA-striatal connectivity is theoretically motivated by knowledge 

regarding the disease mechanism and was identified as a potential target in our previous 

study(Papoutsi et al., 2018), we did not find any reliable evidence that it was better or worse than 

activity NFT. Both activity(Young et al., 2017; Hellrung et al., 2018) and connectivity(Megumi et al., 
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2015; Ramot et al., 2017; Yamashita et al., 2017) NFT have been used successfully in other studies, 

suggesting that both methods are effective.  

A limitation of our study is that we could not dissociate the use of connectivity NFT from the use of 

intermittent feedback. In our study, feedback was provided continuously in near real-time in the 

activity NFT group, whereas in the case of connectivity NFT, correlations were computed over 30secs 

and the feedback was presented intermittently at the end of the upregulation block. Therefore, the 

two elements, frequency of feedback presentation and NFT type, were intertwined and could not be 

separated. A previous study comparing continuous vs intermittent feedback using percent signal 

change in the amygdala in healthy young adults showed that participants were able to learn to 

increase the target NFT levels using both approaches, although intermittent feedback was more 

effective than continuous in that study(Hellrung et al., 2018). In our study we did not find any 

evidence for a difference between the two approaches.  

To conclude, in the present study we compared two different NFT approaches in HD, SMA activity 

and SMA – left striatum connectivity NFT against sham NFT control groups, in terms of learning and 

transfer. We used an RCT design and an intense, optimized real-time fMRI NFT protocol, to ensure 

that we can acquire rigorous evidence regarding the role of real-time NFT in HD. Our findings 

support previous claims that using NFT participants can be guided to increase their levels of cortical 

activity and cortico-striatal connectivity using real-time fMRI NFT. However, evidence regarding the 

transfer of learning to volitional control of brain activity and behaviour are currently weak. The 

clinical usefulness of real-time fMRI NFT in HD is therefore doubtful and at present we cannot 

recommend the use of NFT real-time fMRI as an intervention to improve cognitive and psychomotor 

symptoms in HD.  
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Table 1: Demographic Information 

 

NFT: Neurofeedback training. CAP =  normalized CAG-Age Product Score. TMS = Total Motor Score. 

TFC = Total Functional Capacity. MoCA =  Montreal Cognitive Assessment. HADS = Hamilton Anxiety 

and Depression Score 

 

 

  

 
Activity NFT Connectivity NFT 

Treatment Group Control Group Treatment Group Control Group 

Number of Participants 8 8 8 8 

Gender 6F, 2M 6F, 2M 6F, 2M 5F, 3M 

Handedness 7RH, 1LH 7RH, 1LH 7RH, 1LH 8RH, 0LH 

Age: Mean (SD) 46.4 (11.3) 50 (12.3) 52.3 (11.9) 50.1 (10.3) 

CAG Repeat Length: Median (SD) 43 (3.7) 42.5 (2.1) 43 (2.5) 43.5 (1.4) 

CAP Score: Mean (SD) 92.7 (14.2) 97.6 (11.7) 105.6 (23) 101.9 (18.3) 

U
H

D
R

S
 TMS: Mean (SD) 8 (12.7) 8.5 (4.3) 9 (10.1) 11.5 (14.1) 

TFC: Mean (SD) 11.6 (1.5) 12.5 (1.1) 12.5 (0.5) 11.6 (1.9) 

MoCA: Mean (SD) 26.1 (4.2) 27.6 (1.1) 25.4 (3.3) 25.5 (3.0) 

H
A

D
S
 Anxiety: Mean (SD) 4.0 (2.3) 3.5 (3.9) 4.3 (3.3) 4.6 (4.9) 

Depression:  Mean (SD) 1.8 (0.7) 1.9 (1.9) 3.6 (4.8) 3.6 (3.0) 

Composite Score: Mean (SD) -0.52 (0.75) -0.21 (0.37) -0.82 (0.67) -0.95 (1.33) 
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Figure Legends 
 

 

Figure 1: Diagram of study structure. PMCS = Prospective motion correction system. UHDRS TMS = 

Unified Huntington’s disease Rating Scale Total Motor Score. NFT = Neurofeedback training. 

 

Figure 2: Learning effects in activity and connectivity NFT. (A) and (B) Heat maps showing the 

location and overlap of the target ROI across all participants in the activity and connectivity NFT 

groups respectively. Maps are superimposed on a group average MT image. (C) Change from 

baseline in the target NFT levels across all training sessions per subject (dotted lines). The group 

mean per session is shown with thick continuous lines. Shown in red (group mean) and orange 

(individual participants) is the treatment group, whereas shown in black (group mean) and gray 

(individuals) is the control group collapsed across both types of NFT. (D) Dot plots show the change 

in NFT target levels from baseline across all NFT sessions for the four subgroups: activity treatment 

group (red circles), connectivity treatment group (green circles), activity control group (black 

squares) and connectivity control group (blue squares). The horizontal gray lines in the dot plots 

show the baseline, data points above this line represent an increase compared to baseline. The small 

squares and circles are the individual data points, whereas the larger squares and circles show the 

adjusted mean group effects. Error bars are 95% CI. 

 

Figure 3: Near and far transfer effects. (A) Dot plots show the change in NFT target levels from 

baseline across the 3 follow-up sessions for the four subgroups: activity treatment group (red 

circles), connectivity treatment group (green circles), activity control group (black squares) and 

connectivity control group (blue squares). (B) Dot plots show the change in the behavioural 

composite score from baseline across the 2 follow-up sessions for the four subgroups (same colour 
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coding as above). The horizontal gray lines in both plots show the baseline, data points above this 

line represent an increase compared to baseline. The small squares and circles show the individual 

data points, whereas the larger squares and circles show the adjusted mean group effects. Error bars 

are 95% CI. 

 

Figure 4: Relationship between change in the composite score and change in NFT target levels. (A) 

Regression lines plot the relationship between change in the composite score at the first follow-up 

from baseline and change in NFT target levels from the first to the last NFT training visit adjusted for 

baseline levels. Shown in (B) is the relationship between change in the composite score at the first 

follow-up from baseline and change in NFT target levels at the first follow-up session compared to 

baseline. Shown in (C) is the relationship between the same measures as in (B), but for the third 

follow-up. Regression lines and 95%CI for the treatment (red) and sham control (black) groups are 

averaged across both NFT type groups.    
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