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Abstract 

Species vulnerability to climate change has been inferred using species distribution 

models from an example of the recently discovered Magnolia mercedesiarum (sect. Talauma, 

Magnoliaceae), a narrowly ranged species endemic to moist tropical forests in the eastern 

Ecuadorian Andes. The environmental conditions within the current species distribution area has 

been compared with conditions projected to 2050 and 2070, using data from the HadGEM2-ES 

model in two CO2 emission scenarios: RCP4.5 and RCP8.5. The ecological niche modelling 

allowed determination of parameters of climatic environmental conditions that control current 

species distribution to produce a hypothesis on probable changes in spatial pattern of suitable 

habitats in future scenarios. Within the current species distribution area of M. mercedesiarum, 

significant reduction of habitat suitability was projected for both emission scenarios, combined 

with a lack of nearby areas with adequate environmental conditions. Several disjunct sites of 

high habitat suitability were found to emerge in the Colombian Andes, but they seem 

unreachable by this tree species in the scope of a few decades, due to intrinsic dispersal 

limitations. The reduction of habitat suitability and improbability of distribution area shift to 

adjacent geographic locations could mean a high species vulnerability to climate change. The 

species could be at risk of extinction if it does not possess hidden phenotypical plasticity and 

potential for fast adaptation to climate change. 
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Introduction 

Magnolia mercedesiarum D. A. Neill, A. Vázquez & F. Arroyo (subsect. Talauma, 

Magnoliaceae) is a broadleaf evergreen tree (Fig. 1), naturally occurring in the moist tropical 

mountainous forests in the eastern slopes of the Andes in Ecuador. As stated in Vázquez-García 

et al. (2018), this species is currently known from only four localities in the Napo and Sucumbíos 

Ecuadorian provinces and has an extremely narrow distribution range; thus, it fulfills the 

International Union for Conservation of Nature (IUCN 2012) Red List criteria B1 ab (i, ii, iii) for 

an endangered (EN) species.  
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The aim of this study is to analyze the vulnerability of M. mercedesiarum to climate change 

predicted for the next decades in selected scenarios influenced by anthropogenic greenhouse gas 

emissions.  

The species vulnerability is understood in geographic terms as being inversely 

proportional to the extent of reachable suitable habitat and is directly related to probable 

diminution of distribution area. The tree population size in given constant biotic conditions is 

expected to be directly proportional to the size of the area with appropriate abiotic habitat 

conditions or, in other words, to its projected fundamental niche. Both population size and area 

of occupancy of species are included as criteria for evaluation of species vulnerability and 

conservation status (IUCN, 2012). The analysis of species vulnerability is addressed through: a) 

comparing climate conditions in M. mercedesiarum current distribution area with conditions 

predicted in climate change scenarios to visualize changes in temperature and precipitation as 

envelope climatic conditions; b) developing the species distribution model for M. mercedesiarum 

on current environmental conditions; c) producing projections of probable pattern of suitable 

habitat in climate change scenarios across northeastern South America, and forecasting the 

change in species distribution in areas adjacent to current presence locations; d) evaluation of the  

species potential to reach the disjunct areas with potentially suitable habitat, by considering 

dispersal constraints shared within Neotropical Magnolia.  

Hutchinson’s (1957) contribution to the theory of ecological niche made possible 

development of ecological niche models in environmental factors space, which is crucial for 

correlative species distribution modelling. Correlative models seek to relate species observations 

with potential environmental predictors to produce a hypothesis on species ecological niche in 

the form of statistical response surfaces and further prediction of its potential or real distribution 

(Franklin & Miller, 2009; Guillera-Arriota, 2017). Modern methods of predictive species 

distribution analysis strongly rely on Hutchinson’s niche–biotope duality, by including implicit 

reprojection of observations and predictions between environmental and geographic spaces 

(Colwell & Rangel, 2009). The ecological niche model can be inferred in the environmental 

space by statistical or machine learning methods, that typically include some grade of 

extrapolation in the environmental factors space (Mesgaran et al., 2014). Niche models are used 

to make projections to geographical space, not only to reconstruct the current species 

distribution, but to make assumptions on probable past or future distributions in case the 

environmental predictors are available for past of future conditions (Guisan & Thuiller, 2005; 

Elith & Leathwick, 2009). The particular question of usefulness of envelope SDMs based on 

climatic predictors, known as bioclimatic envelope models, was addressed in Araújo and 

Peterson (2012), who emphasized the need to explicitly state the assumptions about species 

ecological niches and put the results of SDM into a clear conceptual framework to avoid 

confusion during their interpretation and understand prediction limitations.  

The hypothetical potentially abiotically-suitable area and area of true species distribution 

were recognized by Hutchinson (1978), correspondingly, as fundamental and realized ecological 

niches. As stated by Soberón and Nakamura (2009), these are different entities that correspond to 

actual and potential distribution areas. According to these authors, the fundamental niche is the 

fraction of the environmental space of scenopoetic variables for which the intrinsic population 

growth rate of a species would be positive. The geographic space where such scenopoetic 

conditions actually occur in, in a given region and time, can be projected to environmental space 

as potential species niche, being a smaller subset of the fundamental niche. This fraction of 
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geographic space has suitable abiotic habitat conditions for species distribution. The realized 

niche is the subset of the potential niche that corresponds to the fraction of geographical space 

that the species actually use in specific time, being able to reach it by dispersion and after 

considering the effect of biotic interactions. Pulliam (2000) considers that areas that correspond 

to a realized niche could be geographically larger than those for the fundamental one, due to 

constant immigration of individuals from the source areas with suitable habitat conditions into 

closely located sink areas, where environmental conditions are less suitable, and incompatible 

with indefinite species persistence in the absence of immigration. The process for bioclimatic 

envelope modelling includes production of the fundamental niche model in the environmental 

space, and further rendering of a potential niche in actual geographic space for a given time 

instant, defining, in this way, areas with habitat abiotic conditions potentially suitable for species 

presence. The actual possibility of species occurrence in this area cannot be obtained in this 

manner because it additionally depends on dispersal, disturbance, resource and biotic factors that 

can be modelled by means other than bioclimatic envelope modelling (Guisan & Thuiller, 2005).  

It should be clarified that the reprojections between models constructed in a hypervolume 

of environmental factors and geographic space are particularly useful to deal with a Grinnellian 

niche that depends on scenopoetic variables at a coarse scale (Soberón, 2007). Scenopoetic 

variables could be defined as environmental conditions favorable for survival and reproduction 

of individuals linked to specific geographic locations, which cannot be easily consumed or 

altered by individuals, such as topographic, climatic or edaphic parameters. The spatial 

resolution is important for the reason that during the analysis at coarse resolution, the effect of 

biotic interactions, competition for resources, and other local bionomic variables is effectively 

averaged within the grid cells, so the scenopoetic variables could retain considerable predictive 

value in niche modelling. The climatic regulators are likely to control gradual distribution 

patterns over a large geographic extent, while a patchy species distribution observed in fine 

resolution is related to patchy availability of resources and patterns of other bionomic variables 

driven by local topography and habitat fragmentation (Guisan & Thuiller, 2005). The reduction 

of bionomic variable importance in coarse resolution is known as the Eltonian noise hypothesis 

(Soberón & Nakamura, 2009), that allows development of ecological niche models and related 

SDM without considering biotic interactions at the local scale. Here, we follow such a hypothesis 

by explicitly excluding resource factors and biotic interactions at the selected spatial scale of 

analysis. 

The application of Hutchinson’s duality principles to predict species distributions requires 

assuming the hypothesis of ecological niche conservatism in application to Grinnellian niches 

both in spatial and temporal scales (Soberón 2007). The ecological niche conservatism as 

discussed in Peterson (2003) and Wiens et al. (2010) looks reasonable in the scope of a few 

generations or over short periods of time when evolutionary effects in ecological niches could be 

minor. The review of options available for plant species’ niche evolution is given in Donoghue 

and Edwards (2014), who link the probability of species to adapt to new climatic conditions with 

its geographic opportunity to disperse, ecological interactions with another species, and intrinsic 

proclivity of species to evolve along the climate axis. The examples of species shift to novel 

biomes known from several plant linages demonstrates the potential possibility of drastic niche 

evolution in plant species, including trees, but available data demonstrate that such shifts could 

occur in the scope of geologic time scales. Although the capacity of species to adapt to new 

conditions that is related to evolutionary changes in ecological niches can be important in long 

time periods, it lies out of the scope of simple SDM without explicit simulation of evolutionary 
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processes. Here, we follow the hypothesis that the fundamental niche of species is conserved in 

temporal frames of a few generations and the inherited physiological tolerances of species to 

environmental factors are conserved in the entire spatial and temporal scope of analysis (Araújo 

& Peterson, 2012). This is a required assumption for SDM that explicitly uses niche–biotope 

duality. 

Another assumption referred to as the equilibrium postulate, is necessary for development 

of reliable ecological niche models, predictive modelling, and forecasting (Araújo & Peterson, 

2012). The equilibrium postulate can be formulated as a requirement of absence of hidden 

phenotypic plasticity that is not expressed in observed species adaptation to current 

environmental conditions; in other words, species are assumed to fully reveal their ecological 

potential and stay in equilibrium with their environment (Colwell & Rangel, 2009). The species 

are expected to inhabit the entire spatial footprint of suitable habitat conditions (Araújo & 

Peterson, 2012). The last factor is frequently seen as problematic since dispersal and biotic 

factors could constrain the possibility of species establishment in some areas. The distribution of 

species occurring in the environment that experience fast changes could be strongly controlled 

by dispersal constraints, and such species my not reach equilibrium with their environment in the 

current moment (Guisan & Thuiller, 2005). In a situation when the species distribution does not 

reach the state of equilibrium with its environment, the inferred SDM may underrepresent the 

environmental conditions suitable for species existence. Partially, the equilibrium postulate is 

resolved by the Eltonian noise hypothesis that places the biotic interactions to the local scale, 

beyond the spatial resolution of SDM. The leading role of dispersal constraints in a definition of 

possibility for species to occupy the available habitat is discussed in Ozinga et al. (2005). It 

could be assumed that dispersal constraints represent the main factor preventing plant species 

from achieving full equilibrium with the current abiotic environment, on the coarse and medium 

scale of analysis. 

The issue with underrepresentation of the environmental conditions in SDM produced 

from incomplete data or for species not fully in equilibrium with its environment can be resolved 

through extrapolation, which consists of model extension into novel regions of covariate space 

that are not represented in known presence data (Elith & Leathwick, 2009). The extrapolation is 

an immanent part of any statistical or machine learning modelling method, however the grade of 

extrapolation required to produce a predictive model is higher when not enough occurrence data 

are available, or the occurrence data are biased. The extrapolation into novel covariate space 

cannot be avoided, particularly in the case of model transferability in time and space; instead, the 

grade of extrapolation can be measured by several methods to address the related uncertainty 

(Elith et al., 2010; Mesgaran et al., 2014). 

 

Methods 

Changes in environmental parameters in species’ current distribution area 

The probable current distribution area of Magnolia mercedesiarum was accepted from 

Vázquez-García and co-workers’ (2018) estimation, based on SDM with conservative equal 

sensitivity and specificity (ESS) threshold (Appendix S1 and Supporting Information Data S1, 

S2). Considering that the current study does not propose to discover the actual species 

distribution, which is already known, but rather aims to provide information on probable 

distribution change in climate change scenarios, we take Vázquez-García and colleages' data as 
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known true species distribution and use this to produce the SDM suitable to develop predictions 

of future distribution. Instead of configuring the model in a base of a few known presence 

localities for M. mercedesiarum, which could be biased due to an incomplete and spatially 

uneven set of field observations, we use the simulated presence points within a previously 

estimated distribution area. We prefer simulated presence data to known species observation 

localities because the latter could be spatially biased, spatially autocorrelated, and incomplete 

because the number of known separate localities of species presence is as few as four. The 

geographic sampling bias can have severe effects in SDM performance and results and can be 

difficult to correct (Fourcade et al., 2014). To sample the environmental variability in probable 

current distribution area, we had drawn 500 uniformly distributed random points within the 

presence grid cells. For the SDM process, this set was split into ten equal size folds for use in 

cross-validation replications, required for assessing model generality (Merrow et al., 2013). By 

introducing random sampling within the current distribution area, we simulate the uniform 

sampling effort, and therefore satisfy an assumption of uniform initial probability of grid cell 

selection for SDM training (Phillips et al., 2009).  

The background point selection for SDM has been performed following the 

recommendations of Barbet-Massin et al. (2012) and Merrow et al. (2013), defining half of the 

randomly distributed background points within the probable dispersal radius of 500 km, and the 

rest of background points uniformly distributed across the entire extent of the terrestrial 

environment of the modeling area in northwestern South America. The overall number of 900 

background points in each replication provide a reasonable representation of the environmental 

variation in the modelling area. The background points in presence only methods may include 

both true and false absences, thus representing biased absence data, with contribution of false 

absences that depend on species prevalence (Engler et al., 2004). Consequently, the use of 

background data for model evaluation cannot produce reliable results when the true species 

distribution is known. For model evaluation in this study, the background points outside of the 

known current distribution were counted as true absences, but all background points inside of the 

species presence area were excluded. The test presence points were defined by merging of two 

50-point folds, different from the training points fold, to ensure test independence and a presence 

prevalence greater than 0.1; this process was repeated for each cross-validation replication. 

The environmental information for current conditions was extracted from the WorldClim 

ver. 2 dataset (Fick & Hijmans, 2017), and includes mean monthly rainfall, minimal and 

maximum monthly temperatures at 30″ resolution grids (~1 km at latitude of analysis). These 

data derive from meteorological observations during 1970 –2000 linked to a digital elevation 

model and represent average conditions that existed in sites where currently growing adult 

Magnolia tree individuals had successfully established. The temperature data were statistically 

downscaled to 7.5″ (~250 m) resolution by two variable polynomic regressions from elevation 

and latitude; elevation was taken as median grid cell elevation from the GMTED2010 digital 

elevation model dataset (Danielson & Gesch, 2011). The rainfall data were resampled to 7.5″ 

resolution using a cubic convolution algorithm, controlling the absence of negative values. The 

set of 19 bioclimatic predictor variables (Nix, 1986; O’Donnell & Ignizio, 2012) was produced 

from rainfall and temperature data with the R ‘dismo’ package (Hijmans et al., 2017) as 

continuous floating-point layers. The selection of climatic predictors as a primary source of 

environmental data for model development is due to their importance in defining the coarse-

grained features of distributions (Soberón & Nakamura, 2009; Araújo & Peterson, 2012) and 

availability for both current and projected future conditions. 
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The future condition projections in climate change scenarios were selected from products 

of the Hadley Global Environment Model 2 – Earth System (Martin et al., 2011) compatible with 

the Coupled Model Intercomparison Project Phase 5 [CMIP5] (Taylor et al., 2011). According to 

Collins et al. (2013), the simulations in CMIP5 framework follow four representative 

concentration pathway [RCP] scenarios, which correspond to target CO2 concentrations. For the 

analysis of Magnolia mercedesiarum vulnerability, we selected two scenarios, the moderate 

RCP4.5 and extreme RCP8.5. The monthly rainfall and temperature data for both scenarios are 

available for the years 2050 and 2070 in the WorldClim database at 30″ resolution grids 

(WorldClim, 2017). The downscaling procedure to 7.5″ grid and generation of 19 bioclimatic 

predictors was similar to those for current conditions.  

The environmental change in current distribution area has been visualized by graphical 

comparison of sampled monthly minimum and maximum temperatures, rainfall, and 19 

bioclimatic predictors, including current (1970–2000) data and future conditions in two scenarios 

projected for the years 2050 and 2070 (code in Supporting Information Data S3). The median, 

interquartile range, and outlier-excluded range for each variable has been represented as boxplot 

figures. The predictor variables are expected to be non-normally distributed, hence the 

significance of difference in its medians was tested in pairs between dates and scenarios by a 

Mann-Whitney U test with a significance level of 0.05. The null hypothesis that both samples 

belong to the same distribution with the same median is rejected in this test if U statistics are 

lower than the critical value for the selected sample size and significance level. The alternative 

hypothesis of significant differences between sample medians is accepted instead. 

Species distribution modelling 

Breiman (2001) identified two main paradigms in statistical modelling: the first based on 

selecting the appropriate data model prior to model fitting, and the second that avoids starting 

with a defined data model but determining the relation between predictors and response variables 

during the algorithmic model selection and fitting process. The second approach, termed 

machine learning, has gained popularity in ecological modelling during the last two decades 

(Elith et al., 2008; Franklin & Miller, 2009). Among the machine learning methods available for 

SDM appears MaxEnt (Phillips et al., 2006), random forests (Breiman, 2001a), boosted 

regression trees (Elith et al., 2008), multivariate additive regression splines (Friedman, 1991), 

artificial neural networks and support vector machines, the latter two methods being discussed in 

Hastie et al. (2009). The performance of machine learning methods is generally better than that 

of techniques based on non-penalized regressions, envelopes, or multivariate distances (Elith et 

al., 2006). However, there is no single machine learning algorithm that performs better in all 

SDM cases. Here, we use the popular MaxEnt algorithm because it frequently outperforms other 

presence-only machine learning SDM methods, particularly when the sample size is small and is 

derived from observations obtained opportunistically (Elith et al., 2006; Ortega-Huerta & 

Peterson, 2008). In Mateo, Croat, Felicísimo, and Muñoz' (2010) a study of Anthurium species 

distribution in Ecuador, MaxEnt was the presence-only technique that demonstrated performance 

similar to the two best presence-absence methods (generalized linear models and multivariate 

additive regression splines). Giovanelli et al. (2010) demonstrated that MaxEnt and support 

vector machines methods produce consistent predictions for distribution of spatially restricted 

species using calibration areas of different size with higher accuracy compared to several other 

SDM methods. The analysis of Aguirre-Gutierrez et al. (2013) reveals lower propitiousness of 

the MaxEnt algorithm to produce overfitted models, comparing with other widely used machine 
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learning methods such as random forests, boosted regression trees, and artificial neural networks. 

In their analysis, the MaxEnt algorithm (along with two other methods) provided an advantage in 

terms of performance and consistency of predictions, which was particularly evident in the case 

of narrow and moderately wide distributions represented by sample sizes from a few up to 1700 

observations, at fine and medium geographic scales with grid cells from one to several km². The 

model overfitting is a sensible issue, because it can severely reduce the transferability of SDM in 

space and time (Randin et al., 2006). Among the causes of MaxEnt’s good performance with 

small training sets is its integrated regularization procedure that balances model fit and 

generality, resulting in a gradual increase of mathematical complexity when more data are 

available, reducing in this way the risk of overfit (Phillips & Dudík, 2008; Hastie et al., 2009; 

Elith et al., 2011). However, some concerns about the use of MaxEnt (e. g. from Halvorsen et al., 

2016) are related to its susceptibility to spatial autocorrelation in a response variable, which is 

not fully understood, and its tendency to produce overfitted models when modelling is performed 

with default feature selection and regularization settings and is derived from a high number of 

presence points. Although MaxEnt’s primary purpose is to treat presence-only data, its use for 

presence-absence can be justified when presence-background and presence-absence models are 

compared. The models generated with specialized presence-absence methods could be very 

different from those which rely on presence-only methods, even when they a based on the same 

presence data (Mateo et al., 2010), and compatibility can become an issue. Accordingly, MaxEnt 

remains one of the best available machine learning methods that can be effectively tuned to work 

both with presence-background and presence-absence data (Philips & Dudík, 2008), considering 

that its results remain different from those of statistical presence-absence methods because 

MaxEnt does not estimate the species presence probability, but the relative habitat suitability 

(Guillera-Arriota et al., 2014).  

The SDM has been performed using MaxEnt 3.4.1 (Phillips et al., 2006, 2017) in the R 

‘dismo’ environment (code in Supporting Information Data S4). The cross-validation workflow 

included producing ten correlative model replications based in the background and presence data 

with a prevalence of 0.1 in each case, following the recommendations of van Proosdij et al. 

(2016). The full set of 19 bioclimatic predictors for current conditions (coded as “bio1” to 

“bio19”) and mean elevation (“alt”) were included in the regularization and model selection 

process. We found no a priori reason to exclude any environmental predictor from modeling but 

decided to use only linear and quadratic features for production of derived predictors. The hinge, 

product, and threshold features were excluded to prevent model overfitting and improve its 

interpretability. The inclusion of product and hinge features may lead to model overfitting 

observed by Harlovsen et al. (2016) under default feature selection settings, when each 

environmental variable is transformed to six feature types, prior to model selection, and the 

selection algorithm tends to produce a very complex model in terms of number of parameters. 

Elith et al. (2011) note that hinge features, which could be available with at least 15 presence 

points, can lead to linear and threshold features becoming redundant. Finally, product and hinge 

features may produce response curves that are not consistent with theoretically expected 

unimodal or truncated unimodal forms (Oksanen & Minchin, 2002). We use the lax 

regularization parameter of 0.193 both for linear (βL) and quadratic (βQ) features. We had not 

performed separate stepwise selection of predictors because the MaxEnt algorithm uses an 

effective mechanism of feature shrinkage referred as the LASSO penalty (Tibshirani, 1996) and 

produces sparse solutions by setting variable coefficients to 0 in case of poor variable 

contribution, and thus, performs the model selection by itself (Merrow et al., 2013). This feature 
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selection is effective, more stable than stepwise regression for correlation of predictors, and 

unlikely to be improved by pre-selecting variables (Elith et al., 2011). The proposal of Halvorsen 

et al. (2016) to use forward variable selection, instead of the LASSO penalty mechanism of 

MaxEnt, is derived from the study of a special case, when six feature types with default 

regularization settings were used on correlated predictor variables and requires further testing to 

be accepted as universally applicable. 

The most common measure of the overall discriminatory capacity of SDMs is the area 

under the curve (AUC) of the receiver operating characteristic (Fielding & Bell 1997; 

McPherson et al., 2004). The AUC is threshold independent and near independent from 

prevalence of presences, although a prevalence below 0.1 can result in inflation of its values 

(McPherson et al., 2004). According to Manel et al. (2001), the AUC values above 0.9 can be 

considered high in terms of the model performance in discrimination between species presences 

and absences. The theoretical maximum value of AUC is 1, which can be obtained in a test with 

known presence and absence data that are independent from training data and referred to here as 

real AUC (Jiménes-Valverde, 2012; Halvorsen et al., 2016). This metric differs from the train 

AUC that can be estimated from presence and background dataset used in model training. The 

maximum attainable train AUC value is expected to have a value lower than 1 because it 

depends on the fraction of the geographical area of interest covered by true species distribution, 

and decreases with the number of presence records, given the fixed number of background points 

(Bean et al., 2012; van Proosdij et al., 2016).  

This process occurs because part of the background points may actually correspond to 

presences, and the fact MaxEnt appends presence points to the background dataset during AUC 

calculation (Phillips et al., 2006; Elith et al., 2011). In this study, we treat the probable current 

distribution of M. mercedesiarum taken from Vázquez-García et al. (2018) as the known realized 

distribution of species, therefore, in model evaluation, we deal with true presences and absences 

suitable for real AUC calculation. In this way, we determine the real AUC for model prediction 

in current conditions without violation of the underlying theory that requires use of true absences 

in model evaluation (Lobo et al., 2007; Jiménez-Valverde, 2012). We determine the real AUC 

value independently in each model replication, accessed mean model AUC and its standard 

deviation, along with the receiver operation characteristic plot. Additionally, we rank the real 

model AUC in a null-model test with presence and absence data (Olden et al., 2002; Raes & ter 

Steege, 2007). The significance of the inferred model is accessed by comparison with a set of 99 

random models derived from permutated training points, to check the null hypothesis that the 

model is no better than those which can be obtained by chance. To reject the null hypothesis with 

a significance level of 0.05, the real model AUC rank is expected to be higher than 95. 

Additionally, we evaluated the correlation between known data and model predictions, as the 

measure of significance of their relationship. The correlation between monotonous function of 

species presence probability and known presence-absence data could be assessed through 

Spearman’s rank correlation coefficient, which is in our case was preferred to Pearson’s product-

moment biserial correlation because it avoids the assumption of linear relationships between two 

variables (Phillips et al., 2009). Spearman’s correlation coefficient does not consider real 

probability values, but their ranks, hence it is not sensible for precise calibration of presence 

probability, and thus can be used with non-calibrated logistic output of MaxEnt. 

The threshold is required for transformation of continuous SDM output to presence-

absence results. Such a threshold in the case of the logistic model output cannot be fixed to 0.5 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/482000doi: bioRxiv preprint 

https://doi.org/10.1101/482000
http://creativecommons.org/licenses/by-nd/4.0/


9 
 

because the presence probability distribution typically is skewed (Bean et al., 2012). We use the 

conservative criteria of threshold selection described by Liu et al. (2005) as the sensitivity and 

specificity equality approach. The ESS threshold is determined as a point in receiver operating 

characteristic curve where the absolute difference between sensitivity and specificity is minimal, 

weighting equally the commission and omission errors. This threshold criteria have been shown 

to be robust and insensitive against the modeling technique (Jiménez-Valverde, 2012). The ESS 

threshold was determined in each model replication from the same point dataset that is used for 

the receiver operation characteristic estimation. Sensitivity and specificity were reported to 

demonstrate the application of the ESS and assess the relative importance of model omission and 

commission errors as recommended by Lobo et al. (2007). True skill statistics (TSS) is a reliable 

threshold-dependent method of model evaluation, which integrates the effects of both sensitivity 

and specificity, and is negatively correlated with prevalence (Allouche et al., 2006). The TSS 

value was estimated for each replication and the mean TSS with its standard deviation is reported 

as another general model evaluation metric. 

The mean logistic output from model prediction in ten cross-validation replications was 

interpreted as monotonously increasing function of the relative habitat suitability for species 

presence in grid cells (Philips & Dudík, 2008; Phillips et al., 2009). The produced logistic output 

is monotonously related with another two available MaxEnt output types and yields the same 

results in ranked comparison of spatial grid cells, although it deviates from the true species 

presence probability because the last requires the adjustment of the model parameter tau 

responsible for precise calibration of the probability curve (Elith et al., 2011). The logistic output 

was transformed to the estimation of realized distribution of the species in current conditions by 

application of the ESS threshold, independently in each model replication.  

Forecasting of the species distribution in future scenarios  

In order to produce predictions of species potential distribution, the set of ten models 

inferred in cross-validation replications for current conditions was reconfigured with projected 

environmental predictors. The substitution of predictor variables results in model transfer to a 

novel environment and is possible when the new dataset uses the same grid resolution, data type, 

and ranges of values as data in the initial configuration of the correlative model. The usefulness 

of such an approach has been demonstrated in several studies (e. g. Pearson & Dawson, 2003; 

Bertzky et al., 2005; Huntley et al., 2008; Randin et al., 2009; Franklin et al., 2013; West et al., 

2015). A set of logistic output grids produced in forecasting was treated in the same way as for 

current conditions, applying ESS threshold independently in each model replication. 

The species potential distribution dynamics in climate change scenarios has been 

evaluated by two methods. Within the current species distribution area, the ESS threshold was 

applied independently in ten model replications both for current and future scenarios to 

determine the number of grid cells and area suitable for species presence in each case. The area 

classified as suitable for species presence within a 10 km distance to known current distribution 

was included in the evaluation to address the model uncertainty. The habitat loss estimation 

consisted of subtracting the count of suitable cells in future scenarios from the count of suitable 

cells in current conditions predicted by the model, normalized by a count of cells in current 

conditions. In another approach, we estimated the overall size of suitable habitat in western 

South America by applying the ESS threshold in model replications for future conditions and 

taking the predominant value from presence-absence grids. The grid cell was considered to have 
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a potentially suitable habitat in the given scenario if the majority of model replication had a 

logistic output value above the corresponding threshold.  

To address the degree of model extrapolation into novel areas of environmental factors 

space, we follow the framework described in Mesgaran et al. (2014). The extrapolation is 

defined by these authors as a condition when the model produces predictions outside of the 

training range of individual covariates (type 1 novelty) or lies within ranges but constitutes novel 

combinations between covariates (type 2 novelty). The novelty detection in multivariate space is 

performed by generation of indices derived from scale-invariant Mahalanobis distance 

(Rousseeuw & van Zomeren, 1990). The ExDet ver. 1.1 tool (Mesgaran et al., 2014) allows 

detection of types 1 and 2 novelties by comparison of environmental space in a known species 

distribution area and in model projections, as well as to assess the contribution of environmental 

predictors in terms of novelty. The detection of extrapolation was performed within the areas 

identified by SDM as potentially suitable for species presence by majority criteria both for 

current and future conditions. The analysis of extrapolation in this study includes environmental 

factors with a contribution higher than 2% in the model covariate structure. 

The species modelled presence probability in the current distribution area has been 

compared with the predicted for future scenarios using same sampling as in the receiver 

operation characteristic estimation. The species presence probability in current and future 

conditions data were united from ten replications to be visualized as boxplots. Similarly, to 

climatic predictors, the significance of difference between species presence probabilities was 

tested by mean of Mann-Whitney U test with a significance level of 0.05. 

Evaluation of species distribution ranges 

The objective of evaluation of the dispersal potential of Magnolia mercedesiarum was 

addressed by comparison of current distribution ranges of representatives from section Talauma 

of Magnolia from northwestern South America. We assume that the dispersal characteristics of 

members of section Talauma are shared by the majority of its species, including M. 

mercedesiarum, and can be indirectly estimated by evaluating the size of current individual 

species’ ranges. The comparison of M. mercedesiarum distribution range with the rest of 

Magnolia could help to identify the probable evolutionary regime of dispersal for this species. 

The extents of Magnolia species range from Colombia (García, 2007) and Ecuador (Vázquez-

García et al., 2016) were estimated by measuring the maximum Euclidean distance between 

observation points within each species, which is possible if taxa are known from more than one 

locality. The additional observations for given species were taken from the GBIF (2018).  

 

Results 

Changes in environmental parameters in species’ current distribution area 

The current distribution of Magnolia mercedesiarum of 2701 km2 taken from Vázquez-

García et al. (2018), as shown in Fig. 2, was found to lie in the elevation range of 1075– 2576 m 

above the sea level; 90% of presence points are restricted to 1237–2264 m, with a median at 

1736 m according to the GMTED2010 dataset. In a comparison of downscaled climatic 

conditions in 1970–2000 (WorldClim 2) and similarly downscaled future conditions in 

projection of the HadGEM2-ES model under RCP4.5 and RCP8.5 emission scenarios for all 

monthly temperature values, we detected an increase in the median (Fig. 3A, 3B, 4A, 4B). The 
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monthly maximum temperature increase rate was lowest in the RCP4.5 scenario comparing 

current conditions with 2050 projections, ranging from 1.09°C in September to 1.59°C in April, 

while the monthly maximum temperature increase in the same scenario in 2050 is in the range 

from 3.05°C in July to 3.97°C in September. The RCP8.5 scenario corresponds to a faster 

temperature change, in this case the minimal monthly temperature increases for 2050 from 

1.61°C in September to 2.10°C in April, while the monthly maximum temperature increase is as 

high as 3.69°C in July and 4.64°C in October. In both scenarios, the projection for 2070 

demonstrates a further increase of temperature. The Mann-Whitney U test allowed to reject the 

null hypothesis in all temperature comparison cases, including comparison of current conditions 

with projections for 2050 and 2070, and comparison between 2050 and 2070 data, indicating the 

statistical significance of the temperature increase (Fig. 5, 6).  

The rainfall change in species current distribution area is not particularly straightforward. 

The rainfall projections for years 2050 and 2070 generally have augmented spatial variability in 

comparison to current WorldClim 2 data and increase in absolute values of monthly rainfall from 

current conditions to 2050 (Fig. 3C, 4C, 5, 6). In the RCP4.5 scenario, the increase of the median 

of monthly rainfall between actual conditions and projection to 2050 was significant for all 

months, varying from 4.97 mm in October and to the highest value of 93.65 mm in August. 

When comparing actual rainfall with 2070 projections, a significant increase was found in all 

months except October; the increase is from 8.7 mm in April to 93.76 mm in August. The 

monthly rainfall increase in the RCP8.5 scenario is generally higher, with the exception of 

October, when we did not observe a significant change between actual and projected 2050 

values. The lowest rainfall increase between actual and 2050 conditions was observed in April 

(20.05 mm) and the highest in August (96.61 mm), and when looking for changes from actual 

conditions to 2070 projections, it varies from 6.87 mm in September to 125.59 mm in August, 

with diminution of rainfall median in October (35.37 mm less). The annual rainfall (predictor 

BIO12) is significantly higher in future projections comparing with WorldClim 2 data, with a 

median of 2728 mm in 1970–2000, predicted 3379 mm (RCP4.5) or 3201 mm (RCP8.5) in 2050, 

and 3255 mm (RCP4.5) or 3293 mm (RCP8.5) in 2070. 

The comparison of 19 bioclimatic predictors within the current distribution of M. 

mercedesiarum had shown significant differences between current conditions and projections for 

future scenarios for all variables (Appendix S2: Fig. S1, S2).  

Species distribution modelling in current conditions 

The species relative habitat suitability produced in ten SDM cross-validation replications 

for current conditions appears to be strongly correlated with source distribution of M. 

mercedesiarum, represented by presence and absence points, as indicated by the mean 

Spearman’s rank correlation coefficient of 0.447. The correlation was highly significant because 

p-values were much lower than 0.05 in all replications. In threshold independent model 

evaluation, the mean real AUC value was 0.948 between ten replications, which can be 

interpreted as high overall ability of discrimination between species presence and absence. The 

null-model AUC rank test with the model real AUC located at the highest position for all 

replications demonstrated that the species is not independent from the used environmental 

predictors, and the inferred model is significantly better than by chance models with given 

presence prevalence (Fig. 7A). 
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The number of significant predictors selected by the LASSO process in independent 

model replications varied from 14 to 17. The analysis of generality of predictor contributions 

allowed to identify nine variables (“bio3”, “bio5”, “bio6”, “bio10”, “bio12”, “bio15”, “bio18”, 

“bio19” and “alt”) with non-zero contributions in all model replications; the same predictors 

demonstrated mean importance in permutations higher than 2% (Fig. 8). Six predictors from this 

list (“bio3”, “bio6”, “bio15”, “bio18”, “bio19” and “alt”) were found to contribute more than 2% 

each, and the sum of mean contributions for these six variables was estimated as 94.04%.  

The ESS threshold individually adjusted from the receiver operating characteristic curve in each 

model replication for current conditions varied from 0.360 to 0.518, with a mean value of 0.446 

(Fig. 7B). The mean sensitivity and specificity values used in threshold estimation were 

correspondingly 0.906 and 0.905. The overall model performance under the selected threshold 

measured as TSS varied from 0.802 to 0.818, with a mean value of 0.811 (Fig. 7C). The 

threshold dependent evaluation demonstrated a high model reliability for current conditions 

because 89.6% of grid cells had a presence probability above the ESS threshold within the 

known species distribution area and 90.5% of grid cells were correctly classified within the 

buffer area of 500 km from current distribution. 

The extent of area with high relative habitat suitability in model predictions for current 

conditions is larger than the known source distribution and includes a number of disjunct sites 

located in Colombia. Within the buffer zone of 500 km from the current distribution, the size of 

area with relative habitat suitability above the ESS threshold in the majority of replications is 

5843 km2. The predicted high suitability area may include areas with environmental conditions 

similar to those of known species presence sites and areas where the model produces 

extrapolation to novel environments. The degree of extrapolation and detection of areas of 

novelty was analyzed using six covariates with contribution higher than 2%. The combined type 

1 and 2 novelty indices for current conditions (Table 1, Appendix S2: Fig. S3) shows no 

significant extrapolation in high suitability areas immediately adjacent to known current species 

distribution, but some grade of novelty for disjunct areas with high habitat suitability. Only a few 

grid cells with type 2 novelty were found in the model extrapolation within the buffer of 500 km 

from known species presence locations. The high habitat suitability surfaces with evidence of 

extrapolation were estimated as 2101 km2 in the entire analysis extent and as 1150 km2 in the 

500 km buffer zone. The contribution of type 1 novelty is of 98.2%, while type 2 novelty is 

observed in 1.8% of extrapolated grid cells. 

Forecasting of the species distribution in future scenarios 

The modelled species relative habitat suitability in the current distribution area of M. 

mercedesiarum, assessed through logistic MaxEnt output, demonstrates drastic diminution in 

grid cells with high suitability in both future scenarios. According to the developed model, in 

current conditions the median logistic output value was 0.723 within the known species 

distribution area, which corresponds to high relative habitat suitability in most of the current 

distribution (Fig. 9). Under the RCP4.5 scenario in 2050, the median of grid cell logistic values 

reduced to 0.184, and in the RCP8.5 scenario for the same future moment, this median value was 

only 0.099. The habitat suitability in 2070 was lower than in 2050, with a median of logistic 

output as 0.086 and 0.027 under RCP4.5 and RCP8.5, respectively.  

The application of a threshold to identify areas with probable species presence showed 

that the minor fraction of grid cells within the known current distribution area retains values of 
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relative habitat suitability above the ESS threshold (Fig. 10, Supporting Information Data S5). 

Under the RCP4.5 conditions in 2050, the persistence of species was estimated with a mean of 

13.3% of total grid cells known to have species presence today. Considering the model 

uncertainty in classification of pixels for the current conditions within the surrounding area, the 

expected mean habitat loss under RCP4.5 scenario in 2050 was estimated as 89.6%, varying 

from 60.6% to 100.0% in independent model replications. The RCP8.5 scenario led to almost 

complete disappearance of suitable habitat during the same period because only a mean of 2.7% 

grid cells retained logistic output values above the ESS threshold. One model replication in this 

case was considerably different from the majority, with 26.4% of grid cells classified as being 

suitable for species presence. The mean habitat loss under this scenario in 2050 was estimated as 

98.1%. For 2070, the mean predicted persistence of suitable grid cells was estimated as 2.6% and 

0.1% of the known current distribution under RCP4.5 and RCP8.5 scenarios, respectively. 

The overall suitable area for species presence in northwestern South America, estimated 

by a method of predominant value from presence grids in replications, includes grid cells in both, 

inside and outside of the current species distribution. While the source current distribution extent 

is known to have 2701 km² and the model prediction of suitable area in current conditions with 

extrapolation exceeds 7117 km², in future projections it is drastically reduced (Table 1). The 

estimated total suitable area under RCP4.5 in 2050 is 906 km², but only 263 km² of this area is 

produced without model extrapolation. In 2070, under the same scenario all highly suitable areas 

are a result of extrapolation and are predicted to have an area of 292 km². Under RCP8.5 

scenario for 2050, the highly suitable area is estimated to be 145 km², the entire extent 

extrapolated, and no suitable area was found under this scenario for 2070.  

A large fraction of positively classified cells in future scenarios was found to have 

positions separate from the current known distribution. Modelling allowed to detect several areas 

persistent between scenarios at the same geographical locations with a significant increase of 

relative habitat suitability compared to current conditions. Two main disjunct geographic 

localities of high habitat suitability were detected to the north of the current distribution area, 

both located in Colombia, on the eastern slopes of the Andean cordillera (Fig. 11, Appendix S2: 

Fig. S4, S5, Supporting Information Data S5). One of these localities with a center 

approximately at 2.5° N latitude and 77° W longitude is separated from the current distribution 

area by a distance of approximately 230 km by straight line. At this locality, the size of area with 

presence probability above the ESS threshold at least in single model replication was estimated 

in different scenarios as 319 km2 (RCP4.5 2050), 109 km2 (RCP4.5 2070), 74 km2 (RCP8.5 

2050). Another persistent area with high presence probability is located northeast from the 

current distribution separated by a distance of approximately 590 km by straight line, with its 

center at 4.5° N latitude and 73.5° W longitude. In this location, the estimated size of area with 

suitable habitat was estimated as 337 km2 (RCP4.5 2050), 175 km2 (RCP4.5 2070) and 41 km2 

(RCP8.5 2050). 

Evaluation of species distribution ranges 

The vast majority of 55 known Magnolia species from Colombia and Ecuador listed in 

Table 2 have a narrow distribution range and can be classified as regional endemics. Magnolia 

mercedesiarum belongs to this majority with a maximum distance between observation localities 

reaching 85 km. After excluding species known from a single locality, the median of maximum 

species extent is estimated as 116 km; the histogram is evidently skewed to the left, with 23 

species located in the first class for less than 100 km wide distributions (Fig. 12). Only 11 
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species have a distribution extent larger than 300 km, including a few shared with neighboring 

countries. However, few species presented moderately vast distributions, reaching the extent of 

1549 km (Magnolia rimachii), 1562 km (M. sambuensis) and 1351 km (M. chimantensis). 

 

Discussion 

The model of habitat conditions potentially suitable for a species was assessed in this 

study through the modelling of response to downscaled WorldClim 2 climatic data and 

represents the partial model of ecological niche for the species under consideration. The edaphic, 

geologic, and potentially many other environmental factors were excluded due to a lack of data 

with acceptable resolution and quality, and a lack of knowledge of the dynamics of such factors 

at the scope of decades. The effect of biotic interactions is assumed to be homogeneous at a 

coarse scale of 7.5″ grid cells within the entire continental area at the extent of analysis. The 

biotic interaction at a fine scale that can be easily recognized as heterogenous is the competition 

between trees, particularly young individuals and saplings competing for light, but the relative 

frequency of gaps in the canopy turns out to be essentially similar when comparing grid cells of 

more than six hectares each, with the condition that they belong to the same vegetation. This 

assumption is consistent with Soberón’s (2010) finding that the effect of biotic interactions, 

defined as competition between species and simulated at fine spatial scale, is effectively 

averaged at coarser scales (grid cells 8 or 16 times larger), where scenopoetic variables become 

only significant predictors. Soberón stresses that biotic factors could still have an effect at coarse 

resolution because this depends on relative spatial structure of different groups of factors in 

constitution of species’ ecological niche and correlation between them. We admit that the spatial 

variability in biotic interactions, such as canopy gap frequency, and other phenomena related to 

the biotic environment can be manifested at coarse scales, as a function of vegetation type. 

However, we do not include the vegetation type layer as a predictor in the analysis, for the same 

reasons as to why the edaphic and other non-climatic environmental layers were excluded. 

Fortunately, the vegetation types are known to have strong correlation with climatic conditions 

(Donoghue & Edwards, 2014), hence this variability can be indirectly captured by pattern in 

rainfall and temperature data. 

The bioclimatic envelope modeling fits well in the hierarchical modelling framework 

(Pearson & Dawson, 2003), providing information on regional-scale species distribution 

limitations, and when spatial resolution of predictors is fine enough, it provides the ability to 

assess the effect of climate variability correlated with topography at a local scale. Guisan and 

Thuiller (2005) consider that in the case of plant species as a kind of sessile organism, fine 

predictor resolution could significantly improve niche models because such species could 

strongly depend on predictor variability at a local scale. The selection of spatial resolution and 

scale is of critical importance for the SDM process not only due to its implications for the 

Eltonian noise hypothesis, but also to identify the groups of environmental factors that could 

have an effect and what patterns could be detected. The entire extent of SDM in the current study 

correspond to the regional scale, where the climatic and topographic variability is expected to 

have a leading role in the definition of species distributions, while the spatial resolution of 7.5″ 

that we use as the finest units of analysis correspond to transition between landscape and local 

spatial scales. Following Willis and Whittaker’s (2002) conceptualization, at the local spatial 

scale the effect of topographic variables is expected to mix with land-use, edaphic, and biotic 

factors, as well as the fact that climatic inference cannot be separated from the topographic 
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component. Franklin et al. (2013) note that the climate variability on a scale of hundreds of 

meters is primary controlled by topography and can exhibit variability that is high enough to 

constitute refugia for local populations, as well as an increase in habitat connectivity for 

dispersal and migration. As demonstrated in Franklin and co-workers’ study, the precision in 

representation for ecologically significant microhabitats does increase with a change from coarse 

to fine scale, and somewhere between the 4 km and 800 m resolution there is a threshold beyond 

which further spatial generalization of climatic predictors severely affects predicted suitable 

habitat area. The generalization errors produced at coarse resolutions are especially high for 

narrow-range species. The finest resolution modelled by Franklin et al. was 90 m, but the 

difference between 90 m and 270 m resolutions in location of sites with suitable habitat was 

minor, at least for tree species considered in the study. The authors speculate that for some 

species with habitat somewhere in rugged terrain, the resolution of 10 m to 30 m may be needed 

to accurately capture microhabitats’ variability. However, the resolution required to model 

microhabitats for tree species may be coarser because the size of individual trees contributes to 

averaging of the effect from climatic fluctuations at a very fine scale. The tradeoff between the 

spatial resolution and the model’s ability to represent fine microhabitat structure is required 

because the finer resolution predictors significantly increase the computational requirements and 

processing time. In the case of Magnolia mercedesiaruum, the adult trees can be more than 20 m 

tall, similar to the majority of tree species in Franklin and colleages’ (2013) study. We assume 

that the resolution of approximately 250 m selected in this study is fine enough to capture 

topographic controlled climate variation in mountainous regions for the tree species under 

consideration. The further increase in predictors’ resolution may require addition of edaphic and 

land-use related variables at a fine scale because the effect of such variables on the local 

environment is expected to be high. 

Although the environmental niche model produced in this study is partial, it demonstrates 

high correlation in geographic prediction with distribution estimation from Vázquez-García et al. 

(2018), produced with the same predictors, treated here as true species distribution. 

Independently from the fidelity of the source species distribution estimation, the research 

question addressed in this article is how such narrow distribution could change in HadGEM2-ES 

climate projections for two CO2 emission scenarios. 

To be able to answer this question, we followed the equilibrium assumption for relations 

between species and its environment in 1970–2000 climatic conditions. The 1970–2000 climatic 

conditions as represented in the WorldClim 2 dataset were treated as representative for this 

period of relative climatic stability. In particular, we assumed that the current distribution of M. 

mercedesiarum has formed during the period of relative climatic stability in the scope of 

centuries and species populations had persisted at the same geographical location at least for 

several generations; thus, it had the possibility to occupy the entire available potential habitat 

within its dispersal limitations and source-sink dynamics. The indirect argument in favor of 

stable status of populations is the manifested reproductive function. The lack of reproduction 

function may be an indication for populations that they may not belong to stable “core” areas 

with habitat condition characteristics for the species’ fundamental niche, but their belonging to 

less stable sink areas that depend on individuals’ immigration from sources, at the current 

moment or in the immediate past. All observations of M. mercedesiarum cited in Vázquez-

García et al. (2018) were made on trees bearing flowers or fruits, although no saplings were 

noted beneath the observed trees. Guisan and Thuiller (2005) affirm that populations without 

evidence of sexual reproduction are preferable to exclude from the training data in SDM because 
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they can be assumed to lack the positive growth rate for population size and may be located 

beyond the specific climatic thresholds. In the case of M. mercedesiarum, the manifested 

reproductive function in all populations used as training data in Vázquez-García and colleagues’ 

means that the estimated distribution represents the area with presumed positive population 

growth rate, and thus locations with source habitat conditions in the source-sink process 

(Pulliam, 2000).  

The projection of the same niche model to future scenarios is possible by additionally 

assuming the immutability of potential ecological niches for the species in a given time scope of 

50 or 70 years. We consider that such an assumption is highly probable because the distance in 

generation between currently growing trees and individuals in the future vegetation does not 

exceed one or two generations. Under the hypothesis of niche conservatism, the species tend to 

maintain an inherited response to environmental conditions. The assumption of conservatism 

works well in combination with an assumption of equilibrium in the model calibration time 

scope. If any of this key assumption is violated, the forecasting of future climatic conditions 

becomes problematic. One problem derived from violation of the equilibrium assumption is the 

possibility that the variability of environmental response in the population can be much wider 

than the manifested in the currently observed area of distribution. Such conditions may occur 

when a species that had recently experienced a partial loss or change of the distribution but had 

not reached an adaptive equilibrium with the new environment, maintaining hidden ecological 

plasticity. In this last case, the adaptation potential will allow fast adaptation to new conditions 

available within the dispersal range, even if such conditions do not occur within the species’ 

current distribution, but is compatible with an inherited fundamental niche. However, there are 

no data in favor for the presence of hidden ecological plasticity of M. mercedesiarum. At the 

same time, the projected diminution of suitable habitat conditions in 2050 and 2070 may open 

the possibility for the described situation, when species would manifest narrower ecological 

plasticity in their realized distribution than in their inherited fundamental niche. 

The projected dramatic diminution of habitat suitability in the current area of species 

distribution, with possible loss of at least 89% of the area above the species presence threshold 

does not mean an immediate disappearance of the species within most parts of its current 

location. It is expected that in 50 years, many of the currently adult trees will still persist in the 

same place as today, tolerating the projected climatic change because adult trees could have 

broader tolerance to climatic environmental conditions than tree saplings. Talluto et al. (2017) 

data on the lags between environmental changes and distribution shifts for species with slow 

demography and limited dispersal confirm the presence of “extinction debts” in many tree 

species in North America. We assume that a similar “extinction debt” may occur in tree 

populations under climate change elsewhere. The delayed extinction corresponds to a transition 

of individual trees from source to sink zones in source-sink dynamics, and its exclusion from the 

geographical projection of fundamental niches. In the absence of closely located source areas, 

the extinction of such species in areas that had lost habitat conditions suitable for positive 

population dynamics may happen in the scope of the life of individual trees. In the case of 

tropical Magnolia species, such a delay may include several decades. The ecological niche 

projections from our point of view are more related to identification of sites where the species 

will be able to persist through reproduction, maintaining the capacity of tree saplings to establish, 

survive, and grow to adult trees in the competitive environment of a wet tropical mountain forest. 
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The capacity of species migration into novel localities depends on their intrinsic 

characteristics, such as the inherited dispersal syndrome. The dispersal syndrome is an 

evolutionary character that evolves within a given linage and has a profound impact on species 

dispersal capacity, population dynamics, and speciation (Gibbs et al., 2010). There is a tradeoff 

between speciation rate and dispersal capacity, which can result in narrow range distribution 

patterns for species with an evolutionary regime of short-range dispersal. Heinz’ et al. (2008) 

modeling demonstrates that the short-range dispersal has a positive evolutionary feedback with 

incipient speciation, both in sexually and asexually reproducing populations. According to their 

data, the evolutionary regime with short-range dispersal and speciation particularly often evolves 

in conditions of steep environmental gradients. Additionally, the model of Heinz and colleagues 

demonstrates the presence of an abrupt transition between evolutionary regimes of short-range 

dispersal with speciation and long-range dispersal without speciation. In the current study, the 

actual distribution for each species of Magnolia is assumed to be a result of dispersal from a 

single ancestral population, molded by environmental factors, dispersal limitations, and biotic 

interactions. The environmental diversification within the landscape with steep environmental 

gradients should result in fast allopatric speciation within the lineages with a predominantly 

short-range dispersal regime. The observed pattern of predominantly narrow-ranged species 

agrees with the short-range dispersal with speciation evolutionary regime from Heinz et al. 

(2008). As shown in Table 2 and Fig. 12, the majority of Magnolia section Talauma species, 

from the northern Andes, have extremely narrow distribution ranges, typical for species that 

experience isolation within their native habitat in consequence of low dispersal capacity and low 

ecological plasticity. 

Most species of Magnolia, with their oily seeds closed within a red-colored fleshy 

sarcotesta, display a bird dispersal syndrome (Callaway, 1994). In M. mexicana (sect. Talauma) 

from Veracruz, México, a great diversity of bird species disperses the seeds. Gutiérrez-Zúñiga 

and Jimeno-Sevilla (2017) found that 64% of 33 bird species visit the Magnolia trees, however 

the species has a very narrow distribution range of almost 150 km. Dispersal of seeds is not 

always related to distance but also may depend on heterogeneity of vegetation structure 

(Debussche et al., 1982) or bird behavior. For instance, required snags or perching sites by birds 

may indeed limit seed dispersal of Magnolia (McClanahan & Wolfe, 1987). However, few 

species of Magnolia display clonal growth of rapid increase (Silvertown & Charlesworth, 2001). 

In M. tomentosa, from Ise Bay, Japan, many seeds are found on the forest floor near mother trees 

and its clonal growth is more effective for genetic structuring of populations over short distances 

than the short-ranged seed dispersal (Setsuko et al., 2004). These narrow ranges of section 

Talauma of Magnolia have resulted in remarkable patterns of allopatric speciation in the 

Caribbean (Howard, 1948), Mexico and central America (Vázquez-García, 1994), Colombia 

(Lozano-Contreras, 1994), and Ecuador (Vázquez-García et al., 2016), with few species shared 

between countries. Several species with intermediately wide distribution range, such as M. 

equatorialis, M. neillii, and M. rimachii known from the upper Amazonian region of Ecuador 

could hypothetically present relation of their seed dispersal mechanism with hydrological 

features because they are found within a single hydrographic system. 

Magnolia mercedesiarum can be expected to inherit dispersion limitations typical for 

section Talauma, which prevents the majority of neotropical Magnolia species from fast 

colonizing of distant localities with a suitable habitat. So far, the pattern of known distribution 

for M. mercedesiarum indirectly indicates the low dispersal capacity of this species. These 

dispersal limitations could prevent the colonization of disjunct localities with a suitable habitat 
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that appear in results of modeling in 2050 and 2070. There is no known mechanism that could 

allow natural transfer of M. mercedesiarum seeds to locations separated from the current 

distribution area by a distance of almost 370 km or more, with the presence of several orographic 

barriers between locations. No direct hydrological connection exists between the known species 

locality and distant areas of suitable habitat. The stochastic dispersion models could be useful to 

simulate the bird-mediated seed dispersion process in a precise form. The initial hypothesis for 

such modelling could postulate the low probability of seed dispersal into areas with suitable 

habitat separated by hundreds of kilometers in a time scope of 30 to 50 years. 

 

Conclusions 

The potential reduction of area with suitable habitat, in rates from 89% to almost 100% in 

all climate change scenarios for 2050, can lead to further extinction of species in areas of known 

current distribution. The scope of this extinction will not have immediate visible effects on adult 

trees because the loss of suitable habitat conditions could primarily affect the reproduction and 

establishment of saplings. The species survival in 2070 under scenario RCP4.5 is constrained to 

its persistence as a healthy population only in small refugia with a size 2.6% of its current 

distribution area. The dispersal to separate distant high habitat suitability zones, projected in 

2050 northwards from the current distribution is remotely probable, given the species’ seed 

dispersal syndrome. 

This study contributes to conservation in tropical forests by identifying the vulnerability 

of tree species from the understorey of tropical mountainous forest in climate change projections. 

Contrary to common assumptions of distribution shift within altitude gradients in terrains with 

complex topography (e.g. Rumpf et al., 2018), we found another pattern of distribution change, 

mostly by reducing the size of the suitable area within the current distribution range and 

emerging new disjunct zones with high suitability but unreachable by natural dispersion. These 

findings can be used in planning of biodiversity protection for mountain ecosystems in the 

Neotropics. 

Our approach for SDM here and in Vázquez-García et al. (2018) contributes to 

improvement of methods for climate change response prediction for narrowly ranged species 

known from few observations. The use of climatic information at a high resolution (~250 m) 

spatial scale allows the detection of spatial variability and refugia that could not be discovered at 

coarser spatial scales. At the same time, the selected spatial scale, still is controlled primarily by 

topographically driven abiotic factors, makes possible ecological niche modelling derived from 

bioclimatic variables downscaled from the output of global circulation models. 
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Tables 

Table 1. Areas with relative habitat suitability higher than ESS threshold by extrapolation type 

for six of the most important covariates. The inclusion of grid cells was defined by majority rule 

in ten cross-validation replications. No data are included for RCP8.5 in 2070 because no areas 

with relative suitability higher than ESS threshold were predicted. A buffer of 500 km was 

defined by Euclidean distance from known species observations. 

 Area of habitat 

suitability above 

ESS threshold 

(km2) 

No extrapolation 

(km2) 

Type 1 novelty 

(km2) 

Type 2 novelty 

(km2) 

1970-2000 full 

extent 

7117 5016 2063 38 

1970-2000 (500 

km buffer) 

5843 4692 1147 4 

2050 (rcp4.5, full 

extent) 

923 263 651 9 

2050 (rcp4.5, 500 

km buffer) 

566 263 303 0 

2050 (rcp8.5, full 

extent) 

145 0 136 9 

2050 (rcp8.5, 500 

km buffer) 

70 0 70 0 

2070 (rcp4.5, full 

extent) 

292 0 286 6 

2070 (rcp4.5, 500 

km buffer) 

103 0 103 0 
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Table 2. Distribution extent for Magnolia species from Colombia and Ecuador measured as 

maximum Euclidean distance between observation points. The asterisk (*) for two undescribed 

species as cited in García (2007).  

Species Maximum distribution extent 

(km) 

Countries 

Magnolia arcabucoana (Lozano) Govaerts 172 Colombia 

Magnolia argyrothricha (Lozano) Govaerts 60 Colombia 

Magnolia arroyoana Molinari known from single locality Ecuador 

Magnolia bankardiorum M.O. Dillon & 

Sánchez Vega 

241 Ecuador, Peru 

Magnolia calimaensis (Lozano) Govaerts 72 Colombia 

Magnolia calophylla (Lozano) Govaerts 46 Colombia 

Magnolia canandeana F. Arroyo known from single locality Ecuador 

Magnolia cararensis (Lozano) Govaerts known from single locality Colombia 

Magnolia caricaefragrans (Lozano) Govaerts 216 Colombia 

Magnolia cespedesii (Triana & Planch.) 

Govaerts 

36 Colombia 

Magnolia chiguila F. Arroyo, Á.J. Pérez & A. 

Vázquez 

23 Ecuador 

Magnolia chimantensis Steyerm. & Maguire 1351 Colombia, Venezuela 

Magnolia chocoensis (Lozano) Govaerts 72 Colombia 

Magnolia colombiana (Little) Govaerts 19 Colombia 

Magnolia coronata Serna, Velásquez, César 

A. & Cogollo 

64 Colombia 

Magnolia dixonii (Little) Govaerts  known from single locality Ecuador 

Magnolia equatorialis A. Vázquez 588 Ecuador, Peru 

Magnolia espinalii (Lozano) Govaerts 138 Colombia 

Magnolia georgii (Lozano) Govaerts 17 Colombia 

Magnolia gilbertoi (Lozano) Govaerts 119 Colombia, Ecuador 

Magnolia guatapensis (Lozano) Govaerts 114 Colombia 

Magnolia henaoi (Lozano) Govaerts 649 Colombia 

Magnolia hernandezii (Lozano) Govaerts 583 Colombia 

Magnolia jaenensis Marcelo-Peña 118 Ecuador, Peru 

Magnolia jardinensis Serna, Velásquez, César 

A. & Cogollo 

14 Colombia 

Magnolia katiorum (Lozano) Govaerts 211 Colombia 

Magnolia kichuana A. Vázquez, F. Arroyo & 

Á.J. Pérez 

425 Ecuador 

Magnolia lenticellata (Lozano) Govaerts 521 Colombia 

Magnolia llanganatensis A. Vázquez & D.A. 

Neill 

known from single locality Ecuador 

Magnolia lozanoi A. Vázquez & Castro-Arce 114 Ecuador 

Magnolia mahechae (Lozano) Govaerts 456 Colombia 

Magnolia mashpi Á.J. Pérez, F. Arroyo & A. 

Vázquez 

known from single locality Ecuador 

Magnolia mercedesiarum D.A. Neill, A. 

Vázquez & F. Arroyo 

83 Ecuador 

Magnolia mindoensis A. Vázquez, D.A. Neill 

& Dahua 

188 Ecuador 

Magnolia napoensis A. Vázquez & D.A. Neill 75 Ecuador 

Magnolia narinensis (Lozano) Govaerts 21 Colombia 

Magnolia neillii (Lozano) Govaerts 814 Colombia, Ecuador 

Magnolia palandana F. Arroyo 87 Ecuador 
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Magnolia pastazaensis F. Arroyo & Á.J. Pérez 44 Ecuador 

Magnolia polyhypsophylla (Lozano) Govaerts 40 Colombia 

Magnolia rimachii (Lozano) Govaerts 

1549 Colombia, Ecuador, 

Peru 

Magnolia sambuensis (Pittier) Govaerts 

1562 Colombia, Costa Rica, 

Panama 

Magnolia santanderiana (Lozano) Govaerts 7 Colombia 

Magnolia shuariorum F. Arroyo & A. 

Vázquez 

145 Ecuador 

Magnolia silvioi (Lozano) Govaerts 145 Colombia 

Magnolia sp. nov. 1* 13 Colombia 

Magnolia sp. nov. 2* known from single locality Colombia 

Magnolia striatifolia Little 284 Colombia, Ecuador 

Magnolia urraoensis (Lozano) Govaerts 63 Colombia 

Magnolia vargasiana A. Vázquez & D.A. 

Neill 

80 Ecuador 

Magnolia virolinensis (Lozano) Govaerts 263 Colombia 

Magnolia wolfii (Lozano) Govaerts 76 Colombia 

Magnolia yantzazana F. Arroyo 25 Ecuador 

Magnolia yarumalensis (Lozano) Govaerts 235 Colombia 

Magnolia zamorana F. Arroyo 234 Ecuador 
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Figures 

 

Figure 1. Magnolia mercedesiarum. A) The Antisana Ecological Reserve, one of the areas where 

this species is protected. B) Leaves, C) Open flower in female phase, D) Tree trunk, E) Flower 

bud showing sepals, F) Mature fruit, G) Fruit during seed dehiscing. 
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Figure 2. Current distribution of Magnolia mercedesiarum (shaded area) with GMTED2010 

elevation data (scale in m above sea level). Points represent sampling sites within the current 

distribution area used for analysis. Rectangular areas on locator map indicate position of zoomed 

map fragments.   
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Figure 3A. Monthly precipitation within current distribution of M. mercedesiarum in current 

conditions and projection of HadGEM2-ES model under RCP4.5 scenario for years 2050 and 

2070.  
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Figure 3B. (continuation) Monthly minimum temperature within current distribution of M. 

mercedesiarum in current conditions and projection of HadGEM2-ES model under RCP4.5 

scenario for years 2050 and 2070.  
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Figure 3C. (continuation) Monthly maximum temperature within current distribution of M. 

mercedesiarum in current conditions and projection of HadGEM2-ES model under RCP4.5 

scenario for years 2050 and 2070.  
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Figure 4A. Monthly precipitation within the current distribution of M. mercedesiarum in current 

conditions and projection of HadGEM2-ES model under RCP8.5 scenario for years 2050 and 

2070.  

 

B 
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Figure 4B. Monthly minimum temperature within the current distribution of M. mercedesiarum 

in current conditions and projection of HadGEM2-ES model under RCP8.5 scenario for years 

2050 and 2070.  
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Figure 4C. Monthly maximum temperature within the current distribution of M. mercedesiarum 

in current conditions and projection of HadGEM2-ES model under RCP8.5 scenario for years 

2050 and 2070.  
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Figure 5. Results of Mann-Whitney U test for significance of difference in monthly precipitation, 

minimum and maximum temperature within the current distribution of M. mercedesiarum in 

current conditions and projection of HadGEM2-ES model under RCP4.5 scenario for years 2050 

and 2070. The color-filled cells represent acceptance of null hypothesis (H0), blank cells 

correspond to acceptance of alternative hypothesis (HA) with numeric values reflecting 

difference of medians between two samples. 
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Figure 6. Results of Mann-Whitney U test for significance of difference in monthly precipitation, 

minimal and maximum temperature within the current distribution of M. mercedesiarum in 

current conditions and projection of HadGEM2-ES model under RCP8.5 scenario for years 2050 

and 2070. The color-filled cells represent acceptance of null hypothesis (H0), blank cells 

correspond to acceptance of alternative hypothesis (HA) with numeric values reflecting 

difference of medians between two samples. 
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Figure 7. SDM evaluation metrics. A) Observed true AUC vs. set of null models AUC. B) ESS 

threshold. C) Sensitivity, specificity, and TSS. 
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Figure 8. Predictor contribution, importance in permutations and generality in replications of 

SDM inferred from true presence and absence points. 
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Figure 9. Logistic model output as proxy for species presence probability within the current 

distribution area of M. mercedesiarum in current conditions and in projection of HadGEM2-ES 

model under RCP4.5 and RCP8.5 scenarios. The horizontal line as ESS threshold median 

(continuous line) and 95% confidence interval (dotted lines). 
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Figure 10. Maps of presence probability in area of known M. mercedesiarum distribution 

modelled for current conditions and for 2050 and 2070 under HadGEM2-ES RCP4.5 and 

RCP8.5 scenarios. Area closed by continuous line represents the current species distribution. 
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Figure 11. Potentially suitable habitat of M. mercedesiarum in disjunct locations outside of 

species current distribution, based on HadGEM2-ES model data for RCP4.5 scenario in 2050. 

Basemap shaded relief was derived from GMTED2010 elevation data. Rectangular areas and 

line pointing to locator map indicates position of zoomed map fragments. 
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Figure 12. Histogram of distribution extent for Magnolia species from Colombia and Ecuador 

measured as maximum Euclidean distance between observation points for each species. Blue line 

represents density curve transformed to values of expected species counts. 
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Appendix S1 

Description of presence data and spatial autocorrelation test 

The estimation of the current distribution area in Vázquez-García et al. derives from a 

presence-only MaxEnt driven model, which was performed with 20 cross-validation iterations 

and was configured to account for spatial uncertainty and environmental variability in the 

location with four known populations of M. mercedesiarum. The collecting bias in this SDM for 

narrowly distributed species was addressed by using target background sampling and 

independent randomization during cross validation steps (Vázquez-García, Neill, Shalisko, 

Arroyo, & Merino-Santi, 2018a). From the perspective of model accuracy and completeness, the 

minimum required number of presence records depends on species prevalence in the landscape 

but cannot be lower than 14 for narrowly ranged species in realistic environments (van Proosdij, 

Sosef, Wieringa, & Raes, 2016). Dealing with only four presence records, Vázquez-García et al. 

performed the randomized sampling of environmental conditions around presence points with 

spatial resolution of 250 m, which allowed taking advantage of the expected spatial 

autocorrelation in species presences for improvement of environmental variability representation 

in the training dataset. Spatial autocorrelation derives from intrinsic properties of biological 

processes at the landscape level, that cause spatial aggregation of populations (Dormann et al., 

2007).  

The spatially autocorrelated presences could be a valuable source of information on 

species habitat variability for SDM based on Hutchinson’s duality because the model actually is 

not produced in the geographic space, but in niche hypervolume, so the highly spatially 

aggregated data that do not provide significant spatial information could provide information of 

predictors’ variability. However, there are two problems associated with autocorrelated data in 

statistical modeling: 1) such data provide less information on variability than completely 

independent observations, 2) the assumption of residuals’ independence could be violated, which 

can result in biased model accuracy parameter estimates and increase of type I error rates 

(Dormann et al., 2007). In this study, we considered that spatial autocorrelation of presence data 

cannot be avoided but should be evaluated. To determine multivariate spatial autocorrelation in 

the training dataset, we used the generalization of Wartenberg's test on duality diagrams 

described in Smouse and Peakall (1999). For each iteration in cross-validation process, the full 

set of predictors at random training points within species distribution area were evaluated for 

multivariate spatial autocorrelation in a Monte-Carlo randomization process, to produce a 

multivariate spatial autocorrelation index and test it against the null-hypothesis of absence of 

spatial autocorrelation. The implementation of multivariate spatial autocorrelation was taken 

from the R ‘multispati.randtest’ function from the ‘ade4’ package (Dray, Dufour, & Thioulouse, 

2018). 

The spatial autocorrelation index for training data demonstrated positive spatial 

autocorrelation in all cross-validation iterations (null-hypothesis refuted since the p-level was 

less than the significance level of 0.05). The values of autocorrelation index and distribution of 

eigenvalues can be found in Supporting Information Data S2.  
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Appendix S2 

 

Figure S1. The comparison of 19 bioclimatic predictors within current distribution of M. 

mercedesiarum in current conditions and projection of HadGEM2-ES model under RCP4.5 and 

RCP8.5 scenarios for years 2050 and 2070. 
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Figure S1. (continuation) 
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Figure S1. (continuation) 
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Figure S1. (continuation) 
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Figure S1. (continuation) 
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Figure S2. Results of Mann-Whitney U test for significance of difference in 19 bioclimatic 

predictors within the current distribution of M. mercedesiarum in current conditions and 

projection of HadGEM2-ES model under RCP4.5 and RCP8.5 scenarios for years 2050 and 

2070. The color-filled cells represent acceptance of null hypothesis (H0), blank cells correspond 

to acceptance of alternative hypothesis (HA) with numeric values reflecting difference of 

medians between two samples. 
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Figure S3. Combined novelty 1 and 2 index for areas with predicted relative habitat suitability 

higher than ESS threshold, majority in ten cross-validation replications. Green areas represent 

absence of extrapolation, red – type 1 novelty, blue – type 2 novelty. Results for prediction in 

current conditions (1970–2000 climatic data), RCP4.5 in 2050 and 2070, RCP8.5 in 2050. No 

areas with relative suitability higher than ESS threshold were predicted for RCP8.5 in 2070. 
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Figure S4. Potentially suitable habitat of M. mercedesiarum in disjunct locations outside of 

species current distribution, based on HadGEM2-ES model data for RCP4.5 scenario in 2070. 

Basemap same as in Figure 11. 
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Figure S5. Potentially suitable habitat of M. mercedesiarum in disjunct locations outside of 

species current distribution, based on HadGEM2-ES model data for RCP8.5 scenario in 2050. 

Basemap same as in Figure 11. 
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