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ABSTRACT: 39 

Infectious disease next generation sequencing (ID-NGS) diagnostics are on the cusp of 40 

revolutionizing the clinical market. To facilitate this transition, FDA proactively invested in tools 41 

to support innovation of emerging technologies. FDA and collaborators established a publicly 42 

available database, FDA dAtabase for Regulatory-Grade micrObial Sequences (FDA-ARGOS), as a 43 

tool to fill reference database gaps with quality-controlled genomes. This manuscript discusses 44 

quality control metrics for the proposed FDA-ARGOS genomic resource and outlines the need 45 

for quality-controlled genome gap filling in the public domain.  Here, we also present three case 46 

studies showcasing potential applications for FDA-ARGOS in infectious disease diagnostics, 47 

specifically: assay design, reference database and in silico sequence comparison in combination 48 

with representative microbial organism wet lab testing; a novel composite validation strategy 49 

for ID-NGS diagnostics. The use of FDA-ARGOS as an in silico comparator tool could reduce the 50 

burden for completing ID-NGS clinical trials. In addition, use cases identifying Enterococcus 51 

avium and Ebola virus (Zaire ebolavirus variant Makona) demonstrate the utility of FDA-ARGOS 52 

as a reference database for independent performance validation of new tests and for 53 

documenting how one would use this database as an in silico sequence target comparator tool 54 

for ID-NGS validation, respectively. 55 

 56 
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 60 

 61 

INTRODUCTION: 62 

The Food and Drug Administration’s (FDA) premarket review of in vitro diagnostics relies 63 

on safety, efficacy, quality, and performance and ensures patient access to safe and accurate 64 

new technologies, such as next-generation sequencing. Within this premarket review, FDA 65 

performs risk-based evaluation of novel diagnostic devices by leveraging clinical expertise, as 66 

well as research evidence to support regulatory decisions and considers patient values and 67 

preferences. Infectious disease next generation sequencing (ID-NGS) diagnostics, with the 68 

potential to identify any microbial organism or genomic marker from a patient sample in a 69 

single test, are poised to enter the clinical diagnostic laboratory (Goldberg, Sichtig et al. 2015, 70 

Arnold 2017, Heger 2018).  For accurate identification of any infectious organism, ID-NGS 71 

requires comprehensive reference databases, thereby strongly emphasizing the need for more 72 

complete high-quality reference genomes. Metagenomic agnostic sequencing also requires 73 

novel validation strategies as the traditional diagnostic evaluation for all known organisms is 74 

unfeasible. Described in greater detail throughout this paper (Figure 1), here we are describing 75 
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one effort for defining a composite-reference method approach for ID-NGS device validation 76 

utilizing in silico sequence comparison. 77 

Patients and clinicians need alternative solutions when conventional diagnostics (e.g., 78 

real-time PCR, culture or ELISA), fail to identify an infectious etiology. Several studies document 79 

this need of applying hypothesis-free NGS as a diagnostic of last resort, such as high-risk 80 

transplant population or failure of diagnosis with conventional diagnostics (Schlaberg, Chiu et 81 

al. 2017, Wilson, Zimmermann et al. 2017). Numerous groups have successfully applied ID-NGS 82 

technology across several unique and diverse clinical use cases.  For example, isolate shotgun 83 

sequencing information uncovered unexpected transmission routes during multi-drug resistant 84 

nosocomial organism outbreaks (Snitkin, Zelazny et al. 2012, Roach, Burton et al. 2015, Snitkin, 85 

Won et al. 2017). Other studies showed use of targeted sequencing to group E. coli clonotypes 86 

from patient’s direct urine samples (Tchesnokova, Billig et al. 2013), or to detect ciprofloxacin 87 

resistance markers (Stefan, Koehler et al. 2016), resulting in antimicrobial susceptibility data 88 

and improvement in clinical outcome prediction. Finally, agnostic (unbiased, metagenomic) 89 

sequencing shows promise as a diagnostic of last resort where no other diagnostic can 90 

determine the infectious microorganism, such as the successful ID-NGS diagnosis of leptospira 91 

infection with resulting positive outcome for the patient (Wilson, Naccache et al. 2014).   92 

ID-NGS is finding application across the infectious disease space; however, several 93 

studies document the continued need for NGS research and database curation to facilitate 94 

adoption in the clinical setting (Schlaberg, Chiu et al. 2017). Perhaps the best example, 95 
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Afshinnekoo et. al. showed ID-NGS misidentification of anthrax and plague in the NYC subway 96 

system based on low quality reference genomes (Afshinnekoo, Meydan et al. 2015). A follow-up 97 

erratum by the same group (Afshinnekoo, Meydan et al. 2015) revealed the lack of evidence for 98 

biothreat organisms in these samples. This erratum attributed the anthrax misidentification to 99 

poor reference genomes leading to misattribution of toxin genes when using metagenomic data 100 

analysis tools. This lack of proper reference genomes is pervasive and represents significant 101 

knowledge gaps in public resources, thus emphasizing the necessity for targeted development 102 

of representative, accurate and well curated microbial reference genome sequences. Additional 103 

studies showed that effective use of agnostic sequencing technology, either for infectious 104 

disease identification or exclusion of infectious etiologies, is directly related to the availability of 105 

quality controlled whole-genome reference sequences (Greninger, Messacar et al. 2015, 106 

Naccache, Peggs et al. 2015, Somasekar, Lee et al. 2017). Significant efforts are still required for 107 

ID-NGS technology to transition into a routine clinical diagnostic. To facilitate this transition, 108 

prominent groups and researchers in the field have outlined steps required for proper  ID-NGS 109 

use in the clinic (Gargis, Kalman et al. 2016, Schlaberg, Chiu et al. 2017, Simner, Miller et al. 110 

2017).   111 

In 2016, the FDA published a draft guidance for ID-NGS devices soliciting feedback on a 112 

potential regulatory pathway for targeted and pathogen-agnostic NGS diagnostic applications. 113 

This draft guidance proposed a novel regulatory strategy for ID-NGS device validation allowing 114 

wet-lab validation of an assay-specific subset of clinical samples to determine the assay 115 
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preliminary diagnostic performance in combination with in silico validation of additional 116 

sequence targets. This in silico validation would entail the use of raw sequence data as an input 117 

into bioinformatic algorithms that allow a head-to-head comparison to reference genomes 118 

from the FDA dAtabase for Regulatory-Grade micrObial Sequences (FDA-ARGOS).  Figure 1A 119 

illustrates this proposed novel composite reference method (C-RM). By comparison, the current 120 

regulatory paradigm relies on comparing performance of a new test device to FDA Benchmarks 121 

that are either reference standards or non-reference standards (predicate or comparison 122 

method) (See https://www.fda.gov/RegulatoryInformation/Guidances/ucm071148.htm).  123 

To reduce some of the data generation load in clinical trials, we established and 124 

populated the FDA-ARGOS database with quality controlled microbial sequences as a tool for in 125 

silico target sequence validation. In this context, in silico target sequence validation is part of 126 

the C-RM method focused on evaluating dry lab components (bioinformatic analysis pipelines 127 

and databases) of ID NGS diagnostic assays. Using raw sequence data from the ID-NGS test 128 

device, in silico comparison of results obtained with the assay in-house database to results 129 

when using FDA-ARGOS will evaluate device bioinformatic analysis pipelines and report 130 

generation while eliminating the need for additional sample testing with a gold standard 131 

comparator (current FDA benchmarks). Overall, we anticipate the use of the C-RM method 132 

based on assay-specific subsets of clinical samples and/or microbial reference materials 133 

(MRMs) for wet lab validation and FDA-ARGOS in silico target sequence validation to generate 134 

scientifically valid evidence for understanding the performance of ID NGS diagnostic assays. 135 
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 136 

This manuscript provides our rationale and quality metrics for the FDA-ARGOS genome 137 

database initiative, outlines the need for genome gap filling in the public domain and proposes 138 

the utility of the FDA-ARGOS database resource as a novel in silico validation strategy for ID-139 

NGS diagnostics.  140 

 141 

 142 

Materials and Methods: 143 

 144 

FDA-ARGOS database genome deposition: Using previously identified microbe(s), nucleic acid 145 

was extracted for library preparation and sequencing. Next, microbial nucleic acids are 146 

sequenced, and de novo assembled using Illumina and Pac Bio sequencing platforms at the 147 

Institute for Genome Sciences at the University of Maryland (UMD-IGS). The assembled 148 

genomes were quality controlled by an ID-NGS subject matter expert working group consisting 149 

of FDA personnel and collaborators with all passing data deposited in NCBI databases. Follow 150 

this link (https://www.fda.gov/argos) for full background, collaborators and FDA-ARGOS 151 

genome status. Supplemental Table 1 lists all FDA-ARGOS genomes with accessions and 152 

statistics used in this manuscript. 153 

 154 
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Bacterial reference genome sequencing and assembly: A hybrid sequencing approach (Koren, 155 

Schatz et al. 2012) based on long and short read NGS technology was selected using Illumina 156 

and PacBio NGS technologies to generate high quality bacterial genome sequences. Sufficient 157 

and high molecular weight genomic starting material was needed for both technologies. Sets of 158 

bacterial libraries were multiplexed on the Illumina PE HiSeq4000 using the 150bp paired-end 159 

run protocol with 24 – 48 isolates per lane. The coverage threshold was set at 300x to ensure 160 

sufficient read depth was achieved from short read NGS technology for high quality assembly 161 

generation. In addition, sets of bacterial libraries were run on the PacBio RS II P6-C4 with at 162 

least 1 SMRT cell per bacterial genome. The coverage threshold was set at 100x to ensure 163 

sufficient and economically feasible read depth was achieved from long read NGS technology 164 

for high quality assembly generation. The data were assembled both separately and in 165 

combination using a series of assembly tools, including SPAdes(Bankevich, Nurk et al. 2012), 166 

Canu (Koren, Walenz et al. 2017), HGAP (Chin, Alexander et al. 2013) and Celera Assembler 167 

(Berlin, Koren et al. 2015). Pilon (Walker, Abeel et al. 2014) was used for polishing of data. 168 

Manual curation was performed to achieve optimal assembly and consensus calling. 169 

 170 

Viral reference genome sequencing and assembly: Viral genome sequencing included shotgun, 171 

amplicon, and 5’/3’ RACE sequencing methods to generate full-length viral genome sequences. 172 

Sufficient and high quality genomic starting material was needed for all three approaches. 173 

Amplicon sequencing with 48 – 96 overlapping amplicons was used to generate deep coverage 174 
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of known regions of the genome and was used to evaluate quasi-species in each isolate. Rapid 175 

amplification of cDNA Ends (RACE) was used to finish the 5’ and 3’ ends, and a shotgun 176 

approach generated data from all RNAs present in the sample without the level of bias present 177 

in the amplicon approach. Sets of viral libraries from all three approaches were multiplexed on 178 

the Illumina MiSeq using the 300bp paired-end run protocol. The coverage threshold was set at 179 

100x to ensure two times amplicon coverage across the genome. The shotgun, amplicon and 180 

RACE data were assembled both separately and in combination using a series of assembly tools, 181 

including SPAdes (Bankevich, Nurk et al. 2012) and Celera Assembler (Berlin, Koren et al. 2015). 182 

Manual curation was performed to achieve optimal assembly and consensus calling.  183 

 184 

Calculation of FDA-ARGOS genome assembly quality control statistics: Coverage statistics 185 

were calculated for each of the FDA-ARGOS genome assemblies. Illumina coverage and PacBio 186 

coverage were calculated separately. Illumina short reads were first aligned to the assembly 187 

consensus sequence using Bowtie2 (Langdon 2015). Illumina coverage was then calculated 188 

using samtools (Li, Handsaker et al. 2009) on the resulting sam file. PacBio reads were aligned 189 

to the assembly consensus sequence using BLASR (Chaisson and Tesler 2012). PacBio coverage 190 

was then calculated using samtools (Li, Handsaker et al. 2009) on the resulting sam file. Total 191 

coverage was calculated by adding the PacBio coverage and Illumina coverage at every base 192 

pair location in the assembly consensus sequence.  193 

 194 
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FDA-ARGOS genome annotations:  Genomes were annotated with NCBI’s annotation tools to 195 

streamline the process (Angiuoli, Gussman et al. 2008, Brister, Bao et al. 2010, Klimke, 196 

O'Donovan et al. 2011, Tatusova, DiCuccio et al. 2016, Hatcher, Zhdanov et al. 2017). Bacterial 197 

sequences were annotated with NCBI’s Prokaryotic Genome Annotation Pipeline (PGAP) that 198 

combines ab initio gene prediction algorithms with homology based methods. Viral sequences 199 

were aligned with their most similar NCBI RefSeqs (NC_002549, NC_014372, NC_006432, 200 

NC_014373, NC_004162, NC_004161, NC_003899, NC_001449, NC_001544, NC_035889), using 201 

the Geneious alignment tool in the Geneious platform (Kearse, Moir et al. 2012). The setting to 202 

automatically determine detection was used, and the other parameters were set to the 203 

defaults. Gene, CDS, and mature peptide annotations from the RefSeqs were transferred to the 204 

sequences, beginning and end positions were verified for homology, and the sequences were 205 

manually reviewed for unexpected stop codons or regions of high dissimilarity. The RefSeqs 206 

used have had their annotation reviewed by NCBI curators based on available literature, and in 207 

several cases, the annotations were performed in collaboration with researchers familiar with 208 

the viruses.  209 

 210 

Clinical sample collection and preparation: Clinical and mock-clinical sample testing was 211 

conducted to demonstrate the utility of FDA-ARGOS. Fifteen de-identified human serum 212 

samples that were Ebola virus (EBOV) Makona positive were received from Sierra Leone; these 213 

samples were determined by the USAMRIID Office of Human Use and Ethics to be Not Human 214 
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Subject Research (HP-09-32). All samples were collected and de-identified in Sierra Leone at the 215 

Kenema Government Hospital, and the samples had indirect identifiers upon receipt. Presence 216 

of virus for the human samples was determined using the previously established real-time RT-217 

PCR assay (Trombley, Wachter et al. 2010). Samples were run in duplicate using 5µl of purified 218 

RNA on the LightCycler 480 (Roche Diagnostics Corporation). A positive sample was defined as 219 

having a quantitation cycle (Cq) value of <40 cycles with duplicate positive real-time PCR results 220 

(Table 1B).  221 

 222 

Ten de-identified human serum samples that were suspected Bundibugyo virus positive were 223 

received from the Democratic Republic of Congo (DRC). These samples were determined by the 224 

USAMRIID Office of Human Use and Ethics to be Not Human Subject Research (HP-12-15). 225 

Presence of virus for the human samples was determined using the previously established 226 

Bundibugyo virus real-time RT-PCR assay (Trombley, Wachter et al. 2010). Samples were run in 227 

duplicate using 5µl of purified RNA on the LightCycler 480 (Roche Diagnostics Corporation). A 228 

positive sample was defined as having a quantitation cycle (Cq) value of <40 cycles (Table 1B).  229 

 230 

One clinical Enterococcus avium from Children’s Hospital was used for this study and 231 

maintained at USAMRIID through the Unified Culture Collection (UCC) system. Following 232 

overnight growth of E. avium, (~16 hrs), a single, isolated colony was chosen and inoculated 233 

into tryptic soy broth (ThermoFisher, Waltham MA).  A glycerol stock was made from the 234 
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overnight culture and colony counts were performed concurrently to determine the CFU/mL of 235 

the stock organism.   236 

 237 

Metagenomic and isolate shotgun sequencing: The Enterococcus avium sample 238 

SAMN04327393 was cultured on blood agar plates or in tryptic soy broth (ThermoFisher, 239 

Waltham MA).  Samples were spiked to a final concentration of 10
5
 CFU/ml in water or whole 240 

blood matrix (BioreclamationIVT, Baltimore, MD) and 100µl was extracted using the Qiagen EZ1 241 

viral kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions.  DNA concentration 242 

was quantified utilizing Qubit dsDNA BR assay kit (ThermoFisher).  DNA samples were prepared 243 

for sequencing on the MiSeq platform utilizing the Nextera XT DNA library preparation kit 244 

according to the manufacturer’s instructions (Illumina, San Diego, CA).  Library preparations 245 

were quantified and normalized utilizing the KAPA library quantification kit (Kapa Biosystems, 246 

Wilmington, MA) and sequenced on the MiSeq platform using the 2x150 cycle sequencing kit 247 

(Illumina).  Sequencing reads were analyzed using CLC Genomic Workbench (CLC Bio, 248 

Cambridge, MA).  For metagenomic analysis, paired end reads were trimmed utilizing a quality 249 

trim of 0.05 and reads below 50bp in length were removed from further analysis.  Trimmed 250 

reads were then mapped to E. avium assembly GCF_000407245.1 and H. sapiens assembly 251 

GCA_000001405.27.  Mapping parameters were as follows: mismatch costs=2, insertions 252 

costs=3, deletion costs=3, length and similarity fraction = 0.8. 253 

 254 
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Targeted molecular inversion probe sequencing (MIPS): The Bundibugyo virus (BDBV) and 255 

Ebola virus (EBOV) Makona clinical data samples were run using the previously described MIPS 256 

approach (Koehler, Hall et al. 2014) to capture a targeted sequence into a circular 257 

oligonucleotide. A PCR reaction and subsequent NGS on the Illumina MiSeq (2x150) amplified 258 

and identified the captured sequence using CLC genomics workbench (CLC Bio, Cambridge, MA) 259 

read mapping back to the reference genome (EBOV (GenBank # NC_002549), BDBV (GenBank # 260 

NC_014373). The percent reads classified as Bundibugyo virus or EBOV Makona was reported. 261 

The threshold for positive calls was determined by the no template control (NTC). For the MIPS 262 

approach, the remaining reads are non-specific or “junk”.  263 

 264 

Mock Clinical Diagnostic Evaluation: The MIPS assay was evaluated for diagnostic performance 265 

across 148 blinded samples. The limit of detection (LOD) was determined through a preliminary 266 

titration of EBOV Zaire in TRIzol starting at 10
8
 plaque forming units (pfu)/ml down to 10

2 
267 

pfus/ml and then run in triplicate. The concentration where all three replicates yielded positive 268 

results was confirmed as the LOD across 40 replicates at that concentration. EBOV (Kikwit 269 

R4317a) in TRIzol LS was diluted to 10X (1.0E+06 pfu/ml), 5X (5.0E+05 pfu/ml) and 1X (1.0E+05 270 

pfu/ml) LOD in triplicate in matrix also containing TRIzol LS. Nucleic acid was extracted using 271 

400µl of each sample, along with 14 negative serum samples, on the EZ1 Virus 2.0 kit and 272 

eluted in 60µl. Presence of virus was determined with an established real-time PCR assay in 273 

triplicate for each extracted sample. Extracted RNA was amplified from 5 µl total nucleic acid 274 
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using the Quantitect Whole Transcriptome Amplification Kit (Qiagen) and quantified with the 275 

Qubit dsDNA Broad Range Assay Kit. A total of 50ng cDNA was added into the MIP protocol. 276 

Library preparation was performed on the Apollo instrument using the PrepX Complete ILMN 277 

32i DNA kit and Illumina TruSeq dual Indices. All samples were sequenced on the Illumina 278 

MiSeq using the 300 cycle kit. Sixteen samples were spiked at 10X, 5X and 1X LOD. For the mock 279 

clinical evaluation, 48 positive and 100 negative (matrix only) samples were run as described 280 

above. Threshold cutoffs for positive samples were 2X signal to noise ratio (SNR). All diagnostic 281 

performance statistics were calculated on https://www.medcalc.org/calc/diagnostic_test.php. 282 

 283 

Short Read Classification Using MegaBLAST Tool: The quality of the short reads was checked 284 

with FastQC. No quality trimming was conducted. We selected 100,000 short reads randomly 285 

from each of the samples (140,000 for mock clinical). The MegaBLAST function of blast+ 2.7.1 286 

installed on FDA HPC infrastructure (https://www.ncbi.nlm.nih.gov/books/NBK153387/) was 287 

used to taxonomically classify the short reads using the default parameters and three 288 

databases: Algorithm Standard Database (NCBI Nt),  Algorithm Standard Database and FDA-289 

ARGOS and FDA-ARGOS alone. NCBI Nt was downloaded and constructed on 9/25/2017. The 290 

FDA-ARGOS database was constructed with FDA-ARGOS genomes (Supplemental Table 1, 291 

SAMN04327393 was excluded from the database because this reference genome was 292 

developed from the same isolate that was used as spike in material for use case 1) using the 293 

makeblastdb command. The Algorithm Standard Database and FDA-ARGOS database was 294 
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constructed by aggregating the NCBI Nt database and FDA-ARGOS database. Default options 295 

were used to build the databases. For this study, the taxon associated with the first reported 296 

alignment was used as the taxonomic label for each read. Original MegaBLAST results were 297 

summarized to report the number of reads associated with each unique NCBI taxonomy ID 298 

called.  299 

 300 

Short Read Classification Using Kraken Tool: The quality of short reads was checked with 301 

FastQC. No quality trimming was conducted. We subsampled 300,000 short reads uniformly 302 

from each of the samples. Kraken 1.0 (Wood and Salzberg 2014) , installed on FDA HPC 303 

infrastructure, was used to assign a taxonomic label to each short read using default 304 

parameters and three databases: Algorithm Standard Database (NCBI Nt),  Algorithm Standard 305 

Database and FDA-ARGOS and FDA-ARGOS alone. NCBI Nt was downloaded and constructed on 306 

10/5/2017. The FDA-ARGOS database was constructed with FDA-ARGOS genomes 307 

(Supplemental Table 1, SAMN04327393 was excluded from the database because this 308 

reference genome was developed from the same isolate that was used as spike in material for 309 

use case 1) using Kraken-build command. The Algorithm Standard Database and FDA-ARGOS 310 

database was constructed with both the NCBI Nt database and the FDA-ARGOS genomes. 311 

Default options were used to build the databases. For this study, the taxon associated with the 312 

first reported alignment was used as the taxonomic label for each read. Original Kraken results 313 
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were summarized to report the number of reads associated with each unique NCBI taxonomy 314 

ID called. 315 

 316 

Short read Classification Using LMAT: The quality of the short reads was checked with FastQC. 317 

No quality trimming was conducted. LMAT version 1.2.6 (available for download at 318 

sourceforge.net/lmat, (Ames et al., 2015)), installed on Lawrence Livermore National 319 

Laboratory (LLNL) HPC infrastructure was used to assign a taxonomic label to each short read 320 

with a minimum score setting of 0.5. Match scores are calculated per read, by fitting a random 321 

null model created by simulating 1 GB of random sequence for each model dependent on read 322 

length and GC content.  Three databases, the Algorithm Standard Database (LMAT DB), the 323 

stand-alone FDA-ARGOS database (Supplemental Table 1, SAMN04327393 was excluded from 324 

the database because this reference genome was developed from the same isolate that was 325 

used as spike in material for use case 1) and an aggregated database consisting of both the 326 

LMAT DB database and the stand-alone FDA-ARGOS database were used. LMAT results were 327 

summarized to report the number of reads associated with each unique NCBI taxonomy ID. 328 

 329 

 330 

Results: 331 

 332 

Filling gaps in public resources with targeted reference genomes  333 
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 334 

In 2013, FDA in collaboration with the Department of Defense (DoD) and the National 335 

Center for Biotechnology Information (NCBI) assessed the quality and diversity of sequenced 336 

microbial genomes present in public databases.  A majority of pathogens appeared to be 337 

represented by multiple entries, however, many of these genomes were incomplete or of 338 

unknown quality. In fact, a thorough examination of the entire public domain revealed some 339 

pathogens were underrepresented or completely absent.   Our 2013 review, supported by 340 

several publications (Schatz and Langmead 2013, Land, Hyatt et al. 2014, Land, Hauser et al. 341 

2015), revealed biased phylogenetic coverage usually attributable to research funding for 342 

specific microbial model organisms. At the time, NCBI GenBank covered less than 8,000 343 

bacterial and archaeal genome sequences with at least half submitted by the four largest 344 

genome sequencing centers: Broad Institute, DOE Joint Genome Institute, Institute for Genome 345 

Sciences and TIGR/JCVI. Additionally, many sequences lacked accompanying metadata and raw 346 

read information.  These  issues provided the impetus for de novo generation of FDA-sponsored 347 

reference sequences of the highest quality achievable using state-of-the-art genomic 348 

sequencing technologies (Koren, Schatz et al. 2012).  With this effort, FDA intended to establish 349 

quality control metrics for microbial genomes that could be used in ID-NGS test validation. Only 350 

genomes with the highest technically achievable quality would qualify as regulatory-grade 351 

genomes.  Factors essential to reach that goal were: 1) knowledge of the technology used to 352 

generate the sequences, 2) access to raw sequence information to reproduce the data, and, 3) 353 
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access to relevant metadata. Perhaps the most significant missing piece of information for 354 

previously generated reference genomes was the lack of an independent reference method 355 

that reliably linked the microbial organism identification to the sequence data.  In this context, 356 

qualification of  microbial reference genomes requires organism identification with a 357 

recognized reference method as this remains a primary requirement for validation of a new 358 

diagnostic device.  359 

FDA, DOD, NCBI and other agencies using scientific literature, a phylogenetic data 360 

mining approach, and FDA microbial species-specific guidance documents identified more than 361 

1000 gaps in public microbial genomic repositories. We prioritized these gaps and selected 362 

biothreat microorganisms, common clinical pathogens and closely related species (See 363 

Supplemental Materials for the organism gap list).  The primary objective of this regulatory 364 

science research and tool development effort centered on the generation of an initial set of 365 

2000 quality-controlled microbial FDA-ARGOS reference genomes . These genomes are 366 

generated with a hybrid  assembly approach using short and long read sequencing technologies 367 

(Koren, Schatz et al. 2012). An initial collection criterion focused on sequencing at least 5 368 

diverse isolates per species to cover temporal and spatial genome plasticity and initiate the 369 

construction of a regulatory-grade microbial genome model. 370 

 371 

FDA-ARGOS, what’s that?   372 

 373 
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FDA and collaborators established the publicly available database, FDA dAtabase for 374 

Regulatory-Grade micrObial Sequences (FDA-ARGOS), to fill these defined gaps for genomic 375 

sequences. Here, we present the first subset of 487 FDA-ARGOS genomes with NCBI accessions 376 

(Figure 2, Supplemental Table 1). Of the 487 isolates, 88.3 percent were bacteria, 11.1 percent 377 

were viruses and 0.6% were eukaryotes, representing 189 different taxa.  In total, 81.9 percent 378 

of genomes were of clinical origin with the remaining 18.1 percent environmental genomes 379 

from closely related species near-neighbors (Supplemental Table 2). Over 500 isolates are 380 

currently being sequenced and at different stages in the FDA-ARGOS genome generation 381 

pipeline.  382 

Use of advanced sequencing technologies (Koren, Schatz et al. 2012) helped define the 383 

characteristics for regulatory-grade genomes. Specifically, Figure 1B provides a summary of 384 

required FDA-ARGOS metrics to support a determination of regulatory-grade genome.  All FDA-385 

ARGOS genomic submissions demonstrated: 1) organism identification prior to sequencing by a 386 

recognized independent reference method, 2) sequence generation with at least two 387 

sequencing methodologies (e.g., long read and short read NGS), and, 3) de novo assembly with 388 

high-depth of base coverage. Each microbial isolate assembled genome sequence conformed to 389 

a minimum of 95 percent coverage with 20X depth at every position while also providing 390 

concordant NCBI taxonomy-specific average nucleotide identity (ANI) thresholds for microbial 391 

organism identification (Ciufo, Kannan et al. 2018) with independent identification methods. All 392 

FDA-ARGOS samples were concordant between de novo sequencing identification and 393 
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independent organism identification method (Supplemental Table 2 lists independent 394 

identification method data). 395 

As mentioned above, hybrid error-correction with long and short read sequencing 396 

technology was considered for establishing minimum FDA-ARGOS regulatory grade data 397 

requirements. Figure 1C outlined these criteria and included sample name, 10 meta data fields 398 

(based on NCBI BioSample submission requirements), raw reads, assemblies with coverage, 399 

N50, L50 and annotations. Importantly, FDA-ARGOS genomes are tied to a minimum of 10 400 

critical sample metadata fields (Figure 1D): independent organism confirmation by recognized 401 

reference method, culture collection, and, the following required NCBI BioSample fields: 402 

organism, strain, isolation source, host, collected by, taxonomy ID, contact and package 403 

information. Supplemental Table 2 shows metadata coverage metrics for all 487 FDA-ARGOS 404 

genomes. The 10 sample metadata fields are 100 percent completed and available throughout 405 

the sample set with 5 additional metadata metrics are recommended, such as geographic 406 

location, collection date, host disease, host sex and host age (BioSample documentation 407 

https://www.ncbi.nlm.nih.gov/biosample/docs/attributes/). In terms of clinical representation, 408 

81.9 percent of clinical samples in the collection are associated with known phenotype/host 409 

disease. 410 

Critical for the designation of genomes as ‘regulatory-grade genomes’, was the 411 

institution of quality control metrics for all aspects of the genome generation. To objectively 412 

identify such quality control metrics, we performed internal quality control assessments of all 413 
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487 genome assemblies (See methods for calculation of FDA-ARGOS genome assembly quality 414 

control statistics, Supplemental Table 1). Figure 3 shows the quality of FDA-ARGOS genome 415 

assemblies compared to the representative 2013 NCBI GenBank database and the 416 

representative 2018 NCBI GenBank database. Both, the 2013 and 2018 NCBI database captures 417 

held up to 50 NCBI assemblies for each species within the FDA-ARGOS database from the 418 

respective year. In relative number of assemblies, 2018 NCBI database contained 3535 while 419 

the 2013 contained 1617. Overall, we observed higher quality in the FDA-ARGOS genome 420 

dataset for the coverage, N50, and L50 quality assembly metrics compared to the 2013 and 421 

2018 NCBI GenBank public genome dataset (Figure 3 A, B and C respectively). Figure 3D 422 

demonstrated that only 675 out of the 3535 2018 NCBI GenBank assembled genomes, or 20 423 

percent, showed comparative assembly quality to FDA-ARGOS genome sequences when 424 

considering one of the reported assembly quality metrics. More importantly, when considering 425 

all quality control assembly metrics, only 11 out of the 3535 2018 NCBI GenBank assembled 426 

genomes, or 0.3 percent, showed comparable quality to FDA-ARGOS genome assemblies.   427 

We expect refinement of the quality metrics for ‘regulatory-grade’ genome status 428 

(Figure 1B) as we continue to populate the FDA-ARGOS with additional quality-controlled 429 

genomes;  therefore, we established the requisite that all genomes should be available publicly. 430 

Deposition for all FDA-ARGOS genomes requires that raw reads, assembled genomes and 431 

associative metadata are publicly available (https://www.ncbi.nlm.nih.gov/bioproject/231221).  432 

(Check https://fda.gov/argos for additional background information and updated genomes).  433 
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 434 

FDA-ARGOS fills critical gaps in public sequence repositories - Use Case 1: Enterococcus avium  435 

 436 

Several regulatory science research considerations arose during the process of 437 

generating FDA-ARGOS genomes, including the initial impetus for this effort, gap filling. Our 438 

first use case documented the importance of genome gap filling with FDA-ARGOS quality-439 

controlled genomes, and the impact of lack of publicly available genomes for medically 440 

important microbes on potential diagnostic applications. Specifically, we tested whether the 441 

addition of quality-controlled reference sequences into the public repositories impacted the 442 

NGS pathogen detection of a metagenomic shotgun sequencing approach of a mock clinical E. 443 

avium-spiked human blood sample at clinically relevant titers. An isolate from reference 444 

genome SAMN04327393, which was removed from reference databases for data analysis, was 445 

used as a mock clinical E.avium sample. Initial read mapping using CLC Genomics and E. avium 446 

sequences from publicly available databases as a reference demonstrated de novo assembly of 447 

E. avium data was not possible due to only an average 424.4 mapped paired end reads 448 

(Supplemental Table 7). For frame-of-reference, we would need over 30,000 reads to de novo 449 

assemble an entire genome of approximately 5 Mb at 1X coverage, assuming a read size of 150 450 

bp and perfect quality of each generated read at all positions.     451 

 Subsequent bioinformatics data analysis of the E. avium metagenomics shotgun paired-452 

end reads data showed the critical gap filling and utility of the FDA-ARGOS database resource. 453 
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We analyzed the effect of genome gap filling with MegaBLAST (Morgulis, Coulouris et al. 2008) 454 

and Kraken (Wood and Salzberg 2014) by determining  the number of E. avium reads classified 455 

from the mock clinical human blood sample with and without FDA-ARGOS genomes used in the 456 

respective bioinformatics tools reference databases. Intuitively, a majority, over 98 percent, of 457 

approximately 12 million paired-end reads for each replicate sample mapped against the 458 

human genome with only 2 percent or less mapping to non-human sequences with both 459 

algorithms (Figure 4A). In contrast, application of MegaBLAST and Kraken with FDA-ARGOS 460 

alone yielded zero human reads due to the lack of human reference in that database. Reads 461 

classified as E. avium ranged from an average 3829 and 840 when FDA-ARGOS genomes were 462 

added to the algorithm reference database compared to an average 29 and 0 reads when these 463 

genomes were absent for MegaBLAST and Kraken, respectively (Figure 4B, Supplemental Table 464 

4). Interestingly, while E. avium genomes were available in the NCBI Nt database and part of 465 

the read classification for MegaBLAST analyses, positive ID-NGS identification required the 466 

addition of quality-controlled FDA-ARGOS reference genomes.  MegaBLAST tool with FDA-467 

ARGOS data as the standalone reference database generated the largest effect with an 468 

additional 1495 E. avium reads classified. MegaBLAST classified additional reads with the stand-469 

alone FDA-ARGOS database most likely because the quality-controlled E. avium genomes were 470 

not mixed with lower quality genomes in the standard algorithm database as competition with 471 

lower quality and closely related genomes removed.   472 
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 Finally, we performed E. avium isolate shotgun sequencing without clinical matrix to 473 

obtain sufficient data to illustrate the critical nature of having quality-controlled reference 474 

genomes. Using the aforementioned bioinformatics tools, data analysis showed the impact of 475 

read classification solely focused on E. avium and determined if the addition of FDA-ARGOS 476 

genomes to public databases affected read mapping. Figure 4C shows that addition of FDA-477 

ARGOS E. avium reference genomes significantly increased read classification performance 478 

based on the number and percent of E. avium reads classified (Figure 4C, Supplemental Table 479 

5). On average, for E.avium isolate shotgun sequencing, 8,406,630 reads out of a total 12 480 

million reads classified as E. avium when the FDA-ARGOS database resource upon addition to 481 

the algorithm standard reference database (NCBI Nt) compared to 25,800 reads without FDA-482 

ARGOS added.  Amalgamation of FDA-ARGOS genomes into standard sequence reference 483 

databases resulted in E. avium contributing between 84 to 96 percent of the total reads 484 

classified (Figure 4C).  Interestingly, top hits from the MegaBLAST tool using NCBI Nt database 485 

(containing 4 E. avium genomes but not at regulatory grade quality, Supplemental Table 3) 486 

showed over 10 percent of total classified reads mapped to ‘Bos Taurus’ or ‘Enterococcus 487 

faecium’. These top hits were potentially database contaminants and illustrate the risk of using 488 

non-curated databases in ID-NGS diagnostics. Data analysis with the Kraken tool and the 489 

algorithm standard reference database (NCBI Nt) resulted in 0 mapped reads because the 490 

Kraken tool reference database lacked E. avium genomes (Figure 4C). 491 
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For future benchmarking efforts of bioinformatics tools, we provide all E. avium Data 492 

Sets (Supplemental Material). 493 

 494 

In Silico Comparison: Regulatory-grade genomes are sufficient for Ebolavirus Target Sequence 495 

Validation – FDA-ARGOS Use Case 2 496 

 497 

A major incentive for the development of FDA-ARGOS was to enable and promote 498 

innovation for ID-NGS medical devices.  Through the process of populating the FDA-ARGOS 499 

database, the concept of partial in silico validation, rather than completely empirical validation 500 

of clinical trial samples with an independent gold standard reference method, matured. We 501 

chose FDA-ARGOS Ebola reference sequences (Supplemental Table 1) and a targeted ID-NGS 502 

assay, the Ebola virus molecular inversion probes (MIPS), to evaluate the application of FDA-503 

ARGOS as an in silico target sequence validation tool. Table 1 showed the diagnostic 504 

performance of the MIPS ID-NGS assay with clinical Bundibugyo virus and EBOV Makona 505 

samples reported as a more sensitive assay, EBOV Real-Time PCR (RT-PCR) assay (Trombley, 506 

Wachter et al. 2010). When assessing 10 clinical Bundibugyo virus and 15 clinical EBOV Makona 507 

samples, concordant real-time PCR and MIPS positive results ranged from 9 out of 10 clinical 508 

samples (Table 1A) to 6 out of 15 (Table 1B), respectively. Intuitively, lower quantitation cycle 509 

(Cq) values correlated with higher MIPS read classification, suggesting the capability of ID-NGS 510 

to detect organisms was dependent on the starting concentration of the target genomic 511 
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material. MIPS false negative calls for low target analytes suggested that complete in silico 512 

validation is an unrealistic approach for clinical trials without comparison to some gold standard 513 

reference method, in this case real-time PCR.  514 

Consistent concordance between the benchmark RT-PCR assay, the MIPS test device and 515 

the FDA-ARGOS in silico target sequence validation was important for establishing confidence in 516 

considering in silico comparison method for clinical sample ID calling.  To test this assumption, 517 

we used three bioinformatics tools, MegaBLAST (Morgulis, Coulouris et al. 2008), Kraken (Wood 518 

and Salzberg 2014) and LMAT (Ames, Hysom et al. 2013) to evaluate the proposed in silico 519 

target sequence validation method (Figure 1A), and to verify the potential for using in silico 520 

comparison without any empirical validation.  MegaBLAST and Kraken analyses of raw 521 

sequence data for Bundibugyo virus samples using the three different read classification tools 522 

in combination with FDA-ARGOS as the reference genome database showed complete 523 

agreement for MIPs and in silico calls (Table 1A). Because the in silico comparison missed the 524 

classification call against the gold standard PCR benchmark test for a sample with low analyte 525 

levels (1 false negative result for the in silico validation), we performed a more in depth analysis 526 

of the additional EBOV Makona samples across three bioinformatics tools, MegaBLAST, Kraken 527 

and LMAT (Table 1B). These analyses showed similar results to the Bundibugyo virus data at 528 

100% agreement with test device, but only for samples with low Cq or high input concentrations 529 

of the target organism.  Additional analyses comparing results for each bioinformatics tool 530 

reference databases with and without FDA-ARGOS genomes added, produced similar results 531 
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demonstrating that FDA-ARGOS alone was sufficient for in silico comparison (Supplemental 532 

Table 6). Overall, these data suggested in silico sequence comparison would be completely 533 

reliant on the inherent sensitivity of the sequencing assay to generate sequence read data for 534 

comparison, therefore Composite Reference Method (C-RM) (combining in silico sequence 535 

comparison with a wet lab validation challenge) is necessary for full validation of the test ID-536 

NGS device.  Figure 1A illustrates the proposed novel C-RM, highlighting this need for empiric 537 

assessment of an ID-NGS assay-specific subset of samples or well defined microbial reference 538 

materials.  539 

Evaluation of the clinical samples suggested a need for benchmarking ID-NGS assays to 540 

currently implemented reference methods, thus the application of the C-RM. To document the 541 

application of MIPS Ebola Makona ID-NGS assay benchmarking, we performed a mock clinical 542 

trial to assess the assay-specific wet-lab subset evaluation as part of the proposed C-RM. 543 

Initially, we performed a preliminary limit of detection (LOD) evaluation to determine the scope 544 

of the mock clinical evaluation. These experiments showed a preliminary LOD of 10
5
 with linear 545 

dose response correlation to EBOV input across the titration (Supplemental Table 8). An 546 

additional 40 positive replicates performed on two independent days, two independent runs 547 

confirmed the LOD at 10
5
 pfu/ml for EBOV.   This concentration formed the basis for spike-in 548 

levels of the mock clinical trial.  From a total of 148 samples tested, 48 constituted positive 549 

spiked samples with 16 at high (10x LOD), 16 at medium (5x LOD) and 16 at 1x LOD for the MIPS 550 

assay (Table 2).  In this mock clinical trial, all spiked samples were positive via real-time PCR 551 
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(data not shown). Only 9 out of 16 samples at 1X LoD for the MIPS assay were positive with 37 552 

out of 48 samples positive across the entire sample set in this analysis. However, the positive 553 

predictive value (PPV) and negative predictive value (NPV) for the MIPs assay were: 97.4% and 554 

90%, respectively at or above the limit of detection with a prevalence of 32.4%.  In addition, 555 

Table 2 lists the positive and negative predictive values for prior probabilities of infection from 556 

0-1. The PPV and NPV metrics are important predictive analytics tools to provide performance 557 

characteristics for how the ID-NGS diagnostic test will perform in a clinical context. These data 558 

provide a rationale for developers using partial in silico validation when false negative rate is 559 

low. 560 

For future benchmarking efforts of bioinformatics tools, we have provided all Ebola Data 561 

Sets (Supplemental Material). 562 

 563 

 564 

 565 

Discussion: 566 

 567 

To encourage innovation and support the infectious disease community, we provide here 568 

the FDA-ARGOS resource as a tool for ID-NGS assay development, reference database and in 569 

silico target sequence validation as part of a novel Composite Reference Method (C-RM). This 570 

manuscript describes the database, specifically highlighting: 1) the quality metrics of regulatory-571 
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grade genomes for database inclusion, 2) benefits of FDA-ARGOS in filling pathogen genome 572 

knowledge gaps for device output, and 3) describes some use cases for FDA-ARGOS.  573 

A critical aspect for assessing performance of any diagnostic is the availability of minimum 574 

quality control metrics for data, genomic or otherwise, for validation. Defined here are the FDA-575 

ARGOS ‘regulatory-grade’ genome criteria that provide ID-NGS diagnostic assay developers and 576 

the scientific community with traceable and quality-controlled genomes.  These high-quality 577 

genomes coupled with a streamlined approach for comprehensive expansion of FDA-ARGOS 578 

beyond the initial 2000 genomes is essential for continued ID-NGS diagnostic assay 579 

development. 580 

FDA-ARGOS genome sequencing and research resulted in six broad quality metrics (Figure 581 

1B) defining ‘regulatory-grade’ genome criteria required for current and future FDA-ARGOS 582 

contributors. All extant genomes in the FDA-ARGOS database (Supplemental Table 1) adhere to 583 

the quality metrics of 95% coverage with 20X depth at every position across the entire 584 

assembled genome. This metric applies to the initial deposition of, minimally, 5 genomes of any 585 

genus/ species added to FDA-ARGOS. These 5 genomes define the “FDA-ARGOS core genome”. 586 

After 5 or more regulatory grade genomes per genus/species are available in the database, we 587 

will consider lower threshold metrics for FDA-ARGOS inclusion to capture novel and/or unique 588 

genomes that may be diagnostically informative. Future efforts will apply these metrics to 589 

existing genomic information in the public domain coupled with deep learning methods and 590 
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artificial intelligence to inform an external genome qualification tool greatly expanding utility of 591 

the FDA-ARGOS database.  592 

Lack of high quality reference genomes challenges the accuracy of ID-NGS identification 593 

for queryable microbial pathogen.  The genome gap filling use case with regulatory-grade E. 594 

avium genomes highlights current challenges with infectious disease NGS technology when 595 

using minimal-, non-curated or absent reference databases. The end result potentially leading 596 

to the lack of a diagnostic call or even misdiagnosis. These data were punctuated by two key 597 

findings: 1) de novo assembly of the data was not possible due to the low number of reads in 598 

clinical matrix and 2) limited E. avium species reference genomes in publicly available databases 599 

made the sample identification almost impossible (Supplemental Table 3). The latter point is 600 

extremely relevant for the intent of ID-NGS for diagnostic applications. In the case presented 601 

here, the top microbial sequence hit did not equate to the microbe of interest due to lack of 602 

representation in the reference database. Intuitively, addition of FDA-ARGOS and relevant 603 

genomes mitigated this issue. In addition, E. avium isolate sequencing results showed the 604 

dependency of both classification method (such as MegaBlast and Kraken) and database used. 605 

This last aspect of the E. avium use case informed the consideration of the C-RM and opened 606 

the possibility for utilizing a suite of validated bioinformatics tools for in silico target sequence 607 

validation.  608 

There are two basic contrasting philosophies in circulation regarding genomic information 609 

and ID-NGS: 1) all information, whatever the quality, is useful towards making a diagnosis, the 610 
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more data the better, with the assumption of diagnosis relying on error correction through 611 

iteration, or, 2) quality-controlled, highly curated genomes are required as a solid foundation, 612 

more information is better, however, diagnostics require quality-controlled genomes to inform 613 

the basis of diagnosis.  Experiments and data presented here support the latter of these two 614 

arguments. Specifically, while E. avium reference genomes were available in NCBI Nt database 615 

and were part of the read classification for MegaBLAST analyses, positive ID-NGS identification 616 

of E. avium required the addition of quality-controlled FDA-ARGOS reference genomes. In 617 

addition, read mapping of isolate shotgun data, without any clinical matrix, showed 618 

indeterminate results for E. avium without FDA-ARGOS in contrast to 80 percent of total reads 619 

mapped as E. avium upon addition of these regulatory-grade genomes to the reference 620 

database. A similar increase in performance in E. avium reads classified resulted when using 621 

FDA-ARGOS E. avium reference genomes for metagenomics shotgun data, in whole blood, even 622 

with human reads occupying >98% of sequencing real estate.  623 

  Quality and coverage of targeted organisms are critical aspects for ID-NGS transition 624 

into the clinical space; however, to foster the transition, new methods are required to lessen 625 

the burden for validating ID-NGS against all queryable pathogens. This manuscript documents 626 

methods for use of FDA-ARGOS reference genomes in in silico sequence comparison as part of 627 

the proposed novel C-RM. We showed here that the in silico validation of Bundibugyo virus and 628 

Zaire ebolavirus can use FDA-ARGOS genomes as the comparator. For MIPS positive samples, 629 

there was 100 percent concordance between the gold standard real-time PCR comparator, and 630 
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the in silico comparison. This supports the feasibility of implementing this strategy to shorten 631 

future clinical NGS-based assay evaluation studies. A potential mitigation for this issue, where 632 

real-time PCR was more sensitive than the MIPS NGS assay especially at high Cq values, is the 633 

application of additional enrichment strategies to bring ID-NGS to similar sensitivities as the 634 

gold standard (Briese, Kapoor et al. 2015, O'Flaherty, Li et al. 2018). However, in the current 635 

form, observed lower sensitivity of the MIPS assay compared to real-time PCR shows the 636 

necessity for a C-RM and incorporating additional empirical studies, i.e., an assay-specific 637 

subset of clinical samples going through wet-lab comparison as part of the clinical validation. 638 

Discordant results at high Cq values highlight the perils of solely applying in silico sequence 639 

comparison. Without any empirical evaluation, in silico comparison would only provide results 640 

within the sensitivity ranges of the test ID-NGS device without providing the needed benchmark 641 

for sensitivity compared to a gold-standard such as real-time PCR. Therefore, as part of the C-642 

RM, we demonstrate a preliminary performance assessment a against a gold-standard for a 643 

subset of the clinical trial samples with the intent that the remainder of the clinical trial samples 644 

could be validated via in silico sequence comparison. Different sample read depths may be 645 

required to achieve the desired identification performance for various organisms.  Assay 646 

developers might be required to use an external comparator only for in silico validation results 647 

where the test device and in silico comparison yielded a discordant result. We envision this C-648 

RM to be a primary utility of the FDA-ARGOS genome database tool for medical device 649 
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development. We hope that FDA-ARGOS will spur innovation and expedite regulatory science, 650 

and ultimately enable ID-NGS as a diagnostic to enter the clinic. 651 

The FDA-ARGOS reference genome resource is a constantly evolving public database 652 

instance and intended to mature over time with community support and genomic technology 653 

advancements.   Continued population and expansion of the FDA-ARGOS database resource will 654 

be required to cover the panoply of infectious microorganisms.  In this proposed in silico 655 

validation with FDA-ARGOS, the need for comprehensive regulatory-grade genome coverage is 656 

clear, however, no one entity can perform all the needed sequencing.  We are therefore 657 

working on a pathway for external genome qualification to streamline and expand FDA-ARGOS 658 

resource as needed. Both the external genome qualification and continued research to apply 659 

this regulatory-grade standard to unculturable and emerging pathogens will be the focus of 660 

future research.  661 

 Further population and curation of the database will support the success of FDA-ARGOS 662 

and promote adoption by the NGS community. The FDA-ARGOS team openly invites additional 663 

collaborators from the scientific community to assist in filling the gaps in this public resource. 664 

FDA-ARGOS and collaborators are specifically searching for unique, hard to source microbes 665 

such as biothreat organisms, emerging pathogens, and clinically significant bacterial, viral, 666 

fungal, and parasitic genomes. As stated, the goal is to collect sequence information for a 667 

minimum of 5 isolates per species and we solicit any potential collaborators interested in 668 

supplying these 5 isolates for gap-filling to contact and authors of this paper. For more 669 
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information about contributing samples for UMD-IGS sequencing as part of FDA-ARGOS efforts, 670 

or to qualify existing genomes by the FDA, please email FDA-ARGOS@fda.hhs.gov. 671 

  672 
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Figure 1: Proposed Novel Composite Reference Method (C-RM) for ID NGS Diagnostic Assays.  848 
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Figure 1A illustrates a walkthrough of the proposed novel composite reference method (C-RM). 850 

Here, we show in silico target sequence validation with FDA-ARGOS reference genomes in 851 

combination with a wet lab validation challenge to understand the performance of ID NGS 852 

diagnostic assays. Using raw sequence data from the ID-NGS test device, in silico comparison of 853 

results obtained with the assay in-house database to results when using FDA-ARGOS will 854 

evaluate device bioinformatic analysis pipelines and report generation while eliminating the 855 

need for additional sample testing with a gold standard comparator (current FDA benchmarks). 856 

Overall, we anticipate the use of the C-RM method based on assay-specific subsets of clinical 857 

samples and/or microbial reference materials (MRMs) for wet lab validation and FDA-ARGOS in 858 

silico target sequence validation to generate scientifically valid evidence for understanding the 859 

performance of ID NGS diagnostic assays. Figure 1B lists the required quality control metrics for 860 

passing the regulatory-grade genome criteria. At a minimum, an FDA-ARGOS regulatory-grade 861 

genome adheres to six metrics (a-f). Specifically, category f details the minimum data 862 

requirements that are further described in Table 1C. In addition, Table 1D lists the 10 critical 863 

meta data that need to be ascribed to a genome to meet the regulatory-grade criteria. 864 

 865 

Figure 2: FDA-ARGOS Reference Genome Database. 866 
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  867 

Summary statistics of the current 487 microbial genomes show primary coverage of FDA-868 

ARGOS resides with bacterial isolates, followed by viruses and then eukaryotic parasites (A). 869 

Supplemental Table 1 provides accessions for all 487 genomes currently available publicly. A 870 
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majority of FDA-ARGOS constituents (B) originate from North America and are from human 871 

clinical isolation. 872 

 873 

Figure 3: FDA-ARGOS Reference Genome Assemblies Quality Metrics.  874 
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Comparative microbial genome assembly quality metrics contrasted current FDA-ARGOS 876 

assemblies to 2013 and 2018 NCBI GenBank assemblies submitted for each species captured 877 

within the FDA-ARGOS database.  Assembly quality metrics measured included: (A) median 878 

coverage, (B) median N50, (C) median L50 and (D) number of 2018 NCBI genomes that 879 

exhibited all, one or a specific quality control metric used to vet FDA-ARGOS genomes for 880 

inclusion. The NCBI assemblies were downloaded on August 6, 2018. 881 

 882 

 883 

Figure 4 Read Classification Results from Shotgun Sequencing for Identification of 884 

Enterococcus avium. 885 
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886 
Visualizing sample analyzed with both MegaBLAST and Kraken percent human reads mapped 887 

(A) from metagenomics and isolate sequencing shotgun sequencing showed sequencing clinical 888 

matrix resulted in a majority of reads mapping to host background.  The number of E. avium 889 

reads correctly classified from metagenomic samples using three different reference databases 890 
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(B) varied based on whether MegaBLAST and Kraken standard databases, standard database 891 

plus FDA-ARGOS, or FDA-ARGOS alone was used for read mapping. Evaluation of E. avium reads 892 

for just the clinical isolate without matrix (C) resulted in a similar relationship of greater number 893 

of reads mapped when FDA-ARGOS genomes were used in comparison to the algorithm 894 

standard reference database. All Reference Data Sets and the FDA-ARGOS Database are publicly 895 

available for data analysis and tool comparison. 896 

 897 

Tables: 898 

 899 

Table 1A: Diagnostic Benchmark and In Silico Target Sequence Validation with FDA-ARGOS: 900 

Bundibugyo Performance Summary.  901 

 902 

Sample 

Real-Time PCR 

(Benchmark) 

MIPS (Test 

Device) 

FDA-ARGOS (In Silico Target Sequence 

Validation) 

  

Quantitation Cycle (Cq) 

Value 

Percent 

Classified 

MegaBLAST Percent 

Classified 

Kraken        Percent 

Classified 

 2012-1 22.97/22.95 54.95% 59.84% 70.89% 

 2012-16 ND 0.02% 0.76% 0.02% 

 2012-91 ND 0.03% 0.65% 0.04% 

 2012-95 ND 0.02% 0.59% 0.03% 

2012-99 ND 0.02% 0.67% 0.06% 

2012-120 23.46/23.38 41.87% 45.14% 57.56% 

2012-147 25.58/25.52 27.23% 29.78% 47.52% 

2012-153 28.14/27.96 38.30% 40.97% 50.70% 

2012-176 37.01/36.54 0.01% 0.87% 0.01% 

2012-198 ND 0.02% 0.71% 0.03% 

NTC N/A 0.02% 1.59% 1.05% 

Illustration of an application of the in silico target sequence validation method to a targeted ID 903 

sequencing assay (MIPS). Two bioinformatics tools (MegaBLAST and Kraken) were selected to 904 

classify reads using default parameters utilizing FDA-ARGOS as a standalone reference 905 

database. Table 1A showed the traditional benchmark comparison of the MIPs assay to Real-906 

Time PCR (RT-PCR) results. Benchmark positive values were only noted for samples that yielded 907 

duplicative positive results by RT-PCR. Percent reads classified only refer to percentage of reads 908 

that were assigned to Bundibugyo or Ebola virus, the remaining reads are non-specific or 909 

"junk". 910 

 911 
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Table 1B: Diagnostic Benchmark and In Silico Target Sequence Validation with FDA-ARGOS: 912 

Ebola Makona Performance Summary.  913 

Sample 

Real-Time 

PCR 

(Benchmark) 

MIPS (Test 

Device) 
FDA-ARGOS (In Silico Target Sequence Validation) 

  

Quantitation 

Cycle (Cq) 

Value  

Percent 

Classified 

MegaBLAST 

Percent Classified 

Kraken         

Percent Classified 

LMAT          Percent 

Classified 

3754-2 35.11/35.72 0.05% 0.60% 0.06% 0.03% 

3754-4 33.83/33.36 0.06% 0.68% 0.06% 0.03% 

3811-2 36.17/36.14 0.07% 0.56% 0.08% 0.04% 

3856-1P 15.95/15.98 76.63% 80.91% 79.50% 42.48% 

3913-5 34.00/33.77 0.00% 0.68% 0.00% 0.01% 

3958-4 32.77/33.28 0.04% 0.65% 0.05% 0.05% 

3991-2 33.92/33.62 0.00% 0.65% 0.00% 0.01% 

4007-2 26.30/26.55 21.33% 22.41% 21.81% 12.12% 

4015-1 21.66/21.66 74.87% 76.35% 75.82% 39.35% 

4033-1 16.59/16.32 76.64% 79.59% 78.97% 41.79% 

4268-1P 25.05/25.15 29.71% 30.43% 29.97% 15.87% 

4468-3 35.78/35.91 0.04% 0.59% 0.05% 0.03% 

4641-3P 31.81/31.82 0.03% 0.59% 0.04% 0.02% 

4726-1 21.22/21.21 53.95% 56.44% 54.28% 30.05% 

4845-3 35.17/36.71 0.00% 0.66% 0.01% 0.01% 

NTC N/A 0.02% 0.86% 0.04% 0.01% 

Illustration of an application of the in silico target sequence validation method to a targeted ID 914 

sequencing assay (MIPS). Three bioinformatics tools (MegaBLAST, Kraken and LMAT) were 915 

selected to classify reads using default parameters utilizing FDA-ARGOS as a standalone 916 

reference database. Table 1B showed the traditional benchmark comparison of the MIPS assay 917 

to Real-Time PCR (RT-PCR) results. Benchmark positive values were only noted for samples that 918 

yielded duplicative positive results by RT-PCR. Percent reads classified only refer to percentage 919 

of reads that were assigned to Bundibugyo or Ebola virus, the remaining reads are non-specific 920 

or "junk". 921 

 922 

 923 

Table 2: Mock Clinical Evaluation of EBOV NGS Performance. 924 

  925 

A. Experimental design and results   
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PFU/ml n Avg EBOV Reads 

Avg %Reads 

Mapped CoV 

Positive 

Samples 

Negative 

Samples 

1000000 (10X) 16 5442.5 2.66% 136.55% 15 1 

500000 (5X) 16 2777.5 2.49% 152.33% 13 3 

100000 (1X) 16 351.5 0.58% 247.57% 9 7 

NTC 100 4 0.00% 571.69% 1 99 

 926 

B.  Diagnostic performance statistics    

N 
Positive Predictive 

Value 

Negative 

Predictive Value 
Sensitivity Specificity  Prevalence 

148 
97.37%               

(83.95% to 99.62%) 

90.00 %             

(84.26% to 93.80%) 

77.08%              

(62.69% to 87.97%) 

99.00%               

(94.55% to 99.97%) 

32.43%             

(24.98% to 40.61%) 

 927 

C.  Diagnostic performance statistics for prior probabilities  

 Prior probability of 

infection  

 Positive Predictive 

Value  

 Negative Predictive 

Value  

0 0 1 

0.01 0.44 1 

0.05 0.8 0.99 

0.1 0.9 0.97 

0.15 0.93 0.96 

0.2 0.95 0.95 

0.25 0.96 0.93 

0.3 0.97 0.91 

0.4 0.98 0.87 

0.5 0.99 0.81 

0.6 0.99 0.74 

0.7 0.99 0.65 

0.75 1 0.59 

0.8 1 0.52 

0.85 1 0.43 

0.9 1 0.32 

0.95 1 0.18 

0.99 1 0.04 

1 1 0 

Demonstration (A) of the preliminary diagnostic performance (B) of a targeted ID sequencing 928 

assay (MIPS) during a mock clinical trial using 48 positive Ebola samples and 100 Ebola negative 929 

samples. Numbers in parentheses represent the 95% Confidence Interval. Positive and negative 930 

predictive values are shown for prior probabilities (C) of infection ranging from 0-1. 931 
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