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Abstract 
Transcription initiates at both coding and non-coding genomic elements, including mRNA and 
long non-coding RNA (lncRNA) core promoters and enhancer RNAs (eRNAs). However, each 

class has different expression profiles with lncRNAs and eRNAs being the most tissue-specific. 
How these complex differences in expression profiles and tissue-specificities are encoded in a 
single DNA sequence, however, remains unresolved. Here, we address this question using 
computational approaches and massively parallel reporter assays (MPRA) surveying hundreds of 
promoters and enhancers. We find that both divergent lncRNA and mRNA core promoters have 
higher capacities to drive transcription than non-divergent lncRNA and mRNA core promoters, 
respectively. Conversely, lincRNAs and eRNAs have lower capacities to drive transcription and 
are more tissue-specific than divergent genes. This higher tissue-specificity is strongly associated 
with having less complex TF motif profiles at the core promoter. We experimentally validated 
these findings by testing both engineered single-nucleotide deletions and human single-
nucleotide polymorphisms (SNPs) in MPRA. In both cases, we observe that single nucleotides 
associated with many motifs are important drivers of promoter activity. Thus, we suggest that high 
TF motif density serves as a robust mechanism to increase promoter activity at the expense of 
tissue-specificity. Moreover, we find that 22% of common SNPs in core promoter regions have 
significant regulatory effects. Collectively, our findings show that high TF motif density provides 
redundancy and increases promoter activity at the expense of tissue specificity, suggesting that 
specificity of expression may be regulated by simplicity of motif usage.  
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Introduction 

Transcription factors (TFs) regulate gene expression by binding to DNA regulatory 
elements at both coding and non-coding genomic elements, including mRNA and long non-coding 
RNA (lncRNA) promoters and enhancers. Classically, promoters and enhancers have been defined 
as distinct categories of regulatory elements. However, recent findings suggest that promoters and 
enhancers share a common regulatory code, as transcription is initiated at both (Core, Waterfall, 
and Lis 2008; Engreitz et al. 2016). Indeed, at both promoters and enhancers, RNA polymerase II 
(Pol II) binds to a 50-100bp stretch of DNA termed the “core promoter” and transcribes in both the 
sense and antisense directions—a phenomenon known as bidirectional transcription (Andersson 
2015). Such transcription at promoters typically produces long, stable polyadenylated transcripts 
in the sense direction and short, unstable, non-polyadenylated transcripts in the antisense direction 
(Andersson 2015). At enhancers, highly unstable RNAs, named enhancer RNAs (eRNAs), are 

produced in a bidirectional manner (Forrest et al. 2014). 

Although almost all promoters exhibit bidirectional transcription, in some cases, this 
bidirectional transcription results in two stable transcripts that are arranged in a “head-to-head” 
orientation (one on the sense strand and one on the antisense strand). These so-called “divergent” 
transcripts are abundant in the human genome and are evolutionarily conserved and often 
comprised of two highly expressed individual core promoter sequences (Trinklein et al. 2004). It 
remains unclear, however, whether their high expression levels are a byproduct of having two 
promoters in close proximity or whether it is an inherent property of their DNA sequence. 
Additionally, these divergent transcript pairs can also include lncRNAs, but whether divergent 
lncRNA promoters have distinct regulatory properties compared to divergent mRNA promoters is 
also unknown. 

Like mRNAs, lncRNAs are transcribed by Pol II, canonically spliced, and polyadenylated. 
However, lncRNAs also show similarities to enhancers: they have similar chromatin environments 
(Marques et al. 2013) and they often act as enhancers themselves by activating the transcription 
of nearby genes (Ørom and Shiekhattar 2013; Rinn and Chang 2012). As a class, lncRNAs are 
known to be more lowly expressed and more tissue-specific than protein-coding genes (Cabili et 
al. 2011; Derrien et al. 2012; Molyneaux et al. 2015). Although lncRNAs are less conserved than 
protein-coding genes, their promoters—and the TF binding sites within their promoters—are 
remarkably well-conserved (Melé et al. 2017; Ponjavic, Ponting, and Lunter 2007), suggesting that 
a conserved regulatory logic controls lncRNA transcription. However, the rules that govern lncRNA 
transcription and that determine their higher tissue-specificity remain unclear. For example, it is 
unknown whether lncRNAs are more tissue-specific than mRNAs due to differences in their TF 
binding profiles.  
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In this work, we address the fundamental question: is there an underlying “code” in lncRNA 
and mRNA promoter and enhancer sequences that accounts for their established differences in 
tissue-specificity and abundance? To address this, we used a massively parallel reporter assay 
(MPRA)—in which thousands of regulatory sequences of interest are assayed in a single 
experiment (Patwardhan et al. 2012; Melnikov et al. 2012)—to dissect core promoter sequence 
properties at high resolution and across multiple cell types. MPRAs have previously uncovered 
important characteristics of promoters and enhancers (Nguyen et al. 2016; Arnold et al. 2017) but 
to date a systematic analysis of whether intrinsic features of DNA sequence are responsible for 
differential activity at lncRNA promoters, protein-coding gene promoters, and enhancers has not 
been performed. Collectively, our data converge on a model of “specificity through simplicity”—
lncRNAs and enhancers have less complex TF motif profiles, and this relative simplicity is 
associated with their low abundance and high tissue-specificity.  
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Divergent lncRNA core promoters are strong and ubiquitously expressed 

 

Figure 1:  Core promoter sequences of different TSS classes vary in strength and cell-type-specificity. 
A. Overview of TSS classification based on element class (lncRNA, mRNA, or eRNA) and presence or 
absence of a divergent stable transcript arising from the same promoter region on the antisense strand. B. 
Schematic of MPRA experimental design. “Min. prom.”: minimal promoter. C. Comparison of MPRA activities 
(foldchange between normalized RNA barcodes and input DNA barcodes) of the reference sequences of each 
TSS class to negative control sequences in K562 cells. Only TSSs which meet the quality criteria of >= 3 
barcodes represented each with >= 5 DNA and RNA counts are plotted and n values are shown. P-values 
listed are from a two-sided Wilcoxon test. D. Correlation between CAGE cell-type-specificity calculated across 
HeLa, Hepg2, and K562 (x axis) and MPRA cell-type-specificity across the same 3 cell lines (y axis). The 
upper right and lower left quadrants correspond to sequences that agree with CAGE and MPRA and make up 
67% of sequences. Dashed horizontal and vertical line thresholds for specificity were determined from the 
distribution of specificity values, shown as density plots on the top and to the right of the main plot. Spearman’s 
rho and p-value are shown. E. Percent of sequences that are active in only one cell type (solid bars) or all 
three cell types (K562, HepG2 and HeLa; hatched bars) within each biotype.  
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We first defined five biotypes: (1) eRNAs (RNAs emerging from bidirectionally transcribed 
enhancers that do not overlap protein-coding genes) (2) intergenic lncRNAs (lincRNAs), (3) 
divergent lncRNAs (lncRNAs that share promoters with either a protein-coding gene or another 
lncRNA in the antisense direction), (4) mRNAs, and (5) divergent mRNAs (mRNAs that share 
promoters with either another protein-coding gene or a lncRNA in the antisense direction) (Figure 
1A; see methods). Note that here the term “divergent” refers to the presence of a stable annotated 
transcript in the antisense direction, not the potential bidirectionality of the promoter itself. As the 
TSSs of lncRNAs can be more poorly annotated than the TSSs of mRNAs, which could bias results 
when comparing them (Lagarde et al. 2017), we carefully selected a set of high-confidence TSSs 
defined by the FANTOM5 consortium across all biotypes. Specifically, we used the stringent set of 
enhancer TSSs (for eRNAs) and promoter TSSs (for the remaining biotypes) defined as ‘robust’ in 
the FANTOM5 project (Andersson et al. 2014; Forrest et al. 2014). For the promoter TSSs, we only 

considered TSSs that were within 50bp of an annotated gene start site (see methods). In total, our 
genome-wide set of core promoter regions included 29,807 eRNAs, 4,280 lincRNAs, 1,713 
divergent lncRNAs, 14,332 mRNAs, and 4,235 divergent mRNAs.  Analysis of Cap Analysis of 
Gene Expression followed by sequencing (CAGE-seq) data across 550 tissues and cell types (973 
samples) for each TSS confirmed that mRNAs were more highly expressed and less tissue-specific 
than lncRNAs and eRNAs (Supplemental Fig S1). Additionally, for both lncRNAs and mRNAs, 
divergent transcripts were more highly expressed and less tissue-specific than their non-divergent 
counterparts (Supplemental Fig S1; see supplemental methods, genome-wide analysis section). 

To experimentally test the above computational predictions and dissect the contribution of 
DNA sequence to the observed expression and tissue-specificity patterns, we designed an MPRA 
in which we could assess the activity of 2,078 unique TSSs encompassing all 5 biotypes (564 
eRNAs, 525 lincRNAs, 353 divergent lncRNAs, 599 mRNAs, and 137 divergent mRNAs) expressed 
across 3 diverse human cell lines: K562 (chronic myelogenous leukemia), HepG2 (liver carcinoma), 
and HeLa (cervical adenocarcinoma) (Figure 1A; Figure 1B; Supplemental Table S1; see 
methods). Since most TF motifs and ChIP-seq peaks were enriched near the TSS (Supplemental 
Fig S2), we designed oligonucleotides that spanned the core promoter (from 80 bp upstream to 34 
bp downstream of the TSS; see methods). We linked each core promoter to a minimum of 15 
unique 11-nucleotide barcodes to ensure redundancy across sequencing measurements 
(Supplemental Table S2). We performed a minimum of 4 replicates and a maximum of 12 
replicates per condition.  We measured a sequence’s ability to drive transcription—termed “MPRA 
activity”—by calculating the foldchange between RNA barcode counts and input DNA library 
barcode counts after normalizing for sequencing depth (see methods). MPRA activity 
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measurements across replicates within a given condition were highly correlated (Supplemental 
Fig S3). 

We first validated the MPRA by comparing core promoter activity measurements to 
negative controls; as expected, core promoters were significantly more active than random 
sequences in all three cell types (Figure 1C; Supplemental Fig S4). In general, MPRA activities 
correlated well with endogenous CAGE-seq expression (Supplemental Fig S5). eRNAs had the 
lowest activity, followed by lincRNAs, which is consistent with the CAGE-seq results and indicates 
that lincRNA core promoters are stronger than eRNA core promoters (Figure 1C; Supplemental 
Fig S4). Interestingly, as we saw using CAGE-seq expression, we found that divergent mRNAs 
were more active than non-divergent mRNAs and that divergent lncRNAs were more active than 
intergenic lncRNAs (Figure 1C; Supplemental Fig S4). This implies that, on average, an individual 
divergent promoter is stronger than an individual non-divergent promoter. Therefore, the higher 

CAGE-seq expression levels observed in divergent lncRNAs compared to lincRNAs cannot solely 
be explained by having two promoters in close proximity. When looking at expression-matched 
core promoters only, these results were substantially weakened (Supplemental Fig S6), indicating 
that we are capturing innate expression differences between biotypes. 

We further tested whether our MPRA could recapitulate endogenous cell-type-specificity 
patterns. Briefly, we recalculated tissue-specificity values using K562, HepG2, and HeLa CAGE-
seq expression data only (termed “cell-type-specificity”) and found that 67% of sequences agreed 
in CAGE-seq and MPRA cell-type-specificity designations (i.e., were classified as either specific in 
both or non-specific in both) (Figure 1D). Consistently, eRNAs and lincRNAs were more tissue-
specific than mRNAs and divergent transcripts (Figure 1E). Thus, the DNA sequences of core 
promoter regions alone drive part of the tissue-specificity pattern that is present endogenously.  

We next sought to determine whether differences in expression patterns between biotypes 
are associated with known core promoter elements. Core promoters are often classified into two 
types: ubiquitously-expressed promoters—associated with CpG islands and a depletion of TATA 
box motifs—and tissue-specific promoters—enriched for TATA box and Initiator (Inr) motifs 
(Medina-Rivera et al. 2018). As expected, we found that more ubiquitously-expressed biotypes had 
higher CpG content (Supplemental Fig S7A). All biotypes had similar numbers of sequences 
containing Inr motifs (Supplemental Fig S7B). Very few sequences (~3%) had canonical TATA 
box motifs, which are traditionally associated with tissue-specific expression. Intriguingly, while 
eRNAs and lincRNAs had more TATA boxes than divergent lncRNAs and divergent mRNAs, 
mRNAs had a relatively high number of TATA boxes and equally high numbers of both TATA boxes 
and Inr motifs together (Supplemental Figs S7C, D). Thus, it would appear that tissue-specificity 
cannot be explained by core promoter elements alone, as mRNAs—which are more ubiquitously-
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expressed than eRNAs and lincRNAs—are enriched for more canonical tissue-specific core 
promoter elements such as the TATA box. 
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Fewer overlapping TF motifs in lincRNAs and enhancers contribute to their lower 
expression levels and higher cell-type-specificity 

 

Figure 2: Coverage of TFs within a binding site explains expression levels and cell-type-specificity 
variability. A. Schematic of the three metrics used to model the capacity to drive transcription and cell-type 
specificity in the MPRA. For each metric, only TF motifs that have been validated by ChIP (i.e., overlap a ChIP 
peak for the cognate TF) are considered. B. Fraction of variance explained by each of the three metrics for 
either mean MPRA activity (top) or MPRA cell-type-specificity (bottom). C. Correlation between the three 
metrics (x axis) and either the mean MPRA activity (top) or MPRA cell-type-specificity (bottom) across HeLa, 
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HepG2, and K562. Spearman’s rho is shown. D. Cumulative density plot of the number of base pairs covered 
by a motif across all biotypes (top) and the maximum motif coverage across all biotypes (bottom). E. 
Cumulative density plot for number of base pairs covered (top) and maximum motif coverage (bottom) either 
within lincRNAs (left) or within mRNAs (right), looking only at TSSs that are defined as tissue-specific (“tissue-
sp.”), ubiquitous, or dynamically expressed (see text). F. Metaplot of the average phyloP 46-way placental 
mammal conservation score centered on motif regions, broken up by how many individual TF motifs map to 
the region. In all plots, only sequences with at least 1 validated motif were considered. 

 

Our earlier results showed that MPRA can partially re-capitulate endogenous patterns of 
gene expression, including abundance—for which MPRA activity is a proxy—and cell-type-
specificity. Therefore, we aimed to further understand what sequence features could be contributing 
to the lower abundance and higher tissue-specificity of eRNA and lincRNA core promoters. To that 
end, we focused on two main features: TF motif architecture within a core promoter sequence and 
the cell-type-specificity of the TFs themselves that are present within a core promoter sequence. 
To determine core promoter TF motif architecture, we first mapped motifs (corresponding to 519 
TFs) within our core promoter sequences using FIMO (Grant, Bailey, and Noble 2011). Since the 
presence of a computationally-predicted motif does not always indicate physiological binding of the 
TF (Wasserman and Sandelin 2004), we then intersected these mapped motifs with ChIP-seq 
peaks corresponding to 771 TFs (218 of which we had motifs for) (Mei et al. 2017) and considered 
only the motifs that overlap a corresponding ChIP-seq peak (see methods).  We divided TF motif 
architecture into two components: (1) the number of independent motif binding sites in linear 
sequence space and (2) the number of overlapping motifs, which should be proportional to the 
number of different TFs that can bind to a specific sequence pattern. As a proxy for the number of 
independent motif binding sites, we used the number of base pairs covered by at least one motif in 
a given sequence. As a proxy for the number of overlapping motifs, we used the maximum 
coverage of motifs per sequence. As a proxy for the cell-type-specificity of the TFs themselves, we 
calculated the mean cell-type-specificity (across HepG2, HeLa, and K562) of all TF motifs within a 

given promoter (Figure 2A). 

To test the relative importance of these three components (number of base pairs covered 
by a motif, maximum coverage of motifs, and average TF cell-type-specificity), we calculated the 
proportion of the variation in both MPRA activity and MPRA cell-type-specificity that can be 
explained by each measurement using a general linear model (see methods). Interestingly, the 
number of overlapping motifs explains a slightly higher proportion of the variation than the number 
of base pairs covered by a motif when predicting either mean MPRA activity or MPRA cell-type-
specificity (Figures 2B, C). Conversely, the cell-type-specificities of the TFs themselves explain 
relatively little of the variation in MPRA activity and cell-type-specificity (Figures 2B, C). We also 
evaluated how much individual TF motifs contribute to sequence activity (see methods). No single 
TF motif was able to explain more than 1.5% of the variation (Supplemental Fig S8B). Overall, 
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our model suggests that having highly overlapping motifs is substantially predictive of higher 
transcriptional activity and decreased cell-type-specificity. 

Next, we looked at the motif architecture in biotypes that are known to be tissue-specific—
such as eRNAs and lincRNAs—compared to biotypes that are known to be ubiquitous—such as 
mRNAs and divergent genes. We observed that tissue-specific biotypes had both fewer base pairs 
covered by a motif and fewer overlapping motifs than ubiquitously-expressed biotypes (Figure 2D). 
We then classified individual lincRNA and mRNA TSSs as being either ubiquitously-expressed (>0 
CAGE tpm in >90% of samples), tissue-specifically expressed (>0 CAGE tpm in <10% of samples), 
or dynamically-expressed (a subset of tissue-specific genes, where in at least 1 sample the TSS is 
expressed at >50 CAGE tpm). Ubiquitously-expressed TSSs within each biotype had both more 
base pairs covered by a motif and more overlapping motifs than tissue-specific and dynamic TSSs 
(Figure 2E).    

Some TF motifs are highly similar to each other, creating potential redundancies in motif 
databases (Mathelier et al. 2014). To control for this, we used two independent methods to cluster 
similar motifs. First, we performed unbiased clustering of the 519 motifs using MoSBAT (Lambert 
et al. 2016), resulting in 223 motif clusters (Supplemental Fig S9A). Second, we used a list of 108 
non-redundant 8mer motifs generated using protein binding microarrays across 671 TFs (Mariani 
et al. 2017). We then re-calculated the above metrics (number of base pairs covered by a motif and 
the maximum motif coverage) after removing each set of redundant motifs. We found that for both 
metrics, ubiquitously-expressed biotypes had higher maximum coverage values than tissue-
specific biotypes (Supplemental Figs S9B, S9C, S10, S11). Moreover, DNA regions that harbor 
many overlapping TF motifs are more conserved than those harboring only one TF motif (Figure 
2F). Thus, using computationally-mapped TF motifs, endogenous TF binding events via ChIP-seq, 
and unique TF clusters, we observe that high and ubiquitous expression is correlated with many 
overlapping motifs. 
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Targeted deletions refine functional TF motifs in lncRNA promoters 

 

Figure 3. Targeted deletions refine TF motifs within lncRNA promoters. A. Schematic of single-nucleotide 
deletions MPRA design (left) and the output interpretation (right). B. MPRA deletion profile for the lncRNA 
HOTAIR promoter (top), the positions of computationally-mapped motifs in the reference sequence (middle), 
and the number of motifs predicted to be gained or lost due to the single-nucleotide deletions (bottom). Shaded 
areas represent the strongest gain (red) or loss (gray) of activity. C. Correlation between the number of motifs 
predicted to be disrupted (x axis) and the effect size of deletions (y axis) for all significant deletions in HepG2. 
D. (top) MPRA deletion profile for the lncRNA DLEU1 promoter. Shaded area is a called peak. (bottom) DLEU1 
sequence (plotted with letter heights proportional to loss of activity in the MPRA) and computationally-mapped 
motifs (gray boxes). The sequence logo for NRF1 is shown. * = TFAP2A, TFAP2B, and TFAP2C all map to 
the noted gray box. E. Heatmap showing all computationally-mapped motifs that overlap deletion peaks in 
HepG2. 

 

Our results suggest that overlapping TF motifs that can be bound by many different TFs—
potentially in different contexts—are associated with increased expression and decreased tissue-
specificity. We thus hypothesized that disruption of highly overlapping motifs should have larger 
effect sizes than disruption of more specific motifs. To test this, we performed a second MPRA 
across the core promoters of 21 disease-associated lncRNAs, 5 nearby mRNAs, and 5 nearby 
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eRNAs (Supplemental Table S3) and tested the effect of single-nucleotide deletions across each 
core promoter in HepG2 and K562 cells (Figure 3A; Supplemental Table S4). To ensure that we 
covered all motifs surrounding the TSS, we included 2 tiles for each TSS (from 183 bp upstream to 
69 bp upstream and 89 bp upstream to 25 bp downstream of the TSS). Thus, this strategy allows 
us to assess the contribution of each individual nucleotide to core promoter activity independently 
in a single experiment (Patwardhan et al. 2009). 

First, we confirmed that test core promoter sequences had significantly more activity than 
negative control sequences in both cell types (Supplemental Fig S12). Next, we calculated the 
“effect size” of each deletion as a foldchange in MPRA activity relative to the full reference 
sequence. In order to determine how deletion effect sizes correlate with TF motif profiles, we 
calculated the number of computationally-mapped motifs that are lost (or gained) in each deletion 
sequence relative to the full reference sequence (Figure 3B). Individual nucleotides that overlap a 

predicted motif are important in maintaining transcription, as deletion of each nucleotide 
independently shows a strong loss of activity (Figure 3B, gray shaded area). Additionally, we also 
saw deletions with gain of function effects—for example, deleting a single nucleotide in the lncRNA 
HOTAIR core promoter is predicted to create 20 new TF motifs and causes a strong increase in 
activity (Figure 3B, red shaded area).  These observations extended to the remaining core 
promoters: deletion effect sizes were generally correlated with the number of motifs computationally 
predicted to be affected by each deletion (Figure 3C; Supplemental Fig S13A). 

Moreover, single-nucleotide deletions can be used to better identify functional DNA 
regulatory motifs than computational motif mapping, as the strategy directly tests whether specific 
nucleotides are required for transcription in a particular cellular context (Supplemental Fig S13B). 
We therefore took advantage of the fact that functional DNA regulatory regions appear as “peaks” 
in the deletion effect size map and intersected these peaks with computationally-mapped motifs 
(Figure 3A). Of all of the computationally-mapped motifs in these sequences, 41% and 49% were 
found to be functional in the tested cell line—i.e., overlapped deletion peak regions—in HepG2 and 
K562, respectively.  For example, the lncRNA DLEU1, which is frequently lost in lymphocytic 
leukemia (Y. Liu et al. 1997), contains 8 predicted TF motifs, but only one motif—NRF1—
significantly overlapped the peak found via single-nucleotide deletions (Figure 3D). Therefore, we 
hypothesize that NRF1, which has a known role in the immune system (Suliman et al. 2010), is the 
primary and direct regulator of DLEU1. Consistent with this, NRF1 also has a corresponding ChIP 
peak in the DLEU1 promoter. In total, we were able to determine a wide range of functional TF 
motifs in 15 lncRNAs, 3 eRNAs, and 3 mRNAs (Figure 3E; Supplemental Fig S14). These results 
show the utility of MPRA in combination with single-nucleotide deletions to refine functional TFs. 
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Finally, we re-examined the idea that sequences that can be bound by many TFs are more 
broadly expressed. Indeed, we found that sequences that were active in both cell types had more 
of our detected functional TF motifs than sequences that were active in only one of the tested cell 
types (p=0.061, one-sided Wilcoxon test; Supplemental Fig S15). This again suggests that the 
more TFs a sequence can bind, the broader its expression pattern. 

 

 

Over 20% of genetic variants within core promoters have regulatory effects 

 

Figure 4: 22% of SNPs in promoter and enhancer TSSs have regulatory effects. A. Schematic of SNP 
and haplotype testing in MPRA. B. Correlation between the number of TF motifs disrupted (x axis) and the 
SNP effect size (y axis) for all significant SNPs in HepG2. SNP effect size is the mean log2 foldchange in 
MPRA activity between the alternative and reference alleles. C. Correlation between SNP effect sizes in 
HepG2 (x axis) and K562 (y axis). D. Examples of two haplotype effects, one additive (top) and one super-
additive (bottom). Dots represent barcode activity means across replicates for reference tile (light gray), 
individual SNP tiles (dark gray), or haplotype tiles (red). Shaded red area in the haplotype column refers to 
the 90% confidence interval surrounding the expected median additive effect. E. Example of a SNP near 
ICOSLG that disrupts six TF motifs present on the reference allele. The difference in MPRA activity between 
the reference and alternative alleles in HepG2 is shown. P-value listed is from a two-sided Wilcoxon test. 
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We extended our single-nucleotide MPRA studies to examine how human variation (e.g. 
single nucleotide polymorphisms (SNPs)) affects promoter activity in contrast to engineered 
deletions. Briefly, we used MPRA to identify regulatory SNPs that could affect a sequence’s ability 
to drive transcription in our set of 21 disease-associated lncRNA core promoters. The effect sizes 
of the tested SNPs were highly correlated with the deletion effect sizes (Supplemental Fig S16A). 
More importantly, significant SNPs tended to occur in peaks corresponding to TF motifs 
(Supplemental Fig S16B). In fact, 78% and 90% of significantly regulatory SNPs that decrease 
expression overlapped deletion-predicted TF peaks in HepG2 and K562, respectively, compared 
to only 9% and 5% of non-regulatory SNPs. The tumor suppressor lncRNA MEG3, for example, 
harbors 1 regulatory SNP shown to be mutated in breast cancer tumors by two separate studies 
(Forbes et al. 2017). This SNP lies in a functional TF peak predicted to harbor binding sites for the 
CREB family of TFs (Supplemental Fig S16B). Together, these results show that our MPRA 

strategy can identify regulatory SNPs that disrupt functional TF motifs.  
To gain a wider understanding of how genetic variation affects DNA regulatory elements, 

we next used MPRA to test all common SNPs annotated in our set of ~2,000 core promoters in 
HepG2 and K562 (Figure 4A). We correctly identified 100% and 71% of positive control variants 
as significantly regulatory in HepG2 and K562, respectively (Supplemental Fig S17). As with the 
deletion effect sizes, SNP effect sizes also correlated with the number of predicted TF motifs 
disrupted by the SNP (Figure 4B; Supplemental Fig S18), again suggesting that disruption of 
multiple overlapping motifs is associated with larger expression changes.  

Overall, we found that as many as 22% of SNPs in the tested TSS regions have an effect 
on promoter strength (Supplemental Table S5; Supplemental Fig S19). We predict that this 
proportion would increase with a higher number of barcodes (Supplemental Fig S20A) and 
replicates (Supplemental Fig S20B). When we looked within each biotype, we found no 
differences in the number of regulatory SNPs or in the SNP effect sizes (Supplemental Fig S21). 
We found that 55% of regulatory SNPs have an effect in only one of the two cell types (Figure 4C). 

Due to linkage disequilibrium (LD) in the human genome, multiple individual SNPs tend to 
be inherited together in haplotypes. However, how individual SNPs interact within a haplotype 
remains unclear. We therefore sought to determine whether individual SNPs in TSSs tend to 
interact additively—i.e., the effect of all SNPs together is equal to the sum of their individual 
effects—or epistatically—i.e., the effect of one SNP masks the effects of the other SNPs. We found 
that a minority of SNPs acted epistatically as only 16% and 22% of SNPs had a non-additive effect 
in HepG2 and K562, respectively (Figure 4D).  

Finally, we sought to identify regulatory SNPs that are in LD with GWAS hits. We identified 
96 and 36 such SNPs in HepG2 and K562, respectively (Supplemental Table S6). To analyze the 
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putative relationship between the regulatory potential of an MPRA-tested SNP and the GWAS-
associated phenotype, we selected SNPs that (i) are regulatory SNPs in both HepG2 and K562 
cells (32 total), (ii) disrupt known TF motifs, and (iii) have nearby coding genes that are associated 
with the GWAS-associated phenotype. We identified three SNPs with significant regulatory effects 
in both HepG2 and K562 cells that are associated with levels of HDL cholesterol (rs3785098) (Willer 
et al. 2013), lung cancer (Wang et al. 2008) or schizophrenia (rs3101018) (Goes et al. 2015), and 
inflammatory bowel disease (IBD) (rs4456788) (J. Z. Liu et al. 2015) respectively (Figure 4E; 
Supplemental Fig S22). For example, the IBD-associated SNP rs4456788 disrupts six TF motifs 
and shows significantly lower MPRA activity compared to the reference allele (Figure 4E). As well 
as being associated with IBD, this SNP is known to be an eQTL for the protein-coding gene 
ICOSLG (GTEx Consortium 2015) and thus this MPRA result could provide an important clue—
and a testable hypothesis—as to the biological pathway that is responsible for this genetic 

association. 
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Discussion 

Here, we have characterized the differences between lncRNA, mRNA, and eRNA core 
promoter sequences by combining computational predictions and experimental testing using high-
throughput assays. As many lncRNAs are thought to arise from enhancers (Marques et al. 2013) 
or bidirectional transcription stemming from protein-coding promoters (Sigova et al. 2013), we 
sought to determine whether lncRNA promoters are intrinsically different from enhancers and 
protein-coding promoters. Our findings suggest that the regulation of divergent lncRNAs and 
intergenic lncRNAs is quite different. Divergent lncRNAs have more TF motifs and consequently 
have stronger promoters than intergenic lncRNAs. Notably, higher expression levels of divergent 
lncRNAs compared to lincRNAs cannot solely be explained by having a nearby protein-coding 
promoter. Rather, we show that both divergent lncRNA and mRNA core promoters are intrinsically 
stronger than non-divergent lncRNA and mRNA promoters (Figure 1C). Conversely, intergenic 

lncRNA TSSs are similar to enhancer TSSs, both in terms of their TF motif architecture and 
expression patterns, with both biotypes being highly tissue-specific (Figure 2D). 

Our results suggest that core promoter sequences play important roles in determining 
transcript tissue-specificity, as our MPRA results can partially re-capitulate endogenous expression 
patterns (Figure 1D, E). Importantly, using MPRA allows us to thoroughly interrogate the regulatory 
potential of DNA sequence alone while controlling for other factors such as chromatin differences 
and effects of post-transcriptional regulation. However, we recognize that this study has some 
limitations that are intrinsic to using episomal plasmids in MPRA. These limitations are reflected 
within our own data, in which sequence alone only accounts for ~50% of observed expression 
profiles when modeled. Nonetheless, our approach has characterized the baseline to which higher 
order structural and epigenetic information can be added in order to gain a more complete picture 
of transcriptional regulation. 

Our data are consistent with a model where highly abundant genes have complex TF 
binding profiles, with stretches of promiscuous DNA that can be recognized by many TFs (Figure 
5). Several lines of evidence point towards overlapping binding sites playing a role in determining 
abundance and tissue-specificity. First, we see that a model trained on MPRA data finds the 
number of overlapping motifs to be highly predictive of abundance and anti-correlated to cell-type-
specificity (Figure 2B, C). Second, we find that tissue-specific biotypes have fewer overlapping 
motifs than ubiquitously-expressed biotypes (Figure 2D). We also find that within one biotype, 
tissue-specific genes have fewer overlapping motifs than ubiquitously-expressed genes (Figure 
2E). Third, we show that sequences that are expressed in both HepG2 and K562 have more 
functional motifs than sequences that are only expressed in one cell type (Supplemental Fig S15). 
Finally, we see that both single-nucleotide deletions and SNPs that are predicted to disrupt more 
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motifs have higher effect sizes (Figures 3B and 4B). For example, a single nucleotide deletion in 
the HOTAIR promoter generates 20 new TF motifs and subsequently increases promoter activity 
by 4-fold (Figure 3B).  

By definition, overlapping binding sites are at the same distance from the TSS; 
interestingly, where TFs bind in relation to the TSS is important (Tabach et al. 2007). We speculate 
that this system would allow genes to maintain high and ubiquitous expression levels across 
different tissues and conditions despite the likely fluctuating expression levels of the TFs. Further, 
this redundancy could explain why knockdown of certain TFs often does not result in the 
misregulation of the expected target genes (Cusanovich et al. 2014), as other TFs would be able 
to bind to the same position. Thus, we propose that promoter specificity may be a function of 
simplicity in motif usage. Further work remains to be done to experimentally test the extent of the 
role that these overlapping motif profiles play in regulating expression and specificity. 

 

Figure 5: Model: Overlapping TF motifs are associated with high expression and low specificity. 
Schematic showing biotypes that are highly and ubiquitously expressed (left; big arrow) have more overlapping 
TF binding sites (gray shaded boxes) and thus more TFs can bind both within a specific cell type or across 
cell types. Biotypes that are lowly and specifically expressed (right; thin arrow or crossed arrow), have fewer 
overlapping motifs and thus only a few TFs (one in the example) can bind. TFA Is present in cell type 1 and 2, 
whereas TFB and TFC are only present in cell type 1 and cell type 2 respectively.  

 

Our findings also have evolutionary implications. Much attention has been given to the fact 
that enhancers and lincRNAs have rapid sequence turnover (Hon et al. 2017). Our findings are 
consistent with this notion. We find that tissue-specific TSSs, such as those of lincRNAs and 
eRNAs, have less complex motif profiles. Thus, they may be more likely to appear and disappear 
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throughout evolutionary time. In fact, DNA regions with few overlapping motifs are more poorly 
conserved than DNA regions with many overlapping motifs (Figure 2F). Conversely, highly 
transcribed genes have developed more complex TF binding patterns, which may have evolved to 
produce stable antisense transcripts because they provide a fitness advantage. Indeed, if we 
compare human and mouse orthologous genes that have gained a stable antisense transcript in 
either one of the lineages, they show an overall increase in expression (Supplemental Fig S23). 
Thus, bidirectional transcription may not only allow for de novo gene origination but could also be 
an evolutionary mechanism to increase expression of the gene in the sense direction. This may 
also help explain why divergent mRNA-lncRNA pairs occur so frequently in the human genome 
(Sigova et al. 2013). Overall, this study sheds light on the important roles that core promoters play 
in complicated aspects of gene regulation—including divergent transcription and tissue-
specificity—across both coding and non-coding genes. 

 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/482232doi: bioRxiv preprint 

https://doi.org/10.1101/482232


	 19 

Methods 

TSS biotype classification 

mRNA and lncRNA TSSs were classified based on Gencode v19 (Harrow et al. 2012) gene 
annotations. All TSSs from genes annotated as lncRNAs were classified as intergenic lncRNA 
(lincRNA) TSSs if they did not overlap any annotated protein-coding genes or as divergent lncRNA 
TSSs if the annotated TSS had an antisense FANTOM5 TSS within 1000bp. Similarly, mRNA TSSs 
were classified as divergent mRNA TSSs if the annotated TSS had an antisense FANTOM5 TSS 
within 1000bp. eRNA TSSs were also defined by FANTOM5 (Andersson et al. 2014) and had two 
TSSs each—a sense TSS and an antisense TSS—due to their inherent definition of being 
bidirectionally transcribed. 

 

MPRA TSS selection  

To select promoters to include in the MPRA, we used the FANTOM5 robust TSS set (Forrest et 
al. 2014). These TSSs are expressed robustly in CAGE-seq data (> 10 CAGE reads in one 
sample and > 10 tpm CAGE expression in at least one sample). Additionally, we only considered 
FANTOM5 TSSs that were within 50bp of their cognate annotated Gencode v19 transcript TSSs. 
eRNA TSSs were selected from the enhancer TSS set defined in the same FANTOM5 release 
(Andersson et al. 2014).  Next, we selected TSSs based on their CAGE expression profiles. 
Specifically, we required the TSSs to either (a) be expressed > 0.5 tpm across all replicates of at 
least one of the tested cell lines (HeLa, HepG2, or K562) or (b) have an average expression > 0.5 
tpm across all FANTOM5 samples (suggesting they had high baseline expression). Finally, we 
excluded any lncRNA TSSs arising from transcripts with high coding potential (phyloCSF > 0 
((Lin, Jungreis, and Kellis 2011))) or that overlapped a protein-coding gene in the sense direction. 
 
As the MPRA was lncRNA-focused, all lncRNA TSSs (lincRNAs and divergent lncRNA TSS) that 
filled the criteria above were included for testing in the MPRA. To control for the fact that there 
were more mRNA and eRNA TSSs than lncRNAs, we selected both expression-matched mRNA 
and eRNA TSSs (average expression across all FANTOM5 samples matching that of lncRNA 
TSSs) as well as randomly-selected mRNA and eRNA TSSs for further analysis. We also 
included all protein-coding TSSs that were in close proximity to the selected lncRNA TSSs 
(<160bp) in antisense and some of the most highly expressed eRNAs. Additional TSSs were 
included if they contained at least one SNP in LD with a GWAS hit in their core promoters (see 
Supplemental Table S6 for additional details). Overall, we ended up with 2,078 TSSs for testing 
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in MPRA (Figure 1A; Supplemental Table S1). More details available in Supplemental Methods 
(MPRA TSS selection section). 

 
MPRA pool design 
Two 120,000 oligonucleotide (oligo) pools of 170 bp with 11 bp barcodes were designed. The first 
pool included core promoter sequences across biotypes and common SNPs falling in these regions 
(see supplemental methods; Supplemental Table S1; S2). The second pool included single-
nucleotide deletions across the core promoters of 21 lncRNAs, 5 enhancers and 5 mRNAs with 
two consecutive reference tiles each (see supplemental methods; Supplemental Table S3; S4). 
Random and scrambled sequences were included in both pools as negative controls. More details 
available in Supplemental Methods (MPRA oligo pool design section). 
 

MPRA cloning and transfection  

Oligo pools were synthesized by Twist Biosciences and then cloned into plasmids to generate a 
library of constructs where the regulatory sequence is upstream of a reporter gene (here, GFP) that 
is upstream of a unique barcode (see supplementary methods).  Constructs were transfected into 
live cells and barcode expression was assayed by high-throughput RNA sequencing. A minimum 
of 4 and a maximum of 12 replicates were performed per condition (cell type and presence/absence 
of a minimal promoter) adding up to 32 total experiments (Supplemental Fig S3). Results are 
based on the minimal promoter set-up given the high similarity between replicates with and without 
the minimal promoter and the fact that more replicates were performed for this set-up. More details 
available in Supplemental Methods (MPRA cloning, transfection, and sequencing section). 

 

MPRA data analysis 

All Python scripts and notebooks used to perform the MPRA analyses are available at 
https://github.com/kmattioli/2018__lncRNA_promoter_MPRA and provided as Supplemental 
Materials.  

Exact matches to known barcodes and 6 upstream constant nucleotides were mapped after quality-
filtering the sequencing reads. Barcodes were filtered to those with >=5 counts (in both DNA and 
RNA). Barcode activities were calculated as the log-transformed proportion of RNA barcodes to 
the proportion of DNA barcodes (after normalizing for sequencing depth) and were quantile-
normalized across replicates. Element activities were calculated as the median activity value across 
all cognate barcodes, requiring >=3 barcodes. Significantly active tiles were defined as those with 
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barcode activities that were significantly more activity than random negative control sequences 
according to a two-sided Wilcoxon test in >=75% of replicates (see supplemental methods). As we 
had many more replicates in HepG2 than in other cell types and to ensure we had similar power 
when comparing across cell types (i.e., Figure 1F), HepG2 replicates were down-sampled 100 
times and sequences were considered significant if they were significant by the rules above in 
>=75% of samples. More details available in Supplemental Methods (MPRA analysis section). 

 

Core promoter element analysis  

The core promoter was defined as 80 bp upstream to 34 bp downstream of the TSS. CpG content 
was calculated by counting the number of “CG” dinucleotides in this region. Inr motifs were defined 
to be matches to the motif BBCABW (B=C/G/T, W=A/T) (Kugel and Goodrich 2017) within 5 bp of 
the TSS. TATA motifs were defined to be matches to the motifs TATAAA or TATATA within 55 to 

15 bp upstream of the TSS. Position weight matrices for TF binding motifs were obtained from the 
JASPAR database (core, vertebrates, 2016 release) (Mathelier et al. 2014).  

 

MPRA activity and tissue-specificity predictions 

An ANOVA analysis was used to evaluate what properties contribute MPRA activity and specificity. 
Specificity across the MPRA activity values for HepG2, K562, and HeLa was calculated using the 
tau metric (Kryuchkova-Mostacci and Robinson-Rechavi 2017): 

 𝜏 = ∑ (%&'()	),
-./
0&%

; 𝑥34 =
'-

567
/8-8,

('-)
 

where xi is the median activity of a TSS in cell type i and n is the number of cell types. Briefly, tau 
calculates the average difference between the activity of a TSS in a given cell type and the TSS’ 
maximal expression across all cell types. Thus, “ubiquitous” TSSs will have tau values close to zero 
while “tissue-specific” TSSs will have tau values close to one. 

To perform the ANOVA analysis, the variance in activity/specificity that is explained by the general 
sequence features (listed in Supplemental Fig S6A) was calculated. The variance explained by 
each parameter was calculated on its own and the optimal subset of parameters was computed. 
As the parameters were highly correlated, the optimal subset consisted of only 7 out of 14 
parameters yet explained 41% of the total variance (Supplemental Fig S6A). 

𝑀𝑃𝑅𝐴	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	~𝐶𝑝𝐺	𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + max(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) + #	𝑏𝑝	𝑐𝑜𝑣𝑒𝑟𝑒𝑑 + 𝐶𝐺	𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝐶𝐺	𝑐𝑜𝑛𝑡𝑒𝑛𝑡S

+ 𝑡𝑜𝑡𝑎𝑙	#	𝑚𝑜𝑡𝑖𝑓𝑠 + 𝑡𝑜𝑡𝑎𝑙	#	𝑚𝑜𝑡𝑖𝑓𝑠S 

Motifs were then added into the model one by one. 
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𝑀𝑃𝑅𝐴	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	~𝐶𝑝𝐺	𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + max(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) + #	𝑏𝑝	𝑐𝑜𝑣𝑒𝑟𝑒𝑑 + 𝐶𝐺	𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝐶𝐺	𝑐𝑜𝑛𝑡𝑒𝑛𝑡S

+ 𝑡𝑜𝑡𝑎𝑙	#	𝑚𝑜𝑡𝑖𝑓𝑠 + 𝑡𝑜𝑡𝑎𝑙	#	𝑚𝑜𝑡𝑖𝑓𝑠S + 𝑚𝑜𝑡𝑖𝑓	𝑖𝑠	𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

Of the 382 motifs tested, 17 were found to explain a significant fraction of the variance (listed in 
Supplemental Fig S6B). Combining the 7 sequence features and the significant motifs in a model 
explained a total of 49% of the variance in MPRA activity.  

This analysis was performed in R (version 3) using the leaps and tidyverse packages. 

 

ChIP-seq analysis and TF motif mapping 

ChIP-seq files were downloaded from the Cistrome Data Browser (cistrome.org) (Mei et al. 2017) 
for 771 human TFs (Supplemental Table S7)—218 of which overlapped with the set of 519 
JASPAR motifs. BedTools (Quinlan and Hall 2010) was used to merge peaks for a given TF and 
then intersect the merged ChIP peaks with our set of promoters. Since Cistrome peaks were in 
hg38 and our promoters were in hg19, we first used liftOver (Hinrichs et al. 2006) to convert our 
promoters to hg38 coordinates. Motifs were mapped in sequences using FIMO (version 4.11.2) 
(Grant, Bailey, and Noble 2011) with a p-value threshold of 1e-5. Motifs were assigned to ChIP-

seq peaks if there was a FIMO motif mapped within 250 bp of the ChIP-seq peak.  

 

MPRA deletion analysis and functional TF motif mapping 

Deletion effect sizes were defined as the log2 foldchange between the mean activity of the deletion 
sequence across replicates and the mean activity of the reference sequence across replicates, 
resulting in a value per nucleotide. Peaks were defined as any stretch of >= 5 nucleotides with 
effect sizes of <= -1.5 * the average standard deviation of the deletion effect sizes in that tile. 
Mapped motifs were said to be “functional” if >= 1 nucleotide in the motif intersected a peak. 

 

SNP and haplotype analysis 

Regulatory SNPs were defined as those whose barcode activities were significantly different and 
consistent in direction between reference and alternative tiles using a two-sided Wilcoxon test in 
>=75% of replicates (see supplemental methods). Again, when comparing between cell types (i.e. 
Figure 4C), HepG2 replicates were down-sampled 100 times as above. 

To determine additive haplotypes, first the expected additive haplotype effect size was found by 
summing the median log2 foldchanges (alternative/reference activities) for each individual SNP in 
a haplotype. This effect was bootstrapped (n=1000) to determine a 90% confidence interval and a 
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haplotype was considered additive if the actual median log2 foldchange of the haplotype fell within 
this 90% confidence interval.  

The GWAS catalog was downloaded from http://www.ebi.ac.uk/gwas/docs/downloads. Raggr was 
used to calculate whether any of the MPRA-tested SNPs were in linkage disequilibrium (r2<0.6) 
with any of the GWAS tag SNPs at http://raggr.usc.edu/.  

 

Data Access 

The MPRA sequencing data from this study have been submitted to the NCBI Gene Expression 
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE117594. All 
scripts required to reproduce this work are available as Supplemental Material as well as on 
GitHub at https://github.com/kmattioli/2018__lncRNA_promoter_MPRA. 
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